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Computational systems used in space systems have constantly been evolving in
several aspects, ranging from the ability of tolerate faults and failures to process large
volumes of data. These aspects mainly affect the characteristics of the processing
cores, ranging from microcontrollers to microprocessors, impacting in the computer
architecture and organization used. One instruction set architecture under extensive
study for application in the space environment is the RISC-V. This architecture has
been widely used in space systems because it is simple, open, and modular, enabling
the application of techniques that mitigate faults caused in a space environment. How-
ever, the application of these techniques affects the performance of the components.
Thus, it affects the high-resolution data captured by the sensors, which needs to be
processed before being transmitted to Earth. Therefore, it is necessary to apply tech-
niques that accelerate the processing of this data. As a solution to the demand for an
increase in processing performance, RISC-V can support vector instructions, which
allow operating on a vector of data with only one instruction. This approach allows
exploring levels of data parallelism and improving the acceleration of applications.
Therefore, we developed support for a subset of the vector extension for an existing
functional fault-tolerant RISC-V processor. We analyzed the vector instructions that
are relevant to digital signal processing, since it is a time-costly type of processing, to
define the instructions that constitute the subset. Thus, we implemented only sequen-
tial memory access, addition, and subtraction vector instructions. We evaluated the
impact of using these instructions compared to scalar instructions, analyzing the exe-
cution time, logical resource utilization, and power consumption. The results showed a
performance improvement of up to 4x when using the vector instructions relative to the
scalar instructions, but, there was a hardware overhead of 1.5x for consumed Lookup
Tables and 1.8x for Flip-Flop. Besides the hardware overhead, this cost is negligible
compared to the acceleration offered.

1. Introduction

Space systems are affected by the harsh elements of the space environment, such
as radiation, extreme temperatures, and lack of gravity. These elements may lead
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to faults that can affect the functioning of computational systems. Thus, it is impor-
tant to apply fault-tolerance techniques in spacecrafts design to improve the systems
reliability [1].

The processor implemented by Santos et al. [2], also known as HARV, is an ex-
ample of technology for space systems, in which the authors developed a low-cost
fault-tolerant RISC-V processor. This work used fault-tolerance techniques to prevent
possible errors due to its exposition to harsh environments. Also, in [3], the authors an-
alyzed the impact of Deep Neural Networks (DNNs) for space applications. Therefore,
they evaluated the use of DNNs in a RISC-V vector processor and presented a sev-
eral recommendations to systematically enable OBDM with RISC-V vector processors.
Thus, as it can be observed, there is a tendency to use the RISC-V ISA (Instruction
Set Architecture) as processing core for space applications.

RISC-V is an ISA that has gained popularity within the past few years. This is
mostly due to its simplicity, openness, and modularity, i.e., composed by a base ISA
and optional extensions [4]. Among the various ISA extensions defined in the stan-
dard, there is the vector extension. With this extension, the systems can perform an
instruction on multiple data elements simultaneously [5]. Thus, it is possible to explore
high data parallelism levels, decreasing processing latency and power consumption.
These factors are critical in space systems since they have limitations regarding en-
ergy harvesting [6].

Currently, some commercial and academic cores implement or are based on the
RISC-V Vector (RVV) extension. For instance, Arrow [7] is a configurable co-processor
aimed at edge machine learning inference that implements a subset of RVV version
0.9. Further, Johns and Kazmierski [8] implemented a subset of the RVV v0.8 ex-
tension instructions to a RISC-V processor to satisfy microcontrollers area and power
consumption requirements. Also, Ara [9] is a parametric in-order high-performance
64-bit vector unit based on RVV version 0.5 that works in tandem with Ariane. How-
ever, although these works explore the RVV extension, to the best of our knowledge,
there are no works that implement the RVV extension for a fault-tolerant processor.

Given the context above, this work has as its main contribution the support devel-
opment of a vector instructions subset for a low-cost fault-tolerant RISC-V processor
developed in [2]. Our primary focus was to improve the performance of signal pro-
cessing applications. The experiments comprised the execution of basic arithmetic
operations and memory read and write with scalar and vector instructions to compare
the impact of using vector instructions.

The remainder of this paper is organized as follows. Section II presents additional
concepts on hardware acceleration, RISC-V ISA, and its vector extension. Next, Sec-
tion III discusses related work, and Section IV describes the materials and methods
employed in this study. Following, Section V presents and discusses the experimental
results, while Section VI gives the final remarks.

2. Background

2.1. Hardware Acceleration
One way to speed up computational processing is using the Data-Level Parallelism

(DLP) concept, which is used to operate on multiple data elements simultaneously [5].
Single Instruction, Multiple Data (SIMD) is one class of processors exploring the DLP.
This architecture became popular in the 1970s for partitioning 64-bit registers into



multiple 8-, 16- or 32-bit registers and operating them in parallel. This way, a single in-
struction operates on several data array elements within only one instruction fetch and
decode. The Operation Code (Opcode) supplied the data width and the operation [10].

Subsequently, to speed up SIMD architectures, the architects increased the width
of the registers to process more elements in parallel. Once data and operation width
are indicated in the instructions Opcode, expanding the SIMD registers also implies
increasing the instruction set [10]. Thus, SIMD instructions operate in fixed-size regis-
ters that are generally set to 128 bits wide [11].

An alternative to SIMD architecture that explores DLP is the vector architecture,
represented in Fig. 1. This architecture gathers objects from the main memory, puts
them into exclusive vector registers, operates on these registers, and then scatters the
results back to the main memory. However, unlike SIMD, the size of vector is deter-
mined by the implementation rather than described in the Opcode [10]. Consequently,
vector architectures require a smaller instruction set and make hardware design flexi-
ble to parallelize data without affecting algorithms development.

Figure 1: Addition instruction in scalar, SIMD and vector architecture [11].

2.2. RISC-V
The RISC-V ISA was developed at the University of California, Berkeley, based

on the Reduced Instruction Set Computer (RISC) architecture [12]. This ISA has a
highly regular instruction encoding and simple memory access instructions with a di-
rect memory model. One of the benefits of RISC-V is the minimal size of simple cores,
which are much smaller compared to Advanced RISC Machine (ARM) and x86 archi-
tectures. However, the difference is not noticeable on higher-capacity cores [13].

The RISC-V structure is modular, i.e., it comprises a base instruction set and a va-
riety of optional extensions. The three main base instruction sets are RV32I, RV32E,
and RV64I. The first one is a 32-bit set with 47 instructions, enough to fill basic re-
quirements of the modern operational systems. The other two sets are very similar.
The RV32E is a variation with only 15 registers aimed at embedded systems, and the
RV64I differs only on the integer and Program Counter (PC) registers width [10]. The
optional extensions can be added as needed by each application to form a more robust
instruction set [12].



2.2.1. Vector extension
The RISC-V vector extension allows adapting the RISC-V ISA to a vector archi-

tecture. It adds 32 vector registers to the base RISC-V and enables its splitting for
executing more operations simultaneously, which is configured through the seven ad-
ditional CSRs [12].

The Configuration-Setting instructions change the values of CSRs. The vector
arithmetic instructions operate on values stored in the vector registers, and memory
read and write operations transfers a certain number of bits from memory to the vector
database and back again. All instructions in this set fit into two existing instruction
formats: LOAD-FP/STORE-FP from the floating-point extension, or OP-V, a vector-
exclusive format [14].

3. Architecture

HARV [2] is a low-cost fault-tolerant RISC-V processor developed through coopera-
tion between the Laboratory of Embedded and Distributed Systems from the University
of Vale do Itajaı́ (UNIVALI) and the Laboratory of Informatics, Robotics, and Microelec-
tronics of Montpellier (LIRMM) from the University of Montpellier. The authors focused
on using the least amount of resources possible. Thus, the processor uses a single-
cycle micro-architecture, reducing the required registers.

This processor has five primary units: (i) instruction fetch; (ii) instruction decode;
(iii) execution; (iv) memory access; and (v) write-back. We modified the decode, exe-
cute and register HARV’s units to support the vector instructions subset, highlighted at
Figure 2.

Figure 2: HARV block diagram with the modifications to support vector instructions.

This work aimed at implementing only the main vector instructions for digital sig-
nal processing to optimize these applications. Therefore, among the several possible
instructions to be implemented, the subset was limited to instructions of sequential
memory read and write (word, half-word, and byte) and integer arithmetic operations,
such as addition and subtraction, for 32-bit architecture.

3.1. Instruction Fetch
The instruction fetch unit consists of a PC register, a 32-bit adder, and the required

logic circuits for jumps and conditional branches. The adder increments the value



stored in the PC register in case of sequential execution. Otherwise, in the case of
executing a conditional branch, it adds the address offset to the PC register.

3.2. Instruction Decode
In HARV, the control unit integrates the instruction decoder, responsible for identi-

fying the operation that will be performed. The 6 to 0 instruction bits are used as input
for a combinational logic that asserts the control signals for the data path. Thus, the
control unit identifies the format of the instructions according to the RISC-V ISA speci-
fication [10]. To support the vector instructions subset, we added the three instructions
format defined in version 1.0 of the vector extension specification: Load-FP, Store-FP,
and OP-V [14]. Subsequently, according to the format of the instructions, the output of
the control unit related to the operation performed are enabled (1) or not (0).

In order to simplify the implementation, Santos et al. [2] developed the main and
ALU control units as a single component. Thus, the control unit also has an output
informing the ALU which operation to perform. For scalar instructions, the field funct3
from the instruction (bits 14 to 12) defines the operation. Whereas for vector arithmetic
instructions, the ALU operation is defined by the instruction field funct6 (bits 31 to 26).

As in HARV, the processor performs the source registers reading in the decoding
stage. This is done based on the addresses informed in the fields rs1 i and rs2 i
of the instruction, in case of scalar registers, or vs1 i and vs2 i, in case of vector
registers. For writing, the addresses fields are rd i, for scalar registers and vd i for
vector registers.

The scalar register file was kept identical to the base processor. Thus, it can per-
form two registers read, and one register write simultaneously. Although, in order to
write in the register, the input write en i must be enabled. The register writing is clock-
synchronous, while the reading is independent of the clock, meaning that the data
written in the register on the previous cycle can be read in the current cycle. The vec-
tor register file works similarly to the scalar register file, and the difference between
both is that the vector register file is exclusive to vectors.

3.3. Execution
The execution unit performs operations with two 32-bit data vectors. Therefore,

this unit has two data inputs, as shown in Figure 3, data1 i e data2 i. In addition, the
ALUOp i input, derived from the control, signals which operation to perform according
to the instruction.

To develop this unit, we base on the implementation of [8]. For this reason, we
used four ALUs. One of these ALUs is identical to the 32-bit ALU implemented in
HARV. The arithmetic and logical operations supported by this ALU are: add, shift
(left/right logical and right arithmetic), set on less than, AND, OR, and XOR. The other
three are one 16-bit and two 8-bit ALUs. However, we simplified these ALUs to support
only the operations used in the vector instructions subset of this work since these are
useful only for vector operations.

With the width of the input vectors set to 32 bits, in just one cycle (as long as there
is no pipeline and it is single-cycle), it can run either one 32-bit, two 16-bit, or four
8-bit operations. Therefore, the level of parallelization of operations depends on the
vector size of elements. The inputs and outputs are mapped to their respective ALUs
according to the width setting of the vector elements. The elements that are being
operated on wider ALUs are zero-extended. The 32-bit ALU is selected as the only
output for scalar instructions to decrease the hardware needed for vector extension.



Figure 3: Execution Unit.

3.4. Memory Access
The memory access unit performs read and write operations to/from the data mem-

ory. The RISC-V specification describes that accesses with 8-, 16-, and 32-bit word
widths can be performed, and all readings result in 32-bit width data. According to
the instruction executed, the data signal can be extended or not. In RISC-V vector
specification, there are three types of vector memory access: sequential, stride and
indexed. However, we used only the sequential method in this work, which is identical
to the scalar memory access implemented in HARV.

3.5. Write-back
The register write is only executed when processing instructions that write into the

register file. This step is responsible for selecting the data to be written in the vector
or scalar register file. The Figure 4 presents an overview of how the register writing is
executed. This representation describes this operation in a simplified way. Therefore,
we have abstracted the multiplexers used for other operations and the signals referring
to the control outputs, immediate selection, and ALU input signals.

The inputs of the register file are connected to multiplexers, commanded by the
control, and have as input the memory read and the execution results. In the case of
the scalar register files, there are two additional multiplexers, also driven by the control,
which inputs are the PC value and the immediate field of the instruction. The value is
stored in the register at address rd i, for the scalar register file, or vd i, for the vector
ones. These addresses are specified in the instruction, and writing to each register file
is only performed if the respective write control signal is active.



Figure 4: Write-back unit.

4. Results

4.1. Methodology
Since HARV was implemented using VHSIC Hardware Description Language (VHDL),

we developed the vector instruction support using VHDL as well. We used the Xilinx
Vivado 2020.2 Design Suite tool to collect the synthesis data and the Zynq ZC7020
SoC device. The metrics analyzed include the number of Look-up Tables (LUTs) and
Flip-Flops (FFs), maximum operating frequency, and the estimated power dissipation.

The benchmark algorithm is a vector addition that reads two vectors from the data
memory, adds the elements, and writes the result to the memory. The vectors used
are 32-bits wide, but the element’s width was varied among all the possibilities. This
algorithm was executed in two scenarios: using only scalar instructions and using the
implemented vector instructions. The programs were written in the RISC-V assembly
language and optimized for vector architecture.

Therefore, it was possible to compare the read, write, and operating latency of
vector elements in both scenarios with 50MHz of clock. We explored spatial memory
locality in the scenario with vector instructions by storing the whole vector as a word in
the memory. By this, it was possible to increase even more the performance gain.

4.2. Benchmark Performance
Table 1 presents a comparison between the number of cycles needed to execute

memory access and arithmetic instructions for scalar and vector architectures. Read-
ing and writing 16- and 8-bit memory elements with scalar instructions take two and
four separate memory accesses, respectively. With vector instructions, on the other
hand, it is possible to read all the elements in only one memory access, since the
number of instructions required to perform the same operations is reduced. Thus, to



execute memory loads and stores, the vector instructions required four and two times
fewer cycles when operating on 8- and 16-bit elements, respectively.

The same happens for the arithmetic instructions since, with scalar instructions, it
is necessary to operate on the elements individually. Whereas with vector instructions,
the elements are operated on simultaneously. This way, when processing 8-bit data
elements, as is the case of image pixels, using vector instructions decreases the num-
ber of cycles by up to four times. For 16-bit elements, the required number of cycles is
two times smaller.

Table 1: Number of cycles to execute scalar and vector instructions for each possibility
of vector element width.

Operating latency (number of cycles)

Vector elements Four 8-bit Two 16-bit One 32-bit

Instruction type Scalar Vector Scalar Vector Scalar Vector
Load / Store 32 8 16 8 8 8
Arith 20 5 10 5 5 5

4.3. Synthesis Result
The synthesis results for the original HARV processor and HARV with the vector

extension are shown in Table 2. The maximum operating frequency increased 4.6%,
and the power dissipation increased 6.1%.

The implementation of the extension increased the logical resources used by the
processor. With the vector extension, the number of LUTs is 1.5 times higher than the
original HARV, mainly due to adding the vector register file and the three ALUs. At the
same time, the number of FFs is 1.8 times higher because of the 32 vector registers.
However, the overhead of hardware and power are acceptable compared to the gained
acceleration.

Table 2: Synthesis results.

Configuration LUTs FFs Fmax(MHz) P(mW)

Scalar HARV 1,988 1,575 52.15 146
Vector HARV 3,158 2,826 54.72 155

5. Conclusion

This work provided support of a vector instructions subset from the RISC-V vector
extension for HARV [2], which is a fault-tolerant processor. The main goal of this
implementation was to accelerate signal processing applications by exploring data-
level parallelism.

We evaluated the impact of using the vector instructions compared to the scalar
ones in order to measure the processing acceleration. The results showed that, with
the vector extension, it is possible to read and write elements from the data memory
and process them four times faster.



Therefore, in future works, we intend to increase the supported vector instruc-
tion set by adding multiplication instructions. With this, it will be possible to expand
the benchmark algorithms algorithm and evaluate convolution operations running with
vector instructions. Also, we aim to support 64-bit width vectors to further accelerate
applications.
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