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Abstract

Time series event detection is related to studying methods for detecting observations in a series
with special meaning. These observations differ from the expected behavior of the data set. In
data streaming scenarios, it is possible to observe an increase in the speed of data generation in
time series. Therefore, adapting to time series changes becomes crucial. Thus, identifying events
associated with these changes is essential for timely and correct decision-making. Although there
are many methods to detect events, it is still possible to have difficulties detecting them correctly,
particularly those associated with concept drift. In order to fill the gap in the literature, this work
proposes a new method, named Forward and Backward Inertial Anomaly Detector (FBIAD), for
detecting events in time series. It contributes by analyzing surrounding inertia around observations.
FBIAD outperformed other methods both in accuracy and elapsed time.

Keywords event detection · inertia · time series · anomalies

1 Introduction

In analyzing time series, it is often possible to observe a significant change in the behavior of a time series at a certain
point or time interval. Such a behavior change usually characterizes the occurrence of an event [18, 37]. An event
detected in time series can often represent the occurrence of a phenomenon with specific and defined meaning in a
certain domain of knowledge [13].

Thus, the event detection problem is particularly relevant for applications based on sensor data analysis. Examples of
such applications include water quality analysis [27], reflection seismic analysis [40] and oil drilling and exploration
[3]. Often, the capture of data by sensors is prone to errors, generating spurious data, which should not be confused
with relevant events about the monitored phenomenon. Furthermore, an event can be observed by a set of sensors. In
contrast, each sensor can report information related to different events [10].
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Events detected in time series commonly present as anomalies [7, 32] or change points (change points) [2]. Anomalies
are observations that do not conform to the expected pattern of behavior within the dataset [1, 17]. In turn, change
points separate different states that generate the time series. The change point detection problem is related to concept
drifts in time series. In this case, the detection of change points aims to find the specific instant (or interval) in time
that marks the occurrence of the concept deviation.

The literature presents many methods developed to detect events in time series. However, choosing and applying a
suitable method for a given time series is not a simple task. The choice and parameterization of a detection method
are directly related to the initial assumptions regarding the behavior of the time series and the statistical properties
intrinsic to the data. It is a complex task, particularly considering that the nature of events observed in a time series
is often unknown. As methods tend to specialize in detecting a single type of event, the adoption of one method may
override the detection of the other [30]. The incorrect usage may lose relevant events that could alert experts to make
timely decisions or produce multiple false positives. There is a loss of credibility in using these techniques to control
applications in both cases.

Furthermore, all these challenges become even more critical when in online monitoring systems (commonly associated
with data in streaming). The demand for detection of these events is pressured by the need for speed for computational
processing [19]. However, these detected events may force systems to adapt to the changes in provided streaming data
[34]. It is an analogous scenario of adaptability of machine learning models [11, 14, 39, 38, 22].

In this scenario, machine learning models are expected to adjust themselves in real-time to achieve greater robustness
and stability. However, adaptability may not lead to robustness. An adaptive model that reacts to short-lived phe-
nomena changes rapidly and responds to spurious disturbances. Adaptations must occur when the phenomena have
sufficient duration to characterize them as significant changes. Such a relationship between robustness and adaptability
is not trivial, going back to the plasticity-stability dilemma [21].

Therefore, the problem addressed in this work is the detection of anomalies and, when possible, identifying them as a
change point. In this sense, this work provides a new anomaly detection method called Forward and Backward Inertial
Anomaly Detector (FBIAD). The method is inspired by adaptive normalization [25] and is based on forward and
backward inertia that can recognize both anomalies and abrupt change points. This method’s intuition is associated
with the fact that if an observation of time series is non-anomalous, its surrounding inertia [16] should be close. The
method is evaluated with other anomaly detector methods and outperforms other methods both in speed and accuracy.

In addition to this introduction, Section 2 presents a general background on event detection. Section 3 presents the
related work. Section 4 presents FBIAD. Section 5 presents the experimental evaluation and its discussion, while
Section 6 makes final remarks.

2 Background

2.1 Time series

A time series is a set of data organized chronologically. Formally a time series Y is expressed as a sequence of
observations < y1, y2, ..., yn >, where yi ∈ R and n is the number of observations, with y1 being the oldest observation
and yn the most recent observation. This representation refers to a series with only one variable, called univariate time
series [12, 31].

Some characteristics of time series make it difficult to apply traditional statistical methods or require specific analysis
techniques. For example, the autocorrelation between the observations of a series goes against the assumption made
by statistical methods of independence and identical distribution between adjacent observations. Due to that, it is
common to study time series observations as a function of their past data [31].

The notion of stationarity refers to characteristics of a series that maintain the regularity of some statistical measures
over time [29]. It includes the mean, variance, and autocovariance [31]. Many methods applied to time series analysis
assume their stationarity. However, it is very common for time series to be non-stationary. When they violate any of
the constraints of a stationary series, they are considered non-stationary. The occurrence of non-stationarity is usually
due to the change in the mean and variance of the series. They are commonly associated with events [29].

Time series decomposition aims to identify latent components of the series that are non-observable and related to
different types of temporal variations. The main components of a time series are trends, cycles, seasonality, and
residuals. The trend indicates rising or falling values, and cycles are occurrences of peaks or valleys repetitively over
time. Seasonality is similar to cycles. However, it refers to their repetitive occurrence in each year, and the residuals
are the remaining components, relating to unpredictable variations [4].
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2.2 Events

Events in time series are points with special meaning. Although identified as specific observations, they might be
related to intervals around them. Events can refer, for example, to anomalies, change points, peaks, or variations in
the data components [15, 7].

A common type of event is an anomaly, which refers to observations that do not match the expected behavior of the
dataset [7]. In the most general concept, anomalies are observations that stand out because they seem not to have been
generated by the same process as the others. In this case, anomalies can be modeled as isolated observations of the
remaining data based on similarity or distance functions [17]. Given a set of observations X, the index positions of
anomalies can be identified as A(X) through Eq. 1, where q1(X) and q3(X) are respectively the first and third quartile
and iqr is the interquartile distance [17].

A(X) = {i},∀i ∈ {1, · · · , n}, |X| = n | xi ⊈ [q1(X) − 1.5 · iqr(X), q3(X) + 1.5 · iqr(X)] (1)

As for time series, the anomalies can be of trend or volatility. Trend anomalies occur when an event deviates from the
expected trend of the time series. In contrast, volatility anomalies occur when there is a large change in the variance
of time series samples [17, 11, 2].

Event detection refers to detecting points of special meaning in a time series. One way to divide the series analysis for
event detection is to access the data online and offline. When access is in real-time, as new observations are generated,
the analysis is called online detection. The offline detection is when directly accessing the complete dataset [35].

2.3 Trend anomalies detection

In the context of time series, there is a particular interest in detecting anomalies that may represent an event that
deviates from the trend of the process that generates the time series Y . They are called trend anomalies (T A). Let Ŷ
be an estimate of the process generating Y , produced by fitting a trend model α, such that Ŷ = α(Y). Since ϵ is a time
series of residuals (white noise) obtained after removing Ŷ , it follows that the trend anomalies (T A) of Y are usually
identified as T A(Y, Ŷ) through Eq. 2.

T A(Y, Ŷ) = A(ϵ) | ϵi = yi − Ŷi (2)

2.4 Volatility anomalies detection

Most financial time series exhibit nonlinear properties that cannot be captured by existing linear models, as the volatil-
ity varies greatly over time. Thus, a demand arises for studying the volatility of the time series. Econometric models
appear to deal with the non-linearity of data, including stochastic volatility. It includes autoregressive conditional
heteroscedasticity (ARCH) and generalized autoregressive conditional heteroscedasticity (GARCH). The latter being
the best known and applied [6]. In the financial area, volatility is associated with risk, which can indicate an event in
the context of time series.

GARCH-type models involve estimating volatility based on previous observations. GARCH is a non-linear time series
model, where a series Y is explained according to Eq. 3, µi being the average component. The noise sequence wi is
i.i.d. N(0.1), so the conditional distribution of ỹi = yi − µi, given ỹi−1, ỹi−2, . . . is N(0, σ2

i ) [6]. Such a model can be
used as α for detecting anomalies similarly to Eq. 2, or even, its estimates of instantaneous volatilities can be subject
to an anomaly detection (Eq. 3).

yi = µi + σiwi (3)

2.5 Change point detection

The change point detection methods aim to find the points or intervals that represent a transition between different
states in a process that generates the time series [33]. Change point detection can be defined as a hypothesis testing
problem, where the null hypothesis H0 characterizes the absence of change points and the alternative hypothesis HA
negates H0. Let seqi,p(y) be a subsequence of observations of a time series and t, k ∈ {i, . . . , i + p}, where t < k. It is
formally assumed that H0 : ∀ t, k (t < k) | Pyt = Pyk and HA : ∀ t ∃ k (t , k) | Pyt , Pyk , where Pyi is the probability
density function of the subsequence and k is a change point [8]. The seminal method of change point detection (SCP)
became a reference in the literature for change point [18].
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3 Related Work

Event detection aims to identify points with special meaning in a time series. Although identified as specific points,
they may be related to series intervals around the detected event with a significant change in the behavior of the data.
This change refers, for example, to spikes, change points, or anomalies [18].

In the literature, there are several methods and frameworks applicable to the detection of online events, with data
generated in real-time. An overview of the state of the art in this area is presented by Habeeb et al. [19], whose study
presents two main divisions in the detection of online events: (i) static models and (ii) dynamic models. Static models
are trained on large datasets and applied to online data. In contrast, in dynamic models, training is started on a subset
of data, and learning continues as new observations are received [19].

Four general strategies are used as a base for many methods found in literature: (i) model deviation analysis, (ii)
classification-based analysis, (iii) clustering-based analysis, or (iv) statistical techniques [7]. In model deviation, a
model is fitted to the observations in a series. Then events are identified when observations deviate from the fitted
model. Classification-based and clustering-based abnormalities are identified by comparing them to samples previ-
ously learned of classes or clustered. Domain-based strategies compare new data samples against what is expected
based on expert knowledge. Finally, statistical techniques are used to identify deviations from the data distribution
[26].

The literature presents several methods for detecting trend anomalies, particularly in defining different trend models.
Among them are decomposition-based and KNN-CAD [5]. The decomposition method adopts an approach that con-
sists of decomposing the time series into trend, seasonality, and residuals, on which the search for anomalies is carried
out [17].

The anomalies method is focused on the analysis of time series according to trends and seasonality [9]. Anomalize is
a decomposition-based method implemented in anomalize R package. This method removes trend and seasonal com-
ponents and searches for anomalies in the residuals. Nevertheless, when dealing with volatility, one of the commonly
applied approaches is GARCH, which works by estimating volatility based on previous observations [6].

Change Finder (CF) is a method that searches for anomalies and change points, developed based on seminal change
point (SCP), a reference in the literature related to change point detection [33]. Due to that, CF is the most related
work. In the first phase of CF, a α model is fitted to the time series X resulting in X̂. From the residuals of the series
s, defined in Equation 4, the anomalies are marked. The second phase consists of defining a new series sp, which is
defined from the moving averages of s with p terms. Anomalies found in this new series sp result in the detection of
change points.

si = (x̂i − xi)2 , x̂i = α(x)i (4)

Some anomaly detectors are specialized for certain types of data. It includes, for example, the work of Ullah et al.
[36], which is a combination of CNN and LSTM to find anomalies in surveillance scenes. It is a related work since it
uses bidirectional analysis, but it is not based on inertia and is not focused on time series.

An anomaly detection method was introduced by Ren et al. [28] as a service on the Microsoft Azure cloud platform.
This service, called Microsoft Anomaly Detector (MAD), uses the SR-CNN algorithm, based on spectral residual
(SR) algorithms that evaluate the time series in an unsupervised way to create a salience map. The salience map is
used as input to convolutional neural networks (CNN) that search for anomalies [28].

A framework for online detection is proposed by Talagala et al. [34], based on computing boundaries of normal
data behavior to identify significant changes in new observations. Another example of a framework is Harbinger,
which provides functions for event detection, evaluation, visualization, the combination of methods, and comparison
of detections performed [30]. Instead of a specific method, Harbinger allows different event detection methods to be
implemented and integrated.

From the previous comments, it is possible to observe that no other work studies the forward and backward inertia to
analyze the divergence of observations. It opens room to study the proposed method.

4 Forward and Backward Inertial Anomaly Detector

The Forward and Backward Inertial Anomaly Detector (FBIAD) is a novel unified change point and trend anomaly
detector. It can identify both punctual and interval anomalies and classify them as (i) punctual trend anomalies, (ii)
abrupt change points, and (iii) generic anomalies. The event detection process of FBIAD comprises four phases:
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(1) processing forward and backward time series sliding windows; (2) computing forward and backward inertial
differentiation (3) registering forward and backward anomalies; (4) classifying anomalies. It is depicted in Figure 1
and described in the following subsections.

Figure 1: Workflow for FBIAD

4.1 Forward and Backward Time Series Sliding Windows

A subsequence is a continuous sample of a series. The i-th subsequence of length p in a series Y , represented by
seqp,i(Y), is an ordered sequence of values (yi, yi+1, · · ·, yi+p−1), where |seqp,i(Y)| = p and 1 ≤ i ≤ |Y | − p.

Sliding windows of size p consist of exploring all subsequences of size p of a series. Formally, they can be represented
by swp(Y), which corresponds to a matrix S of size (|Y | − p + 1) × p. Each row vector si in S is the i-th subsequence
of length p in y. Given S = swp(Y), ∀si ∈ S , S i = seqp,i(Y). It is worth noting that the sliding windows organize
the columns of the matrix S so that the j-th column corresponds to a lag of the original series y by (p − j) preceding
values. In this way, S is a forward time series sliding windows for Y .

Let Y be a time series, such that |Y | = n and Y =< y1, · · · , yn >. The reverse of the time series rev(Y) is defined as the
reverse sequence of Y . Thus, rev(Y) =< yn, · · · , y1 >. Let R be an array for the sliding windows of rev(Y), such that
R = swp(rev(Y)). Then, R is a backward time series sliding windows for Y .

5
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4.2 Forward and Backward Inertial Differentiation

Given S as the matrix formed by sliding windows of size p over a time series Y of size n. Let si = (si1 , · · · , sip ) the i-th
row vector for S , such that 1 ≤ i ≤ (|Y | − p). For each si ∈ S , the inertia for all si is expressed as vector µi [16]. In this
paper, the inertia is computed as the the average of that window si, and is expressed in Equation 5.

µi =

∑p
j=1(si j )

p
(5)

Given a inertial vector µi and sliding windows S , the inertial differentiation for S is expressed as Ṡ and defined by
Equation 6. The inertial differentiation is applied over all rows si. At the end of this process, the matrix Ṡ has mean 0
and variance σ2 [23]. Besides, Ṡ is the forward inertial differentiation with respect to Y .

Ṡ i = si − µi,∀i ∈ [1, |µ|] (6)

Given R as the array corresponding to the backward time series sliding windows for Y . Then, bµi is the backward
inertia for all row vectors ri in R computed using Equation 5, by changing µi with bµi and si j with ri j . The inertial
differentiation for R is expressed as Ṙ by applying Equation 6, by respectively changing Ṡ i, si, µi to Ṙi, ri, bµi. In this
case, the Ṙ is the backward inertial differentiation with respect to Y .

4.3 Forward and Backward Anomalies

Given Ṡ as the forward inertial differentiation for Y . Let Ṡ p be the p column vector of Ṡ . It is associated to observations
p to n of time series Y . The i− th observation of Ṡ (for short, Ṡ pi ) can be interpreted as the error of observation for Yi+p
to the model established by the forward inertia µi (1 ≤ i ≤ n − p). In this case, FA(Y) is the set indexes for forward
inertial anomalies for Y , i.e., FA(Y) = A(Ṡ p).

Conversely, given Ṙ as the backward inertial differentiation for Y . Let Ṙp be the p column vector of Ṙ. It is associated
to reverse observations n−p to 1 of time series Y . The observations of Ṙpi can be interpreted as the error of observations
Yn−p−i to the model established by the backward inertia bµi (1 ≤ i ≤ n − p). In this case, BA(Y) is the set indexes for
backward inertial anomalies for Y , i.e., BA(Y) = n − p − A(Ṙp). It is worth mentioning that the term n − p is used to
adjust indexes for the reverse time series (rev(Y)) with respect to the original indexes positions for observations of Y .

4.4 Classification of anomalies

Given FA(Y) and BA(Y) as forward and backward anomalies for Y , the unified anomalies (UA) for Y is the union of
both forward and backward anomalies. Formally, UA(Y) is computed as UA(Y) = FA(Y) ∪ BA(Y). According to the
FBIAD method, all index positions established by UA(Y) are anomalies for Y .

Let IA(Y) be the intersection of FA(Y) with BA(Y), i.e., IA(Y) = FA(Y) ∩ BA(Y). Then, all non-consecutive indexes
in IA(Y) are punctual trend anomalies: PT A(Y). Formally, PT A(Y) = {p} | p ∈ IA(Y)∧ p−1 < UA(Y)∧ p+1 < UA(Y).
The reasoning for it, is that each position p in PT A(Y) is found as anomaly both in forward and backward anomalies.
It means the observation yi differs significantly from the forward µi and backward bµn−p−i inertia. In other words, it
does not fit in both nearby previous and following observations.

Consider consecutive indexes (p, p+1) in UA(Y). This pair is an abrupt change point if p+1 is only present in FA(Y)
and p is only present in BA(Y). Observation at p fits forward inertia well but is an anomaly with backward inertia.
Conversely, p + 1 fits backward inertia well but is an anomaly concerning the forward inertia. All points that satisfy
these criteria are punctual change points: PCP(Y).

Other anomalies which are not classified as punctual trend anomalies and punctual change points are classified as
generic anomalies. Formally, a index p is a generic anomaly when p ∈ UA(Y) ∧ p < PT A(Y) ∧ p < PCP(Y).

5 Experimental Evaluation

This section presents an experimental evaluation comparing FBIAD against representative methods for different event
detection methods: (i) trend anomaly (Anomalize, ANM); (ii) change point detection (Change Finder, CF); (iii) volatil-
ity anomaly (GARCH), (iv) cloud-based (Microsoft Anomaly Detector, MAD).
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5.1 Experimental setup

The experiments were performed in a general-purpose virtual machine type Standard DS2 v2, available at Microsoft
Azure, with a dual-core CPU and 7 GB of RAM. Except for MAD, which was run through its API, all methods were
implemented directly in R, including FBIAD, CF [33], GARCH [6], and ANM. The parameters used for each method
are described in Table 1.

Table 1: Parameters by method

Method Parameter Value

FBIAD w (sliding windows
size) 90

FBIAD alpha 3.0
ANM alpha 3.0
CF mdl (model) linear regression

CF m (moving average
size) 90

GARCH variance.model model = sGARCH

GARCH variance.model garchOrder = (1, 1)

GARCH mean.model armaOrder = (1, 1)

GARCH mean.model include.mean =
TRUE

GARCH distribution.model normal distribution

GARCH alpha 3.0

MAD sensitivity 0.9

Many parameters are specific to each method, whose works cited in Section 3 provide additional information to those
presented in Table 1. On the other hand, when different methods use similar parameters, their values were kept the
same in the experiments to preserve comparability. For FBIAD and CF methods that work with sliding windows
(parameters w and m, respectively), a value of 90 was used. Another parameter common to several methods is alpha,
set to 3.0 in all cases.

Data were submitted for analysis using batch detection mode. The methods were selected because of their ability to
deal with different events in time series. It includes trend anomalies, change points, volatility, and machine learning.

The GECCO Challenge 2018 and Yahoo Labs datasets [30] were used. The Numenta Anomaly Benchmark1 was added
due to the wide use of these datasets in the literature and because they provide series with different properties such as
volatility, trend, as well as series with and without seasonality.

The GECCO Challenge 2018 [24] presents nine variables related to drinking water composition2. This dataset, with
observations of water components collected every minute, is important for identifying anomalies in water quality. An
extract with 1500 observations of about one day of the given time series was selected to perform the experiments.
The selected data contains 72 labeled events, including additional events imputed by [24] into the data to simulate
difficulties.

The Yahoo Labs dataset has synthetic and real series about data traffic in Yahoo services3. The Yahoo dataset fea-
tures different series patterns. In addition, there are labeled data of the anomalies present in the series, allowing the
proper evaluation of the detections. Finally, the nature of the time series (internet data traffic) allows evaluating the
applicability of the evaluated methods in a scenario similar to cloud data traffic.

In turn, Numenta presents several series with appropriate labels to evaluate event detection methods. From Numenta,
two series were selected with synthetic and real data. The synthetic series simulates the occurrence of anomalies and a
real one with data on monitoring cloud services from Amazon Web Services (AWS), such as CPU utilization, network

1Available in the R language OTSAD package
2Available on http://www.spotseven.de/gecco-challenge/gecco-challenge-2018
3Available on https://yahooresearch.tumblr.com/post/114590420346/
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data traffic, and disk reading. This second series was selected as another opportunity to evaluate the methods applied
to the analysis of cloud data traffic.

It is possible to evaluate the result of the detections using different metrics, both concerning the assertiveness of the
detections and their performance. Hit analysis is similar to machine learning classification metrics, considering the
scenario of matching detected events with labeled data. Common ways of analyzing classification are the calculation
of the confusion matrix, indicating true positives (TP) (event hits), true negatives (TN) (no event hits), false positives
(FP), and false negatives (FN) [20].

In addition, different metrics are broken down from this matrix, such as accuracy, which shows the recognition rate.
Three metrics are often used together to deepen the interpretation of results: (i) precision: exactness measure; (ii)
recall: completeness measure or true positive rate; and (iii) F1: harmonic mean of precision and recall [20]. The
detections were compared with the labeled data of the series. To analyze different aspects of the detection, precision,
recall, F1, and accuracy was used. Detailed analysis and comparison between FBIAD and other methods are presented
in Subsection 5.2. The result of each method by metric and dataset is presented in 5.3 and Subsection 5.4 shows an
analysis of performance.

5.2 Detail analysis of pH Serie - Gecco Challenge Dataset

This subsection details the analysis of the pH series from the Gecco Challenge dataset to explore the results of the
detections and behavior of methods. The pH is the first series of the Gecco Challenge. It was chosen for illustration
and exploration of results. Nevertheless, the satisfactory results of the FBIAD in this series were similar to the other
series of the dataset. It maintains high levels of accuracy, a balance between precision, recall, and F1. To this extent,
it led the FBIAD method to have the best-consolidated results for this dataset as presented in Table 3 and discussed in
Section 5.3.

Figures 2 to 6 show the same time series (pH), submitted for event detection to the FBIAD, ANM, CF, GARCH, and
MAD methods, respectively. In each figure, points marked green represent true positives, points marked red represent
false positives, and in blue, points are alluding to false negatives. In turn, Table 2 presents the data obtained from the
confusion matrix of each method for the pH series, where it is possible to evaluate the numbers TP, TN, FP, and FN.

Figure 2: Detections with FBIAD: pH serie

As can be seen in Figure 2 and the confusion matrix (Table 2), for the pH series, the FBIAD method was able to
correctly identify all events with no false positives or false negatives. All other methods showed lower results in the
pH series, with a negative emphasis on the ANM method, which scored false positives throughout almost the entire
series. However, it also marked all true events, Figure 4. The MAD method, on the other hand, does not seem to have
any major problems visually, as there are not many false positives in Figure 6. However, when analyzing the Figure 6
and the confusion matrix (Table 2), it can be seen that the degree of true positive of MAD is low, reaching only 9 out
of 72 real events.

8
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Figure 3: Detections with ANM: pH series

Figure 4: Detections with CF: pH series

Table 2: Confusion Matrix for pH series

Method TP TN FP FN

FBIAD 72 1429 0 0
ANM 72 1201 228 0
CF 72 1428 1 0

GARCH 68 1266 163 4

MAD 9 1416 13 63

5.3 Overall Detection Analysis

The results for each metric and dataset is presented in Tables 3, 4, and 5. The values were computed by the mean of
the metric obtained by each method in the series. Finally, Table 6 shows the overall results of all series in all datasets
evaluated.

9
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Figure 5: Detections with GARCH: pH series

Figure 6: Detections with MAD: pH series

In all tables with metrics analysis, the best results for each metric are marked in bold in the respective column.
When there is no difference in metric values between the best methods, with a statistical significance level of 5%, the
respective columns have only underlined values.

Analyzing the summarized results in the detections for the Gecco Challenge series, it is observed that the FBIAD
presents superior results for almost all metrics. It is possible to observe these results in Table 3. At least the FBIAD
presented the same result as ANM in the recall metric.

As mentioned in the detailed analysis of the pH series, Section 5.2, and confirmed in Table 3, the FBIAD method
obtained consistently superior results in the analysis of water quality. In this same dataset, another method with good
results was the CF. In addition to being close to the FBIAD accuracy, it also had balanced results in the metrics
precision, recall, and F1. Finally, the worst accuracy was presented by ANM with 0.80, and in F1, which represents
the balance between precision and recall, MAD presented the worst result with 0.13.

For the Numenta and Yahoo Labs datasets, there is a balance in the detection results comparison between FBIAD and
other methods evaluated. Each method performs better on one metric, loses on another, and draws on two. In the
Numenta dataset, ANM performed best for recall with 0.90, but FBIAD obtained satisfactory results with 0.74.

10
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Table 3: Summary Results for Gecco Challenge Dataset

Method
Preci-
sion

Re-
call F1

Accu-
racy

FBIAD 0.40 0.50 0.60 0.95
ANM 0.12 0.50 0.19 0.80

CF 0.28 0.36 0.46 0.93

GARCH 0.19 0.33 0.27 0.91

MAD 0.23 0.07 0.13 0.91

Table 4: Summary Results for Numenta Dataset

Method
Preci-
sion

Re-
call F1

Accu-
racy

FBIAD 0.03 0.74 0.04 1.00
ANM 0.00 0.90 0.01 0.80

CF 0.05 0.65 0.08 0.96

GARCH 0.01 0.36 0.03 0.92

MAD 0.04 0.65 0.10 1.00

It is relevant to note that the precision values of all methods were low for the Numenta series, as can be seen in Table
4. The low results in precision affected the F1 metric, whose results were also generally low. Although none of the
methods stood out, the FBIAD results were high for recall and accuracy. These results are significant for the FBIAD
due to the type of series and data traffic in the cloud, representing a relevant domain area for time series research.

Deepening the comparison in the Yahoo dataset, the FBIAD and MAD may have a relative balance between precision
and recall, leading them to obtain the best F1 result for this dataset. The other methods, in turn, have very low precision
values, except for CF. Low precision indicates the presence of many false positives, impairing the quality of detections.
In addition to the balance between metrics, the FBIAD presented a higher value for precision and an accuracy of 100%.
It is shown in Table 5.

Table 5: Summary Results for Yahoo Labs Dataset

Method
Preci-
sion

Re-
call F1

Accu-
racy

FBIAD 0.78 0.56 0.57 1.00
ANM 0.03 0.92 0.06 0.81

CF 0.44 0.61 0.48 0.98

GARCH 0.04 0.25 0.11 0.94

MAD 0.54 0.91 0.60 0.98

Table 6 consolidates the results of all series. It confirms the best result achieved by the FBIAD method. The recall
was the only metric that the FBIAD did not obtain the best global result. However, in the joint analysis of the metrics
precision, recall, and F1, the method balanced and surpassed the others. Finally, again the FBIAD is among the best
methods for metric accuracy.

Table 6: Overall Detection Analysis: all series

Method
Preci-
sion

Re-
call F1

Accu-
racy

FBIAD 0.40 0.60 0.40 0.98
ANM 0.05 0.77 0.06 0.80

CF 0.26 0.54 0.34 0.96

GARCH 0.08 0.31 0.14 0.92

MAD 0.27 0.54 0.28 0.96
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5.4 Overall Performance Analysis

Table 7 shows the execution time in seconds for each method in different datasets. Faster methods have lower execution
times. It is possible to observe a predominance of better performance of the CF, FBIAD, and ANM and worse
performance of the MAD. On the other hand, the FBIAD method presented low execution times in all datasets, always
among the three fastest methods.

Table 7: Execution Time (s) per Method and Dataset

Method
Gecco

Challenge
Nu-

menta
Yahoo
Labs

FBIAD 0.10 0.21 0.08
ANM 0.15 0.13 0.09

CF 0.04 0.07 0.02

GARCH 0.63 0.47 0.33

MAD 1.86 2.77 2.04

As can be seen in Table 7, the FBIAD method had the second shortest execution time in two of the three datasets
evaluated. For example, in the Gecco Challenge dataset, despite the best CF method, the FBIAD method outperformed
ANM, GARCH, and MAD by 50%, 630%, and 1, 860%, respectively.

These results of FBIAD performance are significant to reinforce its applicability, especially when considering that the
execution time is essential for rapidly identifying anomalies. Finally, good execution times help the scalability of the
method to larger datasets.

6 Conclusion

The results achieved found that the FBIAD performed satisfactorily in the evaluated scenarios, surpassing other meth-
ods in many scenarios and, at least, being equal in others. The FBIAD also presented a good performance at execution
time, a fundamental aspect of decision-making response time based on data.

As discussed in Section 3, many methods available in the literature have specialized behavior in certain time series.
On the other hand, the FBIAD can deal with series with both trending and change points, demonstrating its versatility
and diversity of applications. The results of the experimental evaluations corroborated this intuition. The presented
method (FBIAD) was always among the best results in the analyzed series that contained relevant domain areas for
time series research, such as cloud data traffic, equipment sensor monitoring, and water quality monitoring.

Furthermore, the relevance of the FBIAD is reinforced when the methods are compared: from decomposition-based
methods (ANM) to machine learning methods using convolutional neural networks (MAD). Furthermore, the quality
of detections does not affect the computational performance of the method. FBIAD has consistently presented the best
execution times.

In future work, the application of the FBIAD in the online detection of events in streaming data can be evaluated. In
addition, its combination with other methods can be explored to expand its versatility further.
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