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Abstract

Motivation: Seeking probabilistic motifs in a sequence is a common task to annotate putative transcription factor
binding sites or other RNA/DNA binding sites. Useful motif representations include position weight matrices
(PWMs), dinucleotide PWMs (di-PWMs), and hidden Markov models (HMMs). Dinucleotide PWMs not only combine
the simplicity of PWMs—a matrix form and a cumulative scoring function—but also incorporate dependency be-
tween adjacent positions in the motif (unlike PWMs which disregard any dependency). For instance to represent
binding sites, the HOCOMOCO database provides di-PWM motifs derived from experimental data. Currently, two
programs, SPRy-SARUS and MOODS, can search for occurrences of di-PWMs in sequences.

Results: We propose a Python package called dipwmsearch, which provides an original and efficient algorithm for
this task (it first enumerates matching words for the di-PWM, and then searches these all at once in the sequence,
even if the latter contains IUPAC codes). The user benefits from an easy installation via Pypi or conda, a comprehen-
sive documentation, and executable scripts that facilitate the use of di-PWMs.

Availability and implementation: dipwmsearch is available at https://pypi.org/project/dipwmsearch/ and https://gite.
lirmm.fr/rivals/dipwmsearch/ under Cecill license.

1 Introduction

Protein binding sites on nucleic acids (DNA or RNA) share similar,
but not identical sequences. The collection of sequences of such
binding sites, which in practice is a set of sequences (of identical
length), are summarized and represented as a probabilistic motif.
Often only a few positions within such sequences are conserved
across a majority of their binding sites. Even at a conserved position,
when the collection is large enough, alternative nucleotides occur.
Hence, for each position of the binding site, it is convenient to sum-
marize its variability as the probability of each nucleotide to occur
at this position. The probabilities are estimated from the frequencies
of nucleotides at that position in the collection. This explains why
the first and most popular probabilistic motif representation is the
Position Weight Matrix (PWM) (Stormo 2000). A PWM is a matrix
containing the weight or score of each nucleotide at each position of
the sequence alignment: the weights are log-odd scores of the nu-
cleotide probabilities at each position. Numerous search algorithms
are available for PWMs (Beckstette et al. 2006; Korhonen et al.
2009; Martin et al. 2018). However, in a PWM positions are entire-
ly independent one of another; but in reality, neighboring positions
are constrained since they influence the shape of DNA, or the pro-
pensity to undergo epigenetic modifications, and hence the binding
of the protein. Hence, a more complex representation for

probabilistic motifs that accounts for local position dependencies
was proposed: the dinucleotide PWM (di-PWM) (Kulakovskiy et al.
2013). At each position, one records the frequency of all 16 possible
dinucleotides (instead of four nucleotides in a PWM). A di-PWM
and score computation of a word is illustrated in Fig. 1a.

For instance, the HOCOMOCO database (v11) stores di-PWMs
of binding motifs of Human and Mouse transcription factors (292 and
257, respectively), which were directly computed from experimental
ChIP-Seq data (Kulakovskiy et al. 2018). For detecting new binding
sites, it was shown that di-PWMs provide enhance sensitivity compared
to classical PWMs (Kulakovskiy et al. 2013). di-PWMs also obtained
successful results in the DREAM-ENCODE challenge from 2017.

To our knowledge, only SPRy-SARUS and MOODS can find
occurrences of di-PWMs in long sequences. SPRy-SARUS is an effi-
cient standalone Java program to search for di-PWMs, which is
coupled with MoLoTool, a web tool allowing visual inspection of
occurrences in short sequences (Kulakovskiy et al. 2018). MOODS,
a tool to search for PSSM/PWM, can also handle di-PWMs
(Korhonen et al. 2017) (v3 available as Cþþ code and Python pack-
age). Both adopt a window scanning strategy, while dipwmsearch
uses an enumeration strategy.

Hence, we provide a Python package for searching di-PWM in
sequences: it can be easily installed via conda and offers several func-
tions that can be used in Python programs. The user can control the
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minimum score of occurrences found by entering either a score thresh-

old, a ratio threshold, or a P-value threshold. After the search, the user
can also compute and add the P-value of each reported occurrence in
the output file. We designed a novel search algorithm that differs from

previous approaches. Running time comparisons demonstrate that our
algorithm is on par with SPRy-SARUS in practice.

2 Search algorithm

Our package provides distinct search algorithms: an optimized scan-

ning algorithm (OS), an enumeration-based algorithm for full di-
PWMs (FE), and the core enumeration-based algorithm (CE). We

described the FE and CE algorithms below, and explain OS in
Supplementary Material. The CE algorithm is the most time efficient
of all and, by design, uses less memory than FE.

From an algorithmic viewpoint, we aim at proposing new
approaches capable of finding occurrences in long sequences (writ-

ten over an alphabet containing r symbols) with a limited amount of
memory. Before explaining the algorithm, we give some rationale

for our approach. Let us consider that in a text T, we seek a di-
PWM P of size r2 � ðm� 1Þ (for a motif of length m) and with a
score threshold t. An entry P½ab; i� gives the score of dinucleotide ab
at position i in the motif. For the CE algorithm, we need to restrict

the matrix P to a subset of columns (i.e. to an interval of positions)
for any interval ½i::j� with 1 � i < j < m.

2.1 Traditional scanning algorithm and enumeration

strategy
In a traditional scanning algorithm, one considers each possible win-
dow of length m in T and computes its score according to P (see
Fig. 1a). It takes Oðm� jTjÞ time, which is quadratic. The scanning
approach implies redundant computation (for instance when proc-
essing identical or similar substrings whose score are too low) and
often is inefficient. A classical speedup trick uses the
LookAheadTable to stop the score computation after viewing only a
prefix of the current window (Beckstette et al. 2006); it does not im-
prove the worst-case complexity.

An alternative is to first enumerate all words of length m that
match P with a score > t, which we call valid words, and then to
search the valid words in T using an Aho–Corasick (AC) automaton
(Aho and Corasick 1975) (or any other algorithm that solves the Set
Pattern Matching problem). We implemented this in the
enumeration-based algorithm for full di-PWM (FE). We call this glo-
bal idea the enumeration strategy; it concentrates the complexity in
the enumeration phase and makes the scanning efficient because it
seeks only exact matches of the valid words—the scanning phase
does not compute any score. Nicely, building the Aho–Corasick
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Figure 1 (a) Enumeration and scanning strategy for a di-PWM. Left part shows how the score of two words are computed by summing the score of their five dinucleotides. If

the score lies above the threshold, the word is a valid word and is added to the list for later search. Right part: we build an Aho–Corasick automaton with all valid words in

the list, then use the automaton to scan the sequence. (b) Illustration of the branch and bound strategy for the enumeration procedure. We build a trie for words starting with

letter A, and explore it in Depth-First manner. As soon as a prefix cannot give rise to a valid word, which is determined using the LookAheadMatrix (LAM), we cut the corre-

sponding branch. Only valid words generate a leaf in the trie. (c) Comparison of SPRy-SARUS and dipwmsearch for searching all Human di-PWMs from HOCOMOCO on

Human chromosome 15. The violin plot shows the running times over for all di-PWMs and their median for both tools
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automaton takes linear time in the cumulated length of valid words,
and scanning T with it takes linear time in jTj.

2.2 Efficiency conditions for the enumeration strategy
To be efficient, the enumeration strategy needs 1/ a fast enumeration
algorithm, 2/ a set of valid words that is small enough for the AC au-
tomaton to fit in memory (i.e. to remain fast to build). Below, we ex-
hibit an enumeration algorithm that takes linear time in the output
size, and satisfies the first condition. However, the number of valid
words depends on the selectivity of the di-PWM P with threshold t.
The least selective position is when the scores of all 16 dinucleotides
are equal. It turns out that some di-PWMs from HOCOMOCO con-
tain positions that are not selective, i.e. in which the scores of dinu-
cleotides are almost equally distributed. A closer examination shows
in such di-PWMs nonselective positions often occur in intervals of
successive positions (see Supplementary Material). For such an inter-
val of say f positions, if we consider P0 the restriction of P to this
interval, almost any possible word of length fþ1 is a valid word for
the di-PWM P0. This may lead to an explosion of valid words for the
full di-PWM P.

We propose to identify selective and nonselective positions by
considering the standard deviation of their scores: a large deviation
means a selective position. To avoid cases with huge set of valid
words, we propose to restrict P to an interval of selective positions,
which we term the core. We proceed as follows: first, we compute
the standard deviation of scores for all positions, then we select, by
exhaustive search among all possible intervals of length at least 10,
the interval with the largest average standard deviation. This inter-
val determines the core (which is a smaller di-PWM).

2.3 Enumeration of valid words: B&B approach and

LAM
For a full di-PWM, we propose an algorithm that explores a trie
data structure of valid words using a Branch-and-Bound approach
(see Fig. 1b). We build a trie that spells out prefixes of potential
valid words, one letter at a time. After each letter, assume the cur-
rent prefix has length k, we compute the partial score for this prefix.
Then, we check the score for the best possible suffix of length m–k
in an additional matrix called the LAM. If the sum of prefix and suf-
fix scores does not reach the threshold t, then extensions of the cur-
rent branch of the trie are unnecessary. The LookAheadMatrix (or
LAM for short) is a precomputed r� ðm� 1Þ matrix that depends
only on P. For a position i in P and a symbol a, the LAM½a; i� stores
the best score for a suffix starting with symbol a at position i.
Supplementary Algorithm S1 computes the LAM in Oðr2 � ðm�
1ÞÞ time. The LAM has a crucial property: for any stored score value
in the LAM, there exists a word that realizes this score. This ensures
that only branches of the trie corresponding to valid words are fully
built by the enumeration algorithm. Moreover, the amount of com-
putation spent between two successive valid words is bounded by
2m, which implies that our algorithm takes linear time in the output
size.

Note that a pendant matrix to the LAM can be built symmetric-
ally to compute the best scores of prefixes of P. We call this matrix,
the LookBackMatrix or LBM.

After enumeration, in the search step, the set of valid words for
P are searched for in T using an Aho–Corasick automaton (Aho and
Corasick, 1975).

2.4 Adapting the enumeration strategy and search to

the core
The enumeration algorithm and search phase must be adapted to use
the core instead of P. Assume the core, denoted by Q, starts at position
kþ1 in the motif and has length h–1. We must enumerate words of
length h for Q that are substrings of valid words of length m for P. We
run the branch & bound algorithm described above to spell out words
of length h according to Q, but we cannot select them on their own
score (which is a sum only over h–1 positions!). We must use the score
of a prefix of P, not a prefix of Q. Assume the current prefix w starts

with letter a at position kþ1 and ends with letter b; as score, we use
scoreðxwyÞ, where x is a highest scoring valid prefix for P of length k
ending with letter a, and y a highest scoring suffix of length m� k�
jwj þ 1 starting with letter b, and such that jxwyj ¼ m. The idea be-
hind is that xwy is the best possible word of length m with substring w
(at positions ½kþ 1; kþ jwj þ 1�). The constraints on the letters are
implied by the fact that successive positions of a di-PWM score over-
lapping dinucleotides. We use the LAM to get the contribution of y to
this score (without knowing y) and we use the LBM to get that of x
(without knowing x). The algorithm outputs the set of all words w of
length h that occur in at least one valid word for P (at position
½kþ 1; kþ hþ 1�).

The search phase builds an AC automaton with this set and scan
T with it. Each time a match is found, say at position i, it computes
the score of the window of T between positions ði� kþ 1Þ and
ði� kþmÞ. If the scores reaches the threshold t it reports a match
of P at position ði� kþ 1Þ in T, and its score.

3 Results

We compared the core enumeration algorithm to SPRy-SARUS in
terms of efficiency by searching each Human di-PWM from
HOCOMOCO on Human chromosomes 3 and 15 with four differ-
ent score ratio thresholds (0.8, 0.85, 0.90, and 0.95). The score ratio
threshold is a way to set a relative score threshold that is comparable
between different di-PWMs (it was developed for PWMs—see the
FAQ of JASPAR database). The score threshold h is computed as
follows: h ¼ ðscoremax � scoreminÞ � ratioþ scoremin, where scoremin

and scoremax are respectively the minimum and maximum achiev-
able scores for the input di-PWM. Note that dipwmsearch provides
an alternative to the ratio threshold: the user can give a P-value
threshold to limit the score of occurrences found.

First, the results shown in Fig. 1c confirm that CE algorithm is
able to search for any di-PWM with reasonable score ratios.
Figure 1c displays the median search time over all di-PWMs for both
tools, and shows first, that dipwmsearch offers affordable runtimes
whatever the ratio, and second that, while dipwmsearch takes longer
times than SPRy-SARUS for ratio 0.80, it is as efficient or faster for
larger ratios.

On the violin plot, the set of points for dipwmsearch is needle-
like due to the variability of motif length and of information content
among HOCOMOCO di-PWMs. Information poor di-PWMs gen-
erate longer list of valid words, whose enumeration and storage
requires longer time and larger memory, than for information rich
di-PWMs. An extreme example of information poor di-PWMs, that
of GATA2, is shown in Supplementary Material; others, such as
MAX_HUMAN (length 23 nuc.), can be spotted looking at the
LOGO representations of di-PWMs on HOCOMOCO webpage.
Below in the discussion, we emphasize that enumeration of valid
words and the core-based strategy can help questioning the informa-
tion content and the width of some di-PWMs.

4 Conclusion

Our Python package, dipwmsearch, provides an easy and efficient
procedure to find occurrences of di-PWMs in nucleotidic sequences,
and well documented snippets. It offers practical advantages com-
pared to an existing solution (like processing IUPAC codes, or an
adaptable output—see Supplementary Material). Furthermore, it
can be enhanced by combining it with other Python packages (e.g.
for processing compressed sequence files). Most of all, the installa-
tion is straightforward using pypi or conda. In addition, we pre-
sented an original enumeration-based search algorithm that handles
di-PWMs even if they contain nonselective positions. Coping with
nonselective positions was necessary to make search effective for
some di-PWMs, which questions their information content, and in
turn their construction process. Examining the core block deter-
mined by our CE algorithm, or comparing set of valid words with
the occurrences found in practice, can help determining whether the
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information content and the length of a di-PWM are well adapted or
could be improved.

Several perspectives come to mind. First, once enumerated, the
set of valid words can be stored in a file and reused for other
searches. Second, the search phase can be streamlined by using a
precomputed index of the searched sequence to find valid words,
which would be appropriate for a web application that needs to an-
swer numerous di-PWM searches.
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Korhonen J, Martinmäki P, Pizzi C et al. MOODS: fast search for position

weight matrix matches in DNA sequences. Bioinformatics 2009;25:

3181–2.

Korhonen JH, Palin K, Taipale J et al. Fast motif matching revisited: high-

order PWMs, SNPs and indels. Bioinformatics 2017;33:514–21.

Kulakovskiy I, Levitsky V, Oshchepkov D et al. From binding motifs in chip-

seq data to improved models of transcription factor binding sites. J

Bioinform Comput Biol 2013;11:1340004.

Kulakovskiy IV, Vorontsov IE, Yevshin IS et al. HOCOMOCO: towards a

complete collection of transcription factor binding models for human and

mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res 2018;46:

D252–9.

Martin D, Maillol V, Rivals E. Fast and accurate genome-scale identification

of DNA-binding sites. In: 2018 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), Madrid, Spain, pp. 201–5. 2018.

Stormo GD. DNA binding sites: representation and discovery. Bioinformatics

2000;16:16–23.

4 Mille et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/4/btad141/7100340 by guest on 10 N
ovem

ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad141#supplementary-data
https://doi.org/10.1186/1471-2105-7-389

