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Abstract

High-speed parallel manipulators are characterized by fast sampling rates and challenges owing to the presence of con-
straints, high nonlinearities, uncertainties, and fast dynamics. The development of a reliable nonlinear model predictive
control (NMPC) approach for this type of robotic systems is challenging because of the complex dynamics that involves
high computational burden. To address this control problem, this paper proposes a new fast NMPC strategy applied
to high-speed parallel robots. Based on (i) a parameterization technique, (ii) a fast gradient solver, (iii) a proportional
integral derivative (PID) control term, (iv) a nonlinear dynamic model, and (v) an artificial neural network (ANN)
model, two fast NMPC frameworks were developed to reduce the computational cost of the classical NMPC and address
online implementation. In this study, we focus on improving the performance of the standard predictive control strategy
outside of the range of its classical applicability by developing a fast NMPC controller for high-speed parallel kinematic
manipulators (PKMs). Numerical simulations and real-time experimental results were presented and discussed to vali-
date the relevance of the proposed controllers. Experiments were conducted on a four-degree-of-freedom (4-DOF) PKM
called VELOCE developed in our laboratory. The results show that the proposed solution outperforms the original
scheme in terms of real-time tracking performance.

Keywords: Parallel kinematic manipulators, fast nonlinear model predictive control, real-time

experiments

Abbreviations List

ANN Artificial neural network
CAD Computer aided design
GA Genetic algorithm
LSM Least square method
MPC Model predictive control
NMPC Nonlinear model predictive control
PID Proportional - integral - derivative
PKM Parallel kinematic manipulator
PSO Particle swarm optimization
RMSE Root meat square error
Ex-Fast NMPC Extended fast NMPC

1. Introduction

Model predictive control strategy has been consider-
ably developed over the last few years within both the
research control community and industry. The history of
this control technique dates back to the 1960s, which has
led to powerful characterizations, such as the maximum
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principle of Pontryagin [1] and the dynamic programming
method developed by Bellman [2]. Owing to its remarkable
success, predictive control strategies have become a pop-
ular topic in both academic and industrial studies [3][4].
They have evolved rapidly to include many processes with
uncertain parameters and nonlinear systems [5, 6, 7, 8].
The nonlinear model predictive control (NMPC) approach
is an advanced control strategy that provides anticipatory
actions using an internal nonlinear model to predict the
future behavior of the system. However, one of the major
challenges in real-time implementation of NMP controller
lies in its computational efficiency.
In recent years, many efforts have been made to extend
the applications of NMPC strategies in the field of fast
dynamical systems (e.g., robots, mechatronic systems, and
automotive and drive processes [9, 10, 11, 12]). In the lit-
erature, various optimal control techniques have been de-
veloped based on the requirements of NMPC to improve
its computational efficiency. For instance, in [13], non-
linear optimization of the NMPC based on a neural net-
work was developed for an embedded system. However,
the optimization problem was reformulated as a convex
quadratic programming problem with unknown nonlinear
terms, and it was solved using a simplified dual network.
Wu et al. [14] proposed the implementation of nonlin-
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ear model predictive control with an economic objective
function to reduce computational effort. The effective-
ness of the proposed approach has been demonstrated only
through numerical simulations. Inspired by the work of
[15], a parameterized NMPC scheme was proposed in [16]
to improve the output power control of a 10 kW proton
exchange membrane fuel cell system. This approach signif-
icantly reduces the optimization problem dimension, com-
pared to a standard NMPC controller. It was validated
offline through numerical simulations and proved to be a
promising candidate for online implementation in future
studies. In [17], a low-dimensional parameterized NMPC
strategy was proposed for quadrotors using the fmincon
optimization toolbox MATLAB environment to solve non-
linear optimization problems. However, this function con-
siderably increases the computational time load, which
is inadvisable for real-time applications. A fast NMPC
firmware based on a control-updating period method was
developed by [18] to meet real-time control requirements of
fast systems. The efficiency of the proposed strategy was
proven only through numerical simulations using a simple
example of a constrained triple integrator.

Despite the successful implementation of fast NMPC
controllers in various industrial applications, they are typ-
ically limited to a specific class of simple fast systems
[19][20]. This concept has motivated the development of
a fast NMPC approach for more complex robotic systems.
The proposed approach was directly applied to parallel
kinematic manipulators (PKMs). These robots are of grow-
ing interest in various fields, such as 3D printing [21], pick-
and-place [22], laser cutting [23], and even surgical inter-
ventions [24]. PKMs are typically characterized by their
high precision, high nonlinear dynamics, obtained high-
speed singularities, time-varying parameters, and uncer-
tainties [25] [26]. However, they are characterized by cer-
tain limitations and challenges, such as the limited size of
the workspace, rotational motion, complexity of forward
kinematic solutions, real-time constraints, and the issue of
actuation redundancy in some cases. Furthermore, their
closed-kinematic-chain structure gives rise to highly non-
linear dynamics that must be carefully considered in con-
trol design [27]. To the best of authors’ knowledge, the
NMPC controller has never been tested experimentally on
high-speed parallel manipulators and has become an ac-
tive research area. Then, we extend state-of-the-art fast
NMPC controllers by proposing a solution that allows the
explicit handling of nonlinear high-speed robots.

To address this issue, two extended fast NMPC con-
trol schemes were introduced in this study to improve
the computational performance of the standard NMPC
controller. This work is substantial research that aims
to introduce extensions and address new challenges be-
yond the results presented in the last decade [16], [28],
[29], [14], [13] and [30]. Regarding the first contribution,
an extended fast NMPC controller based on a dynamic
model, parametrization approach, and PID control feed-
back term is proposed. Compared with previous studies, in

this study, a theoretical analysis and an experimental tun-
ing process related to the proposed extended fast nonlinear
MPC was conducted to reduce the optimization problem
dimension. This study has particularly improved the com-
putation time of the standard NMPC and fulfill real-time
control requirements. For the second contribution, an ar-
tificial neural network (ANN) model was employed as an
internal model to predict the system future behavior to im-
prove the overall closed-loop performance of the proposed
NMPC scheme for PKMs. The introduction of a specific
parameterized approach and an internal ANN model in
the control scheme of the second contribution has signifi-
cantly improved the computational efficiency (allowing an
increase in the values of NMPC parameters (prediction
horizon Np, control horizon Nc) to improve the controller
performance.

In the literature, several recent studies proposed the
combination of ANNs with MPC. Overall, the main exist-
ing studies can be classified into the following two classes.
The first class concerns ANN-based learned models for MPC,
in which the main concept is to create an ANN to model
the dynamics of the system to be controlled. System data
(history of states and controls) were used to construct a
neural network model that was integrated as the system
model in the MPC scheme to predict its future behav-
ior. Four examples of recent studies within this class in-
clude [31] [32] [33] and [34]. The second class concerns
ANN-based learned MPC controllers wherein the concept
involves creating and training an ANN based on data col-
lection from an MPC algorithm to emulate this last one.
Accordingly, this can effectively reduce the computational
burden of online control. Four examples of recent works
within this class are as follows: [35] [36] [37] and [38].

Particularly, in this paper, we discuss in more details
the improvement of the computational burden of the stan-
dard NMPC controller to achieve the real-time control for
PKMs. Compared with [16], [28], [14], [13] and [30], this
study considers the nonlinear predictive control of high-
speed PKMs. The design of a suitable predictive control
scheme for PKMs is a challenging task owing to their com-
plex dynamics. This type of robot requires a high compu-
tational performance and nonlinearities that may increase
when operating at high speeds and accelerations. Fur-
thermore, we intend to emphasize the difficulty of work-
ing with high-speed systems (e.g., VELOCE PKM whose
sampling time is equal to 0.1 ms), where the NMPC con-
troller requires an online solution of a receding-horizon op-
timization problem at each sampling instant. To overcome
the computational burden of standard NMPC controllers,
our proposed control solutions were developed without us-
ing any linearization techniques based on a fast gradient
solver and without using an optimization toolbox, such as
those used in [16] and [28]. After reducing the complex-
ity of the optimization problem, controlling a high-speed
dynamic system becomes a concrete real-time application
possibility. This study mainly aims to surpass theoreti-
cal developments to validate the proposed control strate-
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gies through real-time experiments on a high-speed paral-
lel robot, namely, VELOCE PKM. Besides, it is worth to
emphasize that the present work brings new contributions
and extensions beyond the results of [29], including (i) a
more deeply literature review, (ii) the second contribution
is completely new, (iii) new simulation and experimental
results, (iv) algorithms 2, 3, 4 and 5 are completely new.
The remainder of this paper is organized as follows. A dy-
namic modeling of VELOCE PKM is presented in Section
2. Section 3 introduces the transformation of the stan-
dard NMPC approach into a fast NMPC strategy for a
fast dynamic system. Section 4 describes the development
of the proposed fast NMPC extension method. In this
context, we explain how nonlinear model predictive con-
trol schemes and fast solving methods can be proposed
to improve performance of PKMs. Section 5 presents the
numerical simulation and real-time experimental results.
Finally, general conclusions and future work are presented
in Section 6.

2. Veloce Prototype: Description and Modeling

VELOCE robot is a 4-DOF parallel mechanism de-
signed and fabricated at LIRMM Laboratory (France). It
is a fully parallel manipulator; that is, it has the same
number of kinematic chains as DOFs [39]. The CAD view
of VELOCE is shown in Figure 1. The VELOCE PKM

Figure 1: CAD view of VELOCE parallel kinematic manipulator.

consists of four linked actuated kinematic chains. for a
typical moving platform. Each kinematic chain is a serial
arrangement of an actuator, rear arm, and forearm (Fig-
ure 2). The moving platform of VELOCE comprises two
essential parts: an upper and lower part. Both parts were
mounted on a single screw, and the relative motion be-
tween the lower and upper parts generated the rotational
DOF of the platform. The four actuators responsible for
the movement of the mechanical structure were all located
on the same plane.

2.1. Robot Kinematics

The pose of the moving platform can be described by a
four-dimensional coordinate vector X = [x, y, z, α]T such
that x, y, z are the translational coordinates and α is the
rotational angle around the z-axis. Note VELOCE is a
fully actuated mechanism, and the actuated joint coor-
dinates are defined by vector q = [q1, q2, q3, q4]T . Joint
position q can completely define the configuration of the
entire mechanism. The relationship between this configu-
ration vector and the platform pose was obtained through
a kinematic study of the constraints of closing the loop
formed by the four kinematic chains. Note that the map-
ping from Cartesian to joint velocities is achieved using
the inverse Jacobian matrix, which is expressed as follows:

q̇ = JmẊ (1)

where Jm ∈ R4×4 denotes the inverse Jacobian ma-
trix. This matrix is square and invertible for full PKMs
(VELOCE). The robot configuration was assumed to be
away from singularities. By differentiating equation (1)
with respect to time, we obtain the relationship between
Cartesian and joint accelerations as follows:

q̈ = JmẌ + ˙JmẊ (2)

2.2. Nonlinear Dynamic Model of VELOCE PKM

To compute the dynamic model of VELOCE robot, the
following assumptions were made [40]:

• The inertia of the forearms is neglected and their
mass is split up into two equivalent parts and con-
sidered in both the dynamics of the actuators and
the moving platform.

• Both dry and viscous frictions of all joints are not
considered.

i

A ctuator

R ear-arm

Forearm

M oving
platform

Figure 2: Schematic view for one kinematic chain of VELOCE PKM
as well as its main components.
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According to [41], a dynamic model can be established
by analyzing the equilibrium of the arms and moving plat-
form. These two quantities were summed.

The relationship between the torque vector Γ and joint
acceleration vector q̈ is expressed as follows:

Γ− JTq F = (Iact + Iarm +
l2Mforearm

2
)q̈ (3)

where Γ ∈ R4 denotes the control input vector, Jq ∈
R4×4 denotes the joint Jacobian matrix, and F ∈ R4 rep-
resents the force vector associated with the acceleration
of the traveling plate. Iact, Iarm ∈ R4×4 are the iner-
tia matrices of the motor drives and the arms, respec-
tively. l = diag{l1, . . . , l4} with li the length of the ith

arm. Mforearm ∈ R4×4 is the mass matrix of the fore-
arms. The dynamic parameters of the robot are reported
in Table 1

Table 1: Main dynamic parameters of VELOCE parallel robot.

Parameter Value Description

Mtp 0.257 Mass of the traveling plate (kg)

Mforearm 0.080 Mass of the forearm (kg)

Iact 0.041 Inertia of the actuators (kg ·m2)

Iarm 0.0053 Inertia of the arms (kg ·m2)

The equation of motion of the moving platform is ex-
pressed as

JTx F = (Mtp + 4
Mforearm

2
)Ẍ (4)

where Jx ∈ R4×4 denotes the Cartesian Jacobian ma-
trix, Mtp ∈ R4×4 denotes the mass matrix of the moving

platform, and Ẍ ∈ R4 denotes the acceleration vector.
Note that the complete Jacobian matrix of the manipu-
lator is expressed as a function of the manipulator’s pose
and is given by Jm = J−1

q Jx.
By substituting (3) into (4), the entire equilibrium of

the manipulator can be formulated as

Ẍ = (Mtp + 4
Mforearm

2
)−1JTm[ Γ

− (Iact + Iarm +
l2Mforearm

2
)q̈ ] (5)

To simplify, the dynamic model (5) can be expressed in
Cartesian space as follows:

Ẍ = (Mtot + JTmItotJm)−1JTm(Γ− ItotJ̇mẊ) (6)

where Mtot = Mtp + 4
Mforearm

2 is the total mass matrix of

the manipulator and Itot = Iact + Iarm +
l2Mforearm

2 is the
total inertia matrix.

Based on the appropriate kinematic relationships, the
dynamic model of VELOCE can be rewritten in a standard
joint space form as follows:

M(q)q̈ +N(q, q̇)q̇ +G(q) = Γ (7)

where M(q) = Itot + (JTm)−1MtotJ
−1
m ∈ R4×4 is the total

inertia matrix, N(q, q̇) = −(JTm)−1MtotJ
−1
m

˙JmJ
−1
m ∈ R4×4

is the Coriolis and centrifugal forces vector, and G(q) =
−(JTm)−1Gtp − ΓGa is the gravity force vector.

The dynamic model in Equation (7) is suitable for joint-
space control design and is used in the proposed controller
development. It is worth emphasizing that the proposed
control schemes are designed for a 4-DOF manipulator,
remain valid, and can be easily generalized to n-DOF ma-
nipulators, given the properties of the dynamic model of
such mechanical/robotic systems. The dynamic model (7)
is suitable for the joint-space control design. Regardless of
whether the number of joints of the robotic manipulator is
planar, this equation and the terms that are constitutive
are quite interesting for the structural analysis, study of
control designs, and stability analysis via the Lyapunovs
direct method. Thus, we can implement and experimen-
tally validate our proposed controllers with any other sys-
tem by using the identified dynamic model.

3. From Classical to Fast NMPC Control Scheme

As previously described, VELOCE is a non-redundantly
actuated parallel manipulator proposed to validate the de-
veloped fast NMPC controller. The following sections pro-
poses first a brief introduction to the standard NMPC con-
troller and its evolution over the years to meet the needs of
fast system control. An overview of existing fast solver so-
lutions in the literature regarding predictive control strate-
gies is provided before finally discussing the main contri-
butions of this study.

3.1. Problem Formulation of Classical NMPC

The main concept behind predictive control in our case
is to predict the future behavior of 4-DOF parallel manip-
ulators based on the dynamic model. It then computes an
optimal control sequence by solving online, an open-loop
nonlinear optimization problem. This optimization prob-
lem aims to determine the optimal solution by minimizing
a nonlinear cost function J expressed by the mean squared
difference between the predicted outputs and the reference
trajectory under a set of constraints [5]. Before proceed-
ing to the development of a fast NMPC control law, let
us briefly recall the block diagram of a standard NMPC
controller based on a nonlinear solver and discretization
method (Figure 3). The nonlinear programming (NLP)
problem is solved by computing the minimum of a con-
strained nonlinear multivariable function using numerical
methods, such as Runge-Kutta of order 4 and the ODE

4



NMPC

Nonlinear
Plant Model

qd
NLP Solver Robot

q�

Constraints

Cost Function

q̂

Future errors

-
+

P
re

di
ct

ed
 o

ut
pu

ts

Measured joint position

Future inputs

Reference trajectory

Integration
Method

Figure 3: Block diagram of the computed torque control based on the standard NMPC scheme.

45 numerical integrator of MATLAB software. Predictive
control strategies involve receding horizon optimization,
which may be quite time-consuming, especially for nonlin-
ear optimization problems with constraints. Consequently,
such strategies are typically used for slow systems, such as
chemical plants and oil refineries. Thus, we must reduce
the computation time per control iteration of the following
optimization problem if we intend to control high-speed
parallel manipulators using a control scheme.

Γ̂(q) := Argmin
Γ

[J(Γ, q)] (8)

with cost function J , which can be defined as follows:

J(Γ, q) =

Np−1∑
i=0

(q̂(i, q,Γ)− qd(k, i))2

+ λ1

Nc−1∑
i=0

(∆Γ(k, i))2 (9)

where qd(k, i) denotes the desired trajectory and λ1 is a
weighting coefficient. Further, ∆Γ(k, i)) represents the
control input increment at instant k, which is defined as
∆Γ(k, i) = Γ(k, i) − Γ(k − 1, i); q ∈ Rn is the joint posi-
tion vector for n actuators; and q̂(i, q,Γ) defines the future
output predictor vector defined by the optimal control Γ
over [k, k + Nc − 1] and started from the one step ahead
joint position q. The general control sequence Γ∈ <n of
the optimal solution of the problem (8) comprises Nc input
values and can be defined as follows:

Γ = [Γ(k),Γ(k + 1), · · · ,Γ(k +Nc − 1)] (10)

According to the basic principle of NMPC, the first sam-
ple of the computed optimal control sequence Γ̂ at time
k, namely, Γ̂(k), is applied to the system until the next
sampling instant. Then, the prediction horizon is initially
moved forward, and the optimization problem is resolved
based on new system measurements.

To address nonlinear optimization problems, the fmin-
con MATLAB routine is a possible solution for the de-
velopment of numerical algorithms. This function solves
the optimization problem of the NMPC strategy using the
interior-point method, sequential quadratic programming
(SQR), active-set algorithms, etc. However, we note that
the fmincon function is appropriate for a PC-based envi-
ronment, but not suitable for the embedded implementa-
tion. Indeed, the fmincon function requires high computa-
tion time, which is not suitable for real-time applications.
The standard NMPC strategy then becomes a challenging
task for highly nonlinear systems that require an online so-
lution to a receding-horizon optimization problem at each
sampling instant. The high online computational burden
has limited the application of NMPC in many fields, such
as fast dynamic systems.

3.2. Fast Solver Methods

To handle fast systems, efficient methodologies for fast
NMPC have been proposed in the literature, such as the
continuation/generalized minimum residual (C/GMRES)
method [42], real-time iteration scheme multiple shooting
[43], path-following method [44], and C/C++ code gener-
ation tools [45]. These techniques have an interesting fea-
ture of being effective solutions for addressing the real-time
issue of fast dynamic systems. The C/GMRES method is a
numerical method proposed for nonlinear receding-horizon
control to reduce its computational complexity [42]. In
[43], a real-time iteration scheme with multiple shots was
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introduced to handle the nonlinear optimization of NMPC.
This method is suitable for controlling small problem sizes
in nonlinear dynamic systems. The path-following method
is one of the most efficient approaches among the avail-
able algorithms. This controller was applied within the
advanced-step NMPC framework to obtain fast and accu-
rate approximate solutions to the NMPC problem [44]. In
[18], a fast NMPC approach based on a control-updating
period method was designed to decrease the optimiza-
tion problem dimension for the tracking control require-
ments of fast systems. However, the effectiveness of this
approach has been demonstrated only through numerical
simulations. Some of optimization algorithms, such as
particle swarm optimization (PSO) [46] and genetic algo-
rithms (GA) [47], have been implemented in NMPC formu-
lations to expedite the solving of optimization problems.
These methods are coded in programming language codes
to replace the fmincon routine in MATLAB. In addition,
these algorithms were proposed to reduce the execution
time of the optimization problem. Other applicable so-
lutions to the NMPC scheme have emerged, such as The
ACADO toolkit [48], Nlopt library [49], and qpOASES
solver [50], which include a variety of algorithms for dy-
namic optimization. These libraries contain several tools
to design and evaluate the NMPC controller, export low-
level C/C++ code-based numerical methods, and solve op-
timal control problems at each real-time iteration. These
methods have been designed to reduce the computation
time and meet real-time control requirements of fast sys-
tems. However, despite its successful application, it is lim-
ited to a typical class of fast systems. Subsequently, the
standard NMPC strategy is not yet suitable and can be
widely used for real-time online optimization with a low
sampling time. Fast NMPC schemes to control more com-
plex systems, such as PKMs, were developed in this study.

3.3. Challenges and Limitations Regarding Fast Systems

This study investigates the development of a fast NMPC
for PKMs. The main associated challenges of this study
are outlined below:

• How we can reduce the computation time of a stan-
dard NMPC controller without using any lineariza-
tion methods is the first challenge. Therefore, the
applicability and relevance of the NMPC strategy in
the field of robotics [51] and [52] can be confirmed,
such as parallel manipulators.

• As PKMs belong to nonlinear systems, their con-
trol is often described in the literature as a non-
trivial task. Then, another challenge is how to find a
compromise between model complexity, control de-
sign, and real-time constraints for fast parallel robots
based on NMPC schemes.

Owing to these issues, we propose the development of an
extended fast NMPC controller for PKM robots. This

includes design, implementation, and experimental vali-
dation. A major outcome of the proposed strategy is to
achieve real-time control requirements and enhance global
tracking performance.

4. Proposed Control Solutions for VELOCE PKM

The motivation behind the development of the extended
fast NMPC is to improve the computation time of stan-
dard NMPCs while satisfying the control objectives related
to PKMs. To reduce the computational time and enable
online implementation of the NMPC strategy for PKM
robots, several optimization techniques have been tested,
such as the Nlopt library [49] and the control-updating pe-
riod method [18]. However, these solutions cannot solve
real-time control problems of VELOCE parallel robot be-
cause of its highly nonlinear and complex dynamics. In the
following sections, two contributions of nonlinear model
predictive control firmware are proposed for the real-time
control of PKMs.

4.1. Contribution 1: Extended Fast NMPC Controller

The proposed strategy is based on an exponential para-
metric approach and a proportional integral derivative (PID)
control term. To improve the overall performance of the
system, a control law was formed using two terms. The
first is computed by a simple PID feedback, and the sec-
ond is given by the fast NMPC controller based on a PKM
dynamic model.
In the literature, MPC has mainly been combined with
PID controller into two ways. The control architecture in
the first one is based on a cascaded structure [53] [54] [55]
[56] [57], including two control loops (inner and outer), one
for the MPC and one for PID.
In the second way the MPC and PID controllers are com-
bined in a parallel structure as in the works of [58] [59] [60]
[57], where two parallel control loops are considered. This
combination has proved its efficiency in terms of closed-
loop performance with respect to the standard MPC scheme
alone, especially in the presence of unmodelled dynamics,
parametric and modelling uncertainties as well as exter-
nal disturbances. In our case, taking account the tar-
geted application of high-speed PKMs as well as the as-
sociated real-time constraints, implementation issues, and
challenges, including (i) the highly nonlinear dynamics of
the robot, (ii) the uncertain nature of the system as well as
its environnement, and (iii) the unexpected internal and
external disturbances, we opted for the parallel control
structure. The basic idea of the proposed parallel struc-
ture is as follows:
At each sample time the two control terms (from Fast
NMPC and from PID) are computed. In the objective
of tracking of the reference trajectories, the fast NMPC,
based on the Nonlinear plant model, predicts the future
behavior of the robot over a finit time horizon and com-
pute an optimal control sequence by resolving an open-
loop optimization problem while ensuring satisfaction of
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the given system constraints. The PID control term is
computed based on the tracking error between the refer-
ence and the measurements, as well as its time derivative
and its integral. Once both control terms are computed,
they are summed and sent to the actuators of the robot.
After one sample time the measurements are fed back to
both controllers (Fast NMPC and PID) and the horizon is
shifted and the whole procedure is repeated. It is worth
to note that this feedback of the measured outputs result-
ing from the application of a control input combining Fast
NMPC and PID represents a closed loop where the fast
NMPC will take into account indirectly the participation
of the PID controller and vice versa through the measured
outputs. This feature can be explained by the robustness
of the NMPC controller, that compensates for the uncer-
tainties or unmodelled dynamics (both not present in the
prediction model), through the closed-loop resulting from
the feedback of the measured outputs which differs from
the predicted ones. While time going ahead the system
outputs will converge to their desired trajectories.
Besides, the proposed parallel structure has also another
advantage as a fault-tolerant control. For instance in the
case of a remote control, the loss of the data of one con-
troller does not necessarily lead to the loss of system’s
control since the other controller, thanks to the closed-loop
and the feedback of the measured outputs, can compen-
sate for the lost controller and ensure the continuity of the
control.
Finally, in terms of design, the PID controller parameters
(Kp,KI ,KD) and the fast NMPC parameters (Np, Nc, λ)
are tuned sequentially. The control loop of the PID is
firstly designed in order to obtain a stable closed-loop sys-
tem and its design parameters are tuned to get the best
closed-loop performance. Then the fast NMPC is secondly
designed using the nonlinear plant model.

To provide an overview of the proposed solution, a
block diagram summarizing the first contribution as an ex-
tended fast NMPC-PID control solution (Ex-Fast NMPC-
PID) is depicted in Figure 4, where both control actions
are applied to the real process and the resulting output
is simultaneously fed back to both NMPC and PID con-
trollers. As only the joint positions q are measured, the
desired trajectory Xd in Cartesian space is converted into
its equivalent in joint space through the inverse kinemat-
ics of the robot. Subsequently, the corresponding tracking
error in joint space can be obtained. Note that the Runge-
Kutta of the 4th-order method is used to solve the differen-
tial equation of the robot dynamics. This method provides
a good compromise between performance and precision.

The proposed extension of NMPC should preserve all
its advantages while improving the overall closed-loop be-
havior and considering the high-speed features of the ma-
nipulator, with a focus on tracking performance. The ex-
tended fast NMPC control law with feedback gains is ex-

pressed as follows:

Γ = SatΓmaxΓmin

(
Γp+α1(p)e−λTe+α2(p)e−γλiTe+KP (.)e(k)

+KI(.)(
1

1− z−1
)e(k) +KD(.)(1− z−1)e(k)

)
(11)

where i ∈ {0, · · · , Np−1}. α1 and α2 ∈ Rn are coefficients
of the exponential parameterization technique. The sta-
tionary control is denoted by Γp, and the constants λ > 0
and γ ∈ N are tuning parameters. Sat : Rn 7→ Rn is the
saturation function defined as follows for i ∈ {1, · · · , n}:

SatΓmaxΓmin
(Γi) =

 Γmin if Γi ≤ Γmin
Γmax if Γi ≥ Γmax
Γi otherwise

(12)

where e(k) = qd(k) − q(k) defines the joint tracking
error between the reference trajectory qd(k) and the mea-
sured trajectory q(k). We define KP (.), KI(.) and KD(.)
as feedback gains of the PID controller. The feedback PID
control parameters were obtained using the trial-and-error
tuning method. The adaptation gain was relatively easy
to tune. Mainly, we proceed by increasing the gain from
zero until we reach the parameter value, resulting in a
good transient behavior of the estimated parameter while
preserving the stability of the closed-loop system. Owing
to its adjustable gains in the error state, the PID con-
troller is more robust against model parameter variations
and perturbation rejection. For PKMs, these gains are are
typically chosen as diagonal matrices, indicating that no
coupling between the joints is considered. Hence, they can
be expressed as follows:

KP (.) = diag{kp1(.); kp2(.); · · · ; kpn(.)},
KI(.) = diag{ki1(.); ki2(.); · · · ; kin(.)},
KD(.) = diag{kd1(.); kd2(.); · · · ; kdn(.)}

The n-degree-of-freedom parameter setting p is used
to improve the transient behavior of the tracking error,
which is denoted by exponential terms. The structure of
the future control sequence based on this technique over
the sampling period [k, k + 1] can be defined by

Γf (k + i) = SatΓminΓmax
(Γp + α1e

−λiTe + α2e
−γλiTe) (13)

According to Equation (13), the decision control se-
quence Γf for the PKM is defined based on the control
value Γp, which is part of the low-dimensional vector p,
rather than a future control sequence, as defined in equa-
tion (19).

Based on the new low-dimensional vector p ∈ R2×n, the
control sequence Γp in Equation (11) can be defined by the
latest value of the optimal control sequence, p where Γp =
[pn+1, · · · , p2×n]T . The parameter vector p is denoted
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by [p1, . . . , pn]T ∈ [−1,+1]n and [pn+1, . . . , p2×n]T ∈ Rn.
This constraint was selected to compute the parameters
of the control law. The coefficients of the exponential pa-
rameterization technique α1 and α2 ∈ Rn are obtained by
solving a simple linear equation system resulting from re-
placing i = 0 in (13) over the sampling period [k − 1, k],
which leads to the following constraints:

Γp + α1 + α2 = Γf (k − 1) (14)

Then, by replacing i = 1 in (13) over the sampling period
[k − 1, k] leads to the following constraints:

Γp + α1e
−λTe + α2e

−γλTe = Γf (k) (15)

Now by considering the difference between equations (14)
and (15) leads to:

α1(e−λTe − 1) + α2(e−γλTe − 1) = pδmax (16)

Equation (14) represents the first condition to guaran-
tee the continuity of the control sequence, whereas Equa-
tion (16) defines the constraints on the variation rates of
the control input (Γf (k) − Γf (k − 1)) = δmax), which
should not exceed a fraction p ∈ [−1,+1]n for some max-
imal admissible values δmax ∈ Rn. The coefficients α1 =[
αΓ1

1 ; · · · ; αΓn
1

]
and α2 =

[
αΓ1

2 ; · · · ; αΓn
2

]
are

determined by solving the following equations:

Ψ(p) = M−1U(p) (17)

where

Ψ(p) =



αΓ1
1 (p)

αΓ2
2 (p)

...

...

αΓn
1 (p)

αΓn
2 (p)


, U(p) =



Γ1(k − 1)− Γp1
p1δ

1
max
...
...

Γn(k − 1)− Γpn
pnδ

n
max


(18)

M =


1 1 0 0 · · · 0

e−λTe − 1 e−γλTe − 1 0 0 · · · 0

0 0

.
.
.

.
.
.

.

.

.

.

.

.

0

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

. · · · · · · 1 1

0 0 · · · · · · e−λTe − 1 e−γλTe − 1


The optimal set value from Equation (8) is redefined by
the new variable p̂, which is obtained by minimizing the
cost function J as follows:

p̂ = argmin
p

[J(p, q)] (19)

J(p, q) =

Np∑
i=1

(q̂(i, q, p)− qf (qd, i))2

+ λ(q̂(Np, q, p)− q̂f (q̂(Np, q(k), p),Γ
(Np)
f (p)))2 (20)

where q̂(i, q, p) denotes the future-predicted output vector
parameterized by p over [k, k+Np−1] and starts from the
joint position q. Further, qf (qd, i) represents the filtered
version of the desired trajectory enabling to decouple the
selling time from the overshoots. It is defined by

qf (qd, i) = qd + e−3Tei/tr (q − qd) (21)

where Te and tr denote the sampling and desired setting
times of the closed-loop system, respectively. Further,
q̂(Np, q(k), p) is the joint position value at the end of the

prediction horizon, and the vector q̂f (q̂(Np, q, p),Γ
(Np)
f (p))

is computed according to the joint prediction q̂(Np, q, p)
and the control signal Γf obtained from Equation (13).

To solve the real-time problem of high-speed PKMs, it
is worth understanding that simply changing the overall
shape of the NMPC approach based on the exponential
parametrization technique is not sufficient. Consequently,
the fast gradient method introduced in [61] is used to
compute the parameterized control signal p with reduced
computation time when compared to that of conventional
solvers. The proposed optimization problem solver was ex-
ecuted in the millisecond range, as described in Algorithm
1. The following four-step procedure in the algorithm is
used to solve Equation (19) to obtain the best optimized
control parameters for the nonlinear dynamic model. It is
worth to note that in this algorithm, the parameter β is ini-
tialized by the designer and then tuned according to Algo-
rithm 3. Besides, for the calculation of ∇J(p(k), q(k)), de-
pending on the implemented control scheme, J(p(k), q(k))
is computed using formula (19) or (24).

Algorithm 1 Fast gradient solver

Require: β ∈ [0, 1[, L ≥ 0

Ensure: p(k) ∈ Rn

1: Initialize p̃(k)← p(k)

2: p̃(k + 1) = p(k)− 1
LOJ(p(k), q(k))

3: p(k + 1) = p̃(k + 1) + β(p̃(k + 1)− p̃(k))

4: Send the obtained control variable p to the parameter-

ized NMPC block at each instant k.

Motivated by the results obtained in [15, 62, 63, 17],
where the computation time of the conventional NMPC
controller was enhanced using a parameterization tech-
nique and a standard optimization toolbox, the proposed
controller in Equation (11) is expected to provide bet-
ter tracking performances for PKMs. By using the expo-
nential parameterization technique and the fast gradient
method, as well as the using of the PID feedback control
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term, the compensation of the model nonlinearities and
real-time control of high-speed PKMs can be achieved.

4.2. Contribution 2: ANN-Based Fast NMPC Controller

To improve the overall closed-loop performance of the
NMPC scheme for parallel manipulators, a combination
of parameterized techniques based on an ANN approxi-
mated model may yield better tracking performance and
reduced control effort. The proposed a predictive law with
a PID control term that was sufficiently simplified to be
implemented in PKMs. A block diagram of the extended
fast NMPC based on PID control scheme (Ex-Fast NMPC-
PID) is depicted in Figure 5. To improve tracking perfor-
mance of the 4-DOF VELOCE PKM, the enhanced fast
NMPC control law with feedback gains can be expressed
as follows

Γ = Γf2 +KP (.)e(k)

+KI(.)(
1

1− z−1
)e(k) +KD(.)(1− z−1)e(k) (22)

where Γf2 denotes the fast NMPC control term given
by Equation (25). Further, KP , KI , KD ∈ Rn×n are pos-
itive definite matrices that represent the feedback gains of
the PID control term. The PID feedback gains were eval-
uated using a trial-and-error tuning method. Owing to
its adjustable gains with the error state, this controller is
more robust against model parameter variations and per-
turbation rejection.

Note that no universal parameterization can be ap-
plied to any system. However, the parameterized tech-
nique used in the design of this control strategy is different
from the above exponential method and that introduced in
[28]. The low-dimensional optimization problem using this
particular parameterization of the control sequence Γf2 is
defined as follows:

Γf2 = [Γf2(k, p),Γf2(k + 1, p), · · · ,Γf2(k +Nc − 1, p)]

(23)

where Γf2(k, p) is the control vector at time instant k and
p is the low-dimensional parameter vector.

Hence, the optimal parameter set p̂ from Equation (19)
is solved using the fast gradient method of the parallel ma-
nipulator from Algorithm 1. In this case, the optimization
problem is obtained by minimizing the cost function J(.)
chosen as follows :

J(k,Γf2) =

Np∑
i=1

(qf (qd, i, k)− q̂(i, q, k))2

+ λ

Nc∑
j=1

(Γf2(j, k, p)− Γf2(j, k − 1, p))2 (24)

Note that the control signal is represented by Γf2(j, k, p) ∈
[Γmin,Γmax], where Γmin and Γmax ∈ R4, for j = 1, 2, · · · , Nc.

qf defines the filtered version of the desired trajectory as
denoted in equation (21), and q̂(i, q, p) represents the fu-
ture output predictor vector. In this context, to obtain a
low-dimensional optimization problem decoupled from the
choice of the predictive horizon, the following parameteri-
zation is proposed:

Γf2(j, k, p) = Γ∗(j, k) + pE∗(j, k), for j ∈ 1, 2, · · · , Nc

(25)

where Γ∗ is the steady-state control action obtained
in the stationary regime at time instant k and E∗(k) is
the trajectory tracking error obtained using Γ∗(k). In this
case, the parameterized control action is p ∈ [−1, 1]. We
note that, because the system is open-loop stable, steady
control Γ∗ is used in the parameterization of the control
profile to reduce the dimension (number of degrees of free-
dom) of the control signal.

The PKM prototype used for the real-time experimen-
tal validation of the nonlinear MPC is characterized by
a sampling time of 0.1 ms. The computation time of
the NMPC control scheme must be executed in the mil-
lisecond range on this type of high-speed robots. Conse-
quently, even when a coding NMPC controller in the low-
level C/C++ programming language to reduce the com-
putational time, it does not solve the real-time control
problem of VELOCE parallel robot because of its highly
nonlinear and complex dynamics. In practice, where a
robot should be in an industrial environment, executing
various tasks and matrices M(.) and N(.) are likely to vary
depending on the task being executed. Furthermore, the
robot manipulator may be subject to various external dis-
turbances, uncertainties, and unmodeled dynamics (e.g.,
friction and interaction with the environment). Hence, it
is important to design a control law that considers all of
these variations and uncertainties. This concept motivates
the development of a second proposed solution to control
more complex systems, such as PKMs based on an ANN
internal model. An ANN is used to train the dynamic
model of the PKM robots to reduce the computational
time and enable online implementation of the NMPC strat-
egy. Thus, for the second proposed solution, we developed
an extended fast NMPC controller, including a control-
based parameterized term, coupled with an ANN inter-
nal model. Based on the prediction-optimization principle,
the proposed strategy uses the ANN-based approximation
model of the system to predict future outputs and synthe-
size the control law. The prediction sequence generated
by the ANN model was exploited directly by the NMPC
algorithm, and no other model was used for the nonlin-
ear MPC. The proposed approach involves computing an
optimal control sequence by solving online a nonlinear op-
timization problem based on a fast gradient solver. This
strategy is referred to as receding horizon control because
the control problem is solved over a future horizon, which
progressively shifts into the future as time evolves. Based
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on the experimental results, the proposed controller can
perform better than simply computing the control input at
each time sample. Therefore, an optimal control sequence
that can track the reference trajectories and enhance the
closed-loop performance, despite the eventual errors in the
identification of the ANN approximating the model, can
be generated. Accordingly, the motivation behind this ex-
perimental result is to demonstrate the robustness of the
proposed controller and to assess the tracking capabilities
with an efficient computational time on VELOCE parallel
robot while considering real-time constraints. In particu-
lar, the addition of more knowledge of dynamics can im-
prove tracking performance and help avoid high-frequency
control efforts. ANNs have the ability of modeling com-
plex nonlinear systems while considering all possible inter-
actions between input variables. An ANN is characterized
mainly by its powerful universal approximation features
[64], which is why an ANN was proposed in this study
to approximate the dynamics of a parallel manipulator.
The approximated model is expected to predict the future
process behavior over a prediction horizon with reduced
computational burden, compared to the original analytical
model given by Equation (7). Because there is no system-
atic method for determining the optimal ANN topology,
the number of layers and neurons is often determined using
a trial-and-error method. They were selected by conduct-
ing a grid search where each model performance was ana-
lyzed and compared. Within a set of models that perform
well, we finally chose the best model meeting the compu-
tational requirements of real-time implementation on the
real robot. In this study, a feedforward neural network
was selected after comparing different architectures. A
fully connected three-layer feedforward network was con-
sidered (Figure 6). The input layer comprises four inputs

Hidden layer Output layerInput layer
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Figure 6: View of the topology of the proposed artificial neural net-
work (ANN) architecture for the 4-DOF parallel robot.

Γ=(Γ1,Γ2,Γ3,Γ4), representing the four actuators of VE-
LOCE parallel robot. The output layer of the ANN pro-
vides the articular positions of the robot q = (q1, q2, q3, q4)
using four neurons. The hidden layer of the proposed ANN
included five neurons with tangential sigmoid activation
functions. The linear activation function is used as the

output layer. Three formulations were considered to de-
scribe the network output signals.

• ANN outputs are expressed by

q̂j(k) =

n∑
i=1

W2ijΘ1i(k) j = 1, . . . , 4 (26)

• Hidden layer outputs

Θ1j (k) = f(

N1∑
i=1

W1ijΓi(k)) j = 1, . . . , n (27)

are N1 and n is the number of neurons that comprise the
input and hidden layers, respectively. Further, W(.) is the
weight vector. The weights were updated as follows:

Wij(k + 1) = Wij(k)− µ dJ

dWij(k)
(28)

The performance criterion J is given by

J =
1

2
(q − q̂)T (q − q̂) (29)

There are several suitable activation functions; however,
the most typical sigmoid function was used in this study:

f(x) =
1

1 + e−x
(30)

This unipolar activation function produces an output be-
tween zero and one. Once the parameters of the ANN
model are computed using the LSM algorithm, the next
step is to use the developed approximation model in the
development of the enhanced NMPC strategy. The input-
output data used in the off-line training process of the net-
work have been generated using the nonlinear plant model.

Remark: The proposed extended fast NMPC controller
has been developed and implemented in discrete time. Ac-
cordingly, the proposed ANN is fully compatible and can
be naturally integrated into the proposed NMPC controller
of Contribution 2 (ANN-based fast NMPC controller). The
optimization problem of the latter is formulated in discrete
time, and the proposed ANN model is recursively used to
compute the optimal future control sequence.

The proposed control law in Equation (22) comprises two
distinct control elements. The first element is the model-
based predictive term, which is designed based on a fast
gradient solver, particular parameterization technique, and
neural network based on an internal model. The second
one lies in the feedback gains defined in the PID control
term. The motivation behind the proposed strategy is to
achieve a good tracking performance. The main reason for
the proposed solution was to improve the performance of
the standard NMPC strategy for PKMs. The proposed en-
hancement to the NMPC scheme should preserve all its ad-
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vantages while improving the overall closed-loop behavior
using the ANN model, with a greater focus on tracking per-
formance. Another outcome that can be achieved using the
proposed scheme is diminution computation time, allow-
ing real-time application of the proposed control solution.
Finally, compared with [16], [28], [29], [14], [13] and [30],
the proposed enhanced fast NMPC controller may improve
the robustness of the resulting closed-loop system and is
suitable for real-time implementations of robotic systems.
The main contribution of the present work, compared to
existing schemes, lies in the use of various forms of param-
eterization techniques and a fast solver method in the de-
velopment of a fast NMPC extension theory, particularly
for complex high-speed parallel robots. To demonstrate
the relevance of the proposed control strategy, we numeri-
cally simulated and experimentally validated the proposed
extended fast NMPC on VELOCE PKM.

5. Simulation and Experimental Results

This section mainly aims to validate the proposed en-
hanced nonlinear model predictive control online on a high-
speed parallel robot. The desired trajectory to be tracked
by VELOCE robot is a sequence of point-to-point motions
with a duration of T= 0.5 s for each portion of the trajec-
tory. The corresponding Cartesian reference trajectory is
illustrated in a 3D view in Figure 7.

Figure 7: 3D view of the point-to-point desired Cartesian trajectory
for VELOCE parallel robot.

To quantify the control performance of the proposed
extension of the fast NMPC control scheme, we introduce
the following root mean square tracking error (RMSE)-

based criterion:

RMSEJ =

√√√√ 1

N

N∑
i=1

4∑
j=1

e2
qj (i) (31)

RMSET =

√√√√ 1

N

N∑
i=1

(e2
x(i) + e2

y(i) + e2
z(i)) (32)

RMSER =

√√√√ 1

N

N∑
i=1

e2
α(i) (33)

where RMSEJ represents the RMSE criterion based on
the joint tracking errors and eqj j = 1, ..., 4 denotes the
tracking error of the jth joint. Further, RMSET , RMSER
is the RMSE criterion based on the computed Cartesian
tracking errors. Her, the translational movements are sep-
arated from the rotational ones; N denotes the number of
recorded samples; ex, ey and ez define the tracking error
along x, y, and z axes, respectively; and eα is the tracking
error.

5.1. Tuning of the Control Gains

A well-known strategy for tuning the control gains in
experiments used for complex robotic systems is the trial-
and-error method. It is characterized by manually and
continuously attempting different sets of control gains in a
real-time framework until the desired control performance
is achieved. It is generally used when the formulated dy-
namic model does not exactly match the physical system.
Thus, automatic numerical closed-loop tuning methods
may provide unsuitable control gains for real-time experi-
ments.

The tuning process of the proposed controllers is char-
acterized by reduced computation time, as presented in
the following subsection (algorithms 2 and 3). It is worth
to note that depending on the target application and the
needed performance, it is the designer who should decide
about the quantitative values for the guidance of the tun-
ing process while taking into account the specific real-time
constraints of the actual system.

5.1.1. Tuning of the parameterized NMPC control gains

The process of tuning the standard parameterized NMPC
control gains is achieved using Algorithm 2.

5.1.2. Tuning of the proposed extended fast NMPC-PID
control gains

The main tuning procedure used for the proposed ex-
tended fast NMPC-PID control gains is summarized in the
following steps in Algorithm 3.

5.2. Numerical Simulation Results

To demonstrate the relevance and effectiveness of the
proposed control solutions, we begin with a numerical sim-
ulation and comparative analysis with the parametrized
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Algorithm 2 Tuning algorithm of the parameterized
NMPC control gains
Involved calculations:(11),(13),(17)–(20),(30)–(32)

1: Set Np = 1, Nc = 1, λ = 0 and γ = 0,

2: Increase the value of λ, until a satisfied tracking is

reached,

3: Tune Np and Nc by increasing till we reach as best

performance index as possible.

4: Start increasing the value of γ, until obtaining less

chattering input signal and better performance index

and modifying again λ either increasing or decreasing

to ensure a smooth control signal.

Algorithm 3 Tuning algorithm of the proposed extended
fast NMPC-PID control gains
Involved calculations:(19),(22)–(25),(30)–(32)

1: Initialization: β = 0, L = 0, λ = 0, and γ = 0,

Np = 1, Nc = 1, KP = 0, KI = 0 and KD = 0,

2: Start increasing λ, Np and γ until we obtain acceptable

tracking performance,

3: Increase the value of Nc and returning again the values

of λ, Np and γ either increasing or decreasing until a

smooth control signal is obtained and a trade-off be-

tween computational time and sufficient insight into

the system behavior is satisfied,

4: Tune β within the interval [0, 1[ and increase L until

guaranteed J(pi+1) < J(pi). The weighting factor λ is

decreased until the convergence of the system response

is faster

5: Tune the values of KP and KD gains that are started

from zero until acceptable tracking performance is

achieved. Then, increase the value of KI until the

static error increases.

6: Repeat steps (4) and (5) until obtaining the best pos-

sible closed-loop performance.

7: Decrease L until we get a better performance index.

NMPC controller introduced in [15]. Hence, an extended
fast NMPC control scheme is designed based on a fast gra-
dient solver (see Algorithm 1) and an exponential parame-
terized NMPC approach, which is introduced in Equation
(13). The proposed controller was developed with a re-
duced computation time (up to 0.0781 s) compared to the
standard NMPC which is greater than 117.2430 s, and
the parametrized NMPC is up to 104.4537s. The control

architecture was implemented using the Matlab/Simulink
tool running on Intel Core i7 processor. The obtained re-
sults are depicted in Figure 8, where the robot’s platform
starts from an arbitrary position to join the desired initial
position, located at (0,0,-625,0) mm, then moves from this
initial position to the final Cartesian position located at
(0,0,-625,300) mm, and finally returns to the initial posi-
tion (Figure 7). This simulation scenario aims to assess
the tracking capabilities in terms of Cartesian and artic-
ular tracking errors and to show that the developed con-
troller can ensure a satisfactory computation performance,
as required by VELOCE PKM, without any linearization
techniques. This numerical simulation provided a good
overview of the real-time feasibility of the proposed con-
troller. For comparison, a parameterized NMPC technique
was introduced in [15] based on the fmincon MATLAB
function, and the proposed extended fast NMPC (Ex-Fast
NMPC) control schemes were implemented in a discrete-
time scheme similar to real-time robot control. The simu-
lation results obtained for the controllers are shown in Fig-
ure 9, while the control parameters are reported in Table 2.
These control parameters were tuned such that each con-
troller could provide the best performance. From Figure
9, it is clear that the proposed extended fast NMPC con-
trollers provide significantly better tracking performance
compared to the standard parameterized NMPC control
strategy. To quantify the enhancement caused by the pro-
posed extended fast NMPC, the RMSE-based criteria in-
troduced above were evaluated for each controller and are
summarized in Table 3. Clearly, the tracking improve-
ment of the proposed controller is significant (up to 70.91%
for translation and up to 76.91% for rotation) compared
with the standard one. The evolution of The control in-
put torques generated by both the controllers are shown
in Figure 10. Clearly, the generated control signals for
both controllers are in admissible ranges and do not exhibit
any high-frequency components. Note that the computa-
tion time (Figure 11) obtained by the proposed Ex-Fast
NMPC (around 0.0631 with a maximum of 0.0781 s) is
faster than the parameterized NMPC controller (around
50 s with a maximum of 104.453 s). Indeed, the computa-
tional burden is substantially reduced owing to the opti-
mization problem of low dimensions obtained by using the
parameterized approach and the fast gradient solver. Con-
sequently, our results can be easily applied to other types
of fast mechatronic/robotic systems after modeling the of
their nonlinear dynamics. However, this reduced compu-
tation time is not sufficient for the real-time application
of the proposed controller in the case of thw VELOCE
high-speed PKM. Therefore, two solutions are proposed
in this section to demonstrate the improvement steps of
the proposed NMPC control strategy for handling high-
speed parallel robots. The proposed controller is enhanced
by adding feedback gains that are adequate for the exper-
imental implementation on VELOCE parallel robot and
compared it with a PID regulator. The experimental re-
sults are presented and discussed in the following subsec-
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tions.

Algorithm 4 Proposed extended Fast NMPC-PID con-
trol firmware (Contribution 1)

1: Initialize the maximum number of iterations value, the

parameters of the fast gradient solver, the prediction

horizon Np, control horizon Nc, feedback gains (KP ,

KI and KD), and weighting factor λ.

2: Define the matrix M , set the reference trajectory (qd),

and fix the control/output initial values. We define the

parameterized vector and iteration counter (k = 0).

3: Acquisition of the joint position vector q at iteration

k.

4: Compute the low-dimensional vector p using Algo-

rithm 1.

5: Fined the coefficients of the parameterized technique

α1 and α2.

6: Compute the future control sequence Γf of the ex-

tended fast NMPC from equation (13) and the first

element of control.

7: Compute the control law Γ of the proposed extension

of the fast NMPC controller with feedback gains by

using equation (11).

8: Send the control actions to the VELOCE actuators.

9: Waiting the end of the sampling period.

10: Increment the iteration counter k.

11: If the iteration count k has exceeded the limit, stop.

Otherwise, set k = k+1, return to step 3 and continue

the iteration process.

5.3. Experimental Results on VELOCE parallel Robot

The VELOCE PKM prototype used for the real-time
experiments in the present study is depicted in Figure 12,
which is an experimental testbed for the validation of the
proposed fast NMPC controller (Contribution 1) and its
augmented version with the ANN model (Contribution 2).
The global design of the parallel manipulator is capable
of reaching 10 m/s of maximum velocity, 20 G of maxi-
mum acceleration and is able to carry a maximum payload
of 10 Kg. A fixed-step solver was chosen with a sample
time of 0.1 ms. The control schemes were implemented
using Simulink from Mathworks and compiled using the
XPC/Target and real-time toolbox. The generated code
was uploaded and executed on a target PC, an industrial
computer running at a frequency of 10 KHz (i.e., a sam-
pling time of 0.1 ms).

Figure 12: View of VELOCE parallel robot used for real-time exper-
iments.

Algorithm 5 Proposed enhanced Fast NMPC-PID con-
trol firmware (Contribution 2)

1: Initialize the maximum number of iterations, the pa-

rameters of the fast gradient solver, the prediction

horizon Np, control horizon Nc, feedback gains (KP ,

KI and KD), and weighting factor λ.

2: Define the ANN internal model, set the reference tra-

jectory (qd), fix the initial values of the control output

vectors, parameterized vector, and iteration counter

(k = 0).

3: Acquisition of the joint position q at iteration k.

4: Compute the low-dimensional vector p by minimizing

the cost function (24) based on the fast gradient Al-

gorithm 1.

5: Find the coefficients of the specific parameterized tech-

nique, and compute the future control sequence Γf2 of

the extended fast NMPC from equation (25) and the

first element of control.

6: Compute the control law of the enhanced fast NMPC

controller with feedback gains by using equation (22).

7: Apply the control to the VELOCE robot.

8: Waiting the end of the sampling period.

9: Increment the iteration count k.

10: If the iteration count has exceeded the limit, stop.

Otherwise, set k = k + 1 and proceed to Step 3.

5.3.1. Experimental results of contribution 1 on VELOCE
PKM

In the following, we provide details and discuss the ex-
perimental results obtained from the proposed fast NMPC
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controller for VELOCE robot. The control firmware de-
scribed in Algorithm 4, which allows the determination
of the control law, was used. To highlight the outcomes
of the proposed controller, its performance was compared
to that of a PID controller. The control parameters of
proposed controller are summarized in Table 7. Following
the reference trajectory illustrated in Figure 7, the Carte-
sian and joint tracking errors of both controllers are shown
in Figures 13 and 14. The obtained results based on the
proposed performance evaluation criteria are presented in
Table 4. We can notice that the proposed extended fast
NMPC control strategy with PID feedback gains reduces
the tracking errors in all axes and providesa better results.
We can then observe that the general tracking errors of the
proposed controller are better than those of the standard
PID controller. For instance, there was an improvement
of 14.95% in terms of the tracking precision and 12.39%
in terms of the rotation coordinate of the traveling plate.
The control input torques of the four direct-drive motors
for both controllers are shown in Fig. 15. Clearly, both
control algorithms generated input signals within the ad-
missible limits of each actuator (i.e., 127 N.m). According
to the obtained results, we can conclude that the extended
fast NMPC-PID controller outperforms the standard PID
in terms of precision and performance owing to the ex-
ponential parameterized control technique, fast gradient
solver, feedback gains, and their specific behavior. The
proposed controller can ensure the stability and improve
the tracking capability of high-speed manipulators.

5.3.2. Experimental results of contribution 2 on VELOCE
PKM

To demonstrate the relevance of the second contribu-
tion, a real-time VELOCE PKM testbed was required.
In this experimental case study, the same desired trajec-
tory (illustrated in Figure 7) is considered. The second
proposed extended fast NMPC-PID controller is based on
a specific parameterization technique, fast gradient algo-
rithm, and internal ANN model. The last model was used
to predict the future behavior of the parallel robot. It has
reduced computation time with a greater prediction hori-
zon (Np = 3) than that used in the first control scheme
(Np = 1). The proposed strategy is a potential candidate
for the real-time control of parallel robots. The motivation
behind this scenario was to test the robustness of the pro-
posed controller and assessed its tracking capabilities with
an efficient computational time for VELOCE robot. To
use the proposed controller software, some steps were con-
sidered, as illustrated in Algorithm 5. To demonstrate the
relevance of the proposed contribution and highlight its
benefits, it was implemented and compared with a stan-
dard PID controller in real time on VELOCE PKM. It
is important to emphasize that, as this nonlinear control
solution takes Considering the high-speed dynamics of VE-
LOCE robot, its performance is expected to have reduced
computation time. the control parameters of the proposed
controller are summarized in Table 5. The Cartesian track-

ing errors of both the controllers are shown in Figure 16. It
can be clearly observed that the proposed Ex-Fast NMPC-
PID controller provides better results than the PID con-
troller. The RMS-based criteria introduced above were
used to evaluate the tracking performance of both con-
trollers. The obtained results are summarized in Table
6, from which it can be seen that the proposed controller
improves the tracking capabilities of the robot manipula-
tor significantly with respect to the PID controller (more
than 43 % for the rotation DOF). As expected, a signifi-
cant improvement of 46.48 % in terms of Cartesian space
accuracy was observed when evaluating the RMSE perfor-
mance index, and 46% for the joint space accuracy. This
result highlights the benefits of using the dynamics of the
manipulator in control design in terms of tracking per-
formance. The torques generated by both controllers are
depicted in Figure 18. Evidently, these torques are far
from the admissible limits of the actuators, that is, 127
Nm. Moreover, they were smooth and did not exhibit any
discontinuities. The movements of the robot while track-
ing the reference trajectories have a computation time in
the interval [0.000056, 0.000077]s, which is significantly re-
duced compared to the numerical simulation case (up to
0.0313 s), showing the real-time applicability of the Ex-
Fast NMPC-PID control scheme. The experimental re-
sults show that the extended fast NMPC controller can
ensure precise tracking of the reference trajectory with a
small computation time compared to the classical NMPC,
which is not suitable for the control of fast systems.

6. Conclusion and Future Works

This study addressed the problem of controlling high-
speed PKMs manipulators. One of the main objectives of
this study is to achieve real-time control of PKMs with-
out any linearization techniques based on the NMPC con-
trol strategy. The proposed solution is a new extension
of the fast NMPC controller that includes two variants.
The motivation behind this proposition is to improve the
tracking capability of parallel manipulators. Real-time ex-
periments on the 4-DOF non-redundant VELOCE robot
were conducted to validate the proposed control schemes.
The experimental results show that the proposed exten-
sion significantly enhances the closed-loop performance.
Compared with the standard NMPC, the proposed con-
troller reduces the computation time and allows real-time
applicability to fast dynamical systems. In addition, the
extended fast NMPC controller exhibits considerably bet-
ter performance than the standard PID controller.

Despite all the advantages and the reached breakthrough
of the proposed contributions, they have few limitations
that may be considered in future directions, such as ro-
bustness towards noise and the off-line training of the
ANN. Furthermore, this work can be extended by studying
other control approaches for the proposed NMPC tech-
nique and their optimization. Other fast-solving meth-
ods can improve the performance of such control laws.
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More extensive results for the proposed nonlinear control
schemes for other industrial applications will be addressed
in the future.
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Figure 4: Block diagram of the proposed fast NMPC control scheme based on the exponential parametric approach and feedback gains for
parallel robots.
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Figure 8: Trajectory tracking versus time, left: Cartesian space coordinates, right: Joint space.

Table 2: Summary of the controller parameters for the numerical simulation.

Parameterized NMPC Ex-Fast NMPC

Parameter Value Parameter Value

Np 4

Np 2 Nc 3

Nc 2 λ 180

tr 0.054 L 1.6

λ 100 β 1

γ 4 γ 4

tr 0.0300

Table 3: Tracking performance comparison in the numerical simulation.

RMSET [mm] RMSER[deg]

Parameterized NMPC 0.8808 1.4495

Ex-Fast NMPC 0.2562 0.3416

Improvements 70.91% 76.433%

Table 4: Contribution 1: Control performance evaluation in terms of RMSE errors.

RMSEJ [deg] RMSET [mm] RMSER[deg]

Standard PID 0.0391 0.1210 0.4275

Ex-Fast NMPC-PID 0.0339 0.1029 0.3754

Improvements 13.29% 14.95% 12.39%
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Figure 9: Evolution of the Cartesian tracking errors versus time in numerical simulation. (a) Parameterized NMPC and (b) Ex-Fast NMPC.

Table 5: Summary on the control design parameters of contribution 2.

Standard PID Ex-Fast NMPC-PID

Parameter Value Parameter Value

Np 3

KP 4000 Nc 3

KD 110 λ 0.333

KI 6 KP 4000

Γ [-8,8] KD 110

KI 6

Γ [-8,8]

Table 6: Contribution 2: Control performance evaluation in terms of RMSE errors.

RMSEJ [deg] RMSET [mm] RMSER[deg]

Standard PID 0.0391 0.1210 0.4275

Ex-Fast NMPC-PID 0.0211 0.0826 0.2568

Improvements 46.03% 46.48% 43.97%
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Figure 10: Evolution of the control inputs versus time in the numerical simulation. (a) Superimposed curves and (b) An illustrative zoom.
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Figure 11: Evolution of the computation time of the simulated three controllers, including (a) Parameterized NMPC, (b) Contribution 1
using nonlinear plant model, and (c) Contribution 2 using ANN.

Table 7: Summary of the control design parameters of contribution 1.

Standard PID Ex-Fast NMPC-PID

Parameter Value Parameter Value

tr 0.0540

β 1

γ 1

KP 4000 λ 180

KI 6 KP 4000

KD 110 KI 6

Γ [-8,8] KD 110

Np 1

Γ [-8,8]
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Figure 13: Contribution 1: Evolution of the Cartesian tracking errors versus time, (a): PID, (b): Ex-Fast NMPC-PID.

Time [sec]

e X
 [m

m
]

e Y
 [m

m
]

e q
4
[d

eg
]

e z
 [m

m
]

e X
 [m

m
]

e Y
 [m

m
]

e
q 1 q 1

e q
1 
[d

eg
]

e q
2 
[d

eg
]

e q
3 
[d

eg
]

e q
4 
[d

eg
]

(a) PID

Time [sec]

e X
 [m

m
]

e Y
 [m

m
]

e q
4
[d

eg
]

e z
 [m

m
]

e X
 [m

m
]

e Y
 [m

m
]

e
q 1 q 1

e q
1 
[d

eg
]

e q
2 
[d

eg
]

e q
3 
[d

eg
]

e q
4 
[d

eg
]

(b) Ex-Fast NMPC-PID

Figure 14: Contribution 1: Evolution of the joint tracking errors versus time, (a): PID, (b): Ex-Fast NMPC-PID.
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(a) PID and Ex-Fast NMPC-PID.
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(b) An illustrative zoom.

Figure 15: Contribution 1: Evaluation of the control input torques versus time, (a) PID and Ex-Fast NMPC-PID, (b) An illustrative zoom

.
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Figure 16: Contribution 2: Evolution of the Cartesian tracking errors versus time. (a) PID and (b) Ex-Fast NMPC-PID.
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Figure 17: Contribution 2: Evolution of the joint tracking errors versus time. (a) PID and (b) Ex-Fast NMPC-PID.
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(a) PID and Ex-Fast NMPC-PID.
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Figure 18: Contribution 2: Evolution of the control input torques versus time. (a) PID and Ex-Fast NMPC-PID, (b) An illustrative zoom.
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