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Abstract
Background: Scaffolding is a bioinformatics problem aimed at completing the
contig assembly process by determining the relative position and orientation of
these contigs. It can be seen as a paths and cycles cover problem of a particular
graph called the “scaffold graph”.
Results: We provide some NP-hardness and inapproximability results on this
problem. We also adapt a greedy approximation algorithm on complete graphs so
that it works on a special class aiming to be close to real instances. The described
algorithm is the first polynomial-time approximation algorithm designed for this
problem on non-complete graphs.
Conclusion: Tests on a set of simulated instances show that our algorithm
provides better results than the version on complete graphs.

Keywords: Genome scaffolding; Complexity; Approximation; Dynamic
programming; Poly-APX-hardness

1 Background
Motivation. In this paper, we focus on a bioinformatic problem occurring in the
production of genomes. Genomes are usually obtained by sequencing. Sequencing
produces an important amount of small sequences of nucleotides called reads. Herein,
the lengths range from hundreds to tens of thousands of characters, depending on
the sequencing technology. As a rule of thumb, shorter reads, produced for example
by second generation sequencing (Illumina) have a higher quality (contain less read-
errors) than long reads produced by third generation sequencing technologies (PacBio
or Oxford Nanopore) [1]. The assembly process exploits overlaps between reads to
reconstruct the targeted sequence. However, this is complicated by repeated parts in
real-world genomes. Assembly algorithms cannot uniquely infer the original genome
if it contains such repeated regions (the longer the repeated region with respect to
the read length, the harder it is to infer the original genome). To avoid misassembly,
such algorithms reconstruct only parts of the genome which is then returned as set of
“contiguous regions” (or contigs). A thus fragmented genome is not ideal for further
processing, and one would like to have as few contigs as possible while avoiding
misassembly. A way to approach this are hybrid strategies using both long and
short reads [2]. However, many genomes comprising current databases have been
assembled before the development of third generation sequencing, preventing such
hybrid strategies. One way to reduce the fragmentation of genomes in these databases
while avoiding costly re-sequencing, is the exploitation of “meta-information” about
the available reads.
[1]Preprint version.
The final authentificated version is available online at https://doi.org/10.1186/

s13015-022-00223-x
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Genome Scaffolding In second generation sequencing, short reads come in pairs,
indicating that a fragment of the DNA molecule exists whose ends correspond
to the two reads of a pair. In particular, the total length of said fragment is
known approximately. This pairing information can be used to infer the order (and
orientation) of the given contigs on the chromosome, thus completing the genome
(modulo possible gaps between the contigs). The mathematical problem modeling
this inference, called Scaffolding, is made complicated by possible inconsistencies
in the pairing information. See [3] for a recent overview of models, variants, and
methods in this context.
The problem we study here is an optimization problem in a special graph called

scaffold graph. The present formulation use both pairing information and some
genomic structural constraints, like a fixed number of linear and circular chromosomes.
In [4], we presented preliminary results about the complexity of this problem and a
first polynomial-time approximation on complete graphs. Those results were extended
and completed by another polynomial-time algorithm [5] and by a randomized
approach [6]. We also explored exact algorithms [7], and studied some sparse special
cases of scaffold graphs [8]. The contribution of the present paper is a continuation
of published works [9, 10], where special classes of graphs have been studied (from
sparse to very dense). Since real instances are usually sparse but contain some dense
regions, due to abundance of repeats [11], we are interested in graphs built from
cliques that are separated by bridges (i.e. edges whose removal disconnects the
graph). The main contribution is the extension of the approximation algorithm on
complete graphs of Chateau and Giroudeau [5] to a particular class called “connected
cluster graph”. Ultimately, the objective is to adapt the algorithm to sparse classes
of graphs. To keep the approximation algorithm in polynomial time, one condition
is that the decision problem of the scaffolding must be solvable in polynomial time.
We propose a negative result, (i.e. it is NP-complete) for a particular sparse graph
class. Finally, since the presented approximation has a polynomial approximation
ratio in some particular cases, we show that the scaffolding problem can not be
approximed with a ratio better than a polynomial function in such cases.

Organization of the paper. The next section is devoted to notations and the
description of the scaffold problem. In Section 4, we show a NP-hardness results for
sparse scaffolding graphs. In Section 5, we address inapproximability. Section 6 is
devoted to a greedy algorithm for a special class of graph called connected cluster
graph. Finally, we provide experimental results for the greedy algorithm.

2 Notation and Problem Description
Graph Definitions. For a graph G, we denote by V (G) and E(G) the set of vertices
and edges of G, respectively. Let u be a vertex of G, the degree d(u) of u is the
number of edges incident with u. The girth g(G) of G is the length of the smallest
cycle of G. A graph is bipartite if its vertices can be partitioned into two sets of
non-adjacent vertices. A graph is planar if it can be drawn in the two-dimensional
plane without crossing edges.
A matching M∗ ⊆ E(G) of G is a set of non-adjacent edges. M∗ is called perfect

if it touches all vertices of G. For a vertex u, we let M∗(u) denote the unique vertex
v (if it exists) such that uv ∈M∗. In a scaffold graph, vertices represent extremities
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Figure 1: Example of a connected cluster graph. The bridge edges are bold.

of contigs. Given a matching M∗, the matching edges represent contigs and edges
outside the matching represent possible contiguity relationship between contigs. The
confidence that two contigs (more precisely, contig-extremities) occur consecutively
in the genomic sequence is represented by a weight on edges outside the matching.
An alternating path (resp. alternating cycle) is a path (resp. cycle) such that its
edges alternatingly belong to M∗ or not. The extremal edges of an alternating path
must be in M∗.
A clique of G is a set of vertices such that all vertices are adjacent. A bridge (resp.

cut vertex ) of G is an edge (resp. vertex) such that its deletion increases by one the
number of connected components of G. In Section 6, we study a particular class of
graph called connected cluster graph, defined as follows.

Definition 1 A connected cluster graph G is a graph that admits a decomposition
of its edges E(G) = E′ ∪B such that the subgraph induced by E′ is a disjoint union
of cliques and each edge e ∈ B is a bridge of G.

An example of a connected cluster graph is given in Figure 1.

Scaffolding problem. A scaffold graph (G∗,M∗, ω) is a simple, loopless graph G∗

with a perfect matching M∗ and a weight function ω on the non-matching edges.
The matching M∗ represents the set of contigs and for an edge uv, ω(uv) indicates
the confidence that the contig extremity v follows the contig extremity u in the
genomic sequence.[2] The alternating girth of a scaffold graph denoted by g∗(G∗) is
the number of matching edges in the smallest alternating cycle of (G∗,M∗, ω). In
this paper, we study a decision and optimization version of scaffolding, defined as
follows.

Scaffolding (SCA)
Input: A scaffold graph (G∗,M∗, ω) and integers σp, σc.
Question: Does (G∗,M∗) contain a collection of σp alternating paths and σc

alternating cycles?

Max Scaffolding (MaxSCA)
Input: A scaffold graph (G∗,M∗, ω) and integers σp, σc.
Task: Find a collection S of σp alternating paths and σc alternating cycles

maximizing
∑
e∈S\M∗ ω(e)

[2]Note that v follows u in the genomic sequence if and only if u follows v in its reverse
complement. Therefore, scaffolds are modeled as undirected graphs in this work.
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Algorithm 1: Approximation algorithm for Max Scaffolding Problem.
Data: A scaffold graph (G∗,M∗, ω), two integers σp and σc.
Result: A collection of σp alternating paths and σc alternating cycles or “False” if no such

collection exists.
// Initialization step

1 S ←M∗;
2 E ← E \M∗;
3 sort E by decreasing order of weight;
4 if not Feasibility((G∗,M∗), S, σp, σc) then return False;
// Main loop

5 while E 6= ∅ do
6 e← first element in the ordered-list E;
7 E ← E \ e;
8 if Feasibility((G∗,M∗), S ∪ {e}, σp, σc) then
9 R← set of edges of E incident to e;

10 S ← S ∪ {e};
11 E ← E \R;
12 return S;

The two integers σp and σc are used to model restrictions on the sought genomic
structure by representing the number of linear and circular chromosomes, respectively.
Let S be a collection of p alternating paths and c alternating cycles. We call the
number p+ c the cardinality of S and, we let σp(S) := p and σc(S) := c.

3 Greedy algorithm
The main contribution of this paper is an extension of a known polynomial-time
3-approximation [5] to connected cluster graphs. Whereas the original algorithm
was developed to work in complete graphs, it can be adapted for the general case,
as shown in Algorithm 1. The idea of this greedy algorithm is to consider each
non-matching edge in decreasing order of weight and add it into a partial solution,
if possible. The key instruction is the feasibility function: given a partial solution S
and an edge e, this function indicates whether S ∪ e can still be extended into a
collection of σc alternating cycles and σp alternating paths in (G∗,M∗).

Proposition 1 Let f be a feasibility function with time complexity O(t). Algo-
rithm 1 gives an approximate solution for Max Scaffolding (if it exists) in
O(|E(G∗)| · (t+ log |E(G∗)|)).

The solution S given in the input of the feasibility function is called initiating
solution. In general, since Scaffolding is NP-complete, feasibility cannot be
decided in polynomial-time, even if S = ∅ (unless P =NP). Thus, we focus on
restricted classes of graphs. In [5], a constant-time feasibility function was developed
for complete graphs, leading to the following result.

Theorem 1 ([5]) In complete graphs, Algorithm 1 gives a solution with an approx-
imation factor of 3.

In Section 6, we develop a feasibility function for connected cluster graphs and
show that Algorithm 1 gives a 5-approximate solution in this case. Notice that, on
graph classes containing the 2 × k grids, the worst-case approximation factor of
the greedy algorithm cannot be better than polynomial, even if a polynomial-time
feasibility function exists (see Figure 2).
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Figure 2: Unbounded ratio of Algorithm 1 in the general case. Let (G∗,M∗, ω)

be a 2× k grid where the perfect matching (bold edges) corresponds to the edges
between the two rows. Let (x1, . . . , xk) and (y1, . . . , yk) be the vertices of the first
and second row, respectively. We are looking for a solution of Max Scaffolding
with σc = 0 and σp = 1. If the algorithm chooses first the edge x1x2, then the
only feasible solution is S = {x`x` | ` mod 2 = 1} ∪ {y`y`+1 | ` mod 2 = 0}
(dashed edges). Suppose that an optimal solution is Sopt = E(G∗) \ (M∗ ∪ S)

(solid edges). If all edges of Sopt and x1x2 are valued by one and all edges of
S \ {x1x2} are valued by zero, then we have (k − 1) · ω(S) = ω(Sopt) which leads
to an unbounded ratio.

We conclude this section with a note on real-world instances, which are too sparse
to fall into our considered class. However, we can transform them by adding some
non-matching edges with weight zero. This technique was used to run the feasibility
function for complete graphs on simulated instances [5] and the computed solution
was close to the optimal. One of the reasons we develop a feasibility function for
connected cluster graphs is that we conjecture that using a feasibility function for
a graph class that is closer to the original instance (edge-deletion distance from the
class) provides better approximation in practice, even though the theoretical approx-
imation factor of the algorithm becomes worse. We test this hypothesis in Section 8.

4 Computational Hardness
Like said in the previous section, when using the greedy algorithm on a real in-
stance, we must complete the original instance by adding non-matching edges with
weight zero. To minimize the number of added edges, the solution is to adapt the
greedy algorithm to a sparse class of graphs. In order to do that, Scaffolding
must be solvable in polynomial time in this particular class since otherwise, the
feasibility function can not be run in polynomial time. In this section, we show that
Scaffolding is NP-hard for the particular class of graphs where |M∗| = 2σc + σp.
That is, we show that the greedy algorithm can not be executed in polynomial
time in this special case. In such instance, any feasible solution S contains only
alternating paths of length one and alternating cycles of length four (i.e. the smallest
possible elements). While Scaffolding is polynomial in this case [5], a natural
extension would be to consider slightly longer alternating paths and alternating
cycles. Unfortunately however, it turns out that deciding whether (G∗,M∗) contains
a collection with alternating paths of length one and alternating cycles of length
six is already NP-complete. In order to show this, we focus on the value of the
alternating girth of the scaffold graph. Indeed, in a solution of Scaffolding with
g∗(G∗) · σc + σp edges, each alternating path consists of exactly one matching edge
and each alternating cycle is an alternating girth. We show that finding such a
solution is NP-complete, even if g∗(G∗) = 3, by reducing Independent Set to it.
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Figure 3: Example of a scaffold graph produced by Construction 1. Left: input
graph with an independent set of size two given by the black vertices. Right:
output graph with a collection of two alternating cycles and one alternating path
in black. A bipartition is given by gray and white vertices. An example of a
vertex-cycle is Cv1 = {v11, v11 , u1, u1, u2, u2}. It is possible to turn this graph into a
planar graph by replacing the edges {u3u2, u2u3, u5u3} with {u3u2, u5u2, u5u3}.

Independent Set (IS)
Input: a graph G and an integer k.
Question: Is there a set I ⊆ V (G) of k non-adjacent vertices?

IS is NP-complete in general graphs. In order to build our reduction, we need G
to be subcubic and triangle-free (i.e. ∆(G) ≤ 3 and g(G) > 3). Note that Lozin
et Milanič [12] showed that Independent Set remains NP-complete in F-free
planar subcubic graphs if F does not contain a tree with exactly three leaves. By
choosing F := {C3} (where C3 is the cycle on three vertices), we obtain the desired
NP-completeness. Our reduction uses the following construction.

Construction 1 (see Figure 3) Given a subcubic, triangle-free graph G, construct
a scaffold graph (G∗,M∗, ω) as follows:

• for each edge ei ∈ E(G), construct a matching edge uiui, and
• for each vertex vt ∈ V (G), introduce the matching edges {ujtu

j
t | j ≤ 3 −

deg(vt)} =: Et and construct an alternating 6-cycle Ct on the vertices Et ∪
{uiui | vt ∈ ei} such that no two u (or u) vertices are adjacent.

The alternating cycles Ci are called vertex-cycles. A bipartition is given by the u-
and u-vertices. Note that, if G is planar, it is also possible to construct a planar
graph (which may no longer be bipartite). To show hardness of Scaffolding when
|M∗| = g∗(G∗) · σc + σp, we use the following properties of graphs resulting from
Construction 1.

Lemma 1 Let G be a subcubic triangle-free graph and let (G∗,M∗, ω) be its scaffold
graph produced by Construction 1. Let S be a collection of σc = k alternating cycles
and σp = |M∗| − 3k alternating paths. Then,
(a) g∗(G∗) = 3,
(b) every alternating cycle in S is a vertex-cycle, and
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(c) let Ct and Ct′ be vertex-cycles in S, the vertices vt and vt′ are not adjacent in G.

Proof (a) By construction, each vertex-cycle contains exactly three matching edges
and, thus, g∗(G∗) ≤ 3. Suppose there is an alternating cycle containing exactly
two matching edges e and e′. Let Ct be a vertex-cycle containing e. Since Ct
has length six, there is another vertex-cycle Ct′ 6= Ct that contains e′. Indeed,
e and e′ are both in Ct and Ct′ since, otherwise, their extremities cannot be
adjacent. By construction, there are two edges ei and ej in G that are incident
to both vt and vt′ , contradicting G being simple. Hence, there is no alternating
cycle with two matching edges and g∗(G∗) = 3.

(b) Let C be an alternating cycle in S. By Lemma 1(a), |M∗| = g∗(G∗) · σc + σp,
implying that C has length six. Let uiui be a matching edge of C. If there is
a matching edge v1t v

1
t ∈ C then, by construction, the third matching edge of

C is either v2t v
2
t (if deg(vt) = 1) or ujuj (where vt ∈ ej in G). Thus, C is the

vertex-cycle Ct. Suppose there is no matching edge v1t v
1
t in C. For any pair of

matching edges (ukuk, uk′uk′) of C, ek and ek′ are incident to a same vertex
in G. Let uiui, ujuj and ukuk be the three matching edges of C. Since G is
triangle-free, ei, ej and ek are adjacent in G, hence, C is a vertex-cycle.

(c) Let ei = vtvt′ ∈ E(G). The matching edge uiui is in Ct and Ct′ and, thus, S
cannot contain both Ct and Ct′ .

In the proof of correctness, we simulate vertices of the independent set with
vertex-cycles. If a solution S contains two vertex cycles Ci and Cj , then vi and vj
are not adjacent in G. Hence, if a solution S contains k vertex-cycles, then there is
an independent set of k vertices in G.

Theorem 2 Scaffolding is NP-complete, even in bipartite (or planar) subcubic
scaffold graphs (G∗,M∗, ω) were |M∗| = g∗(G∗) · σc + σp and g∗ = 3.

Proof Since, clearly, Scaffolding is in NP , it remains to show that Construction 1
is a reduction, that is, G has an independent set of size k if and only if there is a
collection of k alternating cycles and |M∗| − 3k alternating paths in (G∗,M∗).
“⇒”: Let I be an independent set of size k inG. We build a solution of Scaffolding

as follows. For each vertex vt ∈ I, we construct the vertex-cycle Ct in S.For each
remaining matching edge in M∗ \

⋃
vt∈I Ct, we construct an alternating path of

length one. We obtain a solution S as thought.
“⇐”: Let S be a solution in (G∗,M∗) containing k alternating cycles and |E(G)−k

alternating paths and let I := {vt|Ct ∈ S}. By Lemma 1(b), any alternating cycle
of S is a vertex-cycle in (G∗,M∗) and, thus, |I| = k. Moreover, by Lemma 1(c), I is
independent in G.

Note that Theorem 2 can be generalized to g∗(G∗) > 3 by modifying Construction 1
as follows. First, we build our construction from a graph G with g(G) > ` ≥ 3.IS
remains NP-complete in such graphs by the result of Lozin and Milanič:it suffices to
take F = {Ci | i ≤ `}, where Ci is the cycle of order i. Then, we increase the length
of every vertex-cycle by taking Et = {ujtu

j
t | j ≤ 3 + `− deg(vt)} for each vt ∈ V (G).
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By making these modifications, we construct a scaffold graph with g∗(G∗) = ` and
we preserve properties Lemma 1(b) and Lemma 1(c). This leads to the following
result.

Corollary 1 Scaffolding is NP-complete even in bipartite (or planar) subcubic
scaffold graphs (G∗,M∗) were |M∗| = g∗(G∗) · σc + σp, for all g∗(G∗) ≥ 3.

5 Non-Approximability
In this section, we discuss the hardness of approximating Max Scaffolding.
Notice that, since Scaffolding is NP-complete, there is no polynomial-time
approximation algorithm for Max Scaffolding (unless P = NP). However, this
argument does not hold for graph classes where Scaffolding is in P (i.e. classes for
which the feasibility function (and, thus, the greedy algorithm) runs in polynomial
time).
We show that, in this case, Max Scaffolding is still Poly-APX-hard, that is, it

is not possible to approximate Max Scaffolding within a factor better than a
polynomial function in |V (G∗)|+ |E(G∗)| (unless P = NP). Recall that Figure 2
already shows that the greedy algorithm can not approximate Max Scaffolding
with a ratio better than a polynomial function. The inapproximability result presented
in this section shows that it is the case for any polynomial-time algorithm. In the
following, we construct an S-reduction (see [13]) from the optimization version of
Independent Set.

Construction 2 (see Figure 4) Let G be a graph. Then, construct the following
scaffold graph (G∗,M∗, ω):

• For each ei = vtvq ∈ E(G), construct a clique {uti, uti, u
q
i , u

q
i , ei, ei} with

utiu
t
i, u

q
iu
q
i , eiei ∈M∗.

• For each vt ∈ V (G), construct a cycle (vt1, v
t
1, v

t
2, v

t
2) with vt1v

t
1, v

t
2v
t
2 ∈M∗.

• Let vt ∈ V (G) and let At be a list of all edges incident with vt in G. Construct
an alternating cycle containing all vertices in {vt1, vt1, vt2, vt2} ∪ {uti, uti | ∀ei ∈
At} as follows:
– For all k < d(vt), let ei and ej be the kth and k + 1st edges of At,
respectively, and add a non-matching edge between uti and utj.

– Let ei and ej be the first and last edges of At, respectively, and add the
non-matching edges vt1uti and vt2u

t
j.

• Each non-matching edge has weight zero, except the edges vt2ej which have
weight one.

Let vt ∈ V (G). The cycle on {vt1, vt1, vt2, vt2}∪{uti, uti | ∃q ei = vtvq ∈ E(G)} is called
the long vertex-cycle of vt and is denoted by C(vt). Note that a long vertex-cycle
has weight one. Now consider the following properties.

Lemma 2 Let G be a graph and let (G∗,M∗, ω) be the scaffold graph produced
by Construction 2. Let S be a collection of |V (G)| + |E(G)| alternating cycles in
(G∗,M∗, ω).
(a) Every non-zero-weight alternating cycle C of S is a long vertex-cycle.
(b) Let C(vt) and C(vq) be two long vertex-cycles of S. Then, vtvq /∈ E(G).
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Figure 4: Example of a scaffold graph produced by Construction 2. The input
graph is composed by the edges e1 = v1v2, e2 = v2v3, e3 = v1v3, e4 = v1v4 and
e5 = v3v4. Gray vertices in the figure belong to an edge gadget and white vertices
belong to a vertex gadget. Matching edges are bold. Solid edges have weight zero
and dashed edges have weight one. The long vertex-cycle C(v2) corresponds to
the vertices {v21, v21 , u22, u22, u21, u21, v22 , v22}.

Proof Note that it is always possible to build a collection of |V (G)| + |E(G)|
(weight-0) alternating cycles in (G∗,M∗, ω) by constructing the alternating cy-
cle {uti, uti, u

q
i , u

q
i , ei, ei} for each edge ei = vtvq of G and the alternating cycle

{vt1, vt1, vt2, vt2} for each vertex vt ∈ V (G).

Claim 1 Let vt ∈ V (G) and ei ∈ E(G). Then, no alternating cycle of S contains
both eiei and vt1v

t
1.

Proof Towards a contradiction, assume that there is such an alternating cycle C.
By pidgeonhole principle, one of the |V (G) +E(G)| alternating cycles in S, say C ′,
avoids both eiei and vt1v

t
1 for all i, t ∈ N. Let utiuti be a matching edge of C ′ for

some ei = vtvq. Then, C ′ cannot contain u
q
iu
q
i as, otherwise, eiei cannot be part of

an alteranting cycle in S, implying that S is not a solution. Thus, each matching
edge of C ′ is on the long vertex-cycle C(vt). Since the graph induced by the vertices
of C(vt) \ vt1vt1 is a path, it is not possible to construct C ′. Hence, we conclude that
C does not exist. �
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(a): Let C be a non-zero-weight alternating cycle of S and assume towards a
contradiction that C is not a long vertex-cycle. Since C contains a non-zero-weight
edge vt2u

1
i , the matching edge vt2v

t
2 is in C. As C is not a long vertex-cycle, there is

some ei = vtvq such that C contains both utiu
t
i and u

q
iu
q
i . Thus, either the matching

edge eiei is in C, contradicting Claim 1, or eiei consists of a single-edge alternating
path of S, contradicting our choice of S.
(b): Towards a contradiction, assume that S contains C(vt) and C(vq) such that

ei = vtvq ∈ E(G). Then, the matching edge eiei is a single-edge alternating path of
S, contradicting our choice of S.

We now show the Poly-APX-hardness of Max Scaffolding, even for graph classes
for which Scaffolding ∈ P . Reusing the same idea of Theorem 2, we simulate the
vertices of the independent set with long vertex-cycles. If a solution S of Max Scaf-
folding has weight k, then S contains k long vertex-cycles and, since their related
vertices cannot be adjacent, we can construct an independent set with k vertices in G.

Theorem 3 Max Scaffolding is Poly-APX-hard, even for graph classes for
which Scaffolding ∈ P.

Proof Let G be an instance of Independent Set and let (G∗,M∗, ω) be the scaffold
graph produced by Construction 2. Let S be the set of all collections of σp = 0

alternating paths and σc = |V (G)|+ |E(G)| alternating cycles in (G∗,M∗, ω). Recall
that Independent Set is Poly-APX-complete for general graphs [14]. We show
that G has a size-k independent set if and only if S contains a solution S of score k.
“⇒”: Let I be an independent set of size k in G. We construct a solution S ∈ S as

follows. First, for each vt ∈ I, construct the alternating cycle C(vt) in S. Second,
for each vt ∈ V (G) \ I, construct the alternating cycle (vt1, v

t
1, v

t
2, v

t
2) in S. Third,

for each edge ei = vtvq not incident with a vertex in I, construct the alternating
cycle (uti, u

t
i, u

q
i , u

q
i , ei, ei) in S. Fourth, for each edge ei = vtvq with vt ∈ I, (the

matching edge utiu
t
i is in C(vt) which is already in S), construct the alternating cycle

(uqi , u
q
i , ei, ei). Since each long vertex-cycle has weight one, we obtain a solution S

with ω(S) = k.
“⇐”: Let S ∈ S with ω(S) = k. We construct an independent set I by taking

all vertices whose long vertex-cycle is in S, that is, I := {vt | C(vt) ∈ S}. Since
each long vertex-cycle has weight one, Lemma 2a implies that S contains k long
vertex-cycles. Thus, |I| = k. Further, by Lemma 2b, I is independent.

Let f be the function corresponding to Construction 2 and let g be a function
that computes an independent set in G from a solution in f(G), as described above.
Suppose that there is a polynomial-time algorithm A with approximation factor
ρ for Max Scaffolding. The approximation factor of g ◦ A ◦ f is equal to ρ,
thus Construction 2 constitutes an S-reduction. Non-approximability results of
Independent Set transfer to Max Scaffolding.

6 Feasibility function for connected cluster graphs
In this section, we present a feasibility function for connected cluster graphs using
dynamic programming. For simplicity, we consider in the following scaffold graphs
(G∗,M∗, ω) such that G∗ is a connected cluster graph and no matching edge is a
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bridge. The case were a bridge can be a matching edge is included in the feasibility
function for block graph that (see Section 8).

6.1 Definitions
Notice that the structure of a connected cluster graph is close to a tree (that is,
collapsing each clique of G∗ into a single vertex leads to a tree), so we will use a
similar vocabulary: a rooted connected cluster graph is a connected cluster graph
where a clique r is designated as a root. Then, the following notation applies: the
parent of a clique x is the clique connected to x on the unique x-r-path. A child of
a clique c is clique of which c is the parent. Any clique without children is called a
leaf. A vertex v of a clique c is a door of c if v is adjacent to a vertex u in a child of
c. In that case, for simplicity, we say that the clique containing u is a child of v. The
upper door of a clique c 6= r is the unique vertex v that is adjacent to a vertex of
the parent of c. Let c be a clique of G∗ and let S be a partial solution in G∗. Let S′

be the intersection of S and c, an alternating element of c is either an alternating
cycle of S′ or an alternating path of S′. Notice that an alternating path of S can
be decomposed into several alternating elements if it belongs to several cliques. Let
e be the alternating element containing the upper door of c. The subclique c′ of c
is the subgraph containing every vertex of c that does not belong to e. Formally,
c′ = G∗[V (c) \ V (e)]. We use the tree-structure to develop a bottom-up algorithm,
that is, we construct and assemble some partial solutions from the leaves to the root.
We define some operations to combine this partial solutions.

Operations. Let G1 and G2 be two edge-disjoint subgraphs. We can build a solution
in the graph induced by V (G1) ∪ V (G2) from a solution in G1 and a solution in G2,
using four operations.

Definition 2 Let G1 and G2 be edge-disjoint subgraphs of G∗. Let S1 and S2 be
solutions of G1 and G2, respectively. Let S be a solution of G∗[V (G1) ∪ V (G2)]. S
is a composition of S1 and S2 if S can be obtained from S1 ∪ S2 by at most one of
the following operations:
Merger: merge an alternating path (u1, u2, . . . , u2t) of S1 with an alternating path

(v1, v2, . . . , v2q) of S2 by adding the non-matching edge u2tv1.
Closing: close an alternating path (u1, u2, . . . , u2t) of S1 and an alternating path

(v1, v2, . . . , v2q) of S2 into an alternating cycle by adding the non-matching
edges u2tv1 and v2qu1.

Absorption: replace a non-matching edge v2iv2i+1 of an alteranting path in S2

with an alternating path (u1, u2, . . . , u2t of S1 by removing v2iv2i+1 and adding
the non-matching edges v2iu1 and u2tv2i+1. We call v2iv2i+1 absorbent.

Finally, if no operation is necessary to obtain S from S1 ∪ S2, we say that S is
obtained by juxtaposition.

Note that all presented operations add only edges of E(G∗) \ (E(G1)∪E(G2)). Note
further that not all compositions of two solutions are guaranteed to exist for a pair
S1 and S2. In the algorithm, we manipulate sets of solutions: we can create a new
set of solutions from two sets of solution if all pairs of solutions of the two input
sets are used in the resulting set.
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x2
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Figure 5: The solution S is composed of a single alternating path {v1, . . . , v6}. S
is closeable by subgraph G3 = {x3, y3}: we can close the alternating path of S into
an alternating cycle by adding the edges v1x3, x3y3 and y3v6. S is extensible by
subgraph G2 = {x2, y2}: we can extend the alternating path of S by adding the
edges v6y2 and y2x2 without changing the number of paths in S. S is absorbent
to G4 = {x4, y4}: we can replace the edge v2v3 of S by the edges v2y4, y4x4 and
x4v3 without changing the number of paths in S. S is frozen to G1 = {x1, y1}.

Definition 3 Let G1 and G2 be two edge-disjoint subgraphs of G∗ and let S1 and
S2 be sets of solutions of subgraphs G1 and G2, respectively. Let op be one the
operation described in Definition 2. Then, we call the set S = {op(S1, S2) | ∀S1 ∈
S1 ∧ ∀S2 ∈ S2 } the complete composition of S1 and S2.

To ensure the possibility of building a complete composition from two sets of solutions,
it is useful to characterize a solution according to the operations we can perform on it.

Definition 4 Let G and G′ be two edge-disjoint subgraphs of G∗ and let S be a
feasible solution of Scaffolding for (G,M∗, ω).
1. S is closeable if S contains an alternating path (u1, u2 . . . , u2t) and G′ contains an

alternating path (v1, v2, . . . , v2q) such that u2tv1 and v2qu1 are edges of E(G∗\M∗.
2. S is extensible by G′ if S contains a vertex v such that v is an extremity of an

alternating path and v has a neighbor in G′ .
3. S is frozen to G′ if S is not extensible.
4. S is absorbent to G′ if S contains an alternating path (u1, u2, . . . , u2t) and G′

contains an alternating path with extremities v and w such that vu2i, wu2i+1 ∈
E(G∗) \M∗ for some i < t. Note that an absorbent solution can also be closeable,
alternating or frozen.

When omitted, G′ defaults to G∗ − V (G).

Note that all closeable solutions are also extensible. If a solution S is closeable by a
subgraph G′, then we can close an alternating path of S into an alternating cycle by
adding some edges of G′. If a solution S is extensible by a subgraph G′, then we can
add some edges of G′ in an extremity of an alternating path of S without changing
the cardinality of the solution. Finally, if a solution S is absorbent to a subgraph
G′, then we can replace an absorbent edge of S by a path of length three without
changing the cardinality of S. An example of the different operations of Definition 4
is given in Figure 5.
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Semantics. Since the number of possible solutions can be exponential, we just
store the possible cardinalities in the table entries, which is sufficient to answer the
question of feasibility. Recall that, if X,Y ⊆ N are two sets of integers, then the sum
of X and Y is defined as X + Y = {x+ y | x ∈ X, y ∈ Y }. Note that X +∅ = ∅. In
the following, we call an integer j eligible with respect to a set S of solutions and an
integer i if there is a solution S ∈ S containing i alternating cycles and j alternating
paths. Then, our dynamic programming table has the following semantics.

Definition 5 (Semantics) Let S be a set of solutions and let i ∈ N. A table entry
[S, i] is the set of all integers eligible with respect to S and i. More formally, letting
Xi = {S | S ∈ S ∧ σc(S) = i}, we define [S, i] = {σp(S) | S ∈ Xi}.

Let us highlight three particular values of [S, i]. For S = {∅}, we have [{∅}, 0] = {0}
and, for each i > 0, we have [{∅}, i] = ∅. For an alternating path p, we have
[{p}, 0] = {1} and [{p}, i] = ∅ for each i > 0. Finally, for an alternating cycle c, we
have [{c}, 1] = {0} and [{c}, i] = ∅ for each i 6= 1. For brevity, we let [S] denote the
vector ([S, 0], . . . , [S, σc]) and, for any operator � and any sets S1 and S2 of solutions,
we define [S1] � [S2] as component-wise �, that is, [S1, i] � [S2, i] for each i ∈ [0, σc].

Lemma 3 Let G1 and G2 be two vertex-disjoint subgraphs of G∗ and let S1 and
S2 be sets of solutions of G1 and G2, respectively. Let S be a set of solutions of
G∗[V (G1) ∪ V (G2)] such that S is a complete composition of S1 and S2.
1. If S is the set of solutions composed with a merger operation, then

[S, k] =
⋃
i+j=k([S1, i] + [S2, j] + {−1}).

2. If S is the set of solutions composed with a closing operation, then
[S, k] =

⋃
i+j+1=k([S1, i] + [S2, j] + {−2}).

3. If S is the set of solutions composed with an absorption operation, then
[S, k] =

⋃
i+j=k([S1, i] + [S2, j] + {−1}).

4. If S is the set of solutions composed with a juxtaposition operation, then
[S, k] =

⋃
i+j=k([S1, i] + [S2, j]).

Proof Let S ∈ S and let S1 and S2 denote the solutions of S1 and S2, respectively,
such that S is composed by S1 and S2. Then,
1 since S1 and S2 have a common alternating path in S, we have σp(S) =

σp(S1) + σp(S2) − 1 and since no cycle is formed, σc(S) = σc(S1) + σc(S2).
Thus, since S is a complete composition of S1 and S2, we have [S, k] =⋃
i+j=k([S1, i] + [S2, j] + {−1}).

2 since one path of S1 and one path of S2 are closed into a single alternating
cycle, we have σp(S) = σp(S1) + σp(S2)− 2 and σc(S) = σc(S1) + σc(S2) + 1.
Thus, since S is a complete composition of S1 and S∈, we have [S, k] =⋃
i+j=k([S1, i] + [S2, j] + {−2}).

3 since S1 has an alternating path that is “absorbed” into a connected component
of S2, we have σp(S) = σp(S1) + σp(S2) − 1 and since no cycle is formed,
σc(S) = σc(S1) + σc(S2). Thus, since S is a complete composition of S1 and
S∈, we have [S, k] =

⋃
i+j=k([S1, i] + [S2, j] + {−1}).
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4 since all paths and cycles of S1 and S2 are present in S, we have σp(S) =

σp(S1) + σp(S2) − 1 and since no cycle is formed, σc(S) = σc(S1) + σc(S2).
Thus, since S is a complete composition of S1 and S∈, we have [S, k] =⋃
i+j=k([S1, i] + [S2, j]).

We use Lemma 3 to define the four functions juxtapose, merget, absorb, and
closet, which provide table entries for complete compositions “composed” with
a juxtaposition, merge, absorption or closing operation, respectively. Although
Lemma 3 is defined for two sets, we use a generalized version which can take as
parameters more than two sets. The functions merget and closet have a parameter
t that indicates the number of paths merged or closed during the operation. For
example, if we have three sets S1, S2, and S3 and if it is possible to construct a single
alternating path in the resulting composition by taking one alternating path in each
set, then we use the function merge3({S1}, {S2}, {S3}). Note that the parameter
t can be different from the number of sets. In addition, it is sometimes possible
to close a single alternating path into an alternating cycle and, in that case, the
function close1 is used. The four functions are defined in Algorithm 2, Algorithm 3
and Algorithm 4. However, we must ensure that the associated operation is feasible
before using one these functions.

Algorithm 2: juxtapose
Data: S1 = {S11 ,S12 , . . . }, . . . ,Sk = {Sk1 ,Sk2 , . . . }: sets of sets of solutions.

1 if k = 0 then
2 [S]← 0;
3 [I]← juxtapose(S2, . . . ,Sk);
4 forall i ∈ [0, σc] do
5 forall j ∈ [0, σc − i] do
6 [S, i+ j]← [S, i] +

⋃
S∈S1 [S, j]

7 return [S]

Algorithm 3: merget or absorb
Data: S1 = {S11 ,S12 , . . . }, . . . ,Sk = {Sk1 ,Sk2 , . . . }: sets of sets of solutions, t: number of paths

to merge (t = 2 in the absorb function).
1 forall i ∈ [0, σc] do
2 forall j ∈ [0, σc − i] do
3 [S, i+ j]←

⋃
S∈S1 [S, i] +

⋃
S′∈S2 [S′, j] + {−(t− 1)}

4 if k 6= 2 then
5 [S]← juxtapose(S,S3, . . . ,Sk);
6 return [S]

In the algorithm, we traverse four different types of subgraphs defined as follows.
• Let v ∈ V (G∗), let child(v) be the set of children of v in G∗ (possibly empty).
Then, G∗(v) denotes the subgrah of G∗ that is induced by v and every branch
linked to v.Formally, G∗(v) := G∗[{v} ∪

⋃
x∈child(v)

V (G∗(x))].

• Let e be an alternating element. Then, G∗(e) denotes the subgraph of G∗

that is induced by e and all children of its vertices. Formally, G∗(e) =

G∗[
⋃
v∈e

V (G∗(v))].
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Algorithm 4: closet
Data: S1 = {S11 ,S12 , . . . }, . . . ,Sk = {Sk1 ,Sk2 , . . . }: sets of sets of solutions, t: number of paths

to close.
1 forall i ∈ [0, σc] do
2 forall j ∈ [0, σc − i] do
3 [S, i+ j + 1]←

⋃
S∈S1 [S, i] +

⋃
S′∈S2 [S′, j] + {−t}

4 if k 6= 2 then
5 [S]← juxtapose(S,S3, . . . ,Sk);
6 return [S]

• Let c be a clique of G∗ and let c′ be the subclique of c. For all x ∈ {c, c′},
the subgraph G∗(x) is the union of x and all children of x. Formally, G∗(x) =

G∗[
⋃

e∈M∗∩(x
2)
V (G∗(e))].

For each traversed subgraph, we use four different sets of solutions distinguishing
solutions according to their properties.

Definition 6 Let S be a partial solution of G∗. Let x be a vertex, a partial path,
a subclique or clique of G∗ and let S′ be a solution of the subgraph G∗(x). Then,

• S ∈ C(x)⇔ S′ is closeable and S ∩ E(G∗(x)) ⊆ S′.
• S ∈ E(x)⇔ S /∈ C(x) and S is extensible and S ∩ E(G∗(x)) ⊆ S′.
• S ∈ A(x)⇔ S is frozen and absorbent and S ∩ E(G∗(x)) ⊆ S′.
• S ∈ F(x)⇔ S /∈ A(x) and S is frozen and S ∩ E(G∗(x)) ⊆ S′.

6.2 The Algorithm.
We now present a method to provide the feasibility function needed by Algorithm 1.
In the next paragraphs, we describe the algorithms that calculate the table entries
for the four types of subgraphs described above.

Vertex. Let v ∈ V (G∗). We show in this part how to compute the table entries for
the sets F(v) and E(v). Note that, since the edge between G∗(v) and its parent is a
bridge, any solution S′ for G∗(v) can have at most one edge incident to v. Thus, the
sets C(v) and A(v) are empty. If v is not incident to an edge of S∩E(G∗(v)), then we
construct the table entries by successively merging the table entries of the children
adjacent to v. For that, we use at each step an intermediate graph Gi. Let Vi be the
set of the first i children of v. Gi is the subgraph of G∗ induced by v and all vertices
in Vi. If v is incident with an edge S ∩ E(G∗(v)), then any solution containing S is
in E(v). An example of solutions computed by Algorithm 5 is depicted in Figure 6.

Lemma 4 For any vertex v, the values of the table entries provided by Algorithm 5
are correct for the set F(v) and E(v).

Proof First, if there is no child linked to v, then G∗(v) consists of the single vertex
v. In that case, the only solution for G∗(v) consists of zero alternating cycles and
paths and this solution is frozen. Thus, the initial values given to [F(v)] and [E(v)]

in the initialization step (i.e. lines 1 to 2) are correct. Assume that table entries
returned by compute_clique are correct. Let S′ be a solution of G∗(v) such that
S ∩ E(G∗(v)) ⊆ S′. We distinguish two cases.
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Figure 6: Example of two solutions S1 (left, frozen) and S2 (right, extensible)
in G∗(v). The cliques c1 and c2 are children of c(v). Each of S1 and S2 contains
two alternating elements (solid black lines). The frozen solution is obtained with
the juxtaposition of two frozen solutions in c1 and c2. The extensible solution
is obtained with the juxtaposition of a frozen solution in c1 and with the merge
between v and an extensible solution in c2.

Algorithm 5: compute_vertex
Data: A scaffold graph (G∗,M∗), a partial solution S and a vertex v.
Output: Table entries [F(v)] and [E(v)]

1 [F(v)]← ∅; [E(v)]← ∅; [F(v), 0]← {0};
2 chil← {c1, . . . , ck}: list of children linked to v;
3 foreach ct ∈ chil do
4 compute_clique(ct);
5 [F ′]← [F(v)];
6 [E ′]← [E(v)];
7 if ∃uv ∈ E(G∗(v)) ∩ S then
8 if u ∈ ct then
9 [E(v)] ← merge1({E ′}, {E(ct)})

10 else
11 [E(v)] ← juxtapose({E ′}, {F(ct), E(ct)})
12 else
13 [F(v)] ← juxtapose({F ′}, {F(ct), E(ct)})
14 [E(v)] ←

∪
juxtapose({E ′}, {F(ct), E(ct)})
merge1({F ′}, {E(ct)})

Case 1: there is an edge uv ∈ S∩E(G∗(v)). Thus, S′ is extensible and is composed
by the merge of an extensible solution in G∗(cu) with uv and the juxtaposition
of any solution for each child cu′ 6= cu. Hence, lines 9 and 11 are correct.

Case 2: there is no edge uv ∈ S∩E(G∗(v)). Then, S′ is frozen if and only if it does
not contain an edge incident to v. As there is no edge uv in any child ct, S′ is
composed by juxtaposition of any solution for each child ct and the assignment
in line 13 is correct. If S′ is extensible, then there is a unique child ct of v such
that an alternating path from S′ ∩ E(G∗(ct)) has been expanded to v and,
therefore, the solution S′ ∩E(G∗(ct)) is extensible. Thus, S′ is composed by a
merge of a extensible solution of a unique child and the juxtaposition of any
solution in other children. Hence, line 14 is correct.

Alternating Element. Let c be a clique of G∗ and let e be an alternating element
of c such that e does not contain the upper door of c. We show in this part how to
compute the table entries for the sets C(e), F(e) and E(e). If e is a u-v-path, then
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u v u v u v

Figure 7: Example of solutions (black edges) in G∗(e) where e is a u-v-path. The
left solution is closeable, the center solution is extensible and the right solution is
frozen. The closeable solution is obtained by the juxtaposition of e, any solution
in G∗(u) and any solution in G∗(v). The extensible solution is obtained by the
merge of e with an extensible solution in G∗(u) and the juxtaposition of any
solution in G∗(v). The frozen solution is obtained by the merge of e, an extensible
solution of G∗(u) and an extensible solution in G∗(v).

the idea is to merge the computed table entries of u and v and juxtapose the frozen
solutions of the inner vertices. If e is an alternating cycle, then there is no choice
and the only solution containing S is frozen. An example of solutions computed by
Algorithm 6 is depicted in Figure 7.

Algorithm 6: compute_alternating_element
Data: A scaffold graph (G∗,M∗), a partial solution S and an alternating element e with

vertices {v0, v1, . . . , vk}.
Output: Table entries [F(e)], [C(e)] and [E(e)]

1 foreach v ∈ e do compute_vertex(v) ;
2 if e is an alternating cycle then
3 [F(e)] ← juxtapose({{e}}, {F(v0)}, . . . , {F(vk});
4 [C(e)]← ∅; [E(e)]← ∅;
5 else
6 [Ie] ← juxtapose({{e}}, {F(v1)}, . . . , {F(vk−1});
7 [C(e)] ← juxtapose({F(v0)}, {F(vk)}, {Ie});
8 [F(e)] ←

∪
merge3({E(v0)}, {Ev(vk)}, {Ie});
close1({F(v0)}, {F(vk)}, {Ie});

9 [E(e)] ←
∪

merge2({E(v0)}, {F(vk)}, {Ie});
merge2({F(v0)}, {E(vk)}, {Ie});

Lemma 5 For any alternating element e, the values of the table entries provided
by Algorithm 6 are correct for the sets C(e), F(e) and E(e).

Note that the only possibility to obtain an absorbent solution of G∗(e) is when e is
a path that is closed into an alternating cycle. However, if an absorption operation
is done in the function compute_subclique, then the resulting solution can also
be obtained by a closing operation with a solution in C(e). Thus, our dynamic
programming will not compute the value of [A(e)].

Proof Suppose that the values of the table entries provided by the function
compute_vertex are correct. First note that, for each inner vertex vt of e, the
subsolutions of G∗(vt) are necessarily frozen, then a solution of G∗(e) contains a
juxtaposition of frozen solutions of the inner vertices of e. If e is an alternating cycle,
then the only possible solution is obtained by the juxtaposition of frozen solutions of
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the inner vertices and the alternating cycle e. Thus, the assignment line 5 is correct.
Suppose that e is a partial path. All possible values of the juxtaposition of the frozen
solutions of the inner vertices are assigned in the table entry [Ie].

• A solution S′ of G∗(e) is closeable if the degree of the extremities of e are
equal to one. Then, the subsolutions of S′ in G∗(v0) and G∗(vk) are frozen.
Thus, the assignment line 7 is correct.

• A solution S′ of G∗(e) is frozen if the degree of the extremities of e are equal
to two. It is the case if (1) the subsolutions of S′ in G∗(v0) and G∗(vk) are
extensible or (2) the subsolutions of S′ in G∗(v0) and G∗(vk) are frozen and e
is closed into an alternating cycle. Thus, the assignment line 8 is correct.

• A solution S′ of G∗(e) is extensible and not closeable if and only if exactly
one vertex in {v0, vk} has degree one. Then, exactly one subsolution of S in
G∗(v0) or G∗(vk) is extensible. Thus, the assignment line 9 is correct.

Subclique. Let c′ be a subclique of G∗ containing k alternating elements. We show
in this part how to compute the table entries for the sets C,F ,A and E . The idea
is to construct the table entry by merging successively each table entry of the
alternating elements of c′. For that, we use at each step an intermediate graph Gt
and two intermediate sets A+ and E+, defined as follows. Let L(c′) = {e1, . . . , ek}
be a list of alternating elements of c′, let t ≤ k, let Et = {e1, . . . , et}, and let
Vt =

⋃
e∈Et

V (G∗(e)). Let Gt be the subgraph of G∗ induced by Vt. At step t, a
solution S′ is in A+ (resp. E+) if and only if (1) S′ is a solution of Gt, (2) S′ contains
a set C 6= ∅ of closeable paths and (3) S \ C is not extensible (resp. extensible).

Lemma 6 For any subclique c′, the value of the table entries provided by Algo-
rithm 7 are correct for the sets C(c′),F(c′),A(c′) and E(c′).

Proof Assume table entries returned by compute_alternating_element are correct.
We show by induction that the values calculated in each step t are correct for the
graph Gt. First, G0 is the empty graph and the unique solution is that containing
zero alternating cycles and paths and this solution is frozen. Thus, lines 1 to 3
are correct. Now, consider the alternating element et and suppose the previously
computed values are correct (i.e. values stored in F ′,A′, E ′,A′+ and E ′+). Let S1 be
a solution in Gt−1, let S2 be a solution in G∗(et) and let S′ be a composition of S1

and S2. We have the following properties:
• if S′ is obtained by a juxtaposition, then S1 is in F ′,A′, E ′,A′+ or E ′+ and S2

is in C(et),F(et) or E(et),
• if S′ is obtained by a merge, then S1 is in E ′,A′+ or E ′+ and S2 is in C(et) or
E(et),

• if S′ is obtained with an absorption, then S1 is in A′ or A′+ and S2 is in C(et),
and

• if S′ is obtained by a closing, then S1 is in A′+ or E ′+ and S2 is in C(et).
Thus, there are 25 complete compositions to consider. If S2 ∈ C(et) (resp. E(et)) and
S′ is obtained by a closing (resp. merge), then S′ is closeable (resp. extensible) if S1

contains more than one closeable (resp. extensible) alternating path or absorbent,
otherwise. Hence, a complete composition obtained with a closing or a merge is



Davot et al. Page 19 of 30

Algorithm 7: compute_subclique
Data: A scaffold graph (G∗,M∗), a partial solution S and a subclique c′.
Output: Table entries [F(c′)], [E(c′)], [A(c′)] and [F(c′)]

1 [F(c′)]← ∅; [E(c′)]← ∅; [A(c′)]← ∅;
2 [E+]← ∅; [A+]← ∅;
3 [F(c′), 0]← {0};
4 L(c′)← {e1, . . . , ek} : list of alternating elements of c′;
5 foreach et ∈ L(c′) do
6 compute_alternating_element(et);
7 [F ′]← [F(c′)]; [E ′]← [E(c′)]; [A′]← [A(c′)];
8 [E ′+]← [E+]; [A′+]← [A+];

9 [F(c′)] ← juxtapose({F ′}, {F(et)}

10 [A(c′)] ←
∪
∪
∪

juxtapose({A′}, {F(et)})
merge2({E ′}, {E(et)})
absorb({A′}, {C(et)})
close2({A′+}, {C(et)})

11 [A+] ←
∪
∪

juxtapose({F ′,A′,A′+}, {C(et)})
juxtapose({A′+}, {F(et)})
merge2({E ′+}, {E(et)})
merge2({A′+}, {C(et)})

12 [E(c′)] ←
∪
∪
∪
∪

juxtapose({E ′}, {F(et), E(et)})
juxtapose({F ′,A′}, {E(et)})
merge2({E ′+}, {E(et)})
merge2({E ′}, {C(et)})
close2({E ′+}, {C(et)})

13 [E+] ←
∪
∪

juxtapose({E ′+}, {F(et), E(et), C(et)})
juxtapose({A′+}, {E(et)})
juxtapose({E ′}, {C(et)})

14 [C(c′)] ← [A+] ∪ [E+]

not included in a unique set among those defined. This problem can be solved by
ignoring certain solutions: S′ can be ignored if there is another solution in Gt with
the same cardinality.
1 Suppose S′ is obtained with a closing (resp. merge) and S1 contains more than

one closeable (resp. extensible) alternating path. Let p1 and p2 be closeable
(resp. extensible) alternating paths of S1. There is a solution S′1 similar to
S1 except that p1 and p2 have been closed into a cycle (resp. merged into a
unique alternating path) during a previous step. We can obtain a solution in
Gt with the same cardinality as S′ by juxtaposing S′1 and S2. Thus, S′ can
be ignored, and we suppose that a solution obtained with a closing does not
contain a closeable alternating path (i.e. is not in A+ or E+). Likewise, we can
suppose a solution obtained with a merge between a solution of E ′ ∪ E ′+ and a
solution of E(et) does not contain an extensible alternating path (i.e. is not in
E(c′) or E+).

2 Assume that one of the following conditions is true. (1) S1 ∈ A′+, S2 ∈ E(et)

and S′ is obtained by a merge, (2) S2 ∈ E ′+, S2 ∈ F(et) and S′ is obtained by
a merge, (3) S1 ∈ A′+, S2 ∈ F(et) and S′ is obtained by an absorption. Let p
be a closeable alternating path of S1 that is absorbed or merged in S′. There
is a solution S′1 similar to S1 except that all non-matching edges of p have
been merged or absorbed during previous steps. We can obtain a solution in
Gt with the same cardinality as S′ by juxtaposing S′1 and S2. Thus, S′ can be
ignored. Figure 8 shows an example of case (3).
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Figure 8: Example of a case ignored by the algorithm. At the top, the solution
is obtained after juxtaposing a closeable alternating path p1 and absorbing a
closeable alternating path p2. The intermediate solution is in the set A′+ during
the second step. Below, a solution of the same cardinality is obtained after
absorbing p1 and juxtaposing p2 and in this case, the intermediate solution is in
A′. The upper solution is not considered by the algorithm because the bottom
solution has the same cardinality.

The second item allows us to ignore three complete compositions: there are 22 still
to be considered. Each of these complete compositions is in only one of the six sets
of solutions among F(c′), A(c′), E(c′), A′+ and E ′+.

• Suppose S′ is frozen. The only feasible operation to obtain S′ is juxtaposition
because an addition of an edge of E(c′) \ S creates an absorbent solution. S1

and S2 are frozen as, otherwise, their juxtaposition is not frozen. Thus, line 9
is correct.

• Suppose S′ is absorbent. Thus, S′ contains at least one edge in E(c′) \ S.
– If S2 is frozen, then the only feasible operation is juxtaposition and S1 is

absorbent.
– If S2 is extensible, then its extensible alternating path is merged with an

extensible alternating path of S1 that is not closeable. Thus, S2 is in E ′.
– If S′ results from an absorption, then S1 is absorbent and S2 is closeable.
– If S′ results from a closing, then S1 and S2 are closeable. Since the

resulting solution is absorbent, S1 is in A′+.
Hence, line 10 is correct.

• Suppose S′ ∈ A+. Then, S′ is extensible and does not contain any extensible
alternating paths.
– If S′ results from a juxtaposition, then S1 does not contain an extensible

alternating path and S2 is either frozen or closeable. In the first case, S1

must be closeable and therefore S1 ∈ A′+. In the second case, S1 is in
F ′,A′ or A′+.

– If S′ results from a merge, then S1 is closeable and S2 is either extensible
or closeable. In the first case, the extensible alternating path of S1 is
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merged with an extensible alternating path of S2 so that the resulting
solution is not extensible. Thus, S1 is in E ′+. In the second case, S1 does
not contain an extensible alternating path since otherwise S′ is extensible.
Thus, S1 is in A+.

Hence, line 11 is correct.
• Suppose S′ is extensible. Then, either S1 contains an extensible alternating
path or S2 is extensible.
– If S1 is extensible and S′ results from a juxtaposition, then S2 is not

closeable since otherwise the resulting solution is also closeable. Thus, S2

is frozen or extensible.
– If S1 is extensible and S′ results from a merge. Then, since we only

consider solutions of E ′ with a unique extensible alternating path, S2

cannot be extensible since otherwise the resulting solution is absorbent.
Thus, S2 is closeable.

– If S1 is in E ′+, then since S′ is not closeable, the extensible alternating
path of S1 is either merged with an alternating path or closed into a cycle
with a closeable alternating path. Thus, S2 is extensible and S′ results
from a merge or S2 is closeable and S′ results from a closing.

– If S2 is extensible and S1 does not contain any extensible or closeable
alternating path, then S′ results from a juxtaposition and S1 is frozen or
absorbent.

Hence, line 12 is correct.
• Suppose S′ is in E+. Then, S′ is closeable and contains one extensible alter-
nating path. Recall that we ignore solutions resulting from merge between a
solution of E+ and a closeable solution. Thus, S′ results from a juxtaposition
and either S1 or S2 contains an extensible alternating path.
– If S1 is in E ′+, then S2 can be any solution.
– If S1 is in A′+, then for S′ to contain an extensible alternating path, S2

must be extensible.
– If S1 is extensible, then for S′ to contain a closeable alternating path, S2

must be closeable.
Hence, line 13 is correct.

As after these assignments, each of the solutions of Gt is in a unique set and is a
composition of a solution of Gt−1 and G∗(et), computed values for the table entries
are correct for Gt.
Finally, after the execution of the loop, computed values for sets F(c′),A(c′) and
E(c′) are correct for Gk = G∗(c′). It remains to compute the value of the table entry
for C(c′). Sets containing closeable alternating paths are exactly the sets A+ and
E+, thus A+ ∪ E+ = C(c′). Hence, the assignment line 15 is correct.

Clique. Let c be a clique of G∗ and let d be the upper door of c. We show in
this part how to compute the table entries for the sets F(c) and E(c). Note that,
since the edge between G∗(c) and its parent is a bridge, the sets C(c) and A(c)

are empty. Let e be the alternating element of c containing the upper door d of
c. The idea is to first compute the table entries for the graph G∗(e) and then
merge the obtained table entries to the table entries of the subclique. If e is an
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Algorithm 8: compute_clique
Data: A scaffold graph (G∗,M∗), a partial solution S and a clique c.
Output: Table entries [F(c)] and [E(d)].

1 d← upper door of c;
2 e← alternating element of c containing d with vertices {v0, v1, . . . , vk};
3 c′ ← subclique of c;
4 compute_subclique(c′); compute_alternating_element(e);
5 if e is an alternating path and d is an extremity of e then
6 d′ ← other extremity of e;
7 [Ie] ← juxtapose({{e}}, {F(v1)}, . . . , {F(vk−1});
8 [Ed] ← juxtapose({F(d)}, {E(d′)}, {Ie})
9 [Ed′ ] ← juxtapose({E(d)}, {F(d′)}, {Ie})

10

11 [F(c)] ←
∪
∪
∪

juxtapose({F(e), Ed′}, {F(c′), C(c′),A(c′), E(c′)})
merge2({C(e), Ed′}, {C(c′), E(c′)})
absorb({C(e)}, {A(c′)})
close2({C(e)}, {C(c′)})

12

13 [E(c)] ←
∪

juxtapose({C(e), Ed}, {F(c′), C(c′),A(c′), E(c′)})}
merge2({C(e)}, {C(c′), E(c′)})

14 else
15 [F(c)] ←

∪
∪
∪

juxtapose({C(e),F(e), E(e)}, {C(c′),F(c′),A(c′), E(c′)})
merge2({{C(e), E(e), C(c′), E(c′)}})
absorb({C(e), {A(c′)}})
close2({C(e)}, {C(c′)})

16 [E(c)] ← ∅

alternating path and d is an extremity of e, we replace E(e) by two intermediate
sets Ed and Ed′ . Let S′ be a solution of G∗(e). Then, S′ ∈ Ed if and only if S′ ∈ E(e)

and d is an extremity of an alternating path of S′. Likewise, S′ ∈ Ed′ if and only
if S′ ∈ E(e) and d is not an extremity of an alternating path of S′. Note that
E(e) = Ed ∪ Ed′ . In order to compute these two sets, we reuse the value of Ie,
computed in compute_alternating_element.

Lemma 7 For any clique c, the values of the table entries provided by Algorithm 8
are correct for the sets F(c) and E(d).

Proof Suppose e is an alternating path and the upper door d of c is an extremity
of e. Let d′ be the other extremity of e. First, we compute the table entries for the
sets C(e),F(e), Ed and Ed′ . Suppose that the values of the table entries provided
by compute_alternating_element(p) are correct for the sets C(e) and F(e). It
remains to compute the table entries for the sets Ed and Ed′ . We recall that Ie is
the juxtaposition of all frozen solutions of the inner vertices of e.

• A solution S′ of G∗(e) is in Ed if and only if S′ is in E(e) and no non-matching
edge is incident to d in G∗(e). Thus, Ed is the juxtaposition of e, Ie, F(d) and
E(d′), implying that line 5 is correct.

• Similarly, a solution S′ of G∗(e) is in Ed′ if and only if S′ is in E(e) and no
non-matching edge is incident to d′ in G∗(e). Thus, Ed is the juxtaposition of
e, Ie, E(d) and F(d′), implying that line 6 is correct.

Further, we show that the table entries computed for the set F(c) and E(c) are
correct.

• A solution S′ of G∗(c) is frozen if and only if S′ contains an edge incident
to d. This is the case if the subsolution of S′ in G∗(e) is in F(e) or Ed′ or
if S is obtained by a merger operation, an absorption operation or a closing
operation. Thus, line 8 is correct.
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Algorithm 9: Feasibility
Data: A scaffold graph (G∗,M∗) a partial solution S and two integers σp, σc

1 root← root of G∗ ;
2 compute_subclique(root);
3 return σp ∈ ([C(root), σc] ∪ [F(root), σc] ∪ [A(root), σc] ∪ [E(root), σc])

• A solution S′ of G∗(c) is extensible if and only if S does not contain an edge
incident to d. This is the case if the subsolution of S in G∗(e) is in C(e) or
Ed or if S′ is obtained by a merger operation and d′ is an extremity of an
alternating path in the subsolution of S in G∗(e). Thus, line 10 is correct.

Now, suppose that the upper door d of c is an inner vertex of e. In that case, a
subsolution S′ of G∗(c) is necessarily frozen. Then any feasible composition of a
solution of G∗(c′) and a solution of G∗(e) is a frozen solution and thus, line 13 is
correct. Similarly, since no extensible solution of G∗(c) exist, line 14 is correct.

6.3 Feasibility function
We can now provide an answer to the feasibility of finding a solution for Scaffolding
by using Algorithm 9. Let r be the root of G∗. Notice than since r does not have an
upper door then the subclique of r corresponds to r. Thus, it is not possible to call
compute_clique on r. That is why the first recursive call of the algorithm is made
with the function compute_subclique.

Corollary 2 Given a partial solution S, Algorithm 9 returns true if and only if
(G∗,M∗) can be decomposed into σp alternating paths and σc alternating cycles. The
time complexity of the algorithm is O(|V (G∗)| · σ2

c ).

Proof Since G∗(root) = G∗, there is a solution S with σp(S) = σp and σc(S) = σc,
if and only if S is in C(root), F(root), A(root), or E(root). Thus, the return of
the function indicates if such a solution exists and then the algorithm is correct.
Concerning the time complexity, the composition operations are executable in O(σ2

c )

time. Thus, without taking into account the recursive calls, the time complexity of
Algorithm 5, Algorithm 6, Algorithm 7 and Algorithm 8 in one iteration of a loop
is O(σ2

c ). Let C denote the number of cliques in GG. In Algorithm 5, the number
of iterations made by all calls of this function depends on C and then the time
complexity of all these iterations is O(C · σ2

c ). Similarly, we can show that the time
complexities of the iterations made by all calls of Algorithm 6, Algorithm 7 and
Algorithm 8 are O(|V | · σ2

c ), O(|M∗| · σ2
c ) and O(C · σ2

c ). Then, the time complexity
of all iterations in all functions is O((|V )|+ |M∗|+C) · σ2

c ) and since the number of
matching edges and the number of cliques is bounded by the number of vertices of
G∗, we have a time complexity O(|V (G∗)| · σ2

c ).

A running example is depicted in Figure 9 and Example 1 (Tables 1 to 5).

7 Approximation Result
We now prove the following approximation result.

Theorem 4 Algorithm 1 provides a solution for (σp, σc)-Scaffolding in con-
nected cluster graphs with an approximation ratio of at most five and a time com-
plexity O(|V | · |E(G∗)| · σ2

c ). The approximation ratio is tight.
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Table 1: compute_vertex
Vertex #cycles F E

o
0 [2− 3] [2− 3]
1 ∅ [1− 1]
2 ∅ ∅

q
0 ∅ [1− 1]

[1− 2] ∅ ∅

r
0 [1− 1] [1− 2]
1 [0− 0] ∅
2 ∅ ∅

u
0 [3− 9] [4− 10]
1 [2− 7] [3− 8]
2 [1− 5] [2− 6]

any other
vertex

0 [0− 0] ∅
[1− 2] ∅ ∅

Table 2: compute_alternating_element
Element #cycles F E C

op
0 ∅ [2− 3] [3− 4]
1 ∅ [1− 1] [2− 2]
2 ∅ ∅ ∅

qr
0 [1− 2] [2− 3] [3− 4]
1 ∅ [1− 1] [2− 2]
2 ∅ ∅ ∅

uv
0 ∅ [4− 10] [4− 11]
1 ∅ [3− 8] [3− 9]
2 ∅ [2− 6] [2− 7]

other 0 ∅ ∅ [1− 1]
[1− 2] ∅ ∅ ∅

Table 3: compute_subclique
Subclique #cycles F A E C

c′1, c
′
4

0 ∅ ∅ ∅ [1− 1]
[1− 2] ∅ ∅ ∅ ∅

c′2, c
′
3

0 [0− 0] ∅ ∅ ∅
[1− 2] ∅ ∅ ∅ ∅

c′5

0 ∅ ∅ [4− 6] [4− 9]
1 ∅ [3− 7] [3− 7] [3− 6]
2 ∅ [2− 5] [2− 4] [2− 5]

c′6

0 ∅ ∅ [4− 10] [4− 12]
1 ∅ [3− 10] [3− 8] [3− 10]
2 ∅ [2− 8] [2− 6] [2− 8]

Table 4: compute_clique

Clique #cycles F E

c1, c4

0 [1− 1] [1− 2]
1 [0− 0] ∅
2 ∅ ∅

c2, c3
0 ∅ [1− 1]

[1− 2] ∅ ∅

c5

0 [3− 9] [4− 10]
1 [2− 7] [3− 8]
2 [1− 5] [2− 6]

Table 5: Detailled computation for subclique c′5.
Iteration #cycles F A A+ E E+
{m,n} 0 ∅ ∅ [1− 1] ∅ ∅

[1− 2] ∅ ∅ ∅ ∅ ∅

{m,n, o, p}
0 ∅ ∅ [3− 5] ∅ [3− 4]
1 ∅ [2− 3] [2− 3] ∅ [2− 2]
2 ∅ [1− 1] ∅ ∅ ∅

{e, f, g, h, q, r}
0 ∅ ∅ [4− 9] [4− 6] [4− 8]
1 ∅ [3− 7] [3− 7] [3− 7] [3− 6]
2 ∅ [2− 5] [2− 5] [2− 4] [3− 4]

Example 1: Running example on the graph depicted in Figure 9. Tables 1 to 4
depicte the table entries resulting from Algorithms 5 to 8, respectively. Table 5
display the values of the table entries after each iteration of alternating element
for the subclique c′5. Let c be the value given by the column “#cycles” and x be
the item considered in the first column. For each X in F ,A,A+, E , E+ and C, the
interval given by the column X corresponds to [X(x), c].
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Figure 9: Left: The connected cluster graph G∗ used for the pratical example.
The graph contains the following cliques: c1 = {a, b, c, d}, c2 = {f, e}, c3 = {h, g},
c4 = {i, j, k, l}, c5 = {m,n, o, p, q, r, s, t} and c6 = {u, v, w, x}. Right: Tree
structure of G∗ used in the algorithm. The root of these structure is the clique c6.

Proof We suppose that the input of the algorithm is a scaffold graph (G∗,M∗, ω)

with non-negative weights and such that G∗ is a path connected cluster graph. We
first show that the algorithm is correct. Note that, since each time we add an edge
e to S, we remove from E all incident non matching edges to e, the set S induces
only paths and cycles.
If it is not possible to build a solution from the graph, then the feasibility condition

is not verified and then the algorithm returns an error. Otherwise, since we ensure
that the feasibility condition is verified at each step, when the algorithm terminates,
then it builds σp paths and σc cycles.
Now, we prove the approximation ratio. Since they always appear in any solution,

we do not consider the edges of M∗ in what follows. Notice that, since there is, for
each path, one chosen edge less than the number of involved matching edges, and
for a cycle, the same number of chosen edge as the number of involved matching
edges, then the number of non-matching edges in every solution is exactly n− σp.
We denote by e1, . . . , em the edges of the graph G∗, sorted in non-increasing order

by their weights. We denote by eA1 , . . . , eAn−σp
the edges of the solution SA given by

Algorithm 1, sorted in non-increasing order by their weights. In the same way, we
denote by eopt1 , . . . , eoptn−σp

the edges of an optimal solution Sopt for the problem, also
sorted in non-increasing order. Both sequences eA1 , . . . , eAn−σp

and eopt1 , . . . , eoptn−σp
are

clearly subsequences of e1, . . . , em. Let ϕ : Sopt → SA be a mapping such that

∀e ∈ Sopt, ω(e) ≤ ω(ϕ(e)) (1)

∀e ∈ SA, |ϕ−1({e})| ≤ 5 (2)

Inequality (1) indicates that for each e ∈ E in an optimal solution, there is an edge
ϕ(e) ∈ SA such that the weight of this latter edge is at least the weight of e. Whereas
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∈M∗ ∈M∗

∈ Sopt ∈ Sopt
∈ SA

Figure 10: A greedily chosen edge can eliminate up to two optimal edges by the
update_edge function.

(2) states that for each e ∈ SA, we may associate e to at most four edges of the
optimal solution. In the following, we prove that it is possible to define a mapping ϕ
satisfying these inequalities.
The algorithm may decide not to choose an edge eopti for four main reasons:

• eopti is eliminated because it is in R, when an edge eAj is chosen. In this case,
we have ω(eAj ) ≥ ω(eopti ) because only edges appearing after eAj in the ordered
list can be in R. When an edge eAj is chosen, it can eliminate at most two
edges of optimal solution by updating of the list of edges (see Figure 10). We
assign ϕ(eopti ) = eAj in this case. (1) is satisfied by construction, and (2) holds
when considering only the optimal edges which are eliminated by this way.

• eopti is eliminated because its addition disconnects the graph and the number of
alternating cycles and alternating paths required to cover the graph becomes
too big. This happens in one of the following two cases.
– eopti closes a cycle. In that case, there is at least one edge eAj in this

cycle, and since it has been chosen before the algorithm considers eopti ,
we necessarily have ω(eAj ) ≥ ω(eopti ). Thus, we assign ϕ(eopti ) = eAj . Then,
(1) is satisfied by construction. The edge eAj has been already chosen,
may have eliminated at most two optimal edges, but (2) is still satisfied.

– eopti closes a door d and one bridge dxincident to d is necessary to construct
a solution with the remaining edges. There is a door y which has been
closed by an edge eAj in a previous step and this forces dx to be in SA.
Since closing a door increases by at most one the minimum number of
alternating paths required to cover the graph, the closing of y forces at
most one bridge of G∗ to be in SA. Thus, the closing of y prevents d and
x from closing, that is, at most two edges of Sopt, incident to d and x
respectively, can be associated to eAj Then, (1) is satisfied by construction.
The edge eAj may have eliminated at most two optimal edges in R and
may prevent the closing of a cycle, but (2) is still satisfied.

• eopti is eliminated because its inclusion would merge two paths p1 and p2. If
eopti is not a bridge and p1 and p2 are a single-edge paths, then the number
of alternating cycles and paths are reached in S, that is σc = c, σp = p and
S = SA. Then, we can find an edge eAj such that |ϕ−1(eAj )| = 0 and we assign
ϕ(eopti ) = eAj . Then, (1) and (2) are satisfied by construction. Otherwise, the
algorithm eliminates eopti because one of the merged paths must be closed into
a cycle to reach the correct number of alternating cycles. Otherwise, there is an
edge eAj in SA considered before eopti in the algorithm such that |ϕ−1(eAj )| ≤ 3
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Figure 11: The approximation ratio of five for
the greedy algorithm is tight. Matching edges are
bold, dashed edges are in the approximate solution
and solid edges are in the optimal solution. G∗

is composed by the cliques C1 = {a, b, c, d, e, f},
C2 = {g, h}, C3 = {i, j, k, l} and C4 = {m,n, o, p}.
All edges have weight zero except ac and the edges
of Sopt. We suppose that σp = 3 and σc = 0, and
the greedy algorithm chooses "the wrong edge" ac
first. Consequently, the solution SA given by the
greedy algorithm is of weight 1, whereas an optimal
solution would be of weight 5.
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Table 6: Real dataset.
Species Size (bp) Type Accession
Anopheles Gambiae str. PEST (anopheles) 41,963,435 Chromosome 3L NT_078267.5
Bacillus anthracis str. Sterne (anthrax) 5,228,663 Chromosome NC_005945.1
Arabidopsis Thaliana (arabido) 119,667,750 Complete genome TAIR10
Zaire ebolavirus (ebola) 18,959 Complete genome NC_002549.1
Gloeobacter violaceus PCC 7421 (gloeobacter) 4,659,019 Chromosome NC_005125.1
Lactobacillus acidophilus NCFM (lactobacillus) 1,993,560 Chromosome NC_006814.3
Danaus plexippus (monarch) 15,314 Mitochondrion NC_021452.1
Pandoravirus salinus (pandora) 2,473,870 Complete genome NC_022098.1
Pseudomonas aeruginosa PAO1 (pseudomonas) 6,264,404 Chromosome NC_002516.2
Oryza sativa Japonica (rice) 134,525 Chloroplast X15901.1
Saccharomyces cerevisiae (sacchr3) 316,613 Chromosome 3 X59720.2
Saccharomyces cerevisiae (sacchr12) 1,078,177 Chromosome 12 NC_001144.5

(since otherwise the path would be already closed into a cycle) and then we
assign ϕ(eopti ) = eAj . Again, (1) and (2) are satisfied by construction.

From the previous discussion and by (1) and (2), clearly we have:

ω(Sopt) ≤ ω(ϕ(Sopt)) ≤ 5ω(SA).

The ratio is tight, as shown by the example depicted in Figure 11. Concerning the
complexity, the edges can be sorted in O(|V (G∗)| log |E(G∗)|) time. The feasibility
function is called |E(G∗)| times. Thus, the time complexity of the algorithm is
O(|E(G∗)| · |V (G∗)| · σ2

c ).

8 Experimental results
In this section, we compare the performance of Algorithm 1 with three different
feasibility functions and an integer linear programming formulation [15] implemented
with ILOG CPLEX [16].

Dataset. We reuse the dataset already used in [9], which was obtained with the
following pipeline:
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Table 7: Statistics on scaffold graphs. The completion rate is the percentage of added
edges compared to number of added edges in the complete version. For all instances,
we take σc = 0.

Completion rate [%]
data #contigs #edges σp Cluster Block
anopheles 42,045 71,452 7201 27 20
anthrax 4,055 6,958 371 94 91
ebola 17 26 4 81 70
gloeobacter 4,517 7,885 506 95 95
lactobacillus 1,898 3,335 185 94 89
monarch 14 19 4 45 39
pandora 2,451 4,271 291 91 83
pseudomonas 5,248 9,086 543 95 87
rice 84 26 10 76 69
sacchr3 296 527 34 88 81
sacchr12 889 1,522 101 94 94

1 Choice of a reference genome, for instance on the nucleotide database from
NCBI[3]. Table 6 presents selected genomes used for our experiments. We chose
a panel of genomes of various origins and sizes.

2 Simulation of paired-end reads, using wgsim [17]. The chosen parameters are
an insert size of 500bp and a read length L of 100bp.

3 Assembly using the de novo assembly tool, based on a De Bruijn graph efficient
representation: minia [18] with k-mer size k = 30.

4 Mapping of reads on contigs, using bwa [19]. This mapping tool was chosen
according to results obtained by Hunt [20], a survey on scaffolding tools.

5 Generation of scaffold graph from the mapping file.
Statistics on the numbers of vertices and edges in produced scaffold graphs can be
viewed in Table 7.

Feasibility functions. There is no polynomial-time computable feasibility function in
the general case.Thus, to use the greedy algorithm with a specific feasibility function
on a real instance, we must transform it. For this, we construct a supergraph by
adding edges of weight zero. We compare three feasibility functions, defined on
complete graphs, connected cluster graphs and block graphs[4], respectively. Note
that the construction of a complete supergraph requires the largest amount of edge
additions whereas the least amount of edge additions is required for the construction
of a block supergraph. We already showed in [9] that the computed ratio is close to
one on real instances, that is, relatively far from the theoretical ratio of 3. The aim
of these experiments is to answer the two following questions:

• Can greedy algorithms on connected cluster graphs and block graphs be used
on large scaffold graphs, and what is its associated computation time?

• Do we get a better practical ratio if the amount of additional edges is smaller
(e.g. the completion rate, see Table 7, is smaller)? In other words, do we obtain
better results on block graphs and connected cluster graphs than in complete
graphs?

Results Experiments were run on a personal computer with four i7 processors at
1.9GHz and 16GB RAM. Memory usage was very light, even on the biggest instance
[3]http://www.ncbi.nlm.nih.gov/
[4]A block graph is a graph in which every biconnected component is a clique (note
that a connected cluster graph is a special case of block graph).

http://www.ncbi.nlm.nih.gov/
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Table 8: Results statistics. The score corresponds to the sum of the weights of the
edges. Times are given in seconds.

Complete Cluster Block ILP
data Score Time Score Time Score Time Score Time
anopheles 1,707,529 2.90 1,707,759 99.91 1,707,762 160.77 1,736,748 >3600
anthrax 226,709 0.26 226,712 0.60 226,712 0.96 228,064 26.22
ebola 776 0.00 776 0.00 776 0.00 776 0.01
gloeobacter 218,602 0.29 218,602 0.90 218,602 1.38 220,527 14.86
lactobacillus 95,497 0.12 95,497 0.22 95,497 0.27 96,313 2.48
monarch 506 0.00 506 0.00 506 0.00 507 0.01
pandora 119,599 0.16 119,599 0.31 119,599 0.48 120,710 3.85
pseudomonas 279,607 0.32 279,607 1.18 279,607 1.81 280,978 19.72
rice 4,293 0.00 4.293 0.01 4.293 0.01 4.320 0.02
sacchr3 14,524 0.02 14,531 0.03 14,531 0.03 14,623 0.15
sacchr12 46,041 0.05 46,050 0.07 46,050 0.09 46,395 1.18

anopheles. Table 8 shows scores and computation times for every instance. We can see
that greedy computation times are less than few seconds except for anopheles, where
the connected cluster graph version and the block graph version need a few minutes.
As expected, the greedy algorithms are much faster than the ILP formulation in
every case. These results let us answer to our first question: connected cluster
graph and block graph versions of the greedy algorithm are capable of treating big
instances, however the computation time is significantly bigger than the complete
version. Concerning the scores, we can see that the three greedy algorithms have
the same score for most of the data. The connected cluster graph and block graph
versions have a slightly better score in four instances: anopheles, anthrax, sacchr3
and sacchr12. Moreover, connected cluster graph and block graph versions have
the same score in all instances except in anopheles, where the block graph version
improves the score of the connected cluster graph version by three (which is not
really significant compared to the absolute values). These results indicate that the
answer to the second question is positive. However, the differences between scores
are not significant enough to be completely affirmative. We can think that using the
greedy algorithm with feasibility function defined on a sparser class of graphs may
lead to better results.

9 Conclusion and future work
We presented in this paper the first polynomial-time algorithm approximating
the scaffolding problem on non-complete graphs. Using a dynamic programming
approach, we exploited the tree-like nature of connected cluster graphs to extend
the feasibility function and the analysis of the approximation ratio. We also showed
that this new algorithm provides slightly better results on real data than the greedy
algorithm on complete graphs, although its theoretical ratio is worse. This leads
us to the hypothesis that using a feasibility function defined on a graph class close
to the original instance produces better results. This is surprising since, intuitively,
algorithms on superclasses can choose from a larger set of edges to build solutions
(any solution on the more restricted class is also a solution in the more general
class). A natural extension of this work is to consider sparser graphs: for example,
one could replace cliques in connected cluster graphs by co-bipartite graphs as the
feasibility function is polynomial-time computable in this case [8]. One may also
explore the possibility of exploiting randomized algorithms to improve the ratio [6].
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