
HAL Id: lirmm-03882927
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03882927v1

Submitted on 2 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable-Size Segmentation for Time Series
Representation

Lamia Djebour, Reza Akbarinia, Florent Masseglia

To cite this version:
Lamia Djebour, Reza Akbarinia, Florent Masseglia. Variable-Size Segmentation for Time Series Rep-
resentation. Transactions on Large-Scale Data- and Knowledge-Centered Systems LIII, 13840, pp.34-
65, 2023, Lecture Notes in Computer Science, 978-3-662-66862-7. �10.1007/978-3-662-66863-4_2�.
�lirmm-03882927�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03882927v1
https://hal.archives-ouvertes.fr


Variable-Size Segmentation for Time Series
Representation

Lamia Djebour, Reza Akbarinia, and Florent Masseglia

Inria, University of Montpellier, CNRS, LIRMM, Montpellier, France
firstname.lastname@inria.fr

Abstract. Given the high data volumes in time series applications, or
simply the need for fast response times, it is usually necessary to rely
on alternative, shorter representations of time series, usually with infor-
mation loss. This incurs approximate comparisons of time series where
precision is a major issue. We propose a new representation approach
called ASAX, coming with two techniques ASAX EN and ASAX SAE,
for segmenting time series before their transformation into symbolic rep-
resentations. Our solution can reduce significantly the error incurred by
possible splittings at different steps of the representation calculation, by
taking into account the entropy of the representations (ASAX EN) or
the sum of absolute errors (ASAX SAE), particularly for datasets with
unbalanced (non-uniform) distributions. This is particularly useful for
time series similarity search, which is the core of many data analytics
tasks. We provide theoretical guarantees on the lower bound of simi-
larity measures, and our experiments illustrate that our approach can
improve significantly the time series representation quality.

Keywords: Time Series, SAX, Representation, Segmentation, Similarity Search,
Information Retrieval

1 Introduction

Many applications in different domains generate time series data at an increas-
ing rate. That continuous flow of emitted data may concern personal activities
(e.g., through smart-meters or smart-plugs for electricity or water consumption)
or professional activities (e.g., for monitoring heart activity or through the sen-
sors installed on plants by farmers). This results in the production of large and
complex data, usually in the form of time series that challenges knowledge dis-
covery [11,22,27,20,21,10,24,19,15,17]. Data mining techniques on such massive
sets of time series have drawn a lot of interest since their application may lead
to improvements in a large number of these activities, relying on fast and accu-
rate similarity search in time series for performing tasks like, e.g., Classification,
Clustering, and Motifs Discovery [20,16,30].

As a consequence of the high data volumes in such applications, similarity
search can be slow on raw data. One of the issues that hinder the analysis of such



2 L. Djebour et al.

data is the dimensionality. This is why time series approximation is often used
as a means to allow fast similarity search. SAX (Symbolic Aggregate ApproX-
imation) [13] is one of the most popular time series representations, allowing
dimensionality reduction on the classic data mining tasks. SAX constructs sym-
bolic representations by splitting the time domain into segments of equal size
where the mean values of segments represent the time series intervals. This ap-
proximation technique is effective for time series having a uniform and balanced
distribution over the time domain. However, we observe that, in the case of time
series having high variation over given time intervals, this division into segments
of fixed length is not efficient.

To illustrate the impact of a fixed length division of the series into segments,
let us consider Figure 1. It shows a set D of time series, taken from ECGFiveDays
dataset of UCR Archive [6]. In this dataset, the time series length is 136 and the
data distribution in the time domain is unbalanced. We can notice that there
is almost no variation from time point 1 to 45 and from 95 to the end. On the
other hand, the remaining part, from time point 45 to 95, shows an important
variation in the data values. Figure 1b shows the SAX division on D, with a
fixed-size segmentation on the time series. In this example, the segment size is
10, leading to 13 segments in total. If we take any time series X from D and
convert it into its SAX representation, the first 4 segments are always represented
by the same symbol, all the values of these 4 segments being close to each other.
Actually, there is no need to consider these 4 distinct segments. And the same
applies to the last 3 segments. Meanwhile, for segments 5-10, all the values of
each segment are represented by a single symbol while the data values present
great variations, causing a significant loss of information on these segments.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

−6

−4

−2

0

2

4

6

(a) ASAX SAE segmentation on
D, with 13 segments.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

−6

−4

−2

0

2

4

6

(b) SAX segmentation on D, with
13 segments

Fig. 1: ASAX SAE segmentation vs. SAX segmentation

As one can observe, it is not necessary to split the parts that are constant
or where the variation is low since they don’t carry any relevant information
and would therefore better form a single segment. It is more efficient to divide
into several small segments the parts where variation is important in order to
preserve potentially relevant information as shown in Figure 1a. The splitting



Variable-Size Segmentation for Time Series Representation 3

of Figure 1a is the actual splitting obtained by our variable-size segmentation
approach using our ASAX SAE technique (based on the representations’s sum
of absolute errors) with a segment budget limited to 13. It would be rather
counter-intuitive to merge segments 1-5 and 10-13, while it is the opposite for
Figure 1b. But, the time intervals where data values show important differences
should be split to create more segments, e.g., between time point 50 and 90. By
proposing such a customized splitting, we aim at improving the performance of
information retrieval algorithms that will rely on our data representation. As
illustrated by our experiments, the precision gain of ASAX SAE compared to
SAX for kNN search is 38% over the dataset of Figure 1 (i.e., ECGFiveDays
dataset).

Our main contribution is to provide an adaptive interval distribution, rather
than an equal distribution in time. However, the number of possible segmen-
tations of k segments with n can be very high. Furthermore, when searching
for the best variable-size segmentation, a large number of computation may be
repeated. Therefore, it is important to efficiently carry out the computations
involved. We propose an new time series representation approach, called ASAX,
that by smart selection of variable-size segments from the time domain allows
to significantly reduce the information loss in the time series representation. To
perform the variable-size segmentation in ASAX, we propose two different tech-
niques ASAX EN and ASAX SAE. Briefly, we make the following contributions
in this paper:

– We propose two new representation techniques, called ASAX EN (based on
the entropy) and ASAX SAE (based on SAE the Sum of Absolute Errors),
that allow obtaining a variable-size segmentation of time series with better
precision in retrieval tasks thanks to the lower information loss.

– We propose a lower bounding method that allows approximating the distance
between the original time series based on their representations in ASAX.

– We propose an efficient algorithm, called ASAX DP, for improving the execu-
tion time of our segmentation approach, by means of dynamic programming.

– We implemented our solution and conducted empirical experiments using
several real world datasets. The results illustrate that it can obtain signifi-
cant performance gains in terms of precision for similarity search compared to
SAX, particularly for datasets with non-uniform distributions. They suggest
that the more the data distribution in the time domain is unbalanced (non-
uniform), the greater is the precision gain of our approach. For example, for
the ECGFiveDays dataset that has a non-uniform distribution in the time
domain, the precision of ASAX SAE is 93% and 82% for ASAX EN com-
pared to 55% for SAX. Furthermore, the results illustrate the effectiveness
of our dynamic programming algorithm ASAX DP, e.g., up to ×40 faster
than the basic algorithm over some datasets.

This article is an extension of [7], with at least 30% of added value. Particu-
larly, in Section 5, we propose ASAX SAE, that is a variable-size segmentation
algorithm based on SAE measurement. The execution time of ASAX SAE is
lower than that of previously proposed ASAX EN, and its precision is often



4 L. Djebour et al.

better. Furthermore, in Section 6, we propose a dynamic programming solution,
called ASAX DP, which significantly improves the execution time of ASAX SAE.
In addition, in Section 8, we report new experimental results done for evaluating
the performance of ASAX SAE and ASAX DP.

The rest of the paper is organized as follows. In Section 2, we define the
problem we address. We discuss the related work in Section 3. In Section 4,
we propose ASAX EN for efficient segmentation of time seires, and in Section
5, we propose ASAX SAE. In Section, 6 we propose ASAX DP, the dynamic
programming version of ASAX SAE. In Section 7 we present a formula for ap-
proximating the Euclidean distance of time series based on their representation
given by ASAX EN or ASAX SAE. In Section 8, we present the experimental
evaluation of our approaches, and we conclude in Section 9.

2 Problem Definition and Background

In this section, we first present the background about SAX representation, and
then define the problem we address.

D Time series database

X, Y , Q Time series

n = |X| The length of time series X

l The segment size

w The number of PAA segments

a The cardinality (the alphabet size)

X The PAA representation of time series X

X̂ The SAX representation of time series X

k the k nearest neighbors

Table 1: Some frequently used symbols

A time series X is a sequence of values X = {x1, ..., xn}. We assume that
every time series has a value at every timestamp t = 1, 2, ..., n. Thus, all time
series in a database have the same length. The length of X is denoted by |X|.

SAX allows a time series T of length n to be reduced to a string of arbitrary
length w. Table 1 lists the notations used in this paper.

2.1 SAX Representation

Given two time series X = {x1, ..., xn} and Y = {y1, ..., yn}, the Euclidean
distance between X and Y is defined as [9]:

ED(X,Y ) =

√√√√ n∑
i=1

(xi − yi)2



Variable-Size Segmentation for Time Series Representation 5

0 2 4 6 8−2

−1

0

1

2

(a) A time series X of
length 8

0 2 4 6 8−2

−1

0

1

2

(b) A PAA representation
of X, with 4 segments

0 2 4 6 8−2

−1

0

1

2

00

01
10

11

(c) A SAX representa-
tion of X, with 4 seg-
ments and cardinality 4,
[00, 00, 01, 11]

Fig. 2: A time series X is discretized by obtaining a PAA representation and
then using predetermined break-points to map the PAA coefficients into SAX
symbols. Here, the symbols are given in binary notation, where 00 is the first
symbol, 01 is the second symbol, etc. The time series of Figure 2a in the represen-
tation of Figure 2c is [first, first, second, fourth] (which becomes [00, 00, 01, 11]
in binary).

The Euclidean distance is one of the most popular similarity measurement meth-
ods used in time series analysis.

The Symbolic Aggregate ApproXimation (SAX) is based on the Piecewise
Aggregate Approximation (PAA) [13] which allows for dimensionality reduction
while providing the important lower bounding property as we will show later.
The idea of PAA is to have a fixed segment size, and minimize dimensionality
by using the mean values on each segment. Example 1 gives an illustration of
PAA.

Example 1. Figure 2b shows the PAA representation of X, the time series of
Figure 2a. The representation is composed of w = |X|/l values, where l is the
segment size. For each segment, the set of values is replaced with their mean
represented in the figure with solid horizontal lines. The length of the final
representation w is the number of segments (and, usually, w << |X|).

By transforming the original time series X and Y into PAA representations
X = {x1, ..., xw} and Y = {y1, ..., yw}, the lower bounding approximation of the
Euclidean distance for these two representations can be obtained by:

DRf (X,Y ) =

√
n

w

√√√√ w∑
i=1

(xi − yi)
2

The SAX representation takes as input the reduced time series obtained
using PAA. It discretizes this representation into a predefined set of symbols,
with a given cardinality, where a symbol is a binary number. Example 2 gives
an illustration of the SAX representation.



6 L. Djebour et al.

Example 2. In Figure 2c, we have converted the time series X to SAX repre-
sentation with size 4, and cardinality 4 using the PAA representation shown in
Figure 2b. The discretization is achieved by considering a series of breakpoints
running parallel to the x-axis represented in the figure with dashed horizontal
lines. for each segment depending on the PAA coefficient an alphabet symbol is
mapped to that segment based on the breakpoints interval it falls in. We denote
SAX(X) = [00, 00, 01, 11].

The lower bounding approximation of the Euclidean distance for SAX rep-
resentation X̂ = {x̂1, ..., x̂w} and Ŷ = {ŷ1, ..., ŷw} of two time series X and Y is
defined as:

MINDISTf (X̂, Ŷ ) =

√
n

w

√√√√ w∑
i=1

(dist(x̂i, ŷi))2

where the function dist(x̂i, ŷi) is the distance between two SAX symbols x̂i and
x̂i. The lower bounding condition is formulated as:

MINDISTf (X̂, Ŷ ) ≤ ED(X,Y )

2.2 Similarity Queries

The problem of similarity queries is one of the main problems in time series
analysis and mining. In information retrieval, finding the k nearest neighbors (k-
NN) of a query is a fundamental problem. Let us define exact and approximate
k nearest neighbors.

Definition 1. (Exact k nearest neighbors) Given a query time series Q
and a set of time series D, let R = ExactkNN(Q,D) be the set of k nearest
neighbors of Q from D. Let ED(X,Y ) be the Euclidean distance between two
time series X and Y , then the set R is defined as follows:

(R ⊆ D) ∧ (|R| = k) ∧ (∀a ∈ R,∀b ∈ (D −R), ED(a,Q) ≤ ED(b,Q))

Definition 2. (Approximate k nearest neighbors) Given a set of time
series D, a query time series Q, and ϵ > 0. We say that R = AppkNN(Q,D) is
the approximate k nearest neighbors of Q from D, if ED(a,Q) ≤ (1+ϵ)ED(b,Q),
where a is the kth nearest neighbor from R and b is the true kth nearest neighbor.

2.3 Time Series Approximation

The SAX representation proceeds to an approximation by minimizing the di-
mensionality: the original time series are divided into segments of equal size.

This representation does not depend on the time series values, but on their
length. It allows SAX to perform the segmentation in O(n) where n is the time
series length. However, for a given reduction in dimensionality, the modeling error
may not be minimal since the model does not adapt to the information carried



Variable-Size Segmentation for Time Series Representation 7

by the series. Our claim is that, by taking into account the information carried
by time series for choosing the segments, we may obtain significant increase in
the precision of kNN queries. This issue motivated us for proposing an adaptive
representation aiming at minimizing the information loss.

2.4 Problem Statement

Our goal is to propose a variable-size segmentation of the time domain that
minimizes the loss of information in the time series representation.

The problem we address is stated as follows. Given a database of time series
D and a number w, divide the time domain into w segments of variable size such
that the representation of the times series based on that segmentation lowers the
error of similarity queries.

3 Related Work

Several techniques have been yet proposed to reduce the dimensionality of time
series. Examples of such techniques that can significantly decrease the time and
space required for similarity search are: singular value decomposition (SVD) [9],
the discrete Fourier transformation (DFT) [1], discrete wavelets transformation
(DWT) [4], piecewise aggregate approximation (PAA) [12], random sketches [5],
Adaptive Piecewise Constant Approximation (APCA) [3], and symbolic aggre-
gate approXimation (SAX) [14].

SAX [14] is one of the most popular techniques for time series representation.
It uses a symbolic representation that segments all time series into equi-length
segments and symbolizes the mean value of each segment. Some extensions of
SAX have been proposed for improving the similarity search performance via in-
dexing [23,2]. For example, iSAX [23] is an indexable version of SAX designed for
indexing large collections of time series. iSAX 2.0 [2] proposes a new mechanism
and also algorithms for efficient bulk loading and node splitting policy, which is
not supported by iSAX index. In [2], two extensions of iSAX 2.0, namely iSAX
2.0 Clustered and iSAX2+, have been proposed. These extensions focus on the
efficient handling of the raw time series data during the bulk loading process,
by using a technique that uses main memory buffers to group and route similar
time series together down the tree, performing the insertion in a lazy manner.

There have been SAX extensions designed to improve the representation of
each segment, while using the SAX fixed-size segmentation, e.g., [18,25,29]. For
example, SAX TD improves the representation of each segment by taking into
account the trend of the time series. It uses the values at the starting and ending
points of the segments to measure the trend. TFSA [28] and SAX CP [26] are
other trend-based SAX representation methods. TFSA proposes a representation
method for long time series based on the trend, and SAX CP considers abrupt
change points while generating the symbols in order to capture time series’
trends.



8 L. Djebour et al.

ABBA [8] is a symbolic representation of time series based on an adap-
tive polygonal chain approximation of the time series into a sequence of tu-
ples, followed by a mean-based clustering to obtain the symbolic representation.
However, the authors of ABBA have not proposed an approximate function for
comparing the time series in their representation form, and this prevents ABBA
from being used for kNN search over the representations.

To increase the quality of time series approximation, our ASAX approach is
based on variable-length segmentation. ASAX is complementary to the existing
SAX extensions, e.g., indexing based techniques or those that use the trend
for representing the segments. This makes our variable-size segmentation an
advantageous alternative for segmenting the time domain in indexing solutions
like iSAX.

4 Adaptive SAX based on Entropy

In this section, we propose ASAX EN, our first variable-size segmentation tech-
nique for the time series representation. To create a segmentation with minimum
information loss, ASAX EN divides the time domain based on the representation
entropy.

In the rest of this section, we first describe the notion of entropy for the time
series representation. Then, we describe our algorithm for creating the variable-
size segments based on this measurement.

4.1 Entropy

Entropy is a mathematical function which intuitively corresponds to the amount
of information contained or delivered by a source of information. This source of
information can be of various types. The more the source emits different informa-
tion the higher is the entropy. If the source always sends the same information,
the entropy is minimal. Formally, entropy is defined as follows.

Definition 3. Given a set X of elements, and each element x ∈ X having a
probability Px of occurrence, the entropy H of the set X is defined as: H(X) =
−
∑

x∈X Px × logPx

In our context, we calculate the entropy on a set containing the different
symbolic representations obtained from the transformation of the original time
series of a dataset according to a given segmentation. The entropy computed
on this set allows to measure the quantity of information contained in the time
series representations. Let us illustrate this using an example.

Example 3. Consider the database D={x,y,z} in Figure 3 where x, y and z are
time series with l=8. Let us create a representation having two segments (e.g., 0-
4, and 4-8) obtained by dividing the time domain into two segments of the same
size (the split is represented with the red dashed line). Then we compute the
entropy of the representation of the set D. To generate the representation of the



Variable-Size Segmentation for Time Series Representation 9

time series x, y and z, they are discretized by obtaining their PAA representation
and then using predetermined break-points to map the PAA coefficients into the
corresponding symbols like the SAX representation proceeds. We have converted
the 3 time series into symbolic representations with size 2, and cardinality 4.
Thus, the symbolic representations of x, y and z are x̂ = [00, 10], ŷ = [00, 10]
and ẑ = [00, 10], respectively. We notice that the 3 time series have the same
symbolic representation, thus, the set X consists of only this unique symbolic
representation with an occurrence equal to 3., i.e., X = {[00, 10]}. The entropy
H(X) of X is computed as follows:

H(X) = −(P (x = [00, 10])× log2 P (x = [00, 10]))
where the probability for the word x is P (x = [00, 10]) = 3

3 = 1. Therefore,
we have H(X) = −(1 log 1) = 0 meaning that in the representation X there is
no information allowing to distinguish the three original time series from each
other. This is explained by the fact that they have the same representation with
a fixed-size segmentation.

0 2 4 6 8−2

−1

0

1

2

00

01

10

11x
y
z

Fig. 3: ASAX EN segmentation with 2 segments

In the next subsection, we describe our algorithm to create variable-size seg-
ments based on entropy.

4.2 Variable-Size Segmentation Based on Entropy Measurement

Given a database of time series D, and a number w, our goal is to find the
k variable size segments that minimize the loss of information in time series
representations.

Intuitively, our algorithm works as follows. First it splits the time domain
into two segments of equal size. Then, it performs w − 2 iterations, and in each
iteration it finds the segment s whose split makes the minimum loss in entropy,
and it splits that segment. By doing this, in each iteration a new segment is
added to the set of segments. This continues until having w segments.

Let us now describe ASAX EN in more details. The pseudo-code is shown
in Algorithm 1. It first splits the time domain into two equal parts and creates



10 L. Djebour et al.

two segments that are included to the set segments (Line 1). Then, it sets the
current number of segments, denoted as k, to 2 (Line 2).

Afterwards, in a loop, until the number of segments is less than w the algo-
rithm proceeds as follows. For each segment i (from 1 to k), i is divided into two
equal parts, if its size is greater than minSize, which is the minimum possible
size of a segment, and it’s default value is 1. Then, a temporary set of segments
tempSegments is created including the two new segments and all previously
created segments except i (i.e., expect the one that has been divided). Then, for
each time series ts in the databaseD, the algorithm generates the symbolic repre-
sentation of ts (denoted as word) using the segments included in tempSegments
with the given cardinality a (Line 12), and inserts it to a hash table (Line 13).
Note that for all time series, ASAX EN uses the same cardinality to map the
PAA coefficients into the corresponding symbols. After having inserted all the
representations of the time series contained in D to the hash table, the entropy
of the representations is calculated (Line 14). If the entropy is higher than the
maximum entropy obtained until now, the algorithm sets i as the segment to
be split, and keeps the entropy of the representation. This procedure continues
by splitting one of the segments at each time, and computing the entropy. The
algorithm selects the one whose entropy is the highest, and updates the set of
the segments by removing the selected segment, and inserting its splits to the
set segments (Lines 18-20). Then, the variable k, which shows the number of
current segments, is incremented by one. The algorithm ends if the number of
segments is equal to the required number, i.e., w.

Example 4. Let us consider the dataset D in Figure 3 which represents the ini-
tialization of the algorithm, i.e., the time domain is divided into two segments
of the same size. The next step is to create the 3rd segment by splitting one of
the two existing segments. Two different scenarios are possible.

Scenario 1 : The first scenario is shown in Figure 4a where the left segment is di-
vided into two equal parts. We generate the symbolic representation of the time
series x, y, and z by using the 3 segments. Let’s assume the cardinality is 4. Then,
x̂ = [00, 00, 10], ŷ = [00, 00, 10] and ẑ = [00, 00, 10] are the symbolic representa-
tion of x, y and z, respectively. Thus, the set X1 consists of only one represen-
tation [00,00,10] with an occurrence of 3, i.e., X1 = [00, 00, 10]. The entropy is
then calculated as: H(X1) = −(P (x = [00, 00, 10]) logP (x = [00, 00, 10])) where
P (x = [00, 00, 10]) = 3

3 = 1 and we have H(X1) = −(1 log 1) = 0.

Scenario 2 : This scenario is shown in Figure 4b in which the right segment is
split. As for Scenario 1 we generate the symbolic representation of time series x, y
and z using the 3 segments, and cardinality of 4. x̂ = [00, 01, 10], ŷ = [00, 01, 11]
and ẑ = [00, 01, 11] are the symbolic representation of x, y and z, respectively. In
this scenario the representation set X2 consists of [00,01,10] with an occurrence
of 1 and [00,01,11] with an occurrence of 2, i.e., X = [00, 01, 10], [00, 01, 10]. The
entropy is calculated as:
H(X2) = −(P (x = [00, 01, 10]) logP (x = [00, 01, 10]) +
P (x = [00, 01, 11]) logP (x = [00, 01, 11])) where P (x = [00, 01, 10]) = 1

3 and



Variable-Size Segmentation for Time Series Representation 11

Algorithm 1: ASAX EN variable-size segmentation

Input: D: time series database; n: the length of time series; minSize: the
minimum possible size of a segment; a: cardinality of symbols; w: the
required number of segments

Output: w variable-size segments
1 segments = {[0, n

2
− 1], [n

2
, n− 1]}; // split time domain into two equal size

segments
2 k = 2
3 while k ̸= w do
4 segmentToSplit = 1
5 entropy = 0
6 for i=1 to k do
7 tempSegments = segments
8 if length(tempSegments[i]) > minSize then
9 split segment i into two equal parts, and replace the segment i by

its corresponding parts in tempSegments
10 hashtable = new HashTable
11 foreach ts ∈ D do
12 word = Symbolic-Representation(ts, tempSegments, a)
13 hashTable.put(word)

14 e = entropy(hashTable)
15 if e > entropy then
16 segmentToSplit = i
17 entropy = e

18 split segmentToSplit into two equal size segments s1 and s2
19 segments = segments - {segmentToSplit}
20 segments = segments

⋃
{s1, s2}

21 k = k+1

22 return segments



12 L. Djebour et al.

P (x = [00, 01, 11]) = 2
3 . Then, H(X2) = −( 13 log

1
3 + 2

3 log
2
3 ) = 0.918.

After having calculated the entropy for the two scenarios, we see thatH(X1) < H(X2).
We aim to maximize the entropy, therefore we choose the segmentation generated
in Scenario 2 for this iteration of our algorithm. We continue the next iterations,
until the number of segment reaches w.

0 2 4 6 8−2

−1

0

1

2

00

01

10

11x
y
z

(a) Scenario 1 of ASAX EN segmenta-
tion with 3 segments

0 2 4 6 8−2

−1

0

1

2

00

01

10

11x
y
z

(b) Scenario 2 of ASAX EN segmenta-
tion with 3 segments

Fig. 4: The two different scenarios of ASAX EN segmentation with 3 segments.
Scenario 4b is the one chosen because it optimizes the entropy.

Let us now analyze the complexity of ASAX EN algorithm. Let |D| be the
number of time series in the database, n the time series length, and w the desired
number of segments. In the while loop, the algorithm performs w−2+1 iterations,
and in each iteration it tries the division of each segment and computes the
entropy of the segmentation. Thus, in total the number of entropy computations
isO(w2). For each entropy computation, the database should be scanned, and the
representation of each time series created. This is done in O(|D|×n). Therefore,
in total the time complexity of the algorithm is O(|D| × n× w2).

4.3 Uniform Distribution of Symbols

SAX breakpoints divide the value domain into regions of different size where
small regions are concentrated on the middle of the value domain and regions at
extreme values are larger. This is illustrated by Figure 5, with three time series
from our motivating example in Figure 1 with 6 segments. The breakpoints of
SAX with 10 symbols are represented by horizontal lines, and, logically, they
appear close to the center of the distribution. If we keep such distribution of
symbols, then we would have two issues. First, the extreme values of the series
like those above 2 or below -4 would be assigned the same symbol (their PAA
value on the segment would fall in the same symbol). Second, the adaptive
segmentation would consider that the slight variations around zero are more



Variable-Size Segmentation for Time Series Representation 13

important than the ones at extreme values, ending in irrelevant splits that favor
minor information gain. For this reason, we propose to calculate the breakpoints
differently. In ASAX EN, the discretization is done based on breakpoints that
produce uniform distributions of symbols. These breakpoints divide the value
domain into regions of equal size. In the case of Figure 5 the 10 symbol regions
will be evenly distributed in the range of data values.

0 22 44 66 88 110 132
−6

−4

−2

0

2
x
y
z

Fig. 5: The Gaussian based distribution of symbols in SAX are not suitable for
ASAX EN since they would favor minor information gain.

5 Adaptive SAX based on SAE

In this section, we propose ASAX SAE, our second variable-size segmentation
approach for time series representation. Here, to create a segmentation with
minimum information loss on time series approximation, ASAX SAE divides
the time domain by taking into account the sum of absolute errors (SAE) of
the representation with a bottom-up strategy instead of a top-down strategy as
used in the previous approach. Our experimental results have shown that this
method is faster than ASAX EN, and its precision is often better.

In the rest of this section, we first describe the notion of sum of absolute errors
(SAE) for the time series representation, and then, we describe the algorithm
that creates the variable-size segments based on SAE measurement.

5.1 Sum of Absolute Errors (SAE)

SAE (Sum of Absolute Errors) calculates the sum of the absolute difference
between the actual and the estimated values. Formally, SAE is defined as follows.



14 L. Djebour et al.

Definition 4. Given a vector X of n elements and a vector X̃ being the esti-
mated values generated from X, SAE of the estimation is given by:

SAE(X, X̃) =

n∑
i=1

|xi − x̃i|

In our context, we calculate the SAE on the PAA representation obtained
from the transformation of the original time series of a dataset according to a
given segmentation. The SAE computed on this representation allows to measure
the approximation error on the time series by the PAA representation compared
to the original time series. The lower the SAE, the closer is the PAA represen-
tation to the original data.

By transforming a time series X = {x1, ..., xn} into a PAA representation
X = {x1, ..., xw}, X is reduced to the PAA representation composed of w seg-
ments. For each segment, the set of values is replaced with their mean. We can
compute the SAE for each segment, that is in this case, the sum of the ab-
solute differences between each value (original value) and its segment’s mean
(estimated value). In the following, we explain how to compute the SAE of a
PAA representation for a given segmentation.

Let X be the PAA representation of X with w segments. The SAE of X for
a particular segment is the sum of the absolute errors for the time series values
in this segment. Formally, SAE of X for a segment si is computed as:

SAE(si, xi) =

UB(si)∑
j=LB(si)

|xj − xi|

where si is the selected segment, LB(si) and UB(si) are the start and end time
points of si respectively.

In the next subsection, we describe our algorithm that creates variable-size
segments thereby providing an accurate representation of time series based on
the SAE measurement.

5.2 Variable-Size Segmentation Based on SAE Measurement

Given a database of time series D, and a number w, our goal is to find the
w variable size segments that minimize the loss of information in time series
representations by minimizing the approximation error of these representations.

Intuitively, our algorithm works as follows. Based on a starting segment size
value size, it firstly splits the time domain into segments of length size. The
default value of size is 2. Let k be the initial number of segments. The algo-
rithm performs k − w iterations, and in each iteration it finds the two adjacent
segments si and si+1 whose merging gives the minimum SAE (MSAE) on the
representations, and merges them. By doing this, in each iteration the two se-
lected segments are merged to form a single segment which replaces them in the
set of segments, reducing the number of segments by one. This continues until
having w segments.



Variable-Size Segmentation for Time Series Representation 15

Algorithm 2: ASAX SAE variable-size segmentation

Input: D: time series database; n: the length of time series; size: the starting
size of segments; w: the required number of segments

Output: w variable-size segments
1 k = ⌈ n

size
⌉

2 segments = {
⋃k−1

i=0 [size× i, size× (i+ 1)− 1]} // split time domain into k
segments of size size

3 while k ̸= w do
4 segmentsToMerge = null
5 msae = ∞
6 for i=1 to k − 1 do
7 s = merge (si, si+1)
8 sae = 0
9 foreach ts in D do

10 sae = sae + SAE(ts, s)

11 if sae < msae then
12 segmentsToMerge = i
13 msae = sae

14 s = merge (ssegmentsToMerge, ssegmentsToMerge+1)
15 segments = segments− {ssegmentsToMerge, ssegmentsToMerge+1}
16 segments = segments

⋃
s

17 k = k-1

18 return segments



16 L. Djebour et al.

Let us now describe our algorithm in more details. The pseudocode is shown
in Algorithm 2. It first sets the current number of segments, denoted as k, to
n

size where n is the length of time series (Line 1). Then, it splits the time domain
into k segments of length size that are included to the set segments (the set
containing the current segmentation) (Line 2).

Afterwards, in a loop, until the number of segments is more than w the
algorithm proceeds as follows. For each segment si (i from 1 to k − 1), si is
merged with segment si+1 to form a single segment denoted as s (Line 7). Then,
for each time series ts in the database D, the algorithm generates its PAA
representation on segment s and calculates the corresponding SAE and adds the
result of the computed SAE to sae (Line 10).

After having calculated the sum of the SAE for the PAA representation of
all the time series contained in D, if the SAE is less than the MSAE (minimum
SAE) obtained so far, the algorithm sets i as the segment to be merged with the
next one, and keeps the SAE of the representation (Lines 12, 13). This procedure
continues by trying the merging of every two adjacent segments of segments at
each time, and computing the SAE. The algorithm selects the merging whose
SAE is the lowest, and updates the set of the segments by removing the selected
segments, and inserting its merging to segments (Lines 14-16). Then, the number
of current segments (i.e., k) , is decremented by one (Line 17). The algorithm
ends when k gets equal to the required number, i.e., w.

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 s1 s2 s3 s4 s5

Fig. 6: The PAA representation of time series X contains 5 segments.

Let us illustrate the principle of our algorithm using an example. For sim-
plicity, we consider a dataset containing only a single time series.

Example 5. Let us apply our algorithm on the time series X in Figure 6 by taking
the initial size of 2 for the starting segments. Notice that the PAA encoding is
represented with black horizontal lines. The algorithm starts by dividing the
time domain into 5 segments of size 2. The next step is to reduce the number of
segments from 5 to 4. For this purpose, the algorithm tests the merging of every
two adjacent segments of the 5 existing segments, in order to find the one that
has the minimum SAE. Four different scenarios are possible:



Variable-Size Segmentation for Time Series Representation 17

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3 S4

(a) Scenario 1

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3 S4

(b) Scenario 2

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3 S4

(c) Scenario 3

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3 S4

(d) Scenario 4

Fig. 7: The four different scenarios of ASAX SAE segmentation with 4 segments.
Scenario 1 is the one chosen because it provides the minimum SAE.

Scenario 1: The first scenario is shown in Figure 7a where s1 and s2 of the initial
segmentation (shown in figure 6) are merged into one segment. We calculate the
values’s mean on the resulting segment (denoted S1 in figure 7a), and then
compute the SAE of this approximation that is SAE1(X,X) = 0.55.

Scenario 2: This scenario is shown in Figure 7b in which s2 and s3 of the initial
segmentation are merged. As for Scenario 1, we compute the mean of X on the
current segment S2. Here, SAE2(X,X) = 2.3.

Scenario 3: This scenario is shown in Figure 7c, where we merge s3 and s4. For
this merging (S3), SAE3(X,X) = 2.2.

Scenario 4: The last scenario is shown in Figure 7d, where we merge s4 and s5.
For this segment S4, SAE4(X,X) = 0.65.

We have calculated the SAE for the 4 scenarios. Since we aim to minimize the
SAE, we choose Scenario 1 that leads to the minimum SAE value (MSAE), that
isMSAE = 0.55 (obtained by merging s1 and s2). After merging the segments s1
and s2, the algorithm continues the next iterations, until the number of segment
reaches w.

Let us now analyze the complexity of ASAX SAE algorithm. Let |D| be the
number of time series in the database, n the time series length, and w the desired
number of segments. The initial number of segments is n

size , where size is the
initial size of the segments. In the while loop, the algorithm performs n

size−w+1
iterations, and in each iteration it tries the merging of each segment with its next
segment, and computes the SAE of the segmentation. The maximum value for
n

size is n, i.e., with size = 1. Thus, the maximum number of SAE computations



18 L. Djebour et al.

Algorithm 3: ASAX DP variable-size segmentation

Input: D: time series database; n: the length of time series; size: the starting
size of segments; w: the required number of segments

Output: w variable-size segments
1 k = ⌈ n

size
⌉

2 segments = {
⋃k−1

i=0 [size× i, size× (i+ 1)− 1]} // split time domain into k
segments of size size

3 matrix = matrix of k × k values initialized to -1
4 while k ̸= w do
5 segmentsToMerge = null
6 msae = ∞
7 for i=1 to k − 1 do
8 s = merge (si, si+1)
9 r, c =Compute the position in matrix corresponding to s

10 sae = 0
11 if matrix[r,c] = -1 then
12 foreach ts in D do
13 sae = sae + SAE(ts)

14 matrix[r,c]=sae

15 else
16 sae = matrix[r,c]

17 if sae < msae then
18 segmentsToMerge = i
19 msae = sae

20 s = merge (ssegmentsToMerge, ssegmentsToMerge+1)
21 segments = segments− {ssegmentsToMerge, ssegmentsToMerge+1}
22 segments = segments

⋃
s

23 k = k-1

24 return segments



Variable-Size Segmentation for Time Series Representation 19

is O(n−w)2. For each SAE computation, the database should be scanned, and
the error of each time series representation computed. This is done in O(|D|×n).
Therefore, in total the time complexity of the algorithm is O((n−w)2×|D|×n).

6 ASAX SAE based on Dynamic Programming

The ASAX SAE algorithm, which we presented in the previous section, can re-
duce significantly the information loss in time series representations and is much
more efficient than ASAX EN in terms of accuracy and calculation time, as illus-
trated by our experiments. However, its execution time may be high, particularly
over large time series datasets as shown by our experiments (e.g., see Figure 12
in Section 8). In this section, we present an efficient version of ASAX SAE, called
ASAX DP, for improving the execution time of our segmentation technique using
dynamic programming. In ASAX DP, we use a data structure (matrix) to keep
track of the result of the SAE computation for each iteration. In the matrix, if
the value of a cell (i, j) is positive, then it corresponds to the SAE of merging all
adjacent segments from segment si to segment sj . In each iteration, after testing
the merging of two adjacent segments, the computed SAE of the merging is kept
in the matrix, in order to be used in the case where this merging needs to be
evaluated again in the next steps.
Let us describe ASAX DP algorithm in more details. Algorithm 3 presents the
pseudocode of the improved approach. As for the ASAX SAE algorithm (de-
scribed in the previous section), ASAX DP splits the time domain into k seg-
ments of length size to create the set segments (Lines 1, 2). A matrix of size
k× k denoted as matrix is allocated and all its values are initialized to -1 (Line
3). Then, in a loop, until the number of segments is more than w the algorithm
proceeds as follows. For each segment si (i from 1 to k− 1), the algorithm tests
the merging of si with segment si+1. For this, the algorithm computes the posi-
tion in the matrix corresponding to the merging of these two segments by finding
the row and column number (r, c) (Line 9). If it is the first time that these two
segments merging is tested (i.e., if the SAE value in the corresponding cell in
the matrix is equal to -1), then the algorithm has to compute the SAE for each
time series ts in the database D on the segment s made from merging si and
si+1 (Line 13). By summing up the SAE of PAA representation of all the time
series contained in D, ASAX DP adds the result of the computed SAE to sae
and stores this value in the matrix by replacing the existing value (-1) by the
calculated SAE (Line 14). In the case where the merging of si and si+1 has
already been tested (i.e., if the SAE value in the matrix is not -1), the algorithm
simply has to get the SAE value from the matrix which is already computed
and sets sae to this value (Line 16). After having obtained the SAE value, if
it is less than the MSAE (minimum SAE) obtained so far, the algorithm sets
i as the segment to be merged with the next one, and keeps the SAE of the
representation (Lines 18, 19). This procedure continues by testing the merging
of every two adjacent segments of segments at each time by making use of the
matrix to avoid redundant SAE computations. The algorithm selects the merg-



20 L. Djebour et al.

ing whose SAE is the lowest, and updates the set of the segments (Lines 20-22).
The procedure continues until k reaches the required number of segments w.



s1 s2 s3 s4 s5
s1 −1 −1 −1 −1
s2 −1 −1 −1
s3 −1 −1
s4 −1
s5


(a) Matrix initialization



s1 s2 s3 s4 s5
s1 0.55 −1 −1 −1
s2 2.3 −1 −1
s3 2.2 −1
s4 0.65
s5


(b) After step 1



s1 s2 s3 s4 s5
s1 0.55 2.76 −1 −1
s2 2.3 −1 −1
s3 2.2 −1
s4 0.65
s5


(c) After step 2

Fig. 8: State of the matrix at different steps of the algorithm. The updated values
are in red and the possible scenarios are underlined in each step.

Bellow, we illustrate our algorithm using an example.

Example 6. Let us apply ASAX DP on the time series X shown in Figure 6
by taking the initial size of 2 for the segments. Suppose the number of desired
segments is w = 3. The algorithm starts by dividing the time domain into 5
segments of size 2 and initializes the matrix that will keep track of the SAE
computation (Figure 8a). This matrix’s row (and column) size is 5 which is the
initial number of segments, each value corresponds to a possible merging of the
initial segments (two segments or more). The value of cell (i, j) in the matrix
corresponds to the SAE of merging of all adjacent segments from si to sj . The
final number of segments is w=3, thus the algorithm consists of 2 steps:
Step 1 : Reduce the number of segments from 5 to 4. The algorithm tests the
merging of every two adjacent segments of the 5 existing segments, 4 different
scenarios are possible (presented previously in Example 6). Each of these 4 merg-
ing possibilities are tested, the corresponding SAE for each possible merging is
computed, and the results are stored in the matrix. Figure 8b shows the content
of the matrix after the update (the updated values are in red). The possible
scenarios are underlined. For this step, we choose the segmentation generated
in Scenario 1 shown in Figure 7a, resulting from merging s1 and s2, since it
provides the minimum SAE value (MSAE), that is MSAE = 0.55.
Step 2 : Reduce the number of segments from 4 to 3. In the previous step, the
initial segments s1 and s2 have been merged into a single segment. Now, we have
4 segments as shown in Figure 7a. To reduce the 4 segments to 3, three merging
scenarios are possible:

Scenario 1: The first scenario is shown in Figure 9a where the first segment S1

of Figure 7a( the segment resulting from merging s1 and s2) and S2 are merged,
i.e s1,s2 and s3 of the initial segmentation are merged into one segment. This
merging is tested for the first time until now (matrix[1, 3]=-1), then, we calculate
the values’s mean of X on the resulting segment, and then compute the SAE
that is SAE1(X,X) = 2.76. The matrix cell that corresponds to this merging is
updated (Figure 8c).



Variable-Size Segmentation for Time Series Representation 21

Scenario 2: This scenario is shown in Figure 9b in which s3 and s4 of the
initial segmentation are merged. This merging has already been tested in the
previous step (matrix[3, 4] ̸=-1), the SAE value is retrieved from our matrix
from the cell (3, 4). Here, SAE2(X,X) = 2.2.

Scenario 3: The last scenario is shown in Figure 9c, where we merge s4 and
s5. The SAE for this merging has been already computed in step 1, that is
SAE3(X,X) = 0.65.

We have now the SAE for the three scenarios. We choose the minimum SAE
value, that is MSAE = 0.65 corresponding to the segmentation generated in
Scenario 3, which is chosen for this iteration.
After this step, we have 3 segments shown in Figure 9c. Since, the number of
segment reaches w, the algorithm ends.

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3

(a) Scenario 1

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3

(b) Scenario 2

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3

(c) Scenario 3

Fig. 9: The three different scenarios of ASAX SAE segmentation with 3 segments.
Scenario 9c is selected since it provides the minimum SAE.

7 Lower Bounding of the Similarity Measure

Having introduced the new representation of time series, we will now define a
distance measure on it. SAX [14] defines a distance measure on the representa-
tion of time series as described in Section 2.1. Given the representation of two
time series, the MINDISTf function allows obtaining a lower bounding ap-
proximation of the Euclidean distance between the original time series. By the
following theorem, we propose a lower bounding approximation formula for the
case of variable size segmentation in ASAX (whether it is done by ASAX EN or
ASAX SAE).

Theorem 1. Let X and Y be two time series. Suppose that by using ASAX we
create a variable size segmentation with w segments, such that the size of the ith

segment is li.
Let X and Y be the PAA representation of variable size of X and Y in ASAX,
DRv(X,Y ) gives a lower bounding approximation of the Euclidean distance be-
tween X and Y :

DRv(X,Y ) =

√√√√ w∑
i=1

((xi − yi)
2 × li)



22 L. Djebour et al.

Let X̂ and Ŷ be the representations of X and Y in ASAX obtained by converting
X and Y into symbolic representation. Then, MINDISTv(X̂, Ŷ ) gives a lower
bounding approximation of the Euclidean distance between X and Y :

MINDISTv(X̂, Ŷ ) =

√√√√ w∑
i=1

(dist(x̂i, ŷi)2 × li)

Proof : To generate the ASAX representation of a time series, we need to
first generate its PAA representation using the variable size segmentation (by
taking the mean of the time series in each segment), and then we convert the
PAA representation to ASAX by creating a symbol for each segment.

Our proof is done in two steps. In the first step, we show that the dis-
tance of X and Y in the PAA representation, denoted as DRv(X,Y ), is lower
than or equal to their Euclidean distance. In the second step, we show that
MINDISTv(X̂, Ŷ ) ≤ DRv(X,Y ).

Step 1 : In the first step, we show that the DRv distance lower bounds the
Euclidean distance, that is :√√√√ n∑

i=1

(xi − yi)2 ≥

√√√√ w∑
j=1

((xj − yj)
2 × lj) (1)

To prove the above inequality, it is sufficient to prove that the PAA distance of
two time series in each segment is lower than or equal to their Euclidean distance
in the segment. Without loss of generality, let us take the first segment S1, and
suppose that its size is l1. Thus, we need to prove the following inequality:√√√√ l1∑

i=1

(xi − yi)2 ≥

√√√√ l1∑
i=1

((xi − yi)
2 (2)

Let X and Y be the means of time series X and Y , respectively. We can
rewrite the above inequality as:

√∑l1
i=1(xi − yi)2 ≥

√
(X − Y )2 × l1

Or :
√∑l1

i=1(xi − yi)2 ≥
√
l1

√
(X − Y )2

By squaring both sides, we have:

l1∑
i=1

(xi − yi)
2 ≥ l1(X − Y )2

For each point xi in X, xi = X −∆xi. The same applies to each point y in Y .
Then, we substitute the rearrangement:



Variable-Size Segmentation for Time Series Representation 23∑l1
i=1((X −∆xi)− (Y −∆yi))

2 ≥ l1(X − Y )2

After rearranging terms in the left-hand side, we have:∑l1
i=1((X − Y )− (∆xi −∆yi))

2 ≥ l1(X − Y )2

Then, we expand the inequality using the binomial theorem:

l1∑
i=1

((X − Y )2 − 2(X − Y )(∆xi −∆yi)

+ (∆xi −∆yi)
2) ≥ l1(X − Y )2

By using distributive law and summation properties, we have:

l1(X − Y )2 − 2(X − Y )

l1∑
i=1

(∆xi −∆yi)

+

l1∑
i=1

(∆xi −∆yi)
2 ≥ l1(X − Y )2

We know that xi = X − ∆xi, which means that ∆xi = X − xi, and the same
applies for ∆yi.

l1∑
i=1

(∆xi −∆yi) =

l1∑
i=1

((X − xi)− (Y − yi))

= (

l1∑
i=1

X −
l1∑
i=1

xi)− (

l1∑
i=1

Y −
l1∑
i=1

yi)

= (l1X −
l1∑
i=1

xi)− (l1Y −
l1∑
i=1

yi)

= (

l1∑
i=1

xi −
l1∑
i=1

xi)− (

l1∑
i=1

yi −
l1∑
i=1

yi)

= 0− 0 = 0

We substitute 0 into
∑l1

i=1(∆xi −∆yi) in the inequality:

l1(X − Y )2 − 0 +

l1∑
i=1

(∆xi −∆yi)
2 ≥ l1(X − Y )2

Then by subtracting n(X − Y )2 from both sides, we have:

l1∑
i=1

(∆xi −∆yi)
2 ≥ 0



24 L. Djebour et al.

This always holds true, so it completes the proof.
Step 2 : Following the same method as in Step 1, we will show here that

MINDISTv lower bounds the DRv distance, that is :√√√√ w∑
j=1

((xj − yj)
2 × lj) ≥

√√√√ w∑
i=j

(dist(x̂j , ŷj)2 × lj)

To prove the above inequality, it is sufficient to prove that MINDISTv in each
segment lower bounds the DRv distance in the segment. Without loss of gener-
ality, let us take the first segment S1, and assume that its size is l1. Thus, it is
sufficient to prove the following inequality:√√√√ 1∑

i=1

((xi − yi)
2)× l1 ≥

√√√√ 1∑
i=1

(dist(x̂1, ŷ1)2 × l1)

The above inequality can be written as: l1(X−Y )2 ≥ l1(dist(X̂, Ŷ ))2. There
are two possible scenarios for the symbols representing X and Y .

Case 1 : the symbols representingX and Y are either the same, or consecutive
from the alphabet a, i.e. |(X̂ − Ŷ )| ≤ 1. In this case the MINDIST value is 0.
Therefore, the inequality becomes :

l1(X − Y )2 ≥ 0

which always holds true.
Case 2 : the symbols representing X and Y are at least two alphabets apart,

i.e. |(X̂−Ŷ )| > 1. Let us assume that X is at a higher region than Y , i.e. X̂ > Ŷ ,
otherwise, in the case where X̂ < Ŷ , it can be demonstrated in the same way.

dist(X̂, Ŷ ) = βX̂−1 − βŶ

By substituting into the inequality, we have:

l1(X − Y )2 ≥ l1(βX̂−1 − βŶ )
2

By removing l1 from both sides, we have:

|X − Y | ≥ |βX̂−1 − βŶ |

Since X̂ > Ŷ and |(X̂ − Ŷ )| > 1, we can drop the absolute value notation and
rearrange the terms:

X − βX̂−1 ≥ Y − βŶ

We know that : βX̂−1 ≤ X < βX̂ and βŶ−1 ≤ Y < βŶ which implies that

X − βX̂−1 ≥ 0 and Y − βŶ < 0.
Then, the inequality always holds true, and this completes the proof.



Variable-Size Segmentation for Time Series Representation 25

8 Experiments

In this section, we report the results of experimental studies on the proposed
ASAX segmentation approaches, i.e. ASAX EN, ASAX SAE and ASAX DP.

8.1 Datasets and Experimental Settings

We compared the ASAX EN and ASAX SAE representations with the existing
SAX representation on datasets selected for their particular (lack of) uniformity.
Notice that SAX and its extensions in the literature use a fixed-size segmentation
of the time domain.

The approaches are implemented in Python programming language and Numba
JIT compiler is used to optimize machine code at runtime 1. The experimental
evaluation was conducted on a machine using Ubuntu 18.04.5 LTS operating
system with 20 Gigabytes of main memory, and an Intel Xeon(R) 3,10 GHz
processor with 4 cores.

We carried out our experiments on several real world datasets from the UCR
Time Series Classification Archive [6]. Table 2 gives basic information about the
datasets: name, type, length of the time series (number of values). Almost all
selected datasets have non-uniform distributions over time domain (see Figure
10), else SyntheticControl that has a quasi uniform distribution.

For each approach, the length w of the approximate representations is re-
duced to 10% of the original time series length. For the variable-size segmen-
tation algorithms, ASAX SAE is initialized by splitting the time domain into
segments of length 2 and for ASAX EN we set the default cardinality value to
32.

Name Type time series Length

AllGestureWiimoteZ Sensor 500
ECG200 ECG 90
ECG5000 ECG 140
ECGFiveDays ECG 130
Fungi HRM 200
GesturePebbleZ1 Sensor 450
MedicalImages Image 90
SonyAIBORobotSurface1 Sensor 70
SyntheticControl Simulated 60

Table 2: Datasets basic information

In the experiments, we measure the precision of the compared approaches in
similarity search, by applying a k-Nearest Neighbor (k-NN) search, as detailed
in Subsection 8.2. For ASAX variable-size segmentation algorithms, we measure
the time cost of the variable-size segmentation in Subsection 8.3.

1 Our code is available at : https://github.com/lamiad/ASAX

https://github.com/lamiad/ASAX


26 L. Djebour et al.

0 20 40 60 80 100 120

−6

−4

−2

0

2

4

6 p(SAX)= 55%
p(ASAX_EN)= 82%
p(ASAX_SAE)= 93%

(a) ECGFiveDays

0 10 20 30 40 50 60 70 80 90

−2

0

2

4

6

8 p(SAX)= 48%
p(ASAX_EN)= 68%
p(ASAX_SAE)= 75%

(b) MedicalImages

0 20 40 60 80 100 120 140
−6

−4

−2

0

2

4 p(SAX)= 54%
p(ASAX_EN)= 67%
p(ASAX_SAE)= 68%

(c) ECG5000

0 50 100 150 200 250 300 350 400 450
−40

−20

0

20

40

60
p(SAX)= 52%
p(ASAX_EN)= 61%
p(ASAX_SAE)= 80%

(d) GesturePebbleZ1

0 100 200 300 400 500

−4

−2

0

2

4

6 p(SAX)= 79%
p(ASAX_EN)= 87%
p(ASAX_SAE)= 91%

(e) AllGestureWiimoteZ

0 25 50 75 100 125 150 175 200
0

20

40

60

80 p(SAX)= 92%
p(ASAX_EN)= 97%
p(ASAX_SAE)= 99%

(f) Fungi

Fig. 10: The data distribution of the tested datasets, and the precision results
for each dataset. p(SAX), p(ASAX EN) and p(ASAX SAE) show the precision
of SAX, ASAX EN and ASAX SAE respectively.



Variable-Size Segmentation for Time Series Representation 27

0 10 20 30 40 50 60 70 80 90

−2

0

2

4

6 p(SAX)= 72%
p(ASAX_EN)= 77%
p(ASAX_SAE)= 73%

(g) ECG200

0 10 20 30 40 50 60 70−4

−2

0

2

4

6 p(SAX)= 37%
p(ASAX_EN)= 40%
p(ASAX_SAE)= 38%

(h) SonyAIBORobotSurface1

0 10 20 30 40 50 60
−2

−1

0

1

2

3 p(SAX)= 32%
p(ASAX_EN)= 32%
p(ASAX_SAE)= 32%

(i) SyntheticControl

Fig. 10: The data distribution of the tested datasets, and the precision results
for each dataset. p(SAX), p(ASAX EN) and p(ASAX SAE) show the precision
of SAX, ASAX EN and ASAX SAE respectively.



28 L. Djebour et al.

8.2 Precision of k-Nearest Neighbor Search

In this part of experiments, we compare the quality of ASAX and SAX repre-
sentations on different datasets described in Table 2 by measuring the precision
of the approximate k-NN search for both of the two approaches. The precision
reported for each dataset represents the average precision for a set of arbitrary
random queries taken from this dataset. The search precision for each query Q
from a dataset D is calculated as follows :

p =
|AppkNN(Q,D) ∩ ExactkNN(Q,D)|

k

where AppkNN(Q,D) and ExactkNN(Q,D) are the sets of approximate k near-
est neighbors and exact k nearest neighbors of Q from D, respectively. App-
kNN(Q,D) is obtained using DRf distance measure for SAX and DRv for the
ASAX representation and the set ExactkNN(Q,D) contains the k-NN of Q us-
ing the euclidean distance ED. AppkNN(Q,D) and ExactkNN(Q,D) use a linear
search that consists in computing the distance from the query point Q to every
other point in D, keeping track of the ”best so far” result.
The precision results are reported in Figure 10 where each dataset is plotted
with the precision obtained (as percentage) for all approaches. The plots show
the shape of the different time series of each dataset and we can notice that the
distribution of time series over the time domain varies from one dataset to an-
other. There are some datasets for which the distribution is quite balanced, those
which undergo some variations and others whose variation increases a lot. We
have noticed that the more the distribution of the data is unbalanced the more
the gain is important. Let us take for example the ECGFiveDays dataset pre-
sented in Figure 10a and SyntheticControl shown in Figure 10i. On the first one,
we were able to achieve a precision of 93% for ASAX SAE, 82% for ASAX EN
while it is 55% for SAX, which is a significant gain in precision. This higher pre-
cision for our approaches is due to the variable-size segmentation which creates
segments in the parts that undergo a significant variation (from time point 45 to
95 in ECGFiveDays), allowing ASAX SAE and ASAX EN to perform a better
distribution of the segments according to information gain by creating several
segments in the parts that undergo a significant variation that produces more ac-
curate times series representations leading to a better result for the approximate
kNN search.

For SyntheticControl we can see that the precision of the approximate k-NN
search is the same for the three approaches which is 32%. In this dataset, the
shape of the time series is balanced over the time, and the segmentations ob-
tained by ASAX SAE, ASAX EN and SAX are the same, resulting in equivalent
precision.
From the results, we can observe that ASAX SAE approach performs better
than ASAX EN for most datasets, especially for the datasets with high varia-
tion.
Globally, the results suggest the effectiveness of our approaches and their ad-
vantage over traditional SAX when applied to time series, especially those with
unbalanced distribution over the time domain.



Variable-Size Segmentation for Time Series Representation 29

65 26 13 10
dimensionality w

0

20

40

60

80

100

Pr
ec

isi
on

 g
ai

n 
(%

)

ASAX_EN
ASAX_SAE

Fig. 11: Precision gain of ASAX EN and ASAX SAE compared to SAX on the
ECGFiveDays dataset, for different values of segments w =[10,13,26,65].

Using ECGFiveDays dataset, Figure 11 shows the precision gain of ASAX EN
and ASAX SAE compared to SAX, for different number of segments w = [10,13,26,65].
The initial length of the time series in the dataset is around 130. The precision
gain is computed by dividing the difference between the precision of ASAX EN
(or ASAX SAE) and SAX, over the precision of SAX.

The results illustrate that ASAX SAE performs better than ASAX EN for
all values of w. They also show that for small values of w the precision gain is
higher. The reason is that in these cases the loss of information with SAX is much
higher than our approaches. This suggests the interest of using our approaches
for high dimentionality reduction.

8.3 Execution time of variable-size segmentation algorithms

This subsection presents the time cost of the variable-size segmentation for our
proposed algorithms. Figure 12 reports the segmentation time of ASAX EN
and ASAX SAE on the datasets of our experiments. It does not concern SAX
since SAX divides the time domain into segments of fixed size which does not
require any computation beforehand. The segmentation time depends on both
the number of time series in the dataset and their length. We can observe that
the time cost of ASAX SAE is always less than the one for ASAX EN.

Let us now compare the variable-size segmentation time cost of the improved
algorithm ASAX DP with that of the basic algorithm ASAX SAE. Figure 13 re-
ports the performance gains of ASAX DP compared to ASAX SAE, in logarith-
mic scale. The variable-size segmentation time for the two methods is evaluated
for the same datasets used previously. We can observe that ASAX DP is much
more efficient and allows to have significant performance gains.

Figure 14 reports the computation time of variable-size segmentation for
ASAX DP and ASAX SAE over AllGestureWiimoteZ dataset, by varying the
time series length. The runtime increases with the length of time series and, as



30 L. Djebour et al.

Al
lG

es
tu

re
W

iim
ot

eZ

EC
G2

00

EC
G5

00
0

EC
GF

iv
eD

ay
s

Fu
ng

i

Ge
st

ur
eP

eb
bl

eZ
1

M
ed

ic
al

Im
ag

es

So
ny

AI
BO

Ro
bo

tS
ur

fa
ce

1

Sy
nt

he
tic

Co
nt

ro
l

Dataset

10 1

100

101

Ru
nt

im
e 

(s
)

ASAX_EN
ASAX_SAE

Fig. 12: Logarithmic scale. Runtime of ASAX SAE and ASAX EN segmentation
algorithms for each dataset

Al
lG

es
tu

re
W

iim
ot

eZ

EC
G2

00

EC
G5

00
0

EC
GF

iv
eD

ay
s

Fu
ng

i

Ge
st

ur
eP

eb
bl

eZ
1

M
ed

ica
lIm

ag
es

So
ny

AI
BO

Ro
bo

tS
ur

fa
ce

1

Sy
nt

he
tic

Co
nt

ro
l

Dataset

10 2

10 1

100

Ru
nt

im
e 

(s
)

 x40

 x10

 x12

 x12
 x17

 x33

x8

x7
x6

ASAX_DP
ASAX_SAE

Fig. 13: Logarithmic scale. ASAX DP’s performance gain on ASAX SAE in seg-
mentation time for each dataset



Variable-Size Segmentation for Time Series Representation 31

one could expect. The basic approach ASAX SAE takes much more time than
ASAX DP. Depending on time series length, ASAX DP shows performance gains
that can reach ×40 for the 1000 time series with length 500 of the AllGestureWi-
imoteZ dataset.
Figure 15 illustrate ASAX DP’s performance gain on ASAX SAE in segmenta-
tion time for the same dataset, by varying the number of time series. As seen,
the performance gains vary significantly depending on the number of time series.

100 200 300 400 500
Length of Time Series

10 1

100

Ru
nt

im
e 

(s
)

 x9

x18

x26

x33
x40ASAX_DP

ASAX_SAE

Fig. 14: Logarithmic scale. Variable-size segmentation time for ASAX DP and
ASAX SAE as a function of time series length, over the AllGestureWiimoteZ
dataset.

100 200 300 400 500 600 700 800 900 1000
Number of Time Series

28

30

32

34

36

38

40

Pe
rfo

rm
an

ce
 g

ai
n

Fig. 15: ASAX DP’s performance gain on ASAX SAE in segmentation time as
a function of dataset size, over the AllGestureWiimoteZ dataset.



32 L. Djebour et al.

9 Conclusion

We addressed the problem of approximating time series, and proposed ASAX EN
and ASAX SAE, new techniques for segmenting time series before their transfor-
mation into symbolic representations. Our solutions can reduce significantly the
error incurred by possible splittings at different steps of the representation cal-
culation, by taking into account the sum of absolute errors (ASAX SAE) or the
entropy (ASAX EN). We also proposed an efficient algorithm, called ASAX DP,
for improving the execution time of our segmentation approach, by means of
dynamic programming. We evaluated the performance of our segmentation ap-
proach through experiments using several real world datasets. The results sug-
gest that the more the data distribution in the time domain is unbalanced (non-
uniform), the greater is the precision gain of ASAX EN and ASAX SAE. For
example, for the ECGFiveDays dataset that has a non-uniform distribution in
the time domain, the precision of ASAX SAE is 93% and 82% for ASAX EN
compared to 55% for SAX. Furthermore, the results illustrate the effectiveness
of our dynamic programming algorithm ASAX DP, e.g., up to ×40 faster than
the basic ASAX SAE algorithm over AllGestureWiimoteZ dataset.

References

1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence
databases. In: Lomet, D.B. (ed.) International Conference on Foundations of
Data Organization and Algorithms (FODO). Lecture Notes in Computer Science,
vol. 730, pp. 69–84. Springer (1993)

2. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., Keogh, E.J.: Beyond
one billion time series: indexing and mining very large time series collections with
i SAX2+. Knowl. Inf. Syst. (2014)

3. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimen-
sionality reduction for indexing large time series databases. ACM Trans. Database
Syst. 27(2), 188–228 (2002)

4. Chan, K., Fu, A.W.: Efficient time series matching by wavelets. In: International
Conference on Data Engineering (ICDE) (1999)

5. Cole, R., Shasha, D., Zhao, X.: Fast window correlations over uncooperative time
series. In: International Conference on Knowledge Discovery and Data Mining
(KDD). pp. 743–749 (2005)

6. Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S.,
Ratanamahatana, C.A., Yanping, Hu, B., Begum, N., Bagnall, A., Mueen, A.,
Batista, G., Hexagon-ML: The ucr time series classification archive (October 2018),
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

7. Djebour, L., Akbarinia, R., Masseglia, F.: Variable size segmentation for effi-
cient representation and querying of non-uniform time series datasets. In: 37th
ACM/SIGAPP Symposium on Applied Computing (SAC). pp. 395–402. ACM
(2022)

8. Elsworth, S., Güttel, S.: ABBA: adaptive brownian bridge-based symbolic aggre-
gation of time series. Data Min. Knowl. Discov. 34(4), 1175–1200 (2020)

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/


Variable-Size Segmentation for Time Series Representation 33

9. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching
in time-series databases. In: International Conference on Management of Data
(SIGMOD) (1994)

10. Huijse, P., Estévez, P.A., Protopapas, P., Principe, J.C., Zegers, P.: Computa-
tional intelligence challenges and applications on large-scale astronomical time se-
ries databases. IEEE Comp. Int. Mag. 9(3), 27–39 (2014)

11. Kashino, K., Smith, G., Murase, H.: Time-series active search for quick retrieval
of audio and video. In: ICASSP (1999)

12. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality reduc-
tion for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3),
263–286 (2001)

13. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time se-
ries, with implications for streaming algorithms. In: International Conference on
Management of Data (SIGMOD) (2003)

14. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: A novel symbolic rep-
resentation of time series. Data Min. Knowl. Discov. (2007)

15. Linardi, M., Palpanas, T.: ULISSE: ultra compact index for variable-length similar-
ity search in data series. In: International Conference on Data Engineering (ICDE)
(2018)

16. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix profile X: VALMOD - scal-
able discovery of variable-length motifs in data series. In: International Conference
on Management of Data (SIGMOD) (2018)

17. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: VALMOD: A suite for easy and
exact detection of variable length motifs in data series. In: International Conference
on Management of Data (SIGMOD) (2018)

18. Lkhagva, B., Suzuki, Y., Kawagoe, K.: New time series data representation esax
for financial applications. In: Workshops of International Conference on Data En-
gineering (ICDE) (2006)

19. Palpanas, T.: Data series management: The road to big sequence analytics. SIG-
MOD Record 44(2), 47–52 (2015)

20. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., Keogh, E.: Searching and mining trillions of time series subsequences
under dynamic time warping. In: International Conference on Knowledge Discovery
and Data Mining (KDD) (2012)

21. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T., Picco, G.P.: Practical data
prediction for real-world wireless sensor networks. IEEE Trans. Knowl. Data Eng.
(accepted for publication, 2015). https://doi.org/10.1109/TKDE.2015.2411594

22. Shasha, D.: Tuning time series queries in finance: Case studies and recommenda-
tions. IEEE Data Eng. Bull. 22(2), 40–46 (1999)

23. Shieh, J., Keogh, E.: isax: Indexing and mining terabyte sized time series. In:
International Conference on Knowledge Discovery and Data Mining (KDD) (2008)

24. Soldi, S., Beckmann, V., Baumgartner, W.H., Ponti, G., Shrader, C.R., Lu-
binski, P., Krimm, H.A., Mattana, F., Tueller, J.: Long-term variability
of AGN at hard X-rays. Astronomy and Astrophysics - A&A 563(A57),
16 (Mar 2014). https://doi.org/10.1051/0004-6361/201322653, https://hal.

archives-ouvertes.fr/hal-01171251
25. Sun, Y., Li, J., Liu, J., Sun, B., Chow, C.: An improvement of symbolic aggregate

approximation distance measure for time series. Neurocomputing 138, 189–198 (08
2014)

26. Yahyaoui, H., Al-Daihani, R.: A novel trend based sax reduction technique for time
series. Expert Systems with Applications 130 (04 2019)

https://doi.org/10.1109/TKDE.2015.2411594
https://doi.org/10.1051/0004-6361/201322653
https://hal.archives-ouvertes.fr/hal-01171251
https://hal.archives-ouvertes.fr/hal-01171251


34 L. Djebour et al.

27. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In:
International Conference on Knowledge Discovery and Data Mining (KDD) (2009)

28. Yin, H., Yang, S.q., Zhu, X.q., Ma, S.d., Zhang, L.m.: Symbolic representation
based on trend features for knowledge discovery in long time series. Frontiers of
Information Technology Electronic Engineering 16, 744–758 (09 2015)

29. Zhang, H., Dong, Y., Xu, D.: Entropy-based symbolic aggregate approximation
representation method for time series. In: IEEE Joint Int. Information Technology
and Artificial Intelligence Conference (ITAIC). pp. 905–909 (2020)

30. Zoumpatianos, K., Palpanas, T.: Data series management: Fulfilling the need for
big sequence analytics. In: International Conference on Data Engineering (ICDE)
(2018)


	Variable-Size Segmentation for Time Series Representation

