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Two boxes in R d are comparable if one of them is a subset of a translation of the other one. The comparable box dimension of a graph G is the minimum integer d such that G can be represented as a touching graph of comparable axis-aligned boxes in R d . We show that proper minor-closed classes have bounded comparable box dimension and explore further properties of this notion.

Introduction

Given a system O of subsets of R d , we say that a graph G is a touching graph of objects from O if there exists a function f : V (G) → O (called a touching representation by objects from O) such that the interiors of f (u) and f (v) are disjoint for all distinct u, v ∈ V (G), and f (u) ∩ f (v) ̸ = ∅ if and only if uv ∈ E(G). Famously, Koebe [START_REF] Koebe | Kontaktprobleme der Konformen Abbildung[END_REF] proved that a graph is planar if and only if it is a touching graph of balls in R 2 . This result has motivated numerous strengthenings and variations (see [START_REF] Lovász | Graphs and Geometry[END_REF][START_REF] Sachs | Coin graphs, polyhedra, and conformal mapping[END_REF] for some classical examples); most relevantly for us, Felsner and Francis [START_REF] Felsner | Contact representations of planar graphs with cubes[END_REF] showed that every planar graph is a touching graph of cubes in R 3 . An attractive feature of touching representations is that it is possible to represent graph classes that are sparse (e.g., planar graphs, or more generally, graph classes with bounded expansion [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF]). This is in contrast to general intersection representations where the represented class always includes arbitrarily large cliques. Of course, whether the class
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On Comparable Box Dimension of touching graphs of objects from O is sparse or not depends on the particular system O. For example, all complete bipartite graphs K n,m are touching graphs of boxes in R 3 , where the vertices in one part are represented by m × 1 × 1 boxes and the vertices of the other part are represented by 1 × n × 1 boxes (throughout the paper, by box we always mean axis-aligned box, i.e., the Cartesian product of closed intervals of non-zero length). Dvořák, McCarty and Norin [START_REF] Dvořák | Sublinear separators in intersection graphs of convex shapes[END_REF] noticed that this issue disappears if we forbid such a combination of long and wide boxes. This condition can be expressed as follows. For two boxes B 1 and B 2 , we write B 1 ⊑ B 2 if B 2 contains a translate of B 1 . We say that B 1 and B 2 are comparable if B 1 ⊑ B 2 or B 2 ⊑ B 1 . A touching representation by comparable boxes of a graph G is a touching representation f by boxes such that for every u, v ∈ V (G), the boxes f (u) and f (v) are comparable. Let the comparable box dimension dim cb (G) of a graph G be the smallest integer d such that G has a touching representation by comparable boxes in R d . We remark that the comparable box dimension of every graph G is at most |V (G)|, see Section 3.1 for details. Then, for a class G of graphs, let dim cb (G) := sup{dim cb (G) : G ∈ G}. If the comparable box dimension of graphs in G is not bounded, we write dim cb (G) = ∞.

Dvořák, McCarty and Norin [START_REF] Dvořák | Sublinear separators in intersection graphs of convex shapes[END_REF] proved some basic properties of this notion. In particular, they showed that if a class G has finite comparable box dimension, then it has polynomial strong coloring numbers, which implies that G has strongly sublinear separators. They also provided an example showing that, for many functions h, the class of graphs with strong coloring numbers bounded by h has infinite comparable box dimension1 . Dvořák et al. [START_REF] Dvořák | Weak coloring numbers of intersection graphs[END_REF] proved that graphs of comparable box dimension 3 have exponential weak coloring numbers, giving the first natural graph class with polynomial strong coloring numbers and superpolynomial weak coloring numbers (the previous example is obtained by subdividing edges of every graph suitably many times [START_REF] Grohe | Coloring and covering nowhere dense graphs[END_REF]).

We show that the comparable box dimension behaves well under the operations of addition of apex vertices, clique-sums, and taking subgraphs. Together with known results on product structure [START_REF] Dujmović | Planar graphs have bounded queue-number[END_REF], this implies the main result of this paper.

▶ Theorem 1. The comparable box dimension of every proper minor-closed class of graphs is finite.

Additionally, we show that classes of graphs with finite comparable box dimension are fractionally treewidth-fragile. This gives arbitrarily precise approximation algorithms for all monotone maximization problems that are expressible in terms of distances between the solution vertices and tractable on graphs of bounded treewidth [START_REF] Dvorák | Approximation schemes for bounded distance problems on fractionally treewidth-fragile graphs[END_REF], or expressible in the first-order logic [START_REF] Dvorák | Approximation metatheorem for fractionally treewidth-fragile graphs[END_REF].

Parameters

In this section we bound some basic graph parameters in terms of comparable box dimension. The first result bounds the clique number ω(G) in terms of dim cb (G).

▶ Lemma 2. For any graph G, we have ω(G) ≤ 2 dim cb (G) .
Proof. We may assume that G has bounded comparable box dimension witnessed by a box representation f . To represent any clique A = {a 1 , . . . , a w } in G, the corresponding boxes f (a 1 ), . . . , f (a w ) have pairwise non-empty intersections. Since axis-aligned boxes have the Helly property, there is a point The remaining bounds pertain to the chromatic number χ(G) of a graph G, and two of its variants. An acyclic coloring (resp. star coloring) of a graph G is a proper coloring such that any two color classes induce a forest (resp. star forest, i.e., a forest in which each component is a star). The acyclic chromatic number χ a (G) (resp. star chromatic number χ s (G)) of G is the minimum number of colors in an acyclic (resp. star) coloring of G. We will need the fact that all the variants of the chromatic number are at most exponential in the comparable box dimension; this follows from [START_REF] Dvořák | Sublinear separators in intersection graphs of convex shapes[END_REF], although we include an argument to make the dependence clear.

p ∈ R d contained in f (a 1 ) ∩ • • • ∩ f (a w ).
▶ Lemma 3. For any graph G we have χ(G) ≤ 3 dim cb (G) , χ a (G) ≤ 5 dim cb (G) and χ s (G) ≤ 2 • 9 dim cb (G) .
Proof. We focus on the star chromatic number and note that the chromatic number and the acyclic chromatic number may be bounded similarly. Suppose that G has comparable box dimension d witnessed by a representation f , and let v 1 , . . . , v n be the vertices of G written so that vol(f

(v 1 )) ≥ . . . ≥ vol(f (v n )). Equivalently, we have f (v i ) ⊑ f (v j ) whenever i > j. Now define a greedy coloring c so that c(v i ) is the smallest color such that c(v i ) ̸ = c(v j ) for any j < i for which either v j v i ∈ E(G) or there exists m > j such that v j v m , v m v i ∈ E(G).
Note that this gives a star coloring, since a path on four vertices always contains a 3-vertex subpath of the form v i1 v i2 v i3 such that i 1 < i 2 , i 3 , and our coloring procedure gives distinct colors to vertices forming such a path.

It remains to bound the number of colors used. Suppose we are coloring v i . We shall bound the number of vertices v j such that j < i and such that there exists m > i for which v j v m , v m v i ∈ E(G). Let B be the box obtained by scaling up f (v i ) by a factor of 5 while keeping the same center. Since f (v m ) ⊑ f (v i ) ⊑ f (v j ), there exists a translation B j of f (v i ) contained in f (v j ) ∩ B (see Figure 1). Two boxes B j and B j ′ for j ̸ = j ′ have disjoint interiors since their intersection is contained in the intersection of the touching boxes f (v j ) and f (v j ′ ), and their interiors are also disjoint from f (v i ) ⊂ B. Thus, the number of such indices j is at most vol(B)/ vol(f (v i )) -1 = 5 d -1.

A similar argument shows that the number of indices m such that m < i and v m v i ∈ E(G) is at most 3 d -1. Consequently, the number of indices j < i for which there exists m such that j < m < i and 2 . This means that when choosing the color of v i greedily, we only need to avoid colors of at most (5 is the box whose projection on some first number of dimensions gives the box A, while the projection on the remaining dimensions gives the box B), or specify its projections onto every dimension (and in this case write A[i] for the interval obtained from projecting A on its i th dimension).

v j v m , v m v i ∈ E(G) is at most (3 d -1)
d -1) + (3 d -1) + (3 d -1)
f (v i ) B f (v1) B1 f (v2) B2 f (v3) B3

Vertex addition

Let us start with a simple lemma which says that the addition of a vertex increases the comparable box dimension by at most one. In particular, this implies that dim cb (G) ≤ |V (G)|.

▶ Lemma 4. For any graph G and v ∈ V (G), we have dim cb (G) ≤ dim cb (G -v) + 1. Proof. Let f be a touching representation of G -v by comparable boxes in R d , where d = dim cb (G -v). We define a representation h of G as follows. For each u ∈ V (G) \ {v}, let h(u) = [0, 1] × f (u) if uv ∈ E(G) and h(u) = [1/2, 3/2] × f (u) if uv ̸ ∈ E(G). Let h(v) = [-1, 0] × [-M, M ] × • • • × [-M, M ], where M is chosen large enough so that f (u) ⊆ [-M, M ] × • • • × [-M, M ] for every u ∈ V (G) \ {v}.
Then h is a touching representation of G by comparable boxes in R d+1 . ◀

Strong product

Let G ⊠ H denote the strong product of the graphs G and H, i.e., the graph with vertex set V (G) × V (H) and with distinct vertices (u 

f of G ⊠ H in R d G +d H by f ((u, v))[i] = g(u)[i] if i ≤ d G h(v)[i -d G ] if i > d G .
Consider distinct vertices (u, v) and (u ′ , v ′ ) of G⊠H. The boxes g(u) and g(u

′ ) are comparable, say g(u) ⊑ g(u ′ ). Since h(v ′ ) is a translation of h(v), this implies that f ((u, v)) ⊑ f ((u ′ , v ′ )).
Hence, the boxes of the representation f are pairwise comparable.

The boxes of the representations g and h have pairwise disjoint interiors. Hence, if

u ̸ = u ′ , then there exists i ≤ d G such that the interiors of the intervals f ((u, v))[i] = g(u)[i] and f ((u ′ , v ′ ))[i] = g(u ′ )[i] are disjoint; if v ̸ = v ′ , then there exists i ≤ d H such that the interiors of the intervals f ((u, v))[i + d G ] = h(v)[i] and f ((u ′ , v ′ ))[i + d G ] = h(v ′ )[i] are disjoint. Consequently, the interiors of boxes f ((u, v)) and f ((u ′ , v ′ )) are pairwise disjoint. Moreover, if u ̸ = u ′ and uu ′ ̸ ∈ E(G), or if v ̸ = v ′ and vv ′ ̸ ∈ E(G), then the aforementioned intervals (not just their interiors) are disjoint for some i; hence, if (u, v) and (u ′ , v ′ ) are not adjacent in G ⊠ H, then f ((u, v)) ∩ f ((u ′ , v ′ )) = ∅. Therefore, f is a touching representation of a subgraph of G ⊠ H.
Finally, suppose that (u, v) and (u ′ , v ′ ) are adjacent in G ⊠ H. Then there exists a point p G in the intersection of g(u) and g(u ′ ), since u = u ′ or uu ′ ∈ E(G) and g is a touching representation of G; and similarly, there exists a point p H in the intersection of h(v) and

h(v ′ ). Then p G × p H is a point in the intersection of f ((u, v)) and f ((u ′ , v ′ )). Hence, f is indeed a touching representation of G ⊠ H. ◀

Taking a subgraph

The comparable box dimension of a subgraph of a graph G may be larger than dim cb (G) (see the end of this section for an example). However, we show that the comparable box dimension of a subgraph is at most exponential in the comparable box dimension of the whole graph. This is essentially Corollary 25 in [START_REF] Dvořák | Sublinear separators in intersection graphs of convex shapes[END_REF], but since the setting is somewhat different and the construction of [START_REF] Dvořák | Sublinear separators in intersection graphs of convex shapes[END_REF] uses rotated boxes, we provide details of the argument.

▶ Lemma 6. If G is a subgraph of a graph G ′ , then dim cb (G) ≤ dim cb (G ′ ) + 1 2 χ 2 s (G ′ ).
Proof. By removing boxes that represent vertices of G that are not in G ′ , we may assume that

V (G ′ ) = V (G). Let f be a touching representation of G ′ by comparable boxes in R d , where d = dim cb (G ′ ).
Let φ be a star coloring of G ′ using colors {1, . . . , c}, where c = χ s (G ′ ).

For any distinct colors i, j ∈ {1, . . . , c}, let A i,j ⊆ V (G) be the set of vertices u of color i such that there exists a vertex v of color j such that uv ∈ E(G ′ ) \ E(G). For each u ∈ A i,j , let a j (u) denote such a vertex v chosen arbitrarily.

Let us define a representation h by boxes in R d+( c 2 ) by starting from the representation f and, for each pair i < j of colors, adding a dimension d i,j and setting

h(v)[d i,j ] =        [1/3, 4/3] if v ∈ A i,j [-4/3, -1/3] if v ∈ A j,i [-1/2, 1/2] otherwise.
Note that the boxes in this extended representation are comparable, as in the added dimensions, all the boxes have size 1.

Suppose uv ∈ E(G), where φ(u) = i and φ(v) = j and say i < j. We cannot have u ∈ A i,j and v ∈ A j,i , as then a j (u)uva i (v) would be a 4-vertex path in G ′ in colors i and j. Hence, in any added dimension d ′ , we have h

(u)[d ′ ] = [-1/2, 1/2] or h(v)[d ′ ] = [-1/2, 1/2], and thus h(u)[d ′ ] ∩ h(v)[d ′ ] ̸ = ∅.
Since the boxes f (u) and f (v) touch, it follows that the boxes h(u) and h(v) touch as well.

Suppose now that uv

̸ ∈ E(G). If uv ̸ ∈ E(G ′ ), then f (u) is disjoint from f (v), and thus h(u) is disjoint from h(v). Hence, we can assume uv ∈ E(G ′ ) \ E(G), φ(u) = i, φ(v) = j and i < j. Then u ∈ A i,j , v ∈ A j,i , h(u)[d i,j ] = [1/3, 4/3], h(v)[d j,i ] = [-4/3, -1/3], and h(u) ∩ h(v) = ∅.
Consequently, h is a touching representation of G by comparable boxes in dimension

d + c 2 ≤ d + c 2 /2. ◀
Let us now combine Lemmas 3 and 6.

▶ Corollary 7. If G is a subgraph of a graph G ′ , then dim cb (G) ≤ dim cb (G ′ )+2•81 dim cb (G ′ ) ≤ 3 • 81 dim cb (G ′ ) .
An exponential increase in the dimension is unavoidable: we have dim cb (K 2 d ) = d, but the graph obtained from K 2 d by deleting a perfect matching has comparable box dimension 2 d-1 . Indeed, for every pair u, v of non-adjacent vertices there is a specific dimension i such that their boxes span intervals 

Clique-sums

A clique-sum of two graphs G 1 and G 2 is obtained from their disjoint union by identifying vertices of a clique in G 1 and a clique of the same size in G 2 and possibly deleting some of the edges of the resulting clique. A full clique-sum is a clique-sum in which we keep all the edges of the resulting clique. The main issue to overcome in obtaining a representation for a (full) clique-sum is that the representations of G 1 and G 2 can be "degenerate". Consider, for example, the case where G 1 is represented by unit squares arranged in a grid; here there is no space to attach G 2 at the cliques formed by four squares intersecting in a single corner. This can be avoided by increasing the dimension, but we need to be careful so that the dimension stays bounded even after an arbitrary number of clique-sums. We thus introduce the notion of clique-sum extendable representations.

▶ Definition 8. Consider a graph G with a distinguished clique C ⋆ , called the root clique of G. A touching representation h of G by (not necessarily comparable) boxes in R d is called C ⋆ -clique-
sum extendable if the following conditions hold for every sufficiently small ε > 0. (vertices) For each u ∈ V (C ⋆ ), there exists a dimension d u , such that:

(v0) d u ̸ = d u ′ for distinct u, u ′ ∈ V (C ⋆ ), (v1) each vertex u ∈ V (C ⋆ ) satisfies h(u)[d u ] = [-1, 0] and h(u)[i] = [0, 1] for any dimension i ̸ = d u , and (v2) each vertex v / ∈ V (C ⋆ ) satisfies h(v) ⊂ [0, 1) d . (cliques) For every clique C of G, there exists a point p(C) ∈ [0, 1) d ∩ v∈V (C) h(v) such that, defining the clique box h ε (C) by setting h ε (C)[i] = [p(C)[i], p(C)[i] + ε]
for every dimension i, the following conditions are satisfied: (c1) For any two cliques

C 1 ̸ = C 2 , h ε (C 1 ) ∩ h ε (C 2 ) = ∅ (equivalently, p(C 1 ) ̸ = p(C 2 )). (c2) A box h(v) intersects h ε (C) if and only if v ∈ V (C)
, and in that case their intersection is a facet of h ε (C) incident to p(C). That is, there exists a dimension i C,v such that for each dimension j,

h(v)[j] ∩ h ε (C)[j] = {p(C)[i C,v ]} if j = i C,v [p(C)[j], p(C)[j] + ε] otherwise.
Note that the root clique can be empty, that is the empty subgraph with no vertices. In that case the clique is denoted ∅. Let dim ext cb (G) be the minimum dimension such that G has an ∅-clique-sum extendable touching representation by comparable boxes.

Let us remark that a clique-sum extendable representation in dimension d implies the existence of such a representation in higher dimensions as well.

▶ Lemma 9. Let G be a graph with a root clique C ⋆ and let h be a C ⋆ -clique-sum extendable touching representation of G by comparable boxes in R d . Then G has such a representation in R d ′ for every d ′ ≥ d.

Proof. It clearly suffices to consider the case that d

′ = d + 1. Note that the (vertices) conditions imply that h(v ′ ) ⊑ h(v) for every v ′ ∈ V (G) \ V (C ⋆ ) and v ∈ V (C ⋆ ). We extend the representation h by setting h(v)[d + 1] = [0, 1] for v ∈ V (C ⋆ ) and h(v)[d + 1] = [0, 1 2 ] for v ∈ V (G) \ V (C ⋆ ). The clique point p(C) of each clique C is extended by setting p(C)[d + 1] = 1 4 .
It is easy to verify that the resulting representation is C ⋆ -clique-sum extendable.

◀

The following lemma ensures that clique-sum extendable representations behave well with respect to full clique-sums. The proof is omitted, but the key strategy is to translate (allowing exchanges of dimensions) and scale h 2 to fit in h ε 1 (C 1 ).

▶ Lemma 10. Consider two graphs G 1 and G 2 , given with a C ⋆ 1 -and a C ⋆ 2 -clique-sum extendable representations h 1 and h 2 by comparable boxes in R d1 and R d2 , respectively. Let G be the graph obtained by performing a full clique-sum of these two graphs on any clique C 1 of G 1 , and on the root clique C ⋆ 2 of G 2 . Then G admits a C ⋆ 1 -clique sum extendable representation h by comparable boxes in R max(d1,d2) .

Moreover, we can pick the root clique at the expense of increasing the dimension by ω(G).

This proof is also omitted, but it is essentially the same as that of Lemma 4.

▶ Lemma 11. For any graph G and any clique C ⋆ , the graph G admits a C ⋆ -clique-sum extendable touching representation by comparable boxes in

R d , for d = |V (C ⋆ )| + dim ext cb (G \ V (C ⋆ )).
The last key lemma that we will need in this section is an upper bound on dim ext cb (G) in terms of dim cb (G) and χ(G).

▶ Lemma 12. For any graph G, dim ext cb (G) ≤ dim cb (G) + χ(G).
Proof. Let h be a touching representation of G by comparable boxes in R d , with d = dim cb (G), and let c be a χ(G)-coloring of G. We start with a slightly modified version of h. We first scale h to fit in (0, 1) d , and for a sufficiently small real α > 0 we increase each box in h by 2α in every dimension, that is we replace h(v

)[i] = [a, b] by [a -α, b + α]
for each vertex v and dimension i. Here, we choose α to be sufficiently small so that the boxes representing non-adjacent vertices remain disjoint, and thus the resulting representation h 1 is an intersection representation of the same graph G. Moreover, observe that for every clique
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C of G, the intersection I C = v∈V (C) h 1 (v) is a box with non-zero edge lengths. For any clique C of G, let p 1 (C) be a point in the interior of I C different from the points chosen for all other cliques. Now we add χ(G) dimensions to make the representation touching again, and to ensure some space for the clique boxes h ε (C). Formally we define h 2 as

h 2 (u)[i] =            h 1 (u)[i] if i ≤ d [1/5, 3/5] if i > d and c(u) < i -d [0, 2/5] if i > d and c(u) = i -d [2/5, 4/5] otherwise (if c(u) > i -d > 0).
For any clique C of G, let c(C) denote the color set {c(u) | u ∈ V (C)}. We now set

p 2 (C)[i] =        p 1 (C)[i] if i ≤ d 2/5 if i > d and i -d ∈ c(C) 1/2 otherwise.
As h 2 is an extension of h 1 , and as in each dimension j > d, h 2 (v)[j] is an interval of length 2/5 containing the point 2/5 for every vertex v, we have that h 2 is an intersection representation of G by comparable boxes. To prove that it is touching consider two adjacent vertices u and v such that c(u) < c(v), and let us note that h

2 (u)[d + c(u)] = [0, 2/5] and h 2 (v)[d + c(u)] = [2/5, 4/5].
For the ∅-clique-sum extendability, the (vertices) conditions are void. For the (cliques) conditions, since p 1 is chosen to be injective, the mapping p 2 is injective as well, implying that (c1) holds.

Consider now a clique C in G and a vertex v

∈ V (G). If c(v) ̸ ∈ c(C), then h 2 (v)[c(v)+d] = [0, 2/5] and p 2 (C)[c(v) + d] = 1/2, implying that h ε 2 (C) ∩ h 2 (v) = ∅. If c(v) ∈ c(C) but v ̸ ∈ V (C), then letting v ′ ∈ V (C)

be the vertex of color c(v), we have vv ′ ̸ ∈ E(G), and thus

h 1 (v) is disjoint from h 1 (v ′ ). Since p 1 (C) is contained in the interior of h 1 (v ′ ), it follows that h ε 2 (C) ∩ h 2 (v) = ∅. Finally, suppose that v ∈ C. Since p 1 (C) is contained in the interior of h 1 (v), we have h ε 2 (C)[i] ⊂ h 2 (v)[i] for every i ≤ d. For i > d distinct from d + c(v), we have p ε 2 (C)[i] ∈ {2/5, 1/2} and [2/5, 3/5] ⊆ h 2 (v)[i], and thus h ε 2 (C)[i] ⊂ h 2 (v)[i]. For i = d + c(v), we have p ε 2 (C)[i] = 2/5 and h 2 (v)[i] = [0, 2/5], and thus h ε 2 (C)[i] ∩ h 2 (v)[i] = {p ε 2 (C)[i]}. Therefore, (c2) holds. ◀
Together, the preceding lemmas show that comparable box dimension is almost preserved by full clique-sums.

▶ Corollary 13. Let G be a class of graphs of chromatic number at most k. If G ′ is the class of all graphs that can be obtained from G by repeatedly performing full clique-sums, then

dim cb (G ′ ) ≤ dim cb (G) + 2k.
Proof. Suppose a graph G is obtained from G 1 , . . . , G m ∈ G by a sequence of full clique-sums. Without loss of generality, the labelling of the graphs is chosen so that we first perform the full clique-sum on G 1 and G 2 , then on the resulting graph and G 3 , and so on. ) if G has Euler genus at most g. Moreover, for every t, there exists an integer k such that any K t -minor-free graph G is a subgraph of a graph obtained by repeated clique-sums from extended k-tree-grids.

Let us first bound the comparable box dimension of a graph in terms of its Euler genus.

As paths and m-cliques admit touching representations with hypercubes of unit size in R 1 and in R ⌈log 2 m⌉ respectively, by Lemma 5 it suffices to bound the comparable box dimension of k-trees.

▶ Theorem 16. For any k-tree G, dim cb (G) ≤ dim ext cb (G) ≤ k + 1.
Proof. Let H be a complete graph with k +1 vertices and let C ⋆ be a clique of size k in H. By Lemma 10, it suffices to show that H has a C ⋆ -clique-sum extendable touching representation by hypercubes in R k+1 . Let V (C ⋆ ) = {v 1 , . . . , v k }. We construct the representation h so that (v1) holds with d vi = i for each i; this uniquely determines the hypercubes h(v 1 ), . . . ,

h(v k ). For the vertex v k+1 ∈ V (H) \ V (C ⋆ ), we set h(v k+1 ) = [0, 1/2] k+1
. This ensures that the (vertices) conditions holds.

S o C G 2 0 2 2 38:10 On Comparable Box Dimension

For the (cliques) conditions, let us set the point p(C) for every clique C as follows:

p(C)[i] = 0 for every i ≤ k such that v i ∈ C p(C)[i] = 1 4 for every i ≤ k such that v i / ∈ C p(C)[k + 1] = 1 2 if v k+1 ∈ C p(C)[k + 1] = 3 4 if v k+1 / ∈ C By construction, it is clear that for each vertex v ∈ V (H), p(C) ∈ h(v) if and only if v ∈ V (C).
For any two distinct cliques C 1 and C 2 , the points p(C 1 ) and p(C 2 ) are distinct. Indeed, by symmetry we can assume that for some i we have

v i ∈ V (C 1 ) \ V (C 2 ), and this implies that p(C 1 )[i] < p(C 2 )[i].
Hence, the condition (c1) holds.

Consider now a vertex v i and a clique C. As we observed before, if

v i ̸ ∈ V (C), then p(C) ̸ ∈ h(v i ), and thus h ε (C) and h(v i ) are disjoint (for sufficiently small ε > 0). If v i ∈ C, then the definitions ensure that p(C)[i] is equal to the maximum of h(v i )[i], and that for j ̸ = i, p(C)[j] is in h(v i )[j], implying that h(v i )[j] ∩ h ε (C)[j] = [p(C)[j], p(C)[j] + ε] for sufficiently small ε > 0. ◀ The treewidth tw(G) of a graph G is the minimum k such that G is a subgraph of a k-tree.
It is worth noting that the bound on the comparable box dimension of Theorem 16 actually extends to graphs of treewidth at most k (proof omitted).

▶ Corollary 17. Every graph G satisfies dim cb (G) ≤ tw(G) + 1.
As every planar graph G has a touching representation by cubes in R 3 [START_REF] Felsner | Contact representations of planar graphs with cubes[END_REF], we have that dim cb (G) ≤ 3. For graphs with higher Euler genus we can also derive upper bounds. Indeed, combining the previous observation on the representations of paths and K m with Theorem 16, Lemma 5 and Corollary 7 we obtain: ▶ Corollary 18. For every graph G of Euler genus g, there exists a supergraph G ′ of G such that dim cb (G ′ ) ≤ 6 + ⌈log 2 max(2g, 3)⌉. Consequently,

dim cb (G) ≤ 3 • 81 7 • max(2g, 3) log 2 81 .
Similarly, we can deal with proper minor-closed classes.

Proof of Theorem 1. Let G be a proper minor-closed class. Since G is proper, there exists t such that K t ̸ ∈ G. By Theorem 15, there exists k such that every graph in G is a subgraph of a graph obtained by repeated clique-sums from extended k-tree-grids. As we have seen, k-tree-grids have comparable box dimension at most k + 2, and by Lemma 4, extended k-tree-grids have comparable box dimension at most 2k + 2. By Corollary 14, it follows that dim cb (G) ≤ 1250 2k+2 . ◀ Note that the graph obtained from K 2n by deleting a perfect matching has Euler genus Θ(n 2 ) and comparable box dimension n. It follows that the dependence of the comparable box dimension on the Euler genus cannot be subpolynomial (though the degree log 2 81 of the polynomial established in Corollary 18 certainly can be improved). The dependence of the comparable box dimension on the size of the forbidden minor that we established is not explicit, as Theorem 15 is based on the structure theorem of Robertson and Seymour [START_REF] Robertson | Graph Minors. XVI. Excluding a non-planar graph[END_REF]. It would be interesting to prove Theorem 1 without using the structure theorem. Fractional treewidth-fragility Suppose G is a connected planar graph and v is a vertex of G. For an integer k ≥ 2, give each vertex at distance d from v the color d mod k. Then deleting the vertices of any of the k colors results in a graph of treewidth at most 3k. This fact (which follows from the result of Robertson and Seymour [START_REF] Robertson | Graph Minors. III. Planar tree-width[END_REF] on treewidth of planar graphs of bounded radius) is (in the modern terms) the basis of Baker's technique [START_REF] Baker | Approximation algorithms for NP-complete problems on planar graphs[END_REF] for design of approximation algorithms. However, even quite simple graph classes, such as the strong products of three paths [START_REF] Berger | Treewidth of grid subsets[END_REF], do not admit such a coloring where the removal of any color class results in a graph of bounded treewidth. Nonetheless, a fractional version of this coloring concept is still very useful in the design of approximation algorithms [START_REF] Dvorák | Approximation schemes for bounded distance problems on fractionally treewidth-fragile graphs[END_REF] and applies to much more general graph classes, including all graph classes with strongly sublinear separators and bounded maximum degree [START_REF] Dvořák | Sublinear separators, fragility and subexponential expansion[END_REF].

A class of graphs G is fractionally treewidth-fragile if there exists a function f such that for every graph G ∈ G and integer k ≥ 2, there exist sets X 1 , . . . , X m ⊆ V (G) such that each vertex belongs to at most m/k of them and tw(G -X i ) ≤ f (k) for every i (equivalently, there exists a probability distribution on the set

{X ⊆ V (G) : tw(G -X) ≤ f (k)} such that Pr[v ∈ X] ≤ 1/k for each v ∈ V (G)).
For example, the class of planar graphs is (fractionally) treewidth-fragile, since we can let X i consist of the vertices of color i -1 in the coloring described at the beginning of the section.

It will be useful to have a different formulation of treewidth for the argument to follow. Recall that a tree decomposition of a graph G is a pair (T, β), where T is a rooted tree and β : V (T ) → 2 V (G) assigns a bag to each of its nodes, such that for each edge uv ∈ E(G), there exists x ∈ V (T ) such that u, v ∈ β(x), and for each vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ β(x)} is non-empty and induces a connected subtree of T . For nodes x, y ∈ V (T ), we write x ⪯ y if x = y or x is a descendant of y in T . The width of the tree decomposition is the maximum of the sizes of the bags minus 1. The treewidth of a graph is the minimum of the widths of its tree decompositions. Let us remark that the treewidth obtained via this definition coincides with the one via k-trees of Section 4

The purpose of this section is to show that all graph classes of bounded comparable box dimension are fractionally treewidth-fragile. In fact, we prove this result in a more general setting, motivated by concepts from [START_REF] Dvořák | Sublinear separators in intersection graphs of convex shapes[END_REF] and by applications to related representations. The argument is motivated by the idea used in the approximation algorithms for disk graphs by Erlebach et al. [START_REF] Erlebach | Polynomial-time approximation schemes for geometric intersection graphs[END_REF].

For a measurable set A ⊆ R d , let vol(A) denote the Lebesgue measure of A. Given two measurable subsets A and B of R d and a positive integer s, we write A ⊑ s B if for every x ∈ B, there exists a translation A ′ of A such that x ∈ A ′ and vol(A ′ ∩ B) ≥ 1 s vol(A). Note that for two boxes A and B, we have

A ⊑ 1 B if and only if A ⊑ B. An s-comparable envelope representation (ι, ω) of a graph G in R d consists of two functions ι, ω : V (G) → 2 R d such that for some ordering v 1 , . . . , v n of vertices of G, for each i, ω(v i ) is a box, ι(v i ) is a measurable set, and ι(v i ) ⊆ ω(v i ), if i < j, then ω(v j ) ⊑ s ι(v i ), and if i < j and v i v j ∈ E(G), then ω(v j ) ∩ ι(v i ) ̸ = ∅.
We say that the representation has thickness at most t if for every point x ∈ R d , there exist at most 

t vertices v ∈ V (G) such that x ∈ ι(v). For example, if f is a touching representation of G by comparable boxes in R d , then (f, f ) is a 1-comparable envelope representation of G in R d of
(k) = O t,s,d k d .
Proof. For a positive integer k, let f (k) = (2ksd + 2) d st. Let (ι, ω) be an s-comparable envelope representation of a graph G in R d of thickness at most t, and let v 1 , . . . , v n be the corresponding ordering of the vertices of G. Let us define ℓ i,j ∈ R + for i = 1, . . . , n and j ∈ {1, . . . , d} as an approximation of ksd|ω(v i )[j]| such that ℓ i-1,j /ℓ i,j is a positive integer. Formally, it is defined by the following process.

Let

ℓ 1,j = ksd|ω(v 1 )[j]|. For i = 2, . . . , n, let ℓ i,j = ℓ i-1,j , if ℓ i-1,j < ksd|ω(v i )[j]
|, and otherwise let ℓ i,j be lowest fraction of ℓ i-1,j that is greater than ksd|ω

(v i )[j]|, formally ℓ i,j = min{ℓ i-1,j /b | b ∈ N + and ℓ i-1,j /b ≥ ksd|ω(v i )[j]|}. Choose x j ∈ [0, ℓ 1,
j ] uniformly at random, and let H i j be the set of hyperplanes in R d consisting of the points whose j-th coordinate is equal to x j + mℓ i,j for some m ∈ Z. As ℓ i,j is a multiple of ℓ i ′ ,j whenever i ≤ i ′ , we have that H i j ⊆ H i ′ j whenever i ≤ i ′ . For i ∈ {1, . . . , n}, the i-grid is H i = d j=1 H i j , and we let the 0-grid H 0 = ∅. Then, as above, we have that

H i ⊆ H i ′ whenever i ≤ i ′ .
Let X ⊆ V (G) consist of the vertices v a ∈ V (G) such that the box ω(v a ) intersects some hyperplane H ∈ H a , that is such that x j + mℓ a,j ∈ ω(v a )[j], for some j ∈ {1, . . . , d} and some m ∈ Z. First, let us argue that Pr

[v a ∈ X] ≤ 1/k. Indeed, the set [0, ℓ 1,j ] ∩ m∈Z (ω(v a )[j] - mℓ a,j ) has measure ℓ1,j ℓa,j • |ω(v a )[j]|,
implying that for fixed j, this happens with probability |ω(v a )[j]|/ℓ a,j . Let a ′ be the largest integer such that a ′ ≤ a and ℓ a ′ ,j < ℓ a ′ -1,j if such an index exists, and a ′ = 1 otherwise; note that ℓ a

,j = ℓ a ′ ,j ≥ ksd|ω(v a ′ )[j]|. Moreover, since ω(v a ) ⊑ s ι(v a ′ ) ⊆ ω(v a ′ ), we have ω(v a )[j] ≤ sω(v a ′ )[j]. Combining these inequalities, |ω(v a )[j]| ℓ a,j ≤ sω(v a ′ )[j] ksd|ω(v a ′ )[j]| = 1 kd .
By the union bound, we conclude that Pr[v a ∈ X] ≤ 1/k. We now bound the treewidth of G -X. For a ≥ 0, an a-cell is a maximal connected

subset of R d \ H∈H a H . A set C ⊆ R d is a cell if it is an a-cell for some a ≥ 0. A cell C is non-empty if there exists v ∈ V (G -X) such that ι(v) ⊆ C.
Note that there exists a rooted tree T whose vertices are the non-empty cells and such that for x, y ∈ V (T ), we have x ⪯ y if and only if x ⊆ y. For each non-empty cell C, define β(C) to be the set of vertices v i ∈ V (G -X) such that ι(v) ∩ C ̸ = ∅ and C is an a-cell for some a ≥ i.

Let us show that (T, β) is a tree decomposition of G -X. For each v j ∈ V (G -X), the j-grid is disjoint from ω(v j ), and thus ι(v j ) ⊆ ω(v j ) ⊂ C for some j-cell C ∈ V (T ) and v j ∈ β(C). Consider now an edge v i v j ∈ E(G -X), where i < j. We have ω(v j ) ∩ ι(v i ) ̸ = ∅, and thus ι(v i ) ∩ C ̸ = ∅ and v i ∈ β(C). Finally, suppose that v j ∈ C ′ for some C ′ ∈ V (T ). Then C ′ is an a-cell for some a ≥ j, and since ι(v j ) ∩ C ′ ̸ = ∅ and ι(v j ) ⊂ C, we conclude that C ′ ⊆ C, and consequently C ′ ⪯ C. Moreover, any cell C ′′ such that C ′ ⪯ C ′′ ⪯ C (and thus C ′ ⊆ C ′′ ⊆ C) is an a ′ -cell for some a ′ ≥ j and ι(v j ) ∩ C ′′ ⊇ ι(v j ) ∩ C ′ ̸ = ∅, which implies that v j ∈ β(C ′′ ). It follows that {C ′ : v j ∈ β(C ′ )} induces a connected subtree of T .

Finally, we bound the width of the decomposition (T, β). Let C be a non-empty cell and let a be maximum number for which C is an a-cell. The proof that (generalizations of) graphs with bounded comparable box dimensions have sublinear separators in [START_REF] Dvořák | Sublinear separators in intersection graphs of convex shapes[END_REF] is indirect; it is established that these graphs have polynomial coloring numbers, which in turn implies they have polynomial expansion, which then gives sublinear separators using the algorithm of Plotkin, Rao, and Smith [START_REF] Plotkin | Shallow excluded minors and improved graph decompositions[END_REF]. The existence of sublinear separators is known to follow more directly from fractional treewidth-fragility. Indeed, since Pr[v ∈ X] ≤ 1/k, there exists X ⊆ V (G) such that tw(G -X) ≤ f 
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 1 Figure 1 Nearby boxes obstructing colors at vi.

  [a, b] and [c, d] with b < c, while the i th interval of every other box in the representation contains [b, c].

4▶ Theorem 15 .

 15 The strong product structure and minor-closed classesA k-tree is any graph obtained by repeated full clique-sums on cliques of size k from cliques of size at most k + 1. A k-tree-grid is a strong product of a k-tree and a path. An extended k-tree-grid is a graph obtained from a k-tree-grid by adding at most k apex vertices. Dujmović et al.[START_REF] Dujmović | Planar graphs have bounded queue-number[END_REF] proved the following result. Any graph G is a subgraph of the strong product of a k-tree-grid and K m , where k = 3 and m = 3 if G is planar, and k = 4 and m = max(2g, 3

  Then C is an open box with sides of lengths ℓ a,1 , . . . , ℓ a,d . Consider j ∈ {1, . . . , d}:If a = 1, then ℓ a,j = ksd|ω(v a )[j]|. If a > 1 and ℓ a,j = ℓ a-1,j , then ℓ a,j = ℓ a-1,j < 2ksd|ω(v a )[j]| (otherwise ℓ a,j = ℓ a-1,j /b for some integer b ≥ 2).If a > 1 and ℓ a,j < ℓ a-1,j , then ℓ a-1,j ≥ b × ksd|ω(v a )[j]| for some integer b ≥ 2. Now let b be the greatest such integer (that is such that ℓ a-1,j < (b + 1) × ksd|ω(v a )[j]|) and note thatℓ a,j = ℓ a-1,j b < b+1 b ksd|ω(v a )[j]| < 3 2 ksd|ω(v a )[j]|.Hence, in all cases we have ℓ a,j < 2ksd|ω(v a )[j]|. Let C ′ be the box with the same center as C and with |C ′ [j]| = (2ksd + 2)|ω(v a )[j]|. For any v i ∈ β(C) \ {v a }, we have i ≤ a and ι(v i ) ∩ C ̸ = ∅, and since ω(v a ) ⊑ s ι(v i ), there exists a translationB i of ω(v a ) that intersects C ∩ ι(v i ) and such that vol(B i ∩ ι(v i )) ≥ 1 s vol(ω(v a )). Note that as B i intersects C, we have that B i ⊆ C ′ . Using the initial assumption that the representation has thickness at most t, we now havevol(C ′ ) ≥ vol   C ′ ∩ vi∈β(C)\{va} ι(v i ) \{va} B i ∩ ι(v i ) vol(B i ∩ ι(v i )) ≥ vol(ω(v a ))(|β(C)| -1) st .Since vol(C ′ ) = (2ksd + 2) d vol(ω(v a )), it follows that |β(C)| -1 ≤ (2ksd + 2) d st = f (k), as required. ◀

  (k) and |X| ≤ |V (G)|/k. The graph G -X has a balanced separator of size at most tw(G -X) + 1, which combines with X to a balanced separator of size at mostV (G)|/k + f (k) + 1 in G. Optimizing the value of k (choosing it so that V (G)|/k = f (k)),we obtain the following corollary of Theorem 19. ▶ Corollary 20. For positive integers t, s, and d, every graph G with an s-comparable envelope representation in R d of thickness at most t has a sublinear separator of size O t,s,d |V (G)| d d+1 .

  full-dimensional, their interiors each intersect at least one of the 2 d orthants at p. At the same time, it follows from the definition of a touching representation that f (a 1 ), . . . , f (a d ) have pairwise disjoint interiors, and hence w ≤ 2 d . ◀ Note that a clique with 2 d vertices has a touching representation by comparable boxes in R d , where each vertex is a hypercube defined as the Cartesian product of intervals of form [-1, 0] or [0, 1]. From this together with Lemma 2, it follows that dim cb (K 2 d ) = d.
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	vertices, so 2 • 9 d colors suffice.	◀
	3	Operations
	It is clear that, given a touching representation of a graph G, one can easily obtains a
	touching representation by boxes of an induced subgraph H of G by simply deleting the
	boxes corresponding to the vertices in V (G) \ V (H). We shall show that these representations
	also behave nicely under several other basic operations on graphs. To describe the boxes, we
	shall use the Cartesian product × defined among boxes of lower dimension (so that A × B
			S o C

  1 , v 1 ) and (u 2 , v 2 ) adjacent if and only if u 1 is equal to or adjacent to u 2 in G and v 1 is equal to or adjacent to v 2 in H. To obtain a touching representation of G ⊠ H it suffices to take a product of representations of G and H, but the resulting representation may contain incomparable boxes. Indeed, in general dim It suffices to take a product of the two representations. Indeed, consider a touching respresentation g of G by comparable boxes in R d G , with d G = dim cb (G), and the representation h of H. Let us define a representation

cb (G ⊠ H) is not bounded by a function of dim cb (G) and dim cb (H); for example, every star has comparable box dimension at most two, but the strong product of the star K 1,n with itself contains K n,n as an induced subgraph, and thus its comparable box dimension is at least Ω(log n). However, as shown in the following lemma, this issue does not arise if the representation of H consists of translates of a single box; by scaling, we can without loss of generality assume this box is a unit hypercube. ▶ Lemma 5. Consider a graph H having a touching representation h in R d H by axis-aligned hypercubes of unit size. Then for any graph G, the strong product G ⊠ H of these graphs has comparable box dimension at most dim cb (G) + d H .

Proof.

  Let C ⋆ 1 = ∅ and for i = 2, . . . , m, let C ⋆ i be the root clique of G i on which it is glued in the full clique-sum operation. By Lemmas 12 and 11, G i has a C ⋆ i -clique-sum extendable touching representation by comparable boxes in R d , where d = dim cb (G) + 2k. Repeatedly applying Lemma 10, we conclude that dim cb (G) ≤ d. ◀ Putting this corollary together with Lemmas 3 and 6, we obtain the following bounds. Let G be a class of graphs of comparable box dimension at most d. The class G ′ of graphs obtained from G by repeatedly performing full clique-sums has comparable box dimension at most d + 2 • 3 d . The closure of G ′ by taking subgraphs has comparable box dimension at most 1250 d . Proof. The former bound directly follows from Corollary 13 and the bound on the chromatic number from Lemma 3. For the latter, we need to bound the star chromatic number of G ′ . Suppose a graph G is obtained from G 1 , . . . , G m ∈ G by performing full clique-sums. For i = 1, . . . , m, suppose G i has an acyclic coloring φ i by at most k colors. Note that the vertices of any clique get pairwise different colors, and thus by permuting the colors, we can ensure that when we perform the full clique-sum, the vertices that are identified have the same color. Hence, we can define a coloring φ of G such that for each i, the restriction of φ to V (G i ) is equal to φ i . Let C be the union of any two color classes of φ. Then for each i, G G has a star coloring by at most 2k 2 -k colors. Hence, Lemma 3 implies that G ′ has star chromatic number at most 2 • 25 d -5 d . The bound on the comparable box dimension of subgraphs of graphs from G ′ then follows from Lemma 6. ◀

▶ Corollary 14. i [C ∩ V (G i )] is a forest, and since G[C] is obtained from these graphs by full clique-sums, G[C] is also a forest. Hence, φ is an acyclic coloring of G by at most k colors. By

[START_REF] Michael O Albertson | Coloring with no 2-colored p_4's[END_REF]

,
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  thickness at most 2 d . For positive integers t, s, and d, the class of graphs with an s-comparable envelope representation in R d of thickness at most t is fractionally treewidth-fragile, with a function f
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In their construction h(r) has to be at least 3, and has to tend to +∞.
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