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Statistical phylogeography provides useful tools to characterize
and quantify the spread of organisms during the course of evo-
lution. Analyzing georeferenced genetic data often relies on the
assumption that samples are preferentially collected in densely
populated areas of the habitat. Deviation from this assumption
negatively impacts the inference of the spatial and demographic
dynamics. This issue is pervasive in phylogeography. It affects
analyses that approximate the habitat as a set of discrete demes
as well as those that treat it as a continuum. The present study
introduces a Bayesian modeling approach that explicitly accom-
modates for spatial sampling strategies. An original inference
technique, based on recent advances in statistical computing, is
then described that is most suited to modeling data where se-
quences are preferentially collected at certain locations, indepen-
dently of the outcome of the evolutionary process. The analysis of
georeferenced genetic sequences from the West Nile virus in North
America along with simulated data shows how assumptions about
spatial sampling may impact our understanding of the forces
shaping biodiversity across time and space.

phylogeography | statistical modeling | West Nile virus | Bayesian inference |
sampling design

The combined analysis of genetic and spatial information pro-
vides powerful tools to decipher how evolutionary processes

unfold in space and time. Genetic sequences indeed reveal the
evolutionary relationships between sampled lineages. Evolution-
ary distances may in turn be expressed in terms of calendar time
units when information is available about the rate at which substi-
tutions or mutations take place or when sequences were sampled
at distinct points in time (1). The analysis of spatial coordinates
through the lens of evolution then permits the estimation of the
rate at which lineages travel in space and the history of their
diffusion through space.

Modeling spatial and genetic information in a unified mathe-
matical framework has a long history. The isolation-by-distance
model was first proposed in the middle of the 20th century.
Because of its fundamental inconsistencies (2), this model was
supplanted by a series of “migration-matrix” approaches that
approximate the habitat as a set of discrete locations rather than
as a continuum (3–8). None of the inference techniques based
on these models explicitly accommodate for potential patterns
in sampling locations (see ref. 9 for a review) even though the
product of dispersal and population density is underestimated
(respectively overestimated) if sampled demes are close to (re-
spectively far from) one another (10). These results suggest that
sampling patterns, when ignored, could be responsible for biases
in the inference.

Spatial sampling issues are difficult to deal with partly be-
cause the migration-matrix models rely on a forward-in-time
description of the whole population. The structured coalescent
(11–13) follows instead a sample of lineages backward in time,
thereby naturally accounting for spatial sampling considerations.
Still, the occurrence of “ghost demes,” i.e., demes that were not
sampled, may bias the inference of both migration and effective
subpopulation size parameters (14, 15). Considering the habitat

as a continuum instead of discrete demes potentially alleviates
some of these issues, although the approach implemented so far
is computationally demanding (16).

Properly accommodating for sampling patterns in phylogeog-
raphy became more prominent in the last decade with the
increased availability of georeferenced genetic data combined
with the gain in popularity of efficient implementations of
Bayesian samplers under new phylogeography models (17, 18).
The “mugration” model (19), whereby forward-in-time migration
between discrete demes is modeled as a continuous-time Markov
chain, is now used extensively for modeling rapidly evolving
infectious diseases (20). However, De Maio et al. (21) showed
that nonuniform sampling of individuals across the habitat may
hamper migration parameter estimation under this model.

Diffusion models represent a useful addition to the arsenal
of phylogeographic models since they apply to the cases where
the habitat is a continuum. The “relaxed random walk” (RRW)
approach (22), in particular, was used in many instances for
studying infectious disease outbreaks in humans (see, e.g., ref.
23 for a review). This approach may also be deployed at deeper
timescales (24). For instance, the RRW model is considered one
of the key tools to reconstruct the spatiotemporal dynamics of
species and populations in and out of climate refugia (25). It
describes the spatial dynamics of lineages as a Brownian diffusion
process running forward in time along a gene genealogy or
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phylogeny inferred from the genetic sequences at hand. This
probabilistic framework, implemented in a Bayesian setting, al-
lows for great flexibility in modeling a variety of phenomena at
different evolutionary timescales.

Recently, however, Kalkauskas et al. (26) have shown that
patterns in spatial sampling impact the inference under the RRW
model in a manner similar to that observed with the mugration
model. The biases in parameter estimates result from the implicit
assumption that spatial sampling mirrors the outcome of the
evolutionary process; i.e., sampling intensity reflects population
density. In practice, sampling is generally influenced by practical
considerations and some areas of the habitat may be easier to
access (e.g., valleys vs. mountainous areas) (27). Many other
aspects including socioeconomic factors (wealthy regions are
arguably more likely to generate a large volume of data com-
pared to poor ones) may also be responsible for spatial variation
in sampling intensity. Spatial sampling is thus a complex and
central issue in different research areas related to evolution and
ecology. It is in fact listed as the first challenge in phylodynamic
inference (28–30). While the present study focuses on sampling
issues pertaining to the RRW model, these problems affect all
statistical phylogeography methods that rely on a forward-in-
time description of the spatiotemporal processes, regardless of
the evolutionary timescale considered or the organisms under
scrutiny.

Preferential sampling takes place whenever the process gen-
erating the data (the sequences and their spatial locations in our
case) and that characterizing the sampling process (governing the
timing of sequence collection along with the sampled locations)
are stochastically dependent. This phenomenon was first formal-
ized in the context of geostatistical inference (31). In population
genetics, the impact of preferential sampling on the inference of
effective population size has been investigated recently (32–34).
Karcher et al. (33) showed that the estimation of that quantity
may be systematically biased when sampling times depend on the
dynamics of the population’s demography and the inference is
ignorant of that information.

In statistical phylogeography, preferential sampling may take
place when the probability of collecting a sample at a particular
location in space depends on the likelihood with which the evo-
lutionary process generated sequences in that area. Here again,
preferential sampling needs to be explicitly accounted for when
modeling the processes that delineate the sampled areas (and the
timing of sequence collection) as well as the mechanisms that
generate the sequences and their locations. For example, when
considering the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) pandemic, one of the most important issues with
respect to reconstructing the dynamics of geographical spread
of the virus has been the fact that some countries have se-
quenced many more SARS-CoV-2 genomes than others. This
biased representation of different geographic locations in ge-
nomic datasets affects the inference methods (30) and motivated
the development of new, ad hoc approaches (35). In a different
context, biases in spatial sampling are a confounding factor that
explains the positive association between human density and
the diversity of amphibians and reptiles in Europe (36). Spatial
sampling considerations therefore go beyond the sole analysis
of viral pathogens and properly taking them into account is also
paramount to designing adequate techniques for understanding
the ecological processes shaping biodiversity.

The present study addresses issues pertaining to preferential
sampling in Bayesian phylogeography under the RRW model
(22). We introduce a mathematical framework that accommo-
dates for two distinct sampling schemes. The first scheme, re-
ferred to as the detection scheme, corresponds to the situation
where spatial sampling is either complete or proportional to
the underlying population density. The second sampling scheme,
which we call the survey scheme, applies to the common situation

where some areas are easier to get samples from compared to
other regions of the habitat. Importantly, inference under this
last scheme does not require modeling the variations in the in-
tensity with which various regions of the habitat may be sampled,
although this information may be incorporated in the model.
We address the second scenario using the exchange algorithm,
a sampling technique that generates random draws from doubly
intractable distributions (37, 38).

The analysis of simulated data shows that the biases in dis-
persal rates that affect phylogeography studies (26) diminish
substantially when the inference accommodates for the adequate
spatial sampling scheme. The reconstruction of spatiotemporal
and demographic dynamics of the West Nile virus in North Amer-
ica further reveals the strong impact that spatial sampling has
on phylogeographic inference. Our results indicate that distinct
narratives about the spatial dynamics and the demographics of
populations or species may derive from the analysis of georef-
erenced genetic sequences, depending on the sampling scheme
considered. The statistical modeling techniques introduced in
this study produce a finer picture of the forces governing biodi-
versity in time and space, thereby providing a solution to central
issues in the analysis of georeferenced genetic data.

Results
We compared two spatial sampling schemes: the survey scheme
that considers that sampled locations do not convey information
about the evolutionary process and the detection scheme that
rests on the opposite hypothesis. Fig. 1 shows the posterior
densities for parameters of interest obtained from the analysis
of the West Nile virus (WNV) dataset analyzed under both
sampling schemes. The survey and detection schemes agree that
the inferred origin of the WNV epidemic in North America
is located in the northeast regions of the United States. Its
precise location is less certain under the survey scheme (Fig.
1B) compared to the detection scheme (Fig. 1A), in partic-
ular with regard to the latitudinal component. The effective
population size parameter is smaller under the survey scheme
(Fig. 1C), most likely explaining the more recent estimates for
the age of the most recent common ancestor (MRCA) under
that scheme (Fig. 1D). The signal conveyed by the data about
this parameter (as well as the exponential growth parameter)
is weak though as its posterior distribution is heavily influenced
by the prior (SI Appendix, section 3). While dispersal parameter
estimates are similar to that obtained in previous studies (39,
40), values of that parameter inferred under the survey scheme
are noticeably larger than under the detection scheme, thereby
suggesting long dispersal events in short time frames (Fig. 1E).
Conversely, small dispersal rates favor deep coalescence events,
particularly between tip lineages. This observation may explain
why the estimates of the population growth parameter obtained
under the detection scheme are larger than those derived with
the survey scheme (Fig. 1F).

We next conducted simulations to assess the precision and ac-
curacy of the inference under the two sampling schemes in cases
where samples are collected under various spatial patterns. These
patterns, referred to as sampling designs, correspond to vari-
ous strategies for collecting sequences throughout the habitat.
Table 1 gives the 95% highest posterior density (HPD) inter-
vals of dispersal rate estimates and the proportion of simu-
lated datasets where the true rate lies within this interval (see
SI Appendix, section 4 for the full posterior distributions). For
each of the seven sampling designs (Materials and Methods), the
95% HPD intervals for the dispersal rate along the y axis and
the x axis are given for the two sampling schemes (detection and
survey). Cases where data points are collected around clusters
(designs 2 and 6 in Table 1) or on one side of the habitat (designs
4 and 5 in Table 1) demonstrate the impact of spatial sampling
on the inference. While estimates of the longitudinal component
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Fig. 1. Analyses of WNV data under the detection and survey sampling schemes. (A) Estimated location of the MRCA obtained under the detection scheme.
(B) Estimated location of the MRCA obtained under the survey scheme. The black density line delineates the 95% credibility interval for this parameter. Solid
and shaded dots on the maps correspond to the sampled locations. (C) Posterior densities of Kingman’s coalescent effective population sizes. (D) The age of
the root node. (E) The dispersal distance per year (in kilometers). (F) The exponential growth parameter. Distributions in blue and red were obtained under
the detection and survey schemes, respectively.

of the dispersal parameter are mildly or strongly biased under
the detection scheme for sampling designs 2 to 6 in Table 1,
inference is generally more accurate under the survey scheme
overall, with the most noticeable improvements observed for
“clustered sampling” designs 2 and 6 as well as for the “identity

Table 1. Accuracy and precision of dispersal rate estimates under
seven spatial sampling designs: comparison of the detection and
survey schemes

������Design
Scheme

Detection Survey

[q0.025, q0.975] % correct [q0.025, q0.975] % correct

Lat. [0.78, 1.80] 0.90 [0.94, 3.32] 0.65
1)

Lon. [0.75, 1.72] 0.90 [0.92, 3.34] 0.68
Lat. [0.11, 0.22] 0 [0.27, 2.32] 0.43

2)
Lon. [0.12, 0.24] 0 [0.28, 2.93] 0.53
Lat. [0.38, 0.87] 0.30 [0.78, 14.64] 0.80

3)
Lon. [0.39, 0.88] 0.28 [0.76, 12.30] 0.83
Lat. [0.74, 1.72] 0.93 [0.83, 2.49] 0.78

4)
Lon. [0.27, 0.65] 0.13 [0.59, 4.75] 0.90
Lat. [0.74, 1.72] 0.90 [0.87, 3.02] 0.78

5)
Lon. [0.54, 1.25] 0.75 [0.67, 2.50] 0.90
Lat. [0.10, 0.18] 0 [0.16, 1.09] 0.23

6)
Lon. [0.47, 1.05] 0.63 [0.97, 4.20] 0.55
Lat. [0.77, 1.76] 0.88 [0.93, 3.48] 0.65

7)
Lon. [0.79, 1.79] 0.90 [0.92, 3.16] 0.68

“q0.025” (respectively “q0.975”) is the average taken over 40 simulation
replicates of the 0.025 (respectively 0.975) quantile of the posterior distribu-
tion for the corresponding dispersal parameter. The “% correct” gives the
proportion of simulated datasets where the 95% HPD brackets 1.0, the true
value of the dispersal parameters.

line” sampling design 3. Additionally, dispersal estimates ob-
tained under the “uniform” (design 1) and the “overdispersed”
(design 7) sampling are less accurate under the survey scheme
compared to the detection scheme. This observation suggests
that this sampling scheme is more sensitive to the prior dis-
tribution that applies to these parameters. Additional analyses
with a dispersal prior mean set to 2.0 (instead of 10.0) show
an increased accuracy and precision under the survey scheme
while the quality of the inference remains essentially unchanged
under the detection scheme (SI Appendix, section 4), illustrating
the contrasting impact that prior distributions have, depending
on the sampling scheme considered.

Because the exchange algorithm relies on an “inner” Markov
chain Monte Carlo (MCMC) sampler (Eq. 8) within a standard
“outer” MCMC sampler, inference under the survey scheme is
necessarily slower than under the detection scheme. We focused
here on the median duration (in seconds) of one iteration of the
outer sampler. For the WNV dataset, inference under the survey
scheme is∼40% slower than under the detection scheme with the
median duration of one cycle in the MCMC close to 1.4 ×10−3 s
under the survey scheme and 1.0 ×10−3 s under the detection
scheme. For the simulated datasets, one MCMC step took on
average 8.5 ×10−4 s and 1.3 ×10−3 s, amounting to ∼ 23 h and
∼ 36 h for completing each dataset analysis under the detection
and survey schemes, respectively.

Discussion
The present study shows that dispersal and demographic pa-
rameter inference under popular Bayesian inference models in
statistical phylogeography may be substantially affected by the
data collection procedure. The standard approach assumes that
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the spatial density of samples is proportional to that of the
underlying population. In some situations, however, sampled
locations are selected based on criteria that have little to do with
the evolutionary process. This distinction is crucial as it leads to
very different probabilistic modeling approaches.

In this study, we explicitly incorporate the sampling strategy in
the building of the statistical model. On the one hand, we show
that the standard approach, the so-called detection sampling
scheme, amounts to considering that the data collection process
is fully guided by the outcome of the evolutionary process. On the
other hand, we introduce the survey sampling scheme whereby
the sampling locations are independent from the evolutionary
process. This last scheme is for instance particularly relevant in
cases where sampled areas are chosen based on the ease with
which these areas can be accessed. Bayesian inference under the
survey scheme requires the deployment of a specific sampling
technique, the exchange algorithm, that deals with doubly in-
tractable problems. We employ an extension of this algorithm
that relies on a Metropolis–Hastings sampler of an auxiliary
phylogeography model that runs within the standard sampling
algorithm.

The analysis of the West Nile virus dataset shows that
parameter estimates can vary substantially depending on the
sampling scheme considered. In particular, uncertainty around
the location of the MRCA, which is of particular interest when
searching for the geographic origins of an epidemic, is larger
under the survey scheme. The sampling scheme also impacts
demographic parameters that characterize the dynamics of
the effective size of the underlying population. Our results
suggest that population size is growing under the detection
scheme while it is shrinking under the survey scheme. Records
of WNV-related disease cases in the United States between 1999
and 2009 (https://www.cdc.gov/westnile/statsmaps/cumMaps
Data.html) do not clearly support either hypothesis. This result
illustrates the necessity to accommodate for various sampling
schemes when performing phylogeographic analyses in order
to have a nuanced and comprehensive view of the underlying
evolutionary processes. It is not clear whether one sampling
scheme is more relevant than the other in this particular case. The
detection scheme is likely to be more pertinent in the early stages
of the epidemic where most if not all new cases were reported and
sequenced. The survey scheme is more suitable to the analysis of
subsequent stages of the epidemic where the virus occupies the
whole habitat and only a fraction of all cases are sampled. In any
case, because of its substantial impact on parameter inference,
our results demonstrate that any phylogeography analysis should
rest on a sound understanding and modeling of the sampling
process that generated the data at hand.

The analysis of simulated datasets provides a broad overview
of the relative performance of the two sampling schemes under
various sampling designs that aim at reproducing the constraints
of field surveys. The comparison between detection and survey
schemes shows that estimates derived under the survey scheme
are generally less precise but more accurate than those obtained
with the detection scheme. The diminished precision under the
survey scheme is expected as, according to this sampling scheme,
sampling locations are not considered as data generated solely
by the evolutionary process. For the same reason, dispersal es-
timates derived under the survey scheme are more dependent
on the specifics of the prior distribution, emphasizing the impor-
tance to perform sensitivity analyses when conducting Bayesian
phylogeography inference studies.

Selecting a sensible spatial sampling scheme prior to analyzing
georeferenced genetic data requires careful scrutiny of the exper-
imental design put in place. For instance, field surveys in ecology
may rely on sampling designs ranging from comprehensive sur-
veys where the detection scheme is more relevant to very con-
strained ones where the survey scheme will be more appropriate.

Combining these two sampling schemes in the same analysis
could also be relevant to cases where sampling is comprehensive
early on and partial in subsequent stages of evolution, as could be
the case for viral pandemics. Also, the present study deals with a
continuous diffusion model to describe the movement of lineages
during the course of evolution. Combining various spatial sam-
pling schemes to cases where the population or species of interest
is structured into discrete demes is another potential extension
of our work. Doing so would in fact make the mugration model
more readily comparable to the standard structured coalescent
model. Finally, the location of sampled lineages is often known
with limited precision in practice. Extending previous work (41),
Dellicour et al. (40) recently proposed a generalization of the
standard model whereby lineages may be found within polygons
of various areas. Combining this approach with the techniques
presented in the present study would considerably enhance the
set of tools to deal with spatial sampling designs in statistical
phylogeography.

Although phylogeography and phylodynamics hold great
promise for understanding the evolutionary mechanisms that
govern the spatial distribution of related organisms, proper sta-
tistical modeling of the underlying processes is paramount. While
substantial progress has been made over the years in modeling
the stochastic processes unfolding along the evolutionary trees,
accommodating for realistic sampling designs remains a vast and
largely untackled issue. The present study shows how important
it is to explicitly incorporate spatial sampling in the inference
of probabilistic models in phylogeography and paves the way to
further developments in this area.

Materials and Methods
Notation. In the following, we use p(·) for a generic probability density. The
density f(·) corresponds to that defined by the forward-in-time Brownian
diffusion process governing the spatial component of the phylogeographic
model. The present study rests on the RRW model introduced in ref. 22.
This model describes the location of lineages during the course of evolution
with l∗ the vector of locations of n sampled lineages and l the vector
of ancestral locations at the corresponding n − 1 internal nodes of the
phylogeny. The vector t consists of the 2n − 1 (relative) ages associated to
all nodes in the phylogeny. It is made of n observed values, corresponding
to the dates at the tips, plus n − 1 unknown dates of ancestral nodes that
are estimated from the data. Hence, from a technical point of view, the
n tip dates should be considered as data and t should refer to the dates
at internal nodes only. In the present study t refers instead to the dates
for the whole set of nodes to simplify the notation. τ is a ranked tree
topology and σ the dispersal parameter governing the intensity with which
lineage locations fluctuate during the course of evolution (i.e., along the
phylogenetic tree (t, τ)) under the RRW model. Dispersal along each edge
is thus governed by the product of the time elapsed along that edge, the
value of σ, and that of an edge-specific relative dispersal parameter. Each of
the n − 1 relative dispersal parameters is distributed according to a gamma
distribution with mean equal to 1.0 and SD set to 2.0. Moreover, relative
dispersal rates are normalized following ref. 1 to avoid identifiability issues
similar to those arising with relaxed clock models. h(t, τ |θ) is the joint
density of a vector of node ages and the corresponding ranked tree topology
conditioned on the (composite) generic parameter θ that governs the tree-
generating process. For instance, in the case that the tree-generating process
is Kingman’s coalescent (42), θ corresponds to the product of the effective
population size by the generation time expressed in calendar units. Finally,
let a be the alignment of n genetic sequences observed at the tip nodes
of the tree. Additionally, we provide another component to the model,
the spatial sampling density s(·). The underlying model here defines how
the sites where sampling takes place are selected. e is the random variable
corresponding to the vector of these n sampling locations.

Spatial Sampling Schemes. In the present work we consider that the spatial
coordinates observed at the tips of the tree result from the combination
of two stochastic processes. On the one hand, “lineage location” refers
to the outcome of the spatial diffusion process, i.e., the stochastic process
governing the evolution of the spatial coordinates of lineages along the
phylogeny (with associated density f(·) and random variables l∗, l). On the
other hand, “sampling sites” correspond to the spatial coordinates resulting
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from the sampling process (with associated density s(·) and random vari-
able e). Furthermore, we distinguish two sampling schemes in the present
study. Under the first one, referred to as the “detection scheme,” every case
of an epidemic or every individual organism considered has the same chance
to be sampled independently of its location in space and time. For example,
one can consider the scenario where observers cover almost uniformly the
whole geographical space and randomly detect, sample, and sequence the
organism of interest. More specifically this could be the scenario of an
epidemic that is monitored through a range of medical facilities almost
uniformly covering a given area (typically, a country) and that sequence
samples independently of their location. These conditions more likely apply
to local epidemics than to large-scale epidemics, pandemics, or endemic
infectious diseases.

The second sampling scheme, referred to as the “survey scheme,” is
relevant to the situation where the organisms of interest are scattered
throughout the whole habitat and samples are collected independently of
the dynamics of the geographical spread of these organisms. This scheme
matches with the situation occurring when a pandemic is no longer con-
trolled and infected individuals are to be found all over the habitat. Samples
are then collected at various, possibly arbitrary, points in space and time
with the goal of characterizing a particular evolutionary or epidemiological
feature of the pandemic. For the survey scheme, sampling is contingent on
practical considerations (e.g., the financial cost of accessing a given area)
rather than driven by the outcome of the evolutionary process as in the
detection scheme.

Statistical Modeling under the Two Sampling Schemes. Bayesian parameter
inference relies on the joint posterior density

p(l∗, l, t, τ , σ, θ|a, e) =
Pr(a|τ , t)p(l∗, l, t, τ ,σ, θ, e)

p(a, e)

∝ Pr(a|τ , t)p(l∗, l, t, τ , σ, θ, e), [1]

where Pr(a|τ , t) is the probability of the sequence alignment given the phy-
logenetic tree, which is traditionally evaluated using Felsenstein’s pruning
algorithm (43). The crux of the problem considered in this study lies in the
term p(l∗, l, t, τ ,σ, θ, e). Under the detection scheme, sampling is performed
conditioned on the outcome of the evolutionary process that generated l∗.
Hence, the sampling sites e are fully determined by l∗. More specifically, the
definition given to the density of sampling locations e conditioned on l∗ is

s(e|l∗, l, t, τ ,σ, θ) = s(e|l∗) := δ(e − l∗), [2]

where δ(·) is the delta Dirac function. One then relies on the following
expression for the joint posterior density of interest:

p(l∗, l,t, τ , σ, θ|a, e)

∝ Pr(a|τ , t)s(e|l∗, l, t, τ ,σ, θ)f(l∗, l|t, τ ,σ)h(t, τ |θ)π(σ, θ)

∝ Pr(a|τ , t)f(l∗, l|t, τ ,σ)h(t, τ |θ)π(σ)π(θ) if l∗ = e, [3]

where f(l∗, l|t, τ ,σ) corresponds to the Brownian diffusion model and is
thereby given by the product of bivariate normal densities. h(t, τ |θ) is the
density given by the tree-generating process, i.e., Kingman’s coalescent in
our case. π(·) are prior densities. This expression is that put forward in ref. 22
and implemented in the popular Bayesian samplers BEAST (17) and BEAST2
(18).

Under the survey scheme, sampling is ignorant of the output of the
evolutionary process governing the locations of lineages. As opposed to the
detection scheme, the outcome of the evolutionary process at the sampled
tips is “filtered” by the sampling sites. In other words, l∗ is conditioned on
e. Hence, the modeling strategy followed here mirrors that used for the
detection scheme, where e is conditioned on l∗ instead of the reverse for
the survey scheme. The joint posterior density is then decomposed as

p(l∗, l, t, τ ,σ,θ|a, e)

∝ Pr(a|τ , t)p(l∗, l, t, τ |σ, θ, e)s(e)π(σ)π(θ), [4]

where s(e), the location sampling density, does not convey information
about θ or σ in the present study. It would be possible to amend the current
approach and use a homogeneous Poisson process to model the spatial
sampling. One would then assume that the number of samples collected
depends on the effective population size. The corresponding density, s(e|θ),
would then play a role in the estimation of θ. A similar approach was im-
plemented in ref. 33 to model the dependence between sampling intensity
and effective population size when sequences are sampled serially through
time.

The definition of the conditional density p(l∗, l, t, τ |σ, θ, e) is thus at the
core of the survey scheme modeling approach. This density is null whenever
l∗ differs from e and p(l∗, l, t, τ |σ, θ, e) ∝ p(l∗, l, t, τ |σ, θ) when l∗ exactly
matches e, so that we have

p(l∗, l, t, τ |σ, θ, e) =

{
f(l∗ ,l|t,τ ,σ)h(t,τ|θ)

Z(σ,θ) , if l∗ = e
0 otherwise,

[5]

where Z(σ, θ) = f(l∗|σ, θ) =
∑

τ

∫
f(l∗|t, τ ,σ)h(t, τ |θ)dt is the probability

density of all trees and internal node locations with l∗ = e as the vector of
tip locations. Computing the value of Z(σ, θ) is challenging since it involves
summing over all possible ranked tree topologies and, for each of them,
integrating over all possible internal node ages. Because this term appears
in the denominator in the expression above, the density p(l∗, l, t, τ |σ, θ, e)
(considered here as a function of the dispersal and tree-generating pa-
rameters) is “flatter” than that of f(l∗, l|t, τ , σ)h(t, τ |θ), which is at the
core of the detection scheme (Eq. 3). This observation indicates that less
information about the dispersal and tree-generating parameters is available
under the survey scheme compared to the detection scheme, as one would
expect.

Note that when σ increases, the population gets closer to panmixia.
Z(σ, θ) becomes flatter and the inference of θ under the survey scheme
is the same as that under the detection scheme, which amounts to the
standard coalescent here. We verified that inference under a flat density
for f(l∗, l|t, τ ,σ) resulted indeed in identical posterior distributions for θ

under both sampling schemes. When σ is very small, f(l∗, l|t, τ ,σ) is sharply
peaked around an optimal l and we have Z(σ, θ) � f(l∗, l|t, τ , σ)h(t, τ) so
that p(l∗, l, t, τ |σ, θ, e) � 1 and little information is available about θ under
the survey scheme. Finally, when f(l∗|σ, θ) ∝ 1, i.e., when the evolutionary
process generates uniformly distributed locations at the tips of the recon-
structed tree, then p(l, t, τ |σ, θ, e) = p(l, t, τ |σ, θ) and inference under both
sampling schemes is equivalent.

Bayesian Inference and the Exchange Algorithm. In the context of Bayesian
inference based on the Metropolis–Hastings (M-H) algorithm (44, 45), up-
dating the value of the dispersal parameter (or that of the tree-generating
model) under the survey scheme would involve the calculation of the
acceptance probability ασ defined as follows (we assume that l∗ = e in the
following):

ασ = min
(

1,
p(l∗, l, t, τ ,σ′, θ|e)
p(l∗, l, t, τ ,σ, θ|e)

·
q(σ|σ′)

q(σ′|σ)

)

= min
(

1,
f(l∗, l|t, τ ,σ′)

f(l∗, l|t, τ , σ)
·

Z(σ, θ)

Z(σ′, θ)
·
π(σ′)

π(σ)
·

q(σ|σ′)

q(σ′|σ)

)
. [6]

Calculating this probability is thus problematic since it relies on the ratio of
normalizing terms Z(σ, θ)/Z(σ′, θ) and each of these two terms is compu-
tationally intractable. The same issue arises when updating the value of the
parameter θ. Bayesian inference is thus here “doubly intractable”: Neither
Z(σ, θ) nor p(a, e), i.e., the numerator in the Bayes formula (Eq. 1), can be
computed easily.

Fortunately, the exchange algorithm (37, 46) provides a way to generate
correlated random draws from the target distribution that does not require
evaluating any of the normalizing terms or ratios of these quantities. The
technique described below is an extension of the original exchange algo-
rithm described in ref. 38. The very same approach was used recently in the
context of molecular dating in phylogenetics (47). Let y := (l∗, l, t, τ) be a
composite random variable that includes the vectors of tip and internal node
locations along with the phylogeny. Also, x := (l∗,l, t,ψ) is an auxiliary
random variable with structure similar to that of y. This composite random
variable is made of vectors l∗ and l of n and n − 1 spatial coordinates,
respectively (with l∗ = e); a vector t of 2n − 1 node times; and ψ, a tree
topology. In practice, when proposing new parameter values σ′ and θ′,
x is sampled conditioned on σ′ and θ′ (see below) and is used to calcu-
late the following acceptance probability (see SI Appendix, section 1 for
details):

ασ,θ = min
(

1,
p(y, σ′, θ′, x, σ, θ|e, a)

p(y, σ, θ, x,σ′, θ′|e, a)
·

q(σ, θ|σ′, θ′)

q(σ′, θ′|σ, θ)

)

= min
(

1,
π(σ′)

π(σ)
·

f(l∗, l|t, τ , σ′)

f(l∗, l|t, τ ,σ)
·

f(l∗,l|t,ψ,σ)

f(l∗, l|t,ψ,σ′)
·

h(t, τ |θ′)

h(t, τ |θ)
·

h(t,ψ|θ)
h(t,ψ|θ′)

·

q(σ|σ′)

q(σ′|σ)
·

q(θ|θ′)

q(θ′|θ)

)
, [7]
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where θ′ and σ′ are sampled from standard proposal distributions with
densities q(·|σ) and q(·|θ), respectively.

Examination of the expression above first shows that the removal of all
probability densities involving the auxiliary variable gives the corresponding
acceptance ratio for the detection scheme. It also shows that proposed
values of σ′ and θ′ that are poor with respect to y, thereby leading to a
small Metropolis ratio (second and fourth ratios in Eq. 7), may be offset
by large Metropolis ratios involving the auxiliary variable x (third and fifth
ratios). One thus expects a higher posterior variance for σ and θ under
the survey scheme as the auxiliary variable contributes to sampling more
extreme values for these two parameters than one would do under the
detection scheme.

Also, in the case that the signal conveyed by the sequences is
weak, the following ratios of densities, p(y|σ′, θ′, e)/p(y|σ, θ, e) and
p(x|σ, θ, e)/p(x|σ′, θ′, e), both have posterior expectations equal to 1 so
that the posterior distributions of θ and σ are virtually identical to the prior.
Therefore, under the survey scheme, the sampling locations do not convey
direct information about these parameters. It is the conjunction of the
phylogeny (informed by the sequence alignment) and the sampled locations
that serves as a basis for the inference of the two parameters of interest.
Under the detection scheme, the acceptance ratio for updating both σ and
θ rests on the Metropolis ratio p(y|σ′, θ′)/p(y|σ, θ). The expectation of
the latter is distinct from 1. Hence, one assumes here that the sampling
locations mirror the outcome of the evolutionary processes and therefore
convey information about the rate of dispersal (SI Appendix, section 2).

The computation of ασ,θ in Eq. 7 does not involve any of the prob-
lematic normalizing terms seen above. The exchange algorithm thus pro-
vides an elegant approach for circumventing the computational challenge
posed by this inference problem. Yet, this algorithm requires perfect sam-
pling for x from the corresponding marginal distribution with density
f(l∗, l|t,ψ,σ′)h(t,ψ|θ′)/Z(σ′, θ′), which is not feasible in our case. It is,
however, possible to replace this step with a standard Metropolis–Hastings
algorithm. A series of m M-H steps are thus used here to generate x1, · · · , xm

with acceptance ratio for the ith step of this algorithm as follows:

αxi = min
(

1,
p(x�|e)
p(xi|e)

·
q(xi|x�)

q(x�|xi)

)

= min
(

1,
f(l∗, l�|t�,ψ�,σ′)

f(l∗,li|ti, ψi ,σ′)
·

h(t�,ψ�|θ′)

h(ti ,ψi|θ′)
·

q(li , ti ,ψi|l�, t�,ψ�)

q(l�, t�, ψ�|li , ti, ψi)

)
, [8]

where symbols with a star (	) correspond to proposed values for x. The value
of xm is then retained as a valid random draw from the target distribution,
i.e., p(·|σ′, e) here. In practice, we used m = 10n, where n is the number
of sampled lineages. Larger values for this tuning parameter did not yield
distinct parameter estimates.

Sampling of other model parameters in the phylogeographic model is
conducted using standard operators that all rely on the Metropolis–Hastings
algorithm. The operators implemented in this study (and available in the
PhyREX software program) are similar to that employed by the BEAST
sampler. Note, however, that BEAST relies on mathematical integration of
the ancestral spatial locations given the observed ones and the phylogeny
(39). In PhyREX, ancestral locations are explicit variables instead. Proposing
sensible location values when updating the tree structure (through a “node
slide” operator for instance) required the implementation of additional
operators that are documented in the source code.

Datasets. We assessed the impact of sampling schemes through the analysis
of real and simulated data. We first considered data from the recent

WNV outbreak in North America (39). The corresponding alignment of
georeferenced sequences is one of the “flagship” datasets used by the
BEAST software package. A Hasegawa, Kishino, and Yano (HKY) substitution
model (48), with nucleotide frequencies fixed to their empirical estimates
and no rate variation across sites, was used for the sequence analysis.
The molecular clock was calibrated using information that derived from
the timing of collection of the various sequences (ranging from 1999 to
2007). Variation of substitution rates across edges in the phylogeny was
modeled using a lognormal uncorrelated clock model, similar to that used
by default in BEAST. Branch-specific substitution rates were normalized as in
ref. 49. The tree-generating model was a Kingman coalescent with effective
population size growing (or shrinking) exponentially (50). An exponential
distribution with mean set to 10 was used as a prior for the effective
population size parameter while a flat prior was applied to the exponential
growth parameter. Finally, the evolution of the spatial coordinates along the
phylogeny was modeled using the RRW model with dispersal along the east–
west axis considered as independent of that along the north–south one.
Here again, an exponential distribution with mean set to 10 was used as
a prior for each of the two corresponding dispersal parameters.

We also simulated data to assess the impact of patterns in spatial sampling
on the inference of dispersal parameters. Sequences and locations were
generated following ref. 26. Trees with 1,000 tips were first synthesized
under a Yule process with birth parameter set to 1.0. DNA sequences
evolved along these trees under an HKY model with uniform nucleotide
frequencies, a transition/transversion ratio was fixed to 3.0, and an average
substitution rate was set to 0.01 substitution per base pair per time unit.
Two independent Brownian processes then ran along the tree with both
dispersal parameter values fixed to 1.0. The location at the root node was set
to the point of coordinates (0,0). Seven sampling designs were considered.
For design 1, 50 tips among the 1,000 tips from the full tree were selected
uniformly at random. For design 2, the 50 tips with coordinates that are
the closest from (0,0) were selected. For design 3, we selected the 50 tips
that are the closest from the identity line. For design 4, the 50 tips with
the highest longitudes were selected. For design 5, all 1,000 tips were given
an exponential weight increasing with the longitude. Fifty tips were then
randomly selected proportionally to these weights. For design 6, the 50 tips
that were the closest from the points (–2,0) and (+2,0) were selected. For
design 7, 50 tips were collected sequentially such that the distance between
a newly selected tip and the previous ones is at least equal to 0.1. This last
sampling design resulted in overdispersed samples compared to design 1.
For each sampling design, 40 simulated datasets were analyzed using our
Bayesian sampler under both sampling schemes. The length of the chain
corresponding to each analysis was set to 1×108 steps.

Data Availability. The Bayesian inference methods used in this study
are implemented in the software program PhyREX, part of the
PhyML package and available from GitHub, https://github.com/stephan
eguindon/phyml. Instructions describing how to reproduce the anal-
yses presented in this study can be found at GitHub, http://stephan
eguindon.github.io/phylogeo.html. The West Nile virus dataset was
downloaded from https://beast.community/workshop_continuous_
diffusion_wnv. All study data are included in this article and/or SI Appendix.
Previously published data were used for this work (https://journals.
plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008561).
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