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Abstract. In this paper, we first present a new dataset of NDM-1 biological
activities that is compiled by a cleaned version of the NMDI database. A
literature review enriched the former database by 741 new compounds,
comprising activities against NDM-1 classified in three classes (inactive,
weakly and strongly active compounds) by specifying a unifying procedure for
the labeling, which covers a range of different activity properties. Second, we
restate the classification problem in the Multiple Instance Learning (MIL)
setting by representing the compounds as a collection of Mol2vec vectors, each
of them corresponding to a specific substructure (either atom or atom including
their first neighbors). We observe an amelioration up to 45.7% and 38.47% in
respect to balanced accuracy and F1-score, respectively, for the strongly active
class in the MIL approach when compared to the classical Machine Learning
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paradigm. Finally, we present a classification and ranking framework based on
classifiers learned by a k-fold CV procedure, which possess different hyper-
parameters per fold, learnt by a Bayes optimization procedure. We observe that
the top-3 and top-5 ranked accuracies of the strongly active classified
compounds yield 100% for the MIL setting.

Keywords: Machine Leaning, Multiple Instance Learning, Drug Discovery,
NDM-1 inhibitors

1 Introduction

New Delhi Metallo-β-lactamase (NDM-1) is a recent bacterial enzyme highly
involved in bacterial resistance phenomenon by its capacity to inactivate the main
available class of antibiotics: the β-lactam agents [1]. The common way to fight this
kind of resistance is the adjuvant strategy, which consists in a combination of a β-
lactam agent and a β-lactamase inhibitor [2]. Some combinations are already on the
market but sadly are not effective on NDM-1 producers. Due to the specific mode of
action of NDM-1, involving zinc atoms into the active site, the design of efficient
inhibitors remains an unmet therapeutic need [3]. This major threat on human health
has to be addressed to avoid return to the pre-antibiotic era.

The drug discovery process is a very time-consuming (approximately 10-14 years)
and costly (1 billion USD magnitude) procedure, characterized by high attrition rates,
to reach marketing authorization [4]. Thus, in silico strategies, (e.g. Virtual Screening
(VS) techniques) are often used as starting point for medical chemistry, for speeding-
up the drug discovery process by identifying compounds of high potential against
specific targets. VS can be categorized in three main areas: (1) structure-based
(requiring knowledge of the 3D structure of the target), (2) ligand-based (requiring
knowledge of active ligands) and (3) hybrid approaches [5]. As the number of ligands
in openly available databases is constantly increasing (e.g. ZINC 15 [6], ChEMBL [7]
etc.) Machine Learning (ML) techniques are used for constructing efficient models
used in VS for hit identification (i.e. discovery of small molecules as a starting point
for medicinal chemistry programs), drug repurposing, activity scoring [8] or activity
prediction [9]. In order to tackle the latter problem in an efficient manner specialized,
annotated data are needed, since ligand-activity data that refer to different targets or to
general target categories (e.g. antibacterial, anti-cancer, anti-inflammatory etc.) will
produce ML models with low efficiency on specified tasks (e.g. discovery of effective
NDM-1 inhibitors).

Multiple Instance Learning (MIL) is a paradigm of weakly supervised learning
where the samples to be classified (i.e. bags) are represented by multiple vectors (i.e.
instances) and labels are only available for the bags. MIL was first introduced by
Dietterich et al. in 1997 [10] tackling a musk odor prediction task. In this structure-
activity prediction problem, each molecule was represented by their different
conformations captured by various feature vectors representing the shape of the
molecule in each conformation. The standard MIL assumption was then applied
stating that a bag is positive if it contains at least one positive instance (i.e. an active



3

molecule conformation) and negative otherwise. The MIL paradigm has been used in
different application areas including medical imaging classification, frailty prediction
using physiological signals [11], natural images classification [12], [13], drug
discovery [14] etc.

As the numerical representation of molecules is crucial in order to construct ML
models, different approaches have been proposed including Extended-Connectivity
Fingerprints (a.k.a. Morgan Fingerprints (MF)), Molecular Graphs or computer
learned representations [15] like Mol2vec representation [16], a NLP-inspired
technique that considers compound substructures, extracted by MF, as words and
compounds as sentences. In this frame, a compound is represented by a collection of
vectors, each of which corresponds to a substructure of the molecule, and a vector
representation is obtained by adding-up these substructure vectors.

ML have been extensively used in the drug design process for various purposes:
prediction on drug-protein interactions, discovering of drug efficacy or ensuring the
safety biomarkers, with applications ranging from prediction of protein folding or
target identification to hit discovery [8]. More specifically, Shi et al. [17] compiled a
NDM-1 activities database, comprising strongly and weakly active compounds of
known NDM-1 activities and provided a list of “hypothetical” inactive compounds,
based on their physicochemical properties. They have applied classical ML and deep
learning models for activity prediction based on physicochemical features extracted
by the commercial software MOE20181.

In this paper we present a framework to tackle the problem of discovering potential
strongly active NDM-1 inhibitors by the use of ML models. For this purpose, (1) we
compile a database of 868 compounds of known activity against NDM-1, by
collecting compounds from the recent literature and by considering only compounds
referring to the NDM-1 enzyme, coming from the NDMI database, proposed by Shi et
al. [17]; (2) we establish a unifying set of rules for labelling compounds as inactive,
weakly active or strongly active, by considering different experimental properties; (3)
we restate the activity classification problem as a MIL problem by representing
molecules by a collection of Mol2vec vectors representing molecular substructures;
(4) we propose an ensemble classification framework, which is able to rank the
classification outputs per predicted class.

The contributions of this paper can be resumed as follows:

1. The compilation of a dataset of known activities against NDM-1 annotated by a set
of unifying rules for incorporating different experimental properties;

2. The restatement of the activity classification problem in the MIL paradigm, by
representing compounds by Mol2vec representations of their substructures, that
shows experimentally better performance than state-of-the-art Mol2vec classical
ML models;

3. The introduction of an homogeneous ensemble classifier framework that classifies
and ranks the classification results per class, and shows very promising
classification and ranking results for the strongly active class in terms of top-5 to

1 https://www.chemcomp.com/Products.htm
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top-15 accuracy, when evaluated on an independent test set showing good
generalization capabilities for the MIL ensemble models.

2 Materials and Methods

2.1 Dataset collection

In [17], Shi et al. introduced a database of active and “hypothetical” inactive
compounds, found in the literature, comprising 511 and 6,358 compounds
respectively. The “hypothetical” inactive compounds where specified by considering
physiochemical properties of 51,280 compounds of the ZINC database, lacking of
activity data against NDM-1. To compile a database comprising only compounds with
known activities against NDM-1, we considered only the 511 compounds of NDMI.
For each of these compounds, we tried to verify the existence of the publications by
performing database searches on the PubMed2 database using, the provided Digital
Identification Number (DOI) of each publication. In a subsequent step, the relevance
to NDM-1 inhibitors activities of the publications where checked, and irrelevant
entries where discarded. Subsequently, the corresponding Canonical SMILES
representation was produced, using the RDKit3 library, and duplicate entries were
discarded. This procedure yielded 127 compounds with known activity scores.
Furthermore, a thorough search in the existing literature for compounds with known
activities on NDM-1 returned 741 new unique compounds. In total the new NDM-1
activity database comprises 868 unique compounds.

2.2 Labeling the database

The activity against NDM-1 is measured by experimental properties based on
enzymatic inhibition: (Ki, IC50, pIC50, enzyme inhibition at a set concentration, or Kd)
[18] or in vitro bacterial growth inhibition (MIC) [19]. Our goal is to identify
potential strong active compounds against NDM-1. We classify the compounds in the
new database in three classes: inactive, weakly active and strongly active compounds,
inspired by the classification in [17] but with different, more strict, cut-off values for
the strongly active compounds, since the aim is to deliver a classifier that can predict
strongly active molecules with high inhibition capacity. We adopt a unifying strategy
that comprises all activity properties we include, in contrast to [17], only compounds
with known activities against NDM-1 and classify them according to the cut-off
values shown in Table 1.

Table 1. Labeling cut-off scores for activity properties

rank inactive weakly active strongly active
1 Ki (µM) >10 [0.5, 10) ≤0.5

2 https://pubmed.ncbi.nlm.nih.gov/
3 https://github.com/rdkit/rdkit
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2 IC50 (µM) >20 (1, 20] ≤1
3 pIC50 <4.7 [4.7, 6] ≥6
4 %100 µM <60% >60% -
5 Kd (µM) >10 [0.5, 10) ≤0.5
6 MIC (µg/ml) >8 (0.5, 8] ≤0.5

As the compounds found in the literature often possess activity measurements for
multiple properties and as different papers report different values for the same
compound that sometimes leads to different labeling of the same compound, we need
a unifying approach to cure these inconsistencies. We adopt a ranking order for the
properties and we classify each compound according the property with the highest
rank. The ranking of the properties is shown in Table 1. Furthermore, if the
classification of a compound according two different publications is ambiguous,
respecting the ranking of the properties, the more active label is assigned to the
compound, since there is evidence in at least one experiment of the highest activity.
We need to note here that when we applied the above procedure to the 127
compounds retained from the NMDI database [17], 51 compounds (40.16%) have
changed labels.

The rationale behind the ranking of the activity properties is following the main
objective of this work, which is to deliver a classification model for the discovery of
active NDM-1 inhibitors. In this sense, properties witch refer to enzymatic inhibition,
such as Ki, IC50 etc. are placed in higher ranks than activity properties that refer to the
NDM-1 agent inhibition (e.g. MIC). In this sense, for compounds that both enzymatic
and bacterial inhibition activity are provided, we rely on the enzymatic activity
property for their classification. On the other hand, when only the agent’s inhibition
property is provided, we rely on properties like MIC, although that in vivo
experiments tend to possess a higher degree of complexity, than in vitro inhibition
experiments on enzymatic assays, and because MIC values are indirect observations.
Indeed, it’s the concentration of β-lactam agents to have inhibitory effect protected by
NDM-1 inhibitor. In this sense, the adopted ranking procedure resolves these
ambiguities, in the aforementioned direction, and has a mild effect on the labeling of
the dataset, since if the ranking of the activity properties is e.g. reversed only about
3% of the compounds would change labels.

2.3 Calculating Mol2vec embeddings

ML embeddings
For calculating the embeddings, we used the Mol2vec pre-trained model of [16]. The
model was trained on 19.9M compounds of ZINC and ChEMBL databases, as a skip-
gram word2vec model, with window size of 10 using radius 1 for the MF (for a more
elaborate description of the extraction of the MF refer to [20]). For training the
Mol2vec model all MF identifiers of radii 0 and 1 where generated, and considered as
words, while each molecule was considered as sentence. The rare identifiers (i.e.
identifiers that occurred less than 3 times in the training database) were marked as
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“unknown” and were attributed to a special identifier called ‘UNK’. After training the
word2vec model, with such a specification, the individual vectors of each molecule,
that corresponded to the MF substructures, were added up to produce a single vector
for each molecule, and thus a molecule is represented by a vector of 300 real values.

MIL embeddings
In order to restate the classification problem in the MIL setting, each molecule (i.e.
bag) has to be represented by a collection of the individual’s MF substructures vectors
(i.e. instances). The labels for each bag are known as the activities of each
corresponding molecule are known, but the individual labels for each instance are
unknown, since there is no activity information concerning each substructure. Thus,
for the molecule to be bound in the target, one or multiple substructures of the
molecule must be involved (i.e. active) in the binding affinity.

As the Mol2vec model calculates the embedding vectors of all the substructures of
each molecule, up to a specified radius � , after removing all duplicate vectors
corresponding to the same substructure, we introduce two different types of MIL
representations: (1) each molecule can be represented as a collection of all the
substructure vectors of all radii (used in this work), or alternatively (2) each molecule
can be represented as a collection of substructure vectors corresponding to a specific
radius � , with 0 ≤ � ≤ � . In contrast to the Mol2vec model where all the
substructure vectors (i.e. vectors corresponding to MF of different radii) are added up
to construct a vector representation for each compound, in the MIL representation,
each unique substructure vector is explicitly included in the compound’s
representation. As we will show experimentally, this contributes positive to the
performance of the models, since according to the MIL assumption, the inactivity of a
molecule suggests that all his substructures must be inactive (i.e. not contributing to
the binding affinity) and the weak or strong activity suggests that a portion of his
substructures is involved to the binding affinity.

2.4 Classification and ranking frame work

In this section, we introduce a homogeneous classification and ranking framework,
which is based on different models acquired by a k-fold Cross Validation (CV)
procedure. Let ��

ℎ�:ℝ� → 푐�_1,…,푐�_� , and ��
ℎ�:ℝ� →ℝ , � = 1, …, � , k

classification functions and their corresponding decision functions obtained by a k-
fold CV procedure, where n and m are the number of classes and features respectively
and ℎ� ∈ ℝ� are the corresponding hyper-parameters specified by a hyper-parameter
optimization procedure for each individual fold. In this sense, we are equipped with k
homogeneous classifiers trained and evaluated in different training-validation sets
having different hyper-parameters. The decision of the ensemble classifier is then
given by a voting procedure � �0

ℎ0,…,��
ℎ� = 푐 and the per class rank of the

ensemble’s classification output for each sample can be given by �푐 � =
mean

�
��
ℎ� � , �� ��

ℎ� � == 푐 , 푐 = 푐�_1,…, 푐�_� . Thus, by calculating for
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each sample the mean decision value of these classifiers, which have predicted the
decision of the ensemble classifier, we obtain the rank per class of each sample.

3 Results and Discussion

For the evaluation of the proposed methods, we used the NDM-1 activities database
described in Section 2.1. The 868 known activities compounds’ database, included
345 (39.75%) inactive, 254 (29.26%) weakly active and 269 (30.99%) strongly active
molecules, making it a relative balanced dataset.

For representing numerically the compounds of the database for the classical ML
paradigm, we generated Mol2vec vectors, employing the 300 dimensional pre-trained
model of [16] resulting to 863 unique identifiers and 21 “unknown” structures. After
generating the numerical representation for the MIL algorithms, we were equipped by
19,082 instances of radii 0 and 1, from which 1 radius 0 and 55 radius 1 structures
were “unknown”. Furthermore, we obtained 7,264 and 11,818 instances of radii 0 and
1 respectively. The “unknown” structures were removed from the training and testing
sets, since they do not contribute to the representation of a bag, because they represent
potential different substructures. The removal of the “unknown” structures does not
resulted to bags (i.e. molecules) without representation, since each compound was
represented by at least one known substructure.

The performance evaluation of the ranking and ensemble classification framework
was performed by an independent Test Set (TS), acquired by a stratified 90%
Training (TrS)-10% (TS) split of the database, while the evaluation of the classifiers
was performed by 10-fold CV on the TrS split. Support Vector Machines (SVM) with
Radial Basis Kernel (RBF), Linear Discriminant Analysis (LDA) and Random Forest
(RF) [8] have been used as representatives of classical ML algorithms and TensMIL
[11] and TensMIL2 [12] as MIL state-of-the-art algorithms, from which we
decoupled the feature extraction by tensor decomposition phase, since our data are of
2D nature, and used only the classification procedure.

TensMIL and TesnMIL2 consist of two inference phases: in the first phase, a score
for each instance (i.e. a substructure) is calculated and the bags’ scores distribution
are estimated. These distributions are then fed to a bag classifier who yields the
classification result. The difference of TensMIL2 is that in the first phase it
incorporates an instance selection procedure for selecting the most informative
instances (i.e. substructures) per bag.

For tuning the hyper-parameters for each algorithm, a Bayes optimization approach
was adopted like in [11], using as objective function the mean 2-fold CV balanced
accuracy (Bacc) on a validation set. The hyper-parameters were tuned separately for
each one of the 10-folds, resulting thus to 10 different classifiers with different sets of
hyper-parameters. The hyper-parameters tuned for each classifier were: C and γ for
SVM, nrOfForestTrees for RF, �� and �� for TensMIL and q and p for TensMIL2,
where �� corresponds to the number of the histogram bins for the distribution
estimation, �� and p to the variance retained of the PCA applied to the instances’
feature matrix and q to the quantile defining the threshold for the instance selection
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procedure of TensMIL2. For the required �� parameters of TensMIL 2 we used for
each experiment the mean

�
��� , i=1, …, 10, where ��� is the parameters acquired

by TensMIL on the i-th fold of the corresponding experiment. For the LDA algorithm
none hyper-parameter was tuned. For discussion on the hyper-parameters, the
interested reader may refer to the corresponding publications.

For the ensemble classifier, we used a majority voting approach in the sense that
the class predicted by the majority of the classifiers is attributed to the corresponding
sample.

The metrics used for evaluating the ML, MIL and ensemble classifiers were the
mean of 10-fold CV accuracy, balanced accuracy, precision-, recall- and F1-score-per
class. For the evaluation of the ranking procedure, we used the per class top-k
accuracy: 푇표��푐푐푐

� = #푡표�−� �푎���� 푇��� 푃표푠�푡�⺁�푠
� , with c being the

corresponding class.

3.1 Results

Classification and generalization evaluation
Since we are interested in discovering strongly active NDM-1 inhibitors, special
attention on the presentation of the results will be given to the strong active class. In
Table 2 we compare the classification performance of the ML and MIL paradigms.
The reported Precision (Prec.) and Recall metrics refer to the corresponding metrics
of the strong active class.

Table 2. Comparison between classical ML and MIL for NDM-1 activity classification.

10-fold CV Ensemble classifier
Acc. Bacc. Prec.4 Recall3 Acc. Bacc. Prec3. Recall3

SVM 52.25% 50.83% 64.38% 66.40% 39.08% 32.76% 0.00% 0.00%
LDA 51.09% 50.24% 58.95% 68.00% 35.63% 38.00% 33.77% 96.30%
RF 52.76% 51.15% 62.41% 62.28% 40.23% 33.71% 0.00% 0.00%
TensMIL 72.08% 70.81% 80.65% 80.53% 75.86% 73.16% 74.19% 85.19%
TensMIL2 74.40% 73.20% 82.57% 80.52% 73.56% 70.79% 80.00% 74.07%

As presented in Table 2, the MIL approach resulted in an amelioration from 38.43%
up to 45.7% in terms of balanced accuracy (Bacc.) with respect to the ML approach.
Precision (Prec.) and Recall for the strong activity class was augmented up to 40.07%
and 29.30% respectively in the case of the MIL setting in comparison to the ML
paradigm. The improvement of the classification performance could be attributed to
the compounds’ MIL representation. Instead of representing each compound by the
sum of the vectors corresponding to each substructure, as is the case of the ML
paradigm, each molecule is represented by the set of vectors of their substructures.
As, in the frame of MIL, the individual activity labels of each instance (i.e.
substructure) are unknown, and as the binding of a ligand to a target is a subject of
specific substructures of a compound (i.e. the binding site of the ligand may concern a

4 Refers to the strong activity class metric.
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part of the compound having special structures and binding properties) the MIL
representation has be proven beneficial to the activity classification performance.
Furthermore, for evaluating the generalization ability of the models as well as for
assessing the ranking performance of the ensemble classification framework
introduced in Section 2.4, we evaluated their performance in an independent test set
that was not subject of the training, hyper-parameter tuning and CV evaluation of the
models. As presented in Table 2, the ensemble classifier in the frame of classical ML
models performs worse than the individual classifiers, suggesting that the
generalization ability of these classifiers are poor. In contrast, in the MIL setting we
see that the ensemble classification framework in the case of TensMIL performs
better than the individual classifiers, in terms of Acc., Bacc. and Recall for the strong
active class, and in the case of TensMIL2 it performs slightly worse than the initial
classifiers, suggesting the generalization ability of the initial classifiers. The ensemble
classifiers in the MIL setting perform in terms of balanced accuracy from 86.29% to
123.32% better than in the classical ML setting. In the case of the LDA model, the
ensemble classifier displays a 96% recall, but only 34% precision for the strong
activity class, suggesting that in this case a significant amount of compounds are
predicted as strongly active and thus the False Positive predictions are relative high.
For further assessing the performance of the classifiers and their generalization ability
the 10-fold CV and on the independent TS F1-scores of the classifier and the
ensemble classification framework are presented in Table 3. Over all, the MIL
classifiers perform better in comparison to the classical ML classifiers. More
specifically, in the MIL setting we have from 24.95% to 37.07%, from 138.84% to
190.24% and from 31.36% to 38.47% better F1-scores respectively for the inactive,
weakly active and strongly active classes, for the 10-fold CV evaluation. For the MIL
algorithms the F1-score performance is better or slightly worse for the ensemble
classifier on an independent TS, in contrast to the ML algorithms. Furthermore, we
observe that the ensemble classifier based on the SVM and RF algorithms was not
able to predict samples of the strong activity class. Finally, in general, we observe
lower performances in respect to the F1-score for the weakly activity class, than for
the inactive and strongly active classes.
Finally, comparing the results in [17], where handcrafted features and “hypothetical”
inactive compounds were used, to our experiments, we conclude that in general the
classification performance, with respect to the F1 score in [17] is better for the
inactive and weakly active class. In contrast, TensMIL2 performs from 15.36% to
41.66% better than the models in [17] for the strongly active class. Although the two
experiments are not fully comparable, we can conclude that the use of Mol2vec
representations in the MIL setting and the stricter labeling for the strongly active class
had a positive effect in the performance of the classification of the strongly active
class.
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Fig. 1. Confusion Matrices of TensMIL and TensMIL2, for the ensemble classifier on a
independent test set

Table 3. Per class CV and ensemble classifier F1-scores.

10-fold CV F1-score Ensemble classifier F1-score
Inactive
class

Weakly
active class

Strong
active class

Inactive
class

Weakly
active class

Strong
active class

SVM 0.5946 0.2021 0.6107 0.5546 0.0714 Inf.
LDA 0.5794 0.2243 0.6082 0.1053 0.1875 0.5
RF 0.6216 0.2142 0.5861 0.5667 0.0741 Inf.
TensMIL 0.7767 0.5357 0.8023 0.8462 0.5263 0.7931
TensMIL2 0.7942 0.5866 0.8116 0.8354 0.5116 0.7692

Ranking evaluation.
The results of the ranking procedure are displayed in Table 4 where the top-3, 5, 10

and 15 ranked compounds accuracy per class is presented.

Table 4. Ranking performance (top-k accuracy) of the ensemble classifiers per class

Inactive Class Weak active class Strong active class
Top-
3

Top-
5

Top-
10

Top-
15

Top-
3

Top-
5

Top-
10

Top-
15

Top-
3

Top-
5

Top-
10

Top-
15

SVM 0.333 0.6 0.6 0.6 0.333 0.2 0.1 0.0667 0 0 0 0
LDA 0.667 0.4 0.2 0.133 0.667 0.6 0.3 0.2 0.333 0.6 0.7 0.6
RF 0.333 0.4 0.5 0.467 0.333 0.2 0.1 0.067 0 0 0 0
TensMIL 1 0.8 0.9 0.867 0.667 0.6 0.8 0.667 1 1 0.9 0.933
TensMIL2 1 0.8 0.9 0.933 0.667 0.8 0.6 0.6 1 1 0.9 0.933

The improvement of the MIL algorithms in comparison to the classical ML
algorithms in terms of the top-k ranking accuracy for the inactive class is from 1.33x
to 7x (top-15 accuracy), for the weakly active compounds up to 10x and for the active
class up to 3x. TensMIL and TensMIL2 are displaying 100% top-3 and top-5
accuracy, meaning that the top-5 ranked compounds are strongly active. In contrast,
the ranking based on the ensembles of RF and SVM algorithms did not yield strongly
active compounds in the top-15 ranks. In the evaluation of the classification
performance of the ensemble classifier, MIL algorithms display better ranking
accuracy than ML algorithms and furthermore, their performances on inactive and
strongly active class are better than on the weakly active class.
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4 Conclusion

To conclude, the compilation of a new database comprising compounds with known
activities against NDM-1 (excluding “hypothetical” inactive compounds), as well as
the unifying labeling procedure, that comprises a stricter, in comparison to former
approaches, rules for the strongly active compounds, can be beneficial for discovering
strongly active compounds against NDM-1. Furthermore, the restatement of the
classification problem in the MIL framework, by representing a compound as a bag of
vectors corresponding to their substructures, showed promising results, in terms of the
efficiency in the three class classification problem, as, often, a part of the molecule
corresponding to certain substructures, is responsible for the binding of the ligand to
the target. The introduction of the homogeneous ensemble classifier and the ranking
procedure, especially if MIL algorithms are used, showed promising results, as in the
case of TensMIL and TensMIL2 classifiers ensembles, where the top-3 and top-5
ranked strongly active predicted compounds belong to the strongly active class, as
predicted on an independent test set. This fact suggests that a screening for active
compounds could reveal strongly active compounds among the top ranked results of
the ensemble classifier. Finally, the classification evaluation of the ensemble classifier
on an independent test set showed a great generalization ability for the MIL
classifiers.
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