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Continuous-Discrete Observation-Based Robust
Tracking Control of Underwater Vehicles: Design,

Stability Analysis, and Experiments
Auwal Shehu Tijjani, Member, IEEE, Ahmed Chemori, Senior Member, IEEE, Sofiane Ahmed Ali, and

Vincent Creuze

Abstract—This study addresses the tracking control problem
of underwater vehicles using a new robust observation-based
control scheme. The advantages of the robust integral of the sign
of the error (RISE) control, as well as the saturation function
and well-known super-twisting algorithm, have been exploited to
design a saturated super-twisting RISE (S+RISE) control scheme.
However, the proposed S+RISE method requires continuous
state measurements. To resolve this issue, a continuous-discrete
time observer (CDO) is proposed, which works in tandem with
the proposed controller. The resulting control scheme is known
as CDO-S+RISE. In addition to estimating disturbances, the
proposed CDO solves the problem of multiple sampling rates
of the sensors. To demonstrate the asymptotic stability of the
resulting non-observation-based closed-loop dynamics with the
proposed S+RISE control scheme, Lyapunov arguments are
proposed. Then, the exponential stability of the unperturbed
closed loop with the proposed CDO, as well as with the proposed
S+RISE controller, is studied based on the Lyapunov–Krasovskii
concept. To verify the performance recovery of the overall
observation-based closed-loop system CDO-S+RISE (controlled
by the proposed S+RISE control scheme), an invariant set AR is
determined using a composite Lyapunov–Krasovskii functional,
which guarantees the convergence of the tracking errors to the
origin. Several real-time experimental scenarios were conducted
on the Leonard underwater vehicle prototype to validate the
efficiency and robustness of the proposed CDO-S+RISE scheme.

Index Terms—Robust control, continuous-discrete observer,
stability analysis, underwater vehicles, real-time experiments.

I. INTRODUCTION

AFrequent issue always arising within the field of control
systems when designing an underwater vehicle is guaran-

teeing the stability of the vehicle’s equilibrium points, despite
the presence of anticipated or unanticipated perturbations
and uncertainties. Although first-order sliding-mode control
(SMC) laws are well known to ensure the stability of the
equilibrium points of many systems subjected to disturbances
and uncertainties, these techniques require infinite control
bandwidths [1]. To resolve this critical problem, a continuous
SMC based on a super-twisting algorithm was proposed [2].
In [3], a second-order SMC was developed by redesigning
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a super-twisting algorithm using saturation functions and
backstepping-like techniques. The proposed control method
aims to maximize the domain of attraction of nonlinear sys-
tems with state constraints. However, the proposed approach
has not been experimentally validated in real systems, such as
underwater vehicles. A real-time application of super-twisting-
based SMC for tracking control of an underwater vehicle can
be found in [4]. It is worth noting that the finite-time conver-
gence of the SMC to the desired sliding surface can be easily
destroyed by a well-known input delay, which is a feature
that may characterize many systems. A static output-feedback
SMC based on a singular perturbation technique was proposed
in [5] to address the problem related to input delay. Another
issue faced by continuous SMC is the wind-up effect when
implemented in a physical system with actuator saturation. To
address this issue, saturated Lipschitz continuous SMC was
introduced in [6]. This controller preserves the bounded con-
trol signal property, reducing chattering and attenuating high-
magnitude noise from the sensor measurements. The most
common assumption used in SMC design is that uncertainties
and external disturbances are considered as Lipschitz functions
bounded by Lipschitz constants. Based on this assumption,
the controller performs well in several cases. However, in a
situation with the possible impact of stochastic perturbation,
the stability of the SMC cannot be guaranteed. To neutralize
the impact of this unbounded perturbation (assumed to have
a normal distribution), a stochastic super-twisting SMC was
proposed in [7]. This stochastic super-twisting SMC approach
can be extended to underwater vehicles to address the effects
of stochastic external disturbances and uncertainties [8].

The robust integral of the sign of the error (RISE) control
technique is another class of SMC-like techniques that guar-
antee semi-global asymptotic tracking for nonlinear uncertain
systems. For this reason, such a scheme demonstrates robust-
ness towards the effects of bounded additive disturbances;
accordingly, it is often used for robotic systems [9]. The
main drawback of standard RISE control lies in the integral
term, which may grow indefinitely and exceed the mechanical
actuator limits in the critical condition of nonlinearities and
disturbances. To address this issue, saturated RISE feedback
control was proposed in [10]. The saturated RISE scheme in-
corporates the final control signal into a trigonometric function
with well-defined bounds. Despite this good forward step in
enhancing the RISE feedback control scheme, the resulting
closed-loop system after injecting the saturated RISE contains
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some discontinuities. Similar to most of the control schemes in
the literature, this control approach requires all the state mea-
surements [11]. From a practical perspective, continuous state
measurements are not always available because of technical
or economic issues [12]. For instance, an expensive Doppler
velocity logger (DVL) used for the velocity measurement
of underwater vehicles is not always available for low-cost
underwater vehicles.

Indeed, because full-state measurements of physical systems
are either too expensive or not possible at any cost in var-
ious applications, the ultimate solution is to design a state
observer [13]. This technique has often been used to provide
full state/disturbance estimations to the control scheme [14].
Therefore, observer design has been an active research area, at-
tracting the interest of researchers and practitioners in the field
of control. Accordingly, different observer design techniques
have been proposed in the literature for nonlinear systems,
as follows: An improved high-gain nonlinear observer was
proposed to decrease the gain power of a well-known classical
high-gain observer by exploiting linear matrix inequalities
(LMI) and a compromise index concept in [13]. Similarly,
a state observer based on an LMI technique was developed in
[15] to compensate for the effect of bounded disturbances.
The extension of this approach to marine robots requires
knowledge of disturbance bounds. In many marine applica-
tions, disturbances are difficult to measure and their bounds
are often unknown. Furthermore, the nonlinearities and delays
of the different sensors installed on marine robots complicate
the control system design for such systems [16]. Considering
this delay issue, a tracking control problem was addressed
in [17] for single-vehicle and multi-agent cases. However, in
real-time experiments conducted by these researchers, critical
scenarios, such as robustness and external disturbance tests,
have not been considered.

Thus far, most of the proposed observers have been de-
signed based on the strong assumption that the system output
measurements are continuous or sampled at relatively high
rates [18]. Following this philosophy, external disturbance
observers have been coupled with controllers to improve the
tracking performance of underwater vehicles (see, e.g., [19]).
However, the performance of continuous observers may be
significantly affected by the sampling rate of the system output
[20]. Although this issue was highlighted in [13], no exper-
imental test has been conducted. Moreover, a low sampling
rate may lead to instability and divergence in a continuous
observer [21]. An unknown input-based observer structure was
proposed in [22]. However, this approach assumes that the
output measurements do not evolve between the two sampling
instants, which may not be the case from a practical point
of view. In addition, the observer has not been validated
in systems characterized by high hydrodynamic effects and
uncertainties, such as underwater vehicles. For the observer
developed in [23], the measurements of the vehicle’s states
depend on the vision system, which may fail completely under
poor visibility conditions.

In practice, physical systems, such as underwater vehicles,
are often equipped with different sensors, each operating at
a distinct sampling frequency. This issue has motivated the

redesign of continuous observers for many real systems. Moti-
vated and inspired by the previous results of [1], as well as the
challenges of extending [1] and [10] to low-cost underwater
vehicles, in this work we propose a new robust observation-
based control scheme to address the tracking problem of
underwater vehicles. More precisely, the main contributions
of the present work are as follows:

1) First, we resolve the issue of over/under-estimation of
the static gains [1] by using saturation-based nonlinear
gains, taking into account the actuators’ mechanical
limits. This new idea affects the ability of the proposed
controller to learn disturbances. For this reason, the
well-known super-twisting algorithm is combined with
saturation-based nonlinear parameters in our proposed
control architecture. Then, a smooth hyperbolic tangent
function is used to deal with any chattering phenomenon
that may arise. This improves the proposed control
scheme compared to both [1] and [10]. Accordingly,
the enhanced proposed control scheme is named satu-
rated super-twisting RISE (S+RISE) control. Another
challenge is that, like any other feedback controller,
the proposed S+RISE scheme necessitates continuous
state measurements, which are not always feasible in
practice due to the high cost or scarcity of suitable sen-
sors. Therefore, we propose a continuous-discrete time
observer (CDO) to provide a continuous estimation of
the state and the disturbances to the proposed controller.
Besides being equipped with inter-sample predictors, to
address the problem of asynchronous multi-rate sensors’
measurements in [24], the proposed CDO uses opti-
mal gains by exploiting the LMI technique. Compared
to [18], the proposed CDO considers less restrictive
assumptions, and does not include any discontinuous
terms.

2) The Lyapunov and Lyapunov–Krasovskii arguments are
proposed to prove the semiglobal asymptotic stability
of the resulting non-observation-based closed-loop dy-
namics and the exponential stability analysis of the
unperturbed closed-loop with the proposed CDO (and
the proposed S+RISE control law), respectively. The
performance recovery of the overall observation-based
closed-loop system CDO-S+RISE is verified using a
composite Lyapunov–Krasovskii functional. This im-
plies a stable marine behavior of the resulting closed-
loop system.

3) Different real-time experimental scenarios are conducted
and compared to show the efficiency and robustness of
the proposed CDO-S+RISE control scheme.

The remainder of this study is organized as follows. Section
II describes the technical features of the Leonard underwater
vehicle used for real-time experiments as well as its modelling.
In Section III, the proposed S+RISE control design and a sta-
bility analysis are presented. Section IV details the design and
exponential convergence analysis of the proposed CDO, fol-
lowed by a performance recovery study of the overall closed-
loop system (with CDO-S+RISE) based on the composite
Lyapunov–Krasovskii functional. The obtained scenario-based
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TABLE I
MAIN TECHNICAL SPECIFICATIONS OF LEONARD UNDERWATER

VEHICLE

Components Specifications/Descriptions

Attitude Sensor Sparkfun MPU 9250, MEMS 9-axes gyrometer,
accelerometer and magnetometer microprocessor.

Depth Sensor Pressure sensor MS5803-02BA.

Dimensions 75cm (L) × 55cm (W) × 45cm (H).

Sampling Periods Attitude sensor = 40ms and Depth sensor = 50ms.

Computing Resource
Dell Latitude E6230 Intel Core i7 - 2.9 GHz,
16 GB of RAM, 64 bits Windows 10 OS,
Microsoft Visual C++ 2015.

Floatability 9N.

Mass 28kg.

Maximal Depth 100m (range depending on the depth sensor).

Power Consumption 24V, 600W.

Tether 50m in pool configuration.

Thrusters 6-Seabotix BTD150 continuous thrust 2.2kgf each
with Syren 10 drivers.

real-time experimental results are detailed and discussed in
Section V. Section VI presents some conclusions and possible
future extensions of this work.

II. VEHICLE DESCRIPTION AND MODELLING

A. Vehicle Description

The proposed CDO-S+RISE control scheme (designed in
Sections III and IV) was implemented and tested in real
time using a holonomic underwater vehicle named Leonard
ROV, available at LIRMM, University of Montpellier, CNRS.
Although the technical features of Leonard underwater vehicle
are described in [4] and [25], we propose revisiting them to
clearly demonstrate one of the critical issues addressed in the
present work. The vehicle is equipped with six independent
propellers, which provide thrust to the vehicle when operated
in either the autonomous or shared control mode (i.e., with
a human pilot in the loop). Note that all the proposed
contributions in this study are validated in real-time on the
Leonard vehicle operating autonomously. In addition, the
positions of the center of buoyancy and gravity were exploited
to passively stabilize both the roll (φ ) and pitch (ϑ ) angles
of the vehicle around zero (i.e., φ ≈ ϑ ≈ 0). Consequently,
this property reduces the energy consumption of the vehicles.
In spite of the above feature, which may result in some
simplifications of the control law design, in this study, we
focus on designing the proposed algorithms for all six degrees
of freedom (DOF) to stabilize the vehicle autonomously. The
vehicle was also equipped with depth and attitude sensors,
as shown in TABLE I. It is worth noting that these sensors
have different sampling frequencies, and this is a critical
issue affecting the observer/control algorithm performance, as
discussed previously in Section I. The following sections show
how this study addresses this issue.

B. Vehicle Modelling

The mathematical representation of underwater vehicles
with six degrees of freedom is shared in terms of kinemat-
ics and dynamics. This mathematical representation can be
achieved by assigning two reference frames to the vehicle, as
shown in Fig. 1. The reference frames facilitate the navigation
and control of the vehicle and are usually named based on the
SNAME (Society of Naval Architects and Marine Engineers)
standard [25]:

1) The Earth-fixed or inertial reference frame Re, is usually
located at/near the water surface;

2) The Body-fixed or vehicle reference frame Rb, is gen-
erally fixed at the center of volume of the vehicle.

The kinematics and dynamics of the underwater vehicle are
as follows.

1) Kinematics: The three dimensional (3D) kinematic for-
mulation relating the time derivatives of the vehicle’s position
and orientation in Re with respect to its linear and angular
velocities in Rb is expressed as follows:

η̇ηηηηηηηη = JJJ(ηηη)ννν (1)

where ηηη = [ηηηT
1 ηηηT

2 ]
T = [x y z φ ϑ ψ ]T ∈R6×1 is the vector of

position and attitude, ννν = [u v w p q r]T ∈ R6×1 denotes the
linear and angular velocities vector, and JJJ(ηηη) ∈ R6×6 is the
3D transformation matrix from Re to Rb, as illustrated in Fig.
1. Furthermore, matrix JJJ(ηηη) is formulated as follows [26]:

JJJ(ηηη) =

[
JJJ1(ηηη2) 0003×3
0003×3 JJJ2(ηηη2)

]
(2)

where JJJ1(ηηη2) and JJJ2(ηηη2) are expressed as

JJJ1(ηηη2) =

cψcϑ cψsϑsφ − sψcφ cψsϑcφ + sψsφ

sψcϑ sψsϑsφ + cψcφ sψsϑcφ − cψsφ

−sϑ cϑsφ cϑcφ

 (3)

JJJ2(ηηη2) =

1 sψtϑ cψtϑ
0 cψ −sψ

0 sφ/cϑ cφ/cϑ

 (4)

with cx⋆, sx⋆, and tx⋆ denoting cosx⋆, sinx⋆, and tanx⋆

functions respectively, with x⋆ ∈ {φ ,ϑ ,ψ}.
Remark 1 : The kinematics formulation in (1) may not be
defined in some cases, due to a possible singularity in JJJ(ηηη),
especially when the vehicle is operating at a pitch angle ϑ

close to ±π

2 .
The real-time experiments conducted in this study considered
the case in which the desired pitch was designed to be
sufficiently far from the neighborhood of ϑ =±π

2 . Thus, the
matrices JJJ(ηηη) and [JJJ(ηηη)]−1 exist and are bounded.

2) Dynamics: The dynamics of underwater vehicles, in
accordance with the formulation proposed in [26], can be
written as follows in the Rb reference frame:

MMMν̇νν +CCC(ννν)ννν +DDD(ννν)ννν +ggg(ηηη) = τττ +ωωω(t) (5)

where MMM ∈ R6×6 is the inertia matrix, including both rigid-
body and added mass, CCC(ννν) ∈ R6×6 is the Coriolis and
centripetal matrix, DDD(ννν)∈R6×6 is the damping matrix, ggg(ηηη)∈
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Fig. 1. Illustration of the coordinate systems.

R6×1 is the vector of gravity and buoyancy, τττ ∈ R6×1 is
the vector of the control inputs produced by the thrusters,
and ωωω(t) ∈ R6×1 is a time-varying vector representing the
disturbances. The techniques for estimating these dynamic
parameters in (5) are described in [25].
It is noteworthy that the matrices MMM and CCC of our vehicle
dynamics in (5) are partially known, whereas DDD is uncer-
tain. These uncertainties are mainly due to the unmodeled
hydrodynamic effects. Hence, it is necessary to consider
these uncertainties in the vehicle dynamics (5). Although
the dynamics of underwater vehicles are decomposed into
nominal and uncertain parts from the literature, not all of the
aforementioned uncertainties are considered. Accordingly, we
rewrite (5) as follows:

MMM⋆
ν̇νν +CCC⋆(ννν)ννν +DDD⋆(ννν)ννν +ggg⋆(ηηη) = τττ +ωωω

⋆(t) (6)

where MMM = MMM⋆ + ∆MMM⋆,CCC = CCC⋆ + ∆CCC⋆,DDD = DDD⋆ + ∆DDD⋆,ggg =
ggg⋆ + ∆ggg⋆, which can be generalized as {MMM⋆, CCC⋆, DDD⋆, ggg⋆}
being the nominal part (i.e., the true unapproximated value)
and {∆MMM⋆, ∆CCC⋆, ∆DDD⋆, ∆ggg⋆} the uncertain part (i.e., unknown
part). The time-varying disturbance ωωω(t) in (5) is combined
with the uncertainties and expressed as ωωω⋆(t) = −∆MMM⋆ν̇νν −
∆CCC⋆(ννν)ννν −∆DDD⋆(ννν)ννν −∆ggg⋆(ηηη)+ωωω(t). The dynamics (6) are
also transformed and redefined in frame Re based on (1) as
follows:

MMM⋆
ηηη(ηηη)η̈ηη +CCC⋆

ηηη(ννν ,ηηη)η̇ηη +DDD⋆
ηηη(ννν ,ηηη)η̇ηη +ggg⋆ηηη(ηηη) = τττ

⋆
ηηη(ηηη)

+ωωω
⋆
ηηη(t)

(7)

where MMM⋆
ηηη(ηηη) = JJJ−T(ηηη)MMM⋆JJJ−1(ηηη),

CCC⋆
ηηη(ννν ,ηηη) = JJJ−T(ηηη)[CCC⋆(ννν)−MMM⋆JJJ−1(ηηη)J̇JJ(ηηη)]JJJ−1(ηηη),

DDD⋆
ηηη(ννν ,ηηη) = JJJ−T(ηηη)DDD⋆(ννν)JJJ−1(ηηη), ggg⋆ηηη(ηηη) = JJJ−T(ηηη)ggg⋆(ηηη),

τττ⋆ηηη(ηηη) = JJJ−T(ηηη)τττ, and ωωω⋆
ηηη(t) = JJJ−T(ηηη)ωωω⋆(t).

Furthermore, the dynamic terms (7) satisfy
Property P1 : The inertia matrix MMM⋆

ηηη(ηηη) is symmetric pos-
itive definite and satisfies [25]: κ∥ηηη∥2 ≤ ηηηTMMM⋆

ηηη(ηηη)ηηη =

ηηηTMMM⋆
ηηη(ηηη)Tηηη ≤ κ(ηηη)∥ηηη∥2, where κ ∈ R>0 is a positive con-

stant, κ(ηηη) ∈ R>0 is a non-decreasing positive function, ∥·∥
is a standard Euclidean norm of a vector and matrix, and
ηηη ∈ R6×1 (vehicle’s trajectory).
Property P2 : The matrix CCC⋆

ηηη(ννν ,ηηη) can always be parameter-
ized as, CCC⋆

ηηη(ννν ,ηηη) =−CCC⋆
ηηη(ννν ,ηηη)T, ∀ννν ,ηηη ∈ R6×1 [26].

Property P3 : The damping matrix DDD⋆
ηηη(ννν ,ηηη) is strictly posi-

tive [26], i.e., ηηηTDDD⋆
ηηη(ννν ,ηηη)ηηη > 0, ∀ννν ,ηηη ̸= 0 ∈ R6×1.

Property P4 : The vector ggg⋆ηηη(ηηη) is continuous and bounded,

if ηηη and ννν are bounded [26].
Property P5 : The inherent actuators’ saturation bounds the
vehicle thrusters’ velocity by a positive constant [25], i.e.,∣∣∣τττ⋆ηηη(ηηη)i

∣∣∣ ≤ κ⋆, where i = 1,6, |·| = absolute value, and κ⋆ ∈
R>0 is a known positive constant.
To simplify the autonomous control algorithm design for un-
derwater vehicles, the following assumptions were considered.
Assumption A1 : The disturbance vector ωωω⋆

ηηη(t) is assumed to

be bounded [4], i.e.,
∣∣∣ωωω⋆

ηηη(t)i

∣∣∣≤ κ⋆, with i= 1,6 and κ⋆ ∈R>0.
Assumption A2 : In the conducted real-time experiments, our
vehicle moves at a low speed (≤ 0.5ms−1 [27]). Hence, the
effects of Coriolis and centripetal forces are neglected [25].
Therefore, based on assumption A2, the dynamics (7) can be
rewritten as follows:

η̈ηη =−[MMM⋆
ηηη(ηηη)]−1

η̇ηη +[MMM⋆
ηηη(ηηη)]−1

τττ
⋆
ηηη(ηηη)

+[MMM⋆
ηηη(ηηη)]−1[ωωω⋆

ηηη(t)+ η̇ηη −DDD⋆
ηηη(ννν ,ηηη)η̇ηη −ggg⋆ηηη(ηηη)]

(8)

Next, we can express (1) and (8) in a state-space form to
facilitate the design of the proposed observer introduced in
Section IV. To this end, the following state variables are
defined.

χχχ1(t) =ηηη , χχχ2(t) = η̇ηη (9)

By substituting (9) into (1) and (8), the state-space represen-
tation of the underwater vehicle can be obtained as follows:

χ̇χχ(t) =AAAχχχ(t)χχχ(t)+BBBχχχ(t)uuu(t)+DDDδδδ (t) (10)

where χχχ(t) = [χχχ1(t)T χχχ2(t)T]T, δδδ (t) = ωωω⋆
ηηη(t) + η̇ηη −

DDD⋆
ηηη(ννν ,ηηη)η̇ηη −ggg⋆ηηη(ηηη), uuu(t) = τττ⋆ηηη(ηηη), DDD =

[
0006×6 [MMM⋆

ηηη(ηηη)]−1
]T

,

AAAχχχ(t) =

[
0006×6 III6×6
0006×6 −[MMM⋆

ηηη(ηηη)]−1

]
, and BBBχχχ(t) =

[
0006×6

[MMM⋆
ηηη(ηηη)]−1

]
.

Finally, dynamics (10) can be rewritten as follows:

χ̇χχ(t) = ÃAAχχχ(t)+B̃BBχχχ(t)uuu(t)+D̃DDδδδ
⋆(t) (11)

where ÃAA=

[
0006×6 III6×6
0006×6 0006×6

]
, B̃BBχχχ(t) =BBBχχχ(t), D̃DD=

[
0006×6
III6×6

]
, δδδ ⋆(t) =

[MMM⋆
ηηη(ηηη)]−1[δδδ (t)−χχχ2(t)].

III. PROPOSED CONTROL LAW DESIGN AND STABILITY
ANALYSIS

A. Control Law Design

This section presents the design of the proposed S+RISE for
trajectory tracking. Although the RISE feedback control pro-
posed in [1] provides good performance, several challenges are
encountered when implementing such a control scheme in real
time on low-cost underwater vehicles. First, the vehicle used to
implement the control in [1] is equipped with various sensors
(including DVL, GPS receiver, and sonar) that the controller
can exploit. However, not all of these sensors are available
for underwater vehicles (especially low-cost vehicles) because
of their high cost. In addition to the static feedback gains
in the control scheme structure, the inherent saturations of
the vehicle’s mechanical actuators are not taken into account.
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Furthermore, the authors of [1] proposed adding a dynamics-
based feedforward term to the system dynamics to improve
the control scheme performance; however, obtaining accurate
dynamics remains a challenging task.

Guided by the above issues and inspired by [10], we propose
redesigning the RISE control scheme of [1] to address these
problems. First, the static feedback gains are transformed
into saturation-based nonlinear gains in the RISE feedback
controller proposed in [1] to avoid overestimation or under-
estimation of the gains within the admissible limits of the
actuators. This step is followed by a critical challenge in
introducing saturation limits in robust terms without affecting
their ability to learn the disturbances. To this end, we propose
redesigning the robust term of the RISE controller in [1] using
the well-known super-twisting algorithm. Following that, we
replace the algorithm’s static gain with a saturation-based non-
linear gain to improve its robustness. Furthermore, a smooth
hyperbolic tangent function is used in the proposed S+RISE
control scheme instead of the conventional sign function,
which deals with any discontinuity that may arise in this
approach. The proposed S+RISE controller is designed as
follows:

Let us first consider ηηηd(t) and ηηη(t) as the desired and actual
vehicle trajectories, respectively, which are defined as follows:

ηηηd(t) = [xd(t),yd(t),zd(t),φd(t),ϑd(t),ψd(t)]T

ηηη(t) = [x(t),y(t),z(t),φ(t),ϑ(t),ψ(t)]T
(12)

The desired trajectory satisfies the following assumption.
Assumption A3 : The time derivatives of ηηηd (i.e., η̇ηηd , · · · ,

...
ηηη d)

are assumed to be smooth and bounded by design.
The vehicle-tracking error eee1(t) and its first-time derivative are
defined as follows:

eee1(t) =ηηηd(t)−ηηη(t), ėee1(t) = η̇ηηd(t)− η̇ηη(t) (13)

where η̇ηηd(t) and η̇ηη(t) are the first time derivatives of ηηηd(t)
and ηηη(t), respectively, eee1(t) = [e11(t),e12(t), · · · ,e16(t)]T, and
ėee1(t) = [ė11(t), ė12(t), · · · , ė16(t)]T.
We can now design a measurable auxiliary tracking error eee2(t)
using a smooth bounded function of eee1(t), as follows:

eee2(t) = ėee1(t)+ααα tanh [eee1(t)] (14)

where ααα = diag{α1,α2, · · · ,α6} > 0, defines the rate of con-
vergence of ėee1(t), eee2(t) = [e21(t),e22(t), · · · ,e26(t)]T, and tanh
is a hyperbolic tangent function.
Based on the closed-loop stability guarantee (cf. stability
analysis subsection), the proposed S+RISE control law can
be designed for the six degrees of freedom of the vehicle as
follows:

τττ = JJJT(ηηη)
[
(KKK(·)+III)eee2(t)− (KKK(t0)+III)eee2(t0)

+
∫ t

t0
[ϕϕϕ(σ)+ϕϕϕ

⋆(σ)]dσ

] (15)

where ϕϕϕ(σ) and ϕϕϕ⋆(σ) are the robust terms of the proposed
S+RISE control scheme, τττ ∈R6×1 is the control input vector,
III ∈R6×6 is the identity matrix, and JJJ(ηηη) ∈R6×6 is defined by
(1). The second term, (KKK(t0)+ III)eee2(t0) in (15), ensures that
τττ(t0) = 0, where t0 is the initial time.

And if we consider a scalar case of ϕϕϕ(σ) and ϕϕϕ⋆(σ), the
following expressions are formulated for ϕϕϕ i(σ) and ϕϕϕ⋆

i (σ):

ϕϕϕ i(σ) = (KKKi(·)+1)ΛΛΛi(·) tanh [eee2i(σ)]

ϕϕϕ
⋆
i (σ) =BBBi(·)

[
µ2

1i
2

tanh [eee2i(σ)]+µ
2
2ieee2i(σ)

+
3µ1iµ2i

2

∣∣eee2i(σ)
∣∣0.5 tanh [eee2i(σ)]

]
, i = 1,6

(16)

where µ1i > 0 and µ2i > 0 are positive design constants and
KKKi(·), BBBi(·), and ΛΛΛi(·) are the parameters of the proposed
controller. Furthermore, the parameters in (15)–(16) are for-
mulated as follows.

KKKi(·) =

k0i
∣∣eee2i(t)

∣∣(δ1i−1) if
∣∣eee2i(t)

∣∣> ε1i

k0iε
(δ1i−1)
1i if

∣∣eee2i(t)
∣∣≤ ε1i,

BBBi(·) =


βi⌊·⌉ if ⌊·⌉> ε2i

βiε2i if ⌊·⌉ ≤ ε2i,

⌊·⌉=
∣∣eee2i(t)

∣∣ tanh [eee2i(t)]
i = 1,6

ΛΛΛi(·) =

λ̄0i
∣∣∫ eee2i(t)

∣∣(δ2i−1) if
∣∣∫ eee2i(t)

∣∣> ε3i

λ̄0iε
(δ2i−1)
3i if

∣∣∫ eee2i(t)
∣∣≤ ε3i

(17)

where in (17), k0i,βi, λ̄0i,δ1i,δ2i,ε1i,ε2i, and ε3i are the positive
design constants for the proposed controller’s parameters.
Remark 2 : The proposed S+RISE assumes continuous state
measurements, which may not be the case for real-life appli-
cations. Hence, we propose to resolve this issue by designing
a new observer, as introduced in Section IV.

B. Closed-loop Stability Analysis

To analyze the stability of the closed-loop dynamics of the
proposed S+RISE control law, we designed another auxiliary
filter-tracking error eeea(t) as follows:

eeea(t) = ėee2(t)+ΛΛΛ(·) tanh [eee2(t)] (18)

where eeea(t) is the auxiliary filter-tracking error, whereas the
remaining terms in (18) have been defined previously. In
this stage, it is necessary to make the following remarks to
highlight our contributions.
Remark 3 : The error term eeea(t) is not used in the proposed
S+RISE control scheme since it depends on the inaccessible
state, namely the acceleration η̈ηη(t). Indeed, the term eeea(t) is
designed to facilitate the stability analysis.
The vehicle open-loop tracking error dynamics can be com-
puted by multiplying (18) by MMM⋆

ηηη(ηηη) as follows:

MMM⋆
ηηη(ηηη)eeea(t) =MMM⋆

ηηη(ηηη)
[
ėee2(t)+ΛΛΛ(·) tanh [eee2(t)]

]
(19)

Substituting (7) into (19) and using (13)–(14), we obtain

MMM⋆
ηηη(ηηη)eeea(t) = FFFd +SSS+ω̄ωω

⋆
ηηη(t)−τττ

⋆
ηηη(ηηη) (20)

where FFFd = [MMM⋆
ηηη(ηηηd)η̈ηηd +DDD⋆

ηηη(νννd ,ηηηd)η̇ηηd + ggg⋆ηηη(ηηηd)] ∈ R6×1

and SSS=
[
MMM⋆

ηηη(ηηη)η̈ηη+DDD⋆
ηηη(ννν ,ηηη)η̇ηη+ggg⋆ηηη(ηηη)−FFFd +MMM⋆

ηηη(ηηη)[ėee2(t)+

ΛΛΛ(·) tanh [eee2(t)]]
]
∈ R6×1 are auxiliary functions, ω̄ωω

⋆
ηηη(t) =

−ωωω⋆
ηηη(t), νννd is a vector of the desired velocities, and ννν can be
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computed from (1).
The resulting closed-loop error system can be obtained by
considering the time derivative of (20), which results in

MMM⋆
ηηη(ηηη)ėeea(t) =−ṀMM⋆

ηηη(ηηη)eeea(t)+ ḞFFd + ṠSS+ ˙̄ωωω⋆
ηηη(t)− τ̇ττ

⋆
ηηη(ηηη) (21)

Injecting the first-time derivative of the proposed S+RISE
control law into (21) yields

MMM⋆
ηηη(ηηη)ėeea(t) =−ṀMM⋆

ηηη(ηηη)eeea(t)+ ḞFFd + ṠSS+ ˙̄ωωω⋆
ηηη(t)−

[
ϕϕϕ
⋆(t)

+K̇KK(·)eee2(t)+(KKK(·)+III)ėee2(t)+(kkk0 +III)ΛΛΛ(·) tanh [eee2(t)]
]
(22)

where kkk0 ∈ R6×6 denotes a diagonal matrix with k0i, i = 1,6
elements. By introducing NNNd ∈R6×1 and ÑNN ∈R6×1 defined by

NNNd = ḞFFd + ˙̄ωωω⋆
ηηη(t) and ÑNN =−1

2
ṀMM⋆

ηηη(ηηη)eeea(t)+ ṠSS (23)

we can rewrite (22) as

MMM⋆
ηηη(ηηη)ėeea(t) =−1

2
ṀMM⋆

ηηη(ηηη)eeea(t)+ÑNN+NNNd −ϕϕϕ
⋆(t)−eeea(t)

−K̇KK(·)eee2(t)−KKK(·)ėee2(t)−kkk0ΛΛΛ(·) tanh [eee2(t)]
(24)

Note that (23) is structured such that the terms to be upper-
bounded by constants can be isolated from state-dependent
terms [10]. Based on this observation and the properties
P1−P5, the terms NNNd and ÑNN can be upper bounded as follows
[28]:∥∥∥ÑNN

∥∥∥≤ ρ(∥rrra∥)∥rrra∥ , ∥NNNd∥ ≤ ζ1 and
∥∥∥ṄNNd

∥∥∥≤ ζ2 (25)

where ζ1 ∈ R>0 and ζ2 ∈ R>0 are positive constants and ρ ∈
R>0 is a strictly increasing function of ∥rrra∥. The term rrra is
designed as follows:

rrra =
[

tanhT [eee1(t)], tanhT [eee2(t)],eeeT
a (t)

]T
(26)

In the following, we state the main theorem of this analysis
Theorem 1 : The trajectory ηηη(t) of an underwater vehicle
whose nonlinear-coupled-uncertain dynamics are described
by (7), under the proposed S+RISE controller in (15), is
bounded and converges uniformly asymptotically to the
desired trajectory ηηηd(t), despite the influences of parametric
uncertainties and external disturbances, provided that the
parameters of the proposed controller are designed such that:

∥∥rrra(0)
∥∥< ρ

−1
(√

γ(2+6Kmin)
)
,αmin >

1
2
,Λmin >

1
2
,

Kmin >
1
2
, and Bmin > ζ1 +

1
Λmin

ζ2

(27)

where Bmin,Kmin,Λmin ∈R>0 are obtained from the arguments
Bmin ≤BBBi(·)≤ Bmax,Kmin ≤KKKi(·)≤ Kmax, and Λmin ≤ΛΛΛi(·)≤
Λmax, respectively. Moreover, the terms BBBi(·),KKKi(·),ΛΛΛi(·) are
designed in (17), ααα is defined in (14), and γ is derived
subsequently.
Proof of Theorem 1 : To proceed with this proof, based on
the Lyapunov direct method, let us first consider the Lyapunov

candidate function Vc : R[dim(rrra)+1]×1 ×R⩾0 → R>0, which is
defined as follows:

Vc(zzz, t) =
6

∑
i=1

ln [cosh(eee1i)]+
6

∑
i=1

ln [cosh(eee2i)]+Q

+
1
2

eeea
TMMM⋆

ηηη(ηηη)eeea

(28)

which satisfies the following condition:

1
2

min{1,κ} tanh2
[
∥zzzzzzzzz∥

]
= f1(zzz)≤Vc(zzz, t)≤ f2(zzz)

= max
{1

2
κ(ηηη),

3
2

}
∥zzz∥2

(29)

where ln represents a natural logarithmic function, cosh de-
fines a hyperbolic cosine function, zzz = [rrrT

a ,
√

Q]T, and f1, f2 :
R[dim(rrra)+1]×1 → R>0 are strictly positive definite functions.
Function Q ∈R is positive definite, resulting from the solution
of the following equation:

Q̇ =−eeeT
a (t)[NNNd −ϕϕϕ

⋆(t)] (30)

where Q0 = ∑
6
i=1 BBBi(·)

∣∣tanh [eee2i(t0)]
∣∣− tanhT [eee2(t0)]NNNd(t0) and

BBBi(·) satisfies condition (27). Furthermore, Lemma 1 in [28]
can easily be used to prove that the solution of Q̇ is positive
definite and bounded by Bmin.
The computation of the first-time derivative of the proposed
Lyapunov candidate function Vc(zzz, t) in (28) leads to

V̇c(zzz, t) = ėeeT
1 tanh [eee1]+ ėeeT

2 tanh [eee2]+ Q̇+ ėeeT
aMMM⋆

ηηη(ηηη)eeea

+
1
2

eeea
TṀMM⋆

ηηη(ηηη)eeea
(31)

Substituting the closed-loop error dynamics (24) into (31) and
using (14) and (18), we derive

V̇c(zzz, t) = eeeT
2 tanh [eee1]− tanhT [eee1]ααα tanh [eee1]

+eeea
T tanh [eee2]− tanhT [eee2]ΛΛΛ(·) tanh [eee2]−eeea

Teeea

+eeea
TÑNN−eeea

TK̇KK(·)eee2 −eeea
T
[
KKK(·)ėee2 +kkk0ΛΛΛ(·) tanh [eee2]

] (32)

In fact, V̇c(zzz, t) in (32) can be bounded, such that

V̇c(zzz, t)≤
∥eee2∥2

2
+

∥∥tanh [eee1]
∥∥2

2
−αmin

∥∥tanh [eee1]
∥∥2

+
∥eeea∥2

2

+

∥∥tanh [eee2]
∥∥2

2
−Λmin

∥∥tanh [eee2]
∥∥2

+∥eeea∥ρ(∥rrra∥)∥rrra∥

−Kmin

2
∥eeea∥2 − Kmin

2
∥eee2∥2 −∥eeea∥2 −Kmin∥eeea∥2

(33)
which can be rewritten as

V̇c(zzz, t)≤−(αmin −
1
2
)
∥∥tanh [eee1]

∥∥2 − (Λmin −
1
2
)

×
∥∥tanh [eee2]

∥∥2 − (Kmin −
1
2
)∥eee2∥2 +

ρ2(∥rrra∥)∥rrra∥2

2(1+3Kmin)

(34)

As long as (27) holds, V̇c(zzz, t) in (34) can be further simplified
and upper-bounded as follows:

V̇c(zzz, t)≤−

[
γ − ρ2(∥rrra∥)

2(1+3Kmin)

]
∥rrra∥2 (35)
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where γ = min{(αmin− 1
2 ),(Λmin− 1

2 ),(Kmin− 1
2 )} and ∥rrra∥<

ρ−1
(√

γ(2+6Kmin)
)

.
From (35), we can easily observe that V̇c(zzz, t) is bounded
by a negative semi-definite function. Based on the fact that
Vc(zzz, t) is a continuous and positive definite function, sat-
isfying (29), we can conclude that ∥rrra∥2 is bounded and
remains within a compact set SD =

{
zzz ∈ D | ρ(

√
f2(zzz)) <√

γ(2+6Kmin)
}

, where D =
{

zzz ∈ R[dim(rrra)+1]×1 | ∥zzz∥ ≤

inf
(

ρ−1[
√

γ(2+6Kmin),∞)
)}

. This implies that ∥rrra∥ → 0,
∀zzz(0) ∈ SD, which guarantees a semiglobal asymptotic con-
vergence of the tracking error to zero. The value of Kmin can
be increased to make SD arbitrarily large and accommodate
a large zzz(0). At this stage, it is necessary to consider the
following.
Remark 4 : In some real-time applications increasing Kmin, so
that SD can include large zzz(0), as well as large disturbances,
may lead to control signals beyond the admissible limits of
the actuators. Hence, the semi-global result may be affected
by the high impact of unbounded perturbations; however, the
local result can still be maintained.

IV. PROPOSED OBSERVER DESIGN AND ITS
PERFORMANCE ANALYSIS

A. Observer Design

This section presents and discusses the design of the pro-
posed Continuous Discrete Observer (CDO). This observer is
an extension of the one developed in [29]. Even though the
observer proposed in [29] was designed to estimate the lost
measurements between sensor sampling periods, asynchronous
multirate sensor measurements have not been considered. In
practice, physical systems are typically equipped with sev-
eral sensors that operate at different sampling frequencies.
Designing an observer for such systems without considering
the different operating frequencies of their sensors may lead
to instability in the overall closed-loop dynamics. This issue
may become more complex in high-precision applications,
particularly at low sensor sampling frequencies.

To address this sampling issue, we propose a CDO that
works in tandem with the S+RISE control scheme introduced
in the previous section. The goal of the CDO is to provide
continuous state and disturbance estimations to the proposed
controller. It is worth noting that, when new measurements are
acquired by the sensors, the proposed observer corrects the
corresponding estimates. In addition to being equipped with
inter-sample predictors to address the issue of asynchronous
multirate sensors, the proposed CDO uses optimal gains by
exploiting the well-known linear matrix inequalities (LMI)
technique. These gains improve the observer design proposed
by [29], where the gains are tuned based on a trial-and-error
approach. Furthermore, the observers in [29] and [24] consid-
ered only the case of uniform single-rate sensor measurements.
In fact, we propose to incorporate a correction term in the
predictor design to enhance and guarantee the exponential con-
vergence of the proposed CDO estimation error towards zero.
In contrast to neurodynamics and MPC-based techniques, the

proposed CDO is designed as a computationally lightweight
scheme and validated through real-time experiments on a low-
cost underwater vehicle. It is worth noting that the vehicle used
in this work is equipped with sensors having different sampling
frequencies, as reported in Table I. The measurable state of
this vehicle is accessible by the proposed observer through
the depth and IMU sensors’ discrete-time measurement vector
yyy(t1

k , · · · , t s̄
k) ∈Rs̄×1with s̄,k ∈N. Hence, the vehicle dynamics

in (11) can be rewritten as follows:{
χ̇χχ(t) = ÃAAχχχ(t)+B̃BBχχχ(t)uuu(t)+D̃DDδδδ ⋆(t)
yyy(t1

k , · · · , t s̄
k) = C̃CCχχχ(t1

k , · · · , t s̄
k)

(36)

where s̄,k∈N denote the number of sensors and their sampling
time, respectively. The sensor sampling periods are denoted as
{[t1

k t1
k+1], [t

2
k t2

k+1], · · · , [t s̄
k t s̄

k+1]} and C̃CC∈Rs̄×dim(χχχ) denotes the
output matrix. To address the effects of external disturbances
and parametric uncertainties in the structure of the proposed
CDO design, we rewrite (36) in an extended state-space form
as follows: {

˙̄χχχ(t) = ĀAAχ̄χχ +B̄BBχ̄χχ(t)uuu(t)+D̄DDδ̄δδ (t)
ȳyy(t1

k , · · · , t s̄
k) = C̄CCχ̄χχ(t1

k , · · · , t s̄
k)

(37)

where χ̄χχ(t) = [χχχ(t)T δδδ ⋆(t)T]T, ĀAA =

[
ÃAA D̃DD

0006×12 0006×6

]
, δ̄δδ (t) =

δδδ ⋆(t), B̄BB =
[
B̃BB 0006×6

]T
, D̄DD =

[
0006×6 D̃DD

]T
, and C̄CC =

[
C̃CC 0006×6

]
.

Even though the proposed S+RISE is a model-free scheme, in
practice, the proposed CDO requires an estimate of the inertia
matrix MMM⋆

ηηη(ηηη) (see [30] for more details on its numerical
estimation).
Remark 5 : The term δδδ ⋆(t) in (36) is also assumed to be
bounded based on assumption A1 and properties P1−P4,
which implies that

∥∥δδδ ⋆(t)
∥∥ ≤ L1 and

∥∥∥δ̇δδ
⋆
(t)

∥∥∥ ≤ L2. where
L1 ∈ R>0 and L2 ∈ R>0 denote positive constants.
Finally, the proposed CDO for underwater vehicle dynamics
in (37) is designed as follows:

˙̄̂
χχχ(t) = ĀAA ˆ̄χχχ(t)+B̄BB⋆

χ̂χχ(t)uuu(t)+∆∆∆θKKK⋆[www(t)−C̄CC ˆ̄χχχ(t)]
ẇww(t) = C̄CC[ĀAA ˆ̄χχχ(t)+B̄BB⋆

χ̂χχ(t)uuu(t)]+KKKwww[www(t)−C̄CC ˆ̄χχχ(t)]
www(t1

k , · · · , t s̄
k) = ȳyy(t1

k , · · · , t s̄
k), t ∈ [t s̄

k t s̄
k+1)

(38)

where ˆ̄χχχ(t) is the vector of the extended state estimates,
∆∆∆θ = diag{θ ,θ 2, · · · ,θ [dim(χ̄χχ)]}, where θ denotes the high-gain
parameter, B̄BB⋆

χ̂χχ(t) is the nominal value of B̄BBχ̄χχ(t), KKK⋆ ∈Rdim(χ̄χχ)×s̄

is the observer gain designed such that [ĀAA−KKK⋆C̄CC] is Hurwitz,
KKKwww defines the predictor design gain, and www(t) ∈ Rs̄×1 is
the vector of the continuous time estimation of ȳyy(t1

k , · · · , t s̄
k),

whose elements are updated at each t ∈ (t1
k , · · · , t s̄

k). The main
motivation for integrating term www(t) is to dealt with the signif-
icant effect caused by the multirate sampling of the system’s
output acquired through multiple sensors. Furthermore, the
term www(t) mitigates the instability and divergence behavior
of the dynamic system owing to the low sampling rate.
It is worth noting the following.

1) The proposed S+RISE control input τττ is globally
bounded by design;
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2) The origin of the closed-loop dynamics resulting from
(7) and the proposed S+RISE control law is asymptoti-
cally stable, having SD as its region of attraction.

B. Performance Recovery Analysis

To demonstrate how the resulting closed-loop error dynam-
ics of (37)–(38) recover the performance of the closed-loop
error dynamics under the proposed S+RISE state, feedback
control in (21), we first check the exponential convergence of
the unperturbed fast closed-loop system, as follows:

1) Convergence analysis of the unperturbed system: To
verify the exponential convergence of the unperturbed result-
ing closed-loop dynamics of our underwater vehicle with the
proposed observation-based control scheme CDO-S+RISE to
the origin, we state the main result of the study as follows:
Theorem 2 : Consider an underwater vehicle whose dynamics
are given in (36) and candidate observer (38). If there exist
symmetric positive definite matrices PPPk, PPP, PPP1, PPP2, PPP3, PPP4, RRR,
HHH, and the observer gain KKK⋆, as well as the predictor gain
KKKwww, such that the LMI conditions (39)-(41) hold, then (38)
is a sampled-data observer for the extended state dynamics
(37). Moreover, for a given sampling period h that satisfies
h =

√∥∥HHHRRR−1
∥∥, the trajectories of the state estimation error

dynamics converge exponentially towards the origin, as long
as the observer high-gain parameter θ is designed to be
sufficiently large.

(KKKwww −C̄CCK̄KK⋆
)TPPPk +PPPk(KKKwww −C̄CCK̄KK⋆

)≤ 0 (39)

ΦΦΦ1 =

[
(ĀAA−KKK⋆C̄CC)TPPP+PPP(ĀAA−KKK⋆C̄CC) PPPKKK⋆C̄CC

∗ −SSS

]
≤−λIIIn (40)

ΦΦΦ2 =


ΦΦΦ11 ΦΦΦ12 ΦΦΦ13 RRR
∗ ΦΦΦ22 ΦΦΦ23 000
∗ ∗ ΦΦΦ33 000
∗ ∗ ∗ −RRR

≤ 0 (41)

where K̄KK⋆
= ∆∆∆θKKK⋆,ΦΦΦ11 = λSSS + KKKwwwPPP2 + PPPT

2K̄KKwww − RRR, ΦΦΦ12 =

PPPT
2 θAAA1 −PPPT

2K̄KKwww, ΦΦΦ13 = PPPT
1 −PPP2 + K̄KKT

wwwPPP3, ΦΦΦ22 = −PPPT
4 θAAA1 −

PPPT
4K̄KKwww, ΦΦΦ23 = PPP4 + θAAAT

1PPP3 − K̄KKT
wwwPPP3, ΦΦΦ33 = −PPP3 − PPPT

3 + HHH,
K̄KKwww,AAA1,SSS are defined in the subsequent proof, λ is a positive
constant, and IIIn is an Identity matrix.
Proof of Theorem 2: First, we define the following estimation
errors. {

eeex = χ̄χχ(t)− ˆ̄χχχ(t)
eeey = C̄CCχ̄χχ(t)−www(t)

(42)

Before proving the exponential convergence of ˆ̄χχχ(t) to χ̄χχ(t),
the stable behavior of the output prediction dynamics ẇww(t) in
(38) must be ensured when measurements are not available.
Using (42) and ẇww(t) dynamics, the output prediction error
dynamics can be derived as follows:

ėeey −C̄CCėeex = (KKKwww −C̄CCK̄KK)(eeey −C̄CCeeex) (43)

Now, consider the following Lyapunov function candidate, Vo:

Vo = [eeey −C̄CCeeex]
TPPPk[eeey −C̄CCeeex] (44)

where PPPk,eeey,eeex, and C̄CC have been defined previously, and Vo

satisfies λmin(PPPk)
∥∥[eeey −C̄CCeeex]

∥∥2 ≤ Vo ≤ λmax(PPPk)
∥∥[eeey −C̄CCeeex]

∥∥2,
with λmin([·]) and λmax([·]) as the minimum and maximum
eigenvalues of the matrix [·], respectively.
Differentiating (44) and (43) yields LMI condition (39). If this
condition holds, stable behavior of ẇww(t) dynamics in (38) is
guaranteed.
Let us analyze the exponential convergence of ˆ̄χχχ(t) to χ̄χχ(t).
Combining (37)–(38) and (42), we derive the following:

ėeex(t) = (ĀAA−∆∆∆θKKK⋆C̄CC)eeex(t)+ΦΦΦ(·)uuu+D̄DDδ̄δδ +∆∆∆θKKK⋆eeey(t)

ėeey(t) = (C̄CCĀAA−KKKwwwC̄CC)eeex(t)+KKKwwweeey(t)
(45)

where the uncertainty ΦΦΦ(·) = B̄BBχ̄χχ(t)− B̄BB⋆
χ̂χχ(t) (a nonlinear func-

tion satisfying conditions (i)–(ii) in Assumption 1 in [31]).
We note that C̄CCB̄BB = 0. At this stage, the following errors were
considered: εεεx(t) = ∆∆∆

−1
θ

eeex and εεεy(t) = ∆∆∆
−1
θ

C̄CCTeeey. Hence, (45)
can be rewritten as

ε̇εεx(t) =∆∆∆
−1
θ
(ĀAA−∆∆∆θKKK⋆C̄CC)∆∆∆θεεεx(t)+∆∆∆

−1
θ

∆∆∆θKKK⋆C̄CC∆∆∆θεεεy(t)

+∆∆∆
−1
θ

ΦΦΦ(·)uuu+∆∆∆
−1
θ

D̄DDδ̄δδ

ε̇εεy(t) = θAAA1εεεx(t)−K̄KKwwwεεεx(t)+K̄KKwwwεεεy(t)

(46)

where AAA1 = C̄CCTC̄CCĀAA and K̄KKwww = C̄CCTKKKwwwC̄CC.
From (46), as the high-gain parameter θ increases, the el-
ements of the matrix ∆∆∆

−1
θ

approach 0 (i.e., ∆∆∆
−1
θ

→ 0), thus
suppressing the negative effect of δ̄δδ term and also making
the proposed CDO dynamics faster. Accordingly, (46) can be
simplified and rewritten as

ε̇εεx(t) =∆∆∆
−1
θ
(ĀAA−∆∆∆θKKK⋆C̄CC)∆∆∆θεεεx(t)+∆∆∆

−1
θ

∆∆∆θKKK⋆C̄CC∆∆∆θεεεy(t)

ε̇εεy(t) = θAAA1εεεx(t)−K̄KKwwwεεεx(t)+K̄KKwwwεεεy(t)
(47)

Formulating the remaining LMI conditions in Theorem 2
guarantees the exponential convergence of the estimation error
dynamics to zero (i.e., ˆ̄χχχ(t) = χ̄χχ(t)). Let us consider the
following Lyapunov–Krasovskii functional.

Vo1 = εεε
T
x(t)PPPεεεx(t)+εεε

T
y(t)PPP1εεεy(t)+h

∫ 0

−h

∫ t

t+r
ε̇εε

T
y(s)RRRε̇εεy(s)dsdr

(48)
It is worth noting that the sampled dynamics of an underwater
vehicle can be modelled as a time-delay system (TDS), which
is why a Lyapunov–Krasovskii functional is proposed to prove
convergence [32]. Even though the Lyapunov–Razumikhin
function may be considered as a simple tool for TDSs sta-
bility study, the Lyapunov–Krasovskii functional is a natural
generalization of the Lyapunov direct method. The first time
derivative of the Lyapunov–Krasovskii functional candidate in
(48) leads to

V̇o1 = 2εεε
T
x(t)PPP∆∆∆

−1
θ

[
(ĀAA−∆∆∆θKKK⋆C̄CC)∆∆∆θεεεx(t)+∆∆∆θKKK⋆C̄CC∆∆∆θεεεy(t)

]
+2εεε

T
y(t)PPP1ε̇εεy(t)+h2

ε̇εε
T
y(t)RRRε̇εεy(t)−h

∫ t

t−h
ε̇εε

T
y(s)RRRε̇εεy(s)ds

(49)
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Thus, (49) can be rewritten as follows:

V̇o1 = 2εεε
T
x(t)PPP∆∆∆

−1
θ
[(ĀAA∆∆∆θKKK⋆C̄CC)∆εεεx(t)+∆∆∆θKKK⋆C̄CC∆∆∆θεεεy(t)]

+2[εεεT
y(t)PPP

T
2 + ε̇εε

T
y(t)PPP

T
3 +εεε

T
y(t)PPP4][−ε̇εεy(t)

+θAAA1εεεx(t)−K̄KKwwwεεεx(t)+K̄KKwwwεεεy(t)]

−h
∫ t

t−h
ε̇εε

T
y(s)RRRε̇εεy(s)ds+2εεε

T
y(t)PPP1ε̇εεy(t)+θεεε

T
y(t)SSSεεεy(t)

−θεεε
T
y(t)SSSεεεy(t)+h2

ε̇εε
T
y(t)RRRε̇εεy(t)

(50)

where −ε̇εεy(t) + θAAA1εεεx(t) − K̄KKwwwεεεx(t) + K̄KKwwwεεεy(t) = 0 and SSS is a
positive definite matrix. Based on Jensen’s inequality [33], the
integral term in (50) can be expressed as follows:

−h
∫ t

t−h
ε̇εε

T
y(s)RRRε̇εεy(s)ds ≤−

∫ t

t−h
ε̇εε

T
y(s)dsRRR

∫ t

t−h
ε̇εεy(s)ds

=−[εεεy(t)−εεεy(t−h)]
TRRR[εεεy(t)−εεεy(t−h)]

(51)

Substituting (51) into (50) yields:

V̇o1 ≤ θ [2εεε
T
x(t)PPP(ĀAA−KKK⋆C̄CC)εεεx(t)+2εεε

T
x(t)PPPKKK⋆C̄CCεεεy(t)

−εεε
T
y(t)SSSεεεy(t)]+2[εεεT

y(t)PPP
T
2 + ε̇εε

T
y(t)PPP

T
3 +εεε

T
y(t)PPP4][−ε̇εεy(t)

+θAAA1εεεx(t)−K̄KKwwwεεεx(t)+K̄KKwwwεεεy(t)]

+h2
ε̇εε

T
y(t)RRRε̇εεy(t)− [εεεy(t)−εεεy(t−h)]

TRRR[εεεy(t)−εεεy(t−h)]

+2εεε
T
y(t)PPP1ε̇εεy(t)+θεεε

T
y(t)SSSεεεy(t)

(52)

Now, by introducing two vectors ηηη1 = [εεεx(t),εεεy(t)]
T and ηηη2 =

[εεεy(t),εεεx(t),ε̇εεy(t),εεεy(t−h)]
T, we can express the terms ηηηT

1ΦΦΦ1ηηη1
and ηηηT

2ΦΦΦ2ηηη2 as 2εεεT
x(t)PPP(ĀAA − KKK⋆C̄CC)εεεx(t) + 2εεεT

x(t)PPPKKK⋆C̄CCεεεy(t) −
εεεT

y(t)SSSεεεy(t) and 2[εεεT
y(t)PPP

T
2 +ε̇εε

T
y(t)PPP

T
3 +εεεT

y(t)PPP4][−ε̇εεy(t)+θAAA1εεεx(t)−
K̄KKwwwεεεx(t) + K̄KKwwwεεεy(t)] + h2ε̇εε

T
y(t)RRRε̇εεy(t) − [εεεy(t) − εεεy(t−h)]

TRRR[εεεy(t) −
εεεy(t−h)] + 2εεεT

y(t)PPP1ε̇εεy(t) + θεεεT
y(t)SSSεεεy(t), respectively. Based on

these terms (ηηηT
1ΦΦΦ1ηηη1 and ηηηT

2ΦΦΦ2ηηη2), the LMI conditions
(40)–(41) and (52) are expressed as

V̇o1 ≤−λθ ∥ηηη1∥2 +λmax(ΦΦΦ2)∥ηηη2∥2 (53)

To ensure convergence of the proposed observer, the following
lemma is introduced:
Lemma 1 : Given the term RRR as a positive definite matrix,
there exists a positive parameter ε̄ such that the following
argument holds:

ε̄λmax(RRR)
[∥∥∥εεεy(t)

∥∥∥2
+
∥∥∥εεεx(t)

∥∥∥2
]

≥ h
∫ 0
−h

∫ t
t+r ε̇εε

T
y(s)RRRε̇εεy(s)dsdr ≥ 0

(54)

where RRR is a positive-definite matrix, h> 0 is a constant delay,
and ε̄ is a positive parameter.
Proof of Lemma 1, the following inequality is satisfied.

h
∫ 0

−h

∫ t

t+r
ε̇εε

T
y(s)RRRε̇εεy(s)dsdr ≤ λmax(RRR)h

∫ 0

−h

∫ t

t+r
ε̇εε

T
y(s)ε̇εεy(s)dsdr

(55)

Taking into account that the expression h
∫ 0

h
∫ t

t+r ε̇εε
T
y(s)ε̇εεy(s)dsdr

can be rewritten as follows [32]:

h
∫ 0

−h

∫ t

t+r
ε̇εε

T
y(s)ε̇εεy(s)dsdr = h

∫ t

t−h
(h+ s− t)ε̇εε

T
y(s)ε̇εεy(s)ds (56)

In addition, the function h
∫ t

t−h(h+ s− t)ds in (56) is bounded
and monotonically increases over the interval [(t −h), t] (see
[32] for further detail). This implies that expression h

∫ t
t−h(h+

s− t)ds is convex. Using the Hermite-Hadamard inequality
[34], we obtain:

1
h

∫ t

t−h
(h+ s− t)ε̇εε

T
y(s)ε̇εεy(s)ds ≤ 1

2
(h+ s− t)

×ε̇εε
T
y(s)ε̇εεy(s)|s=t +(h+ s− t)ε̇εε

T
y(s)ε̇εεy(s)|s=t−h

(57)

Substituting the term ε̇εεy(t) from (46) into (57), we obtain:∫ t

t−h
(h+ s− t)ε̇εε

T
y(s)ε̇εεy(s)ds ≤ h2

2

[
(θAAA1 −K̄KKwww)εεεx(t)+K̄KKwwwεεεy(t)

]T

×
[
(θAAA1 −K̄KKwww)εεεx(t)+K̄KKwwwεεεy(t)

]
≤ ε̄

[∥∥∥εεεy(t)

∥∥∥2
+
∥∥∥εεεx(t)

∥∥∥2
]

(58)

where ε̄ = h2 sup
{
(θAAA1 −K̄KKwww)

T(θAAA1 −K̄KKwww), K̄KKT
wwwK̄KKwww

}
, this

ends the proof of Lemma 1. Invoking above Lemma 1, the
proposed Lyapunov–Krasovskii functional in (48) satisfies:[

λmin(PPP)
∥∥∥εεεx(t)

∥∥∥2
+λmin(PPP1)

∥∥∥εεεy(t)

∥∥∥2
]
≤Vo1 ≤

[
[λmax(PPP)

+ε̄λmax(RRR)]
∥∥∥εεεx(t)

∥∥∥2
+[λmax(PPP1)+ ε̄λmax(RRR)]

∥∥∥εεεy(t)

∥∥∥2
]
(59)

Now, provided that the LMI conditions (40)–(41) are satisfied,
the first and second terms of (53) can be expressed as:

−λθ ∥ηηη1∥2 =−λθ

[∥∥∥εεεx(t)

∥∥∥2
+
∥∥∥εεεy(t)

∥∥∥2
]
,

λmax(ΦΦΦ2)∥ηηη2∥2 ≤ λmax(ΦΦΦ2)

[∥∥∥εεεx(t)

∥∥∥2
+
∥∥∥εεεy(t)

∥∥∥2
] (60)

Consequently, these terms can be bounded as follows.

−λθ ∥ηηη1∥2 +λmax(ΦΦΦ2)∥ηηη2∥2 ≤−aVo1 (61)

where a > 0 denotes a positive constant. Note that because the
LMI condition (41) holds, this implies that λmax(ΦΦΦ2) can only
be negative or zero [35]. Therefore,

λmax(ΦΦΦ2)∥ηηη2∥2 ≤ λmax(ΦΦΦ2)∥ηηη1∥2 (62)

By using the vectors ηηη1 and (62), we can rewrite (61) as

σ̄
2
[∥∥∥εεεx(t)

∥∥∥2
+
∥∥∥εεεy(t)

∥∥∥2
]
≥Vo1 (63)

where σ̄ =

√
[λθ+λmax(ΦΦΦ2)]

a denotes a positive constant.
Accordingly, the following inequality holds:[∥∥∥εεεx(t)

∥∥∥+∥∥∥εεεy(t)

∥∥∥]2

≥
∥∥∥εεεx(t)

∥∥∥2
+

∥∥∥εεεy(t)

∥∥∥2
. By exploiting

this inequality, (63) can be rewritten as

σ̄
2
[∥∥∥εεεx(t)

∥∥∥+∥∥∥εεεy(t)

∥∥∥]2

≥Vo1 (64)

Now, we can bound (53) using (61) as V̇o1 ≤ −aVo1, solving
for the term Vo1, which leads to

Vo1 =Vo1(0)e−at (65)
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From (65), as t → ∞, Vo1 → 0. This implies that:∥∥∥εεεx(t)

∥∥∥+∥∥∥εεεy(t)

∥∥∥≥ 0 (66)

For the ideal case, the external disturbances and parametric
uncertainties were assumed to be zero. This implies that (66)
becomes

∥∥∥εεεx(t)

∥∥∥+
∥∥∥εεεy(t)

∥∥∥ = 0. Therefore, under an unper-
turbed condition, the state estimation errors of the proposed
observer converge exponentially to the origin.

2) Study of the perturbed system: To aid in the performance
recovery analysis of the resulting closed-loop system under
the bounded control law (15) and perturbation, we inject the
control law τττ into (37)-(38), resulting in the perturbed closed-
loop dynamics.

˙̄χχχ(t) = ĀAAχ̄χχ +B̄BBχ̄χχ(t)τττ +D̄DDδ̄δδ (t)
˙̄̂
χχχ(t) = ĀAA ˆ̄χχχ(t)+B̄BB⋆

χ̂χχ(t)τττ +∆∆∆θKKK⋆[www(t)−C̄CC ˆ̄χχχ(t)]
ẇww(t) = C̄CC[ĀAA ˆ̄χχχ(t)+B̄BB⋆

χ̂χχ(t)τττ]+KKKwww[www(t)−C̄CC ˆ̄χχχ(t)]

(67)

where the tracking error eee1(t) (assuming full-state measure-
ments) becomes eee⋆1(t) =ηηηd(t)−η̂ηη(t) and η̂ηη(t) are the contin-
uous state estimates.
It is noteworthy that the term τττ (designed in Section III)
satisfies conditions (i)–(ii) of Assumption 2 in [31] by design.
Based on the transformations in (46) and (67), the resulting
closed-loop error dynamics can be rewritten as

ε̇εεx(t) =∆∆∆
−1
θ
[ĀAA−∆∆∆θKKK⋆C̄CC]∆∆∆θεεεx(t)+∆∆∆

−1
θ

∆∆∆θKKK⋆C̄CC∆∆∆θεεεy(t)

+∆∆∆
−1
θ

ΦΦΦ(·)τττ +∆∆∆
−1
θ

D̄DDδ̄δδ

ε̇εεy(t) = θAAA1εεεx(t)−K̄KKwwwεεεx(t)+K̄KKwwwεεεy(t)

(68)

Subsequently, to investigate the performance recovery of the
resulting perturbed closed-loop error dynamics (resulting from
the proposed output feedback S+RISE controller), we consider
the following composite Lyapunov–Krasovskii functional can-
didate:

Vco =V ⋆
c (zzz

⋆, t)+V ⋆
o1 (69)

where V ⋆
c (zzz

⋆, t) and V ⋆
o1 are similar to Vc(zzz, t) and Vo1, re-

spectively. However, V ⋆
c (zzz

⋆, t) and V ⋆
o1 satisfy the following

arguments, instead of (29) and (59), respectively:
1
2

min{1,κ} tanh2
[∥∥zzz⋆

∥∥
in

]
≤V ⋆

c (zzz
⋆, t)

≤ max
{1

2
κ(η̂ηη),

3
2

}∥∥zzz⋆
∥∥2

s⋆ , c̄1∥ςςς∥s⋆ ≤V ⋆
o1 ≤ c̄2∥ςςς∥s⋆

(70)

with ∥·∥s⋆ = sup
t∈R⩾0

∥·∥ , ∥·∥in = inf
t∈R⩾0

∥·∥ , zzz⋆ is a function of

eee⋆1(t), ςςς is a function of {εεεx(t),εεεy(t),ε̇εεy(t)}, c̄1 > 0, and c̄2 > 0.
The first time-derivative of (69) yields

V̇co = V̇ ⋆
c (zzz

⋆, t)+V̇ ⋆
o1 (71)

By exploiting the result in (35) and replacing ηηη with η̂ηη , (71)
can be upper-bounded as follows:

V̇co ≤−

[
γ −

ρ2(
∥∥rrr⋆a

∥∥)
2(1+3Kmin)

]∥∥rrr⋆a
∥∥2

+V̇ ⋆
o1 (72)

where rrr⋆a is a function of eee⋆1(t). Similarly, using the result of
(53), V̇ ⋆

o1 can be bounded as follows:

V̇ ⋆
o1 ≤−λθ ∥ηηη1∥2 +λmax(ΦΦΦ2)∥ηηη2∥2 +V ⋆

o2 (73)

where V ⋆
o2 = 2εεεT

x(t)PPP∆∆∆
−1
θ
[ΦΦΦ(·)τττ+D̄δ̄δδ ]. It is worth noting that the

term V ⋆
o2 contains saturated feedback control inputs as well as

external disturbances. Hence, to deal with the negative effects
of these disturbances and parametric uncertainties, the term
V ⋆

o2 is upper bounded as follows:

V ⋆
o2 ≤ 2λmax(PPP)

[
L2θ

−[dim(χχχ2)]+a0 ∥τττ∥ [L1θ
−[dim(χχχ2)−1]

+a⋆0θ
−[dim(χχχ2)−2]]

]∥∥∥εεεx(t)

∥∥∥ (74)

where L1 and L2 are defined in Remark 5, a0 > 0 and
a⋆0 ≥

∥∥ΦΦΦ(·)
∥∥∈R>0. Note that all disturbances and uncertainties

were replaced with their corresponding upper bounds. Fur-
thermore, the parameter a0 was designed to deal with any
additional high gain that may be generated because of the
high magnitude of the parameter θ [13].
Following the same philosophy as in (54)-(64) and considering
the worst-case impacts of external disturbances and parametric
uncertainties, (73) can be bounded as follows:

V̇ ⋆
o1 ≤−aV ⋆

o1 +b
√

V ⋆
o1 (75)

where V ⋆
o2 is bounded by V ⋆

o2 ≤ b
√

V ⋆
o1 with b > 0.

By introducing the following change in the coordinate W̄ ⋆ =√
V ⋆

o1 and simplifying (75), we obtain:

˙̄W ⋆ =
a
2

[
−W̄ ⋆+

b
a

]
(76)

Solving (76) analytically yields W̄ ⋆ = W̄ ⋆(0)e−
a
2 t + b

a . Let
ρ̄ = b

aσ̄
as t → ∞ and W̄ ⋆ → b

a . Accordingly, from (64),

we deduce that
∥∥∥εεεx(t)

∥∥∥+
∥∥∥εεεy(t)

∥∥∥ ≤ ρ̄ . Therefore, the sta-
bility of V ⋆

o1 is ensured. This result implies that the com-
posite functional Vco is stable and that the estimation and
tracking errors are bounded. However, it is worth point-
ing out that the proposed CDO estimation error con-
verges exponentially towards a ball Bρ̄ , whose radius is

ρ̄ = b
σ̄a

(
where a =

∣∣∣∣∣ −λθ+λmax(ΦΦΦ2)

sup
{
λmax(PPP),λmax(PPP1)

}
+ε̄λmax(RRR)

∣∣∣∣∣, b =

2λmax(PPP)[L2θ
−[dim(χχχ2)]+θ

−[dim(χχχ2)−1]a0∥τττ∥]√
λmin(PPP)

)
, which can be made

small enough as long as the observer’s high-gain parameter
θ is designed sufficiently large. This is due to the effects
of perturbations and parametric uncertainties, considered in
this perturbed worst-case analysis. The perturbations and para-
metric uncertainties may include the measurement noise from
the sensors (depth and IMU sensors), the inherent nonlinear
behavior of the propellers, the computational accuracy, etc. For
this reason, the overall resulting closed-loop error dynamics
under bounded control (15) and perturbation converges and
remains within a region of attraction AR = S⋆D ×B⋆

ρ̄ , very
close to zero.
Remark 6 : The result in [31] can be easily exploited to prove
that AR can be extended to include any initial condition.
However, this result may be difficult to achieve in real-time
marine applications because of hardware limitations (e.g.,
actuator saturation). Furthermore, by exploiting the results
in [31], the closeness of the resulting closed-loop trajectories
with and without an observer can be easily shown.
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V. REAL-TIME EXPERIMENTAL RESULTS

In this section, we present and discuss the real-time exper-
imental results obtained from the application of the proposed
observer-based robust controller to a Leonard underwater
vehicle. In the following section, some implementation issues
are highlighted before detailing the results obtained.

A. Some Real-Time Implementation Issues

The previous sections presented the theoretical design of
the proposed S+RISE and CDO for the six DOF of the
vehicle. For the real-time tests using our vehicle, we will
focus on controlling two DOF: one transnational DOF (depth)
and one rotational DOF (yaw), for the following technical
reasons without the loss of generality. (i) The yaw (ψ) of
most underwater vehicles, including our vehicle prototype, is
sensitive and difficult to control. From a practical point of
view, several marine operations require manipulating the yaw
of the vehicles. For example, oceanography and dam wall
inspection [30]. (ii) The measurement of the depth (z) DOF
is too noisy, which is mainly caused by the pressure sensor.
(iii) The surge (x) and sway (y) DOF of the vehicle are not
measurable and unobservable, whereas the roll (φ ) and pitch
(ϑ ) are passively stable. During the tests, the vehicle tracked
the desired depth and yaw as accurately as possible, despite
the effects of internal and external disturbances, parametric un-
certainties, unmodelled dynamics, and unpredictable operating
environments. Controlling the depth and yaw of underwater
vehicles plays a crucial role in various marine applications. All
the proposed real-time experimental tests in this study were
carried out in LIRMM’s testing pool. A laptop computer with
an Intel Core i7-5600U 2.6 GHz CPU, 16 GB of memory
(RAM), and the Windows 10 operating system was used to
control the vehicle. The code was written in the C++ language
in Visual Studio 2015. A video of the complete set of real-time
tests can be found in https : //youtu.be/YR8x1aOY1NY

B. Proposed Real-Time Experimental Scenarios

In order to investigate the performance and efficiency of the
proposed S+RISE, compared to the standard RISE controller,
as well as the improvement achieved by integrating the pro-
posed CDO, we propose the following experimental scenarios:

1) Scenario 1 (Nominal Case): The objective of this sce-
nario is to tune the gain of each controller online and in-
dependently. For a fair comparison, when the best tracking
performance was obtained, the gains were maintained for all
forthcoming scenarios. Note that, in this scenario, the robot is
only subjected to internal perturbations (sensor noise).

2) Scenario 2 (Robustness Towards Parametric Uncertain-
ties): The robustness of each control law is assessed in this
scenario when the robot is subjected to parametric uncertain-
ties (e.g., change in mass/weight, damping, and buoyancy).

3) Scenario 3 (External Disturbance Rejection): The main
goal of this scenario was to investigate the ability of the control
laws to reject real-life external disturbances and to maintain
the robot on the desired trajectory. Some of these real-life
disturbances in marine applications may include collisions
with marine structures, time-varying currents, tether drag, etc.
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Fig. 2. Observation experimental results comparing our proposed CDO with
EO [36].

C. Obtained Observation Results
The main aim of this experimental scenario is to show the

obtained observation results of our proposed CDO compared
to an extended state high-gain observer (EO) recently proposed
in [36]. From Fig. 2, we observe that the proposed CDO
converges faster to the origin. In addition, it mitigates the
peaking problem during the transient phase, particularly the
yaw behavior. Furthermore, the proposed CDO minimizes
the observation errors of the depth and yaw by 45.40% and
24.72%, respectively, when compared to EO based on the root
mean square error (RMSE) performance index.

D. Obtained Results of Scenario 1:
In these experiments, the Leonard ROV tracked the desired

time-varying depth and yaw trajectories simultaneously, start-
ing from the surface of the testing pool. Focusing on depth
tracking, the robot dives vertically downwards to a maximum
depth of 0.3m from the surface and stays at this level for
approximately 10s. Then, the robot decreases its depth by
0.1m and stabilizes at this new level within approximately
5s until the end of the mission. In the case of yaw tracking,
the robot changes its course from an initial yaw of 0◦ to a
desired yaw of +60◦ in 5s. Then, it maintains this heading
for the next 12s. Finally, the robot changes its heading from
+60◦ to −60◦ in 5s, and then maintains this orientation for
the remaining time of the experiment. It should be noted
that during this experiment, neither external disturbances
nor parametric uncertainties were considered. The proposed
observer and control-law parameters tuned for this test are
summarized in TABLE II. These parameters were maintained
in all subsequent real-time experiments. The tuned parameters
of the proposed observer were obtained based on LMI.

From Fig. 3 (top plots), we can observe better depth tracking
for the proposed CDO-S+RISE compared to S+RISE and
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TABLE II
PROPOSED OBSERVER/CONTROL DESIGN PARAMETERS

Depth
S+RISE

k0d = 2.450 βd = 3.750 λ̄0d = 0.450
ε1d = 0.010 ε2d = 1×10−5 ε3d = 0.240
δ1d = 0.850 δ2d = 0.500 αd = 16.500
µ1d = 0.950 µ2d = 1.000

CDO K⋆
d = 16.500 Kwd = 0.100 θd = 24.390

Yaw S+RISE

k0ψ = 0.720 βψ = 0.050 λ̄0ψ = 0.060
ε1ψ = 0.014 ε2ψ = 1×10−5 ε3ψ = 0.060
δ1ψ = 0.600 δ2ψ = 0.700 αψ = 1.100
µ1ψ = 0.600 µ2ψ = 0.700

CDO K⋆
ψ = 0.200 Kwψ

= 0.100 θψ = 24.390

RISE controllers, although the experiment was conducted
under nominal conditions. The yaw tracking of the proposed
CDO-S+RISE controller is approximately similar to that of
the proposed S+RISE controller, as confirmed by the error
plots (middle plots) in Fig. 3. The numerical quantification
of the depth- and yaw-tracking errors for all three controllers
is summarized in TABLE III. The computations are based
on the RMSE, expressed as RMS[eee(t)]robot position/attitude =

[ 1
Tf

∫ Tf
0

∥∥eee(t)
∥∥2 dt]

1
2 , where eee(t) is the position/attitude tracking

error and Tf denotes the duration of the experimental test. Ac-
cording to the obtained results, the RMSE index clearly shows
the improvement achieved by the proposed CDO-S+RISE
controller with respect to the proposed S+RISE controller. The
bottom plots of Fig. 3 shows the evolution of control inputs.
Despite the better depth tracking performance of the proposed
CDO-S+RISE control scheme, one can quickly notice that it
has approximately the same energy consumption compared
to the standard RISE controller. Similarly, integrating the
proposed CDO with S+RISE decreases the yaw tracking error.
Furthermore, it reduces the control effort, as shown in Fig. 3
(bottom). However, it is worth noting that the slightly high
control inputs from the proposed CDO-S+RISE scheme at
the beginning of the real-time test were caused by the initial
tracking error combined with the observation error. Despite
these errors, the proposed CDO-S+RISE scheme converged
exponentially to the desired track.

To quantify the control efforts numerically, we propose us-
ing the integral of the control input index (INT), formulated as
INT[τττ]robot position/attitude =

∫ t f
ti

∥∥τττ(t)
∥∥2 dt, where τττ(t) denotes

the vector of the position/attitude control input, ti represents
the initial time when the robot converges to ηηηd(t) and t f is the
final time at the end of the mission. TABLE III summarizes
the results obtained from the INT index computations in this
experimental test.

E. Obtained Results of Scenario 2:

In this scenario, another implementation issue arises apart
from those previously mentioned. This problem results in the
integration of parametric variations in robot dynamics without
changing its physical structure. To this end, we proposed
dividing this scenario into two separate cases as follows:

1) Case 1: To introduce a variation in the matrix MMM⋆
ηηη(·)

of the robot dynamics (7) without changing its physical

TABLE III
TRACKING PERFORMANCE (RMSE) AND INTEGRAL OF CONTROL INPUTS

(INT) INDICES FOR THE THREE CONTROLLERS

Index Scenario RISE [1] S+RISE CDO-S+RISE

RMSEdepth
S1 1.220 0.719 0.345

[×10−2 m]
S2−C1 1.080 1.030 0.553
S2−C2 1.280 1.120 0.715
S3 – – 1.940

RMSEyaw
S1 2.640 2.220 2.208

[×10−2 deg] S2−C1 2.560 1.536 1.474
S2−C2 3.000 1.740 1.656
S3 – – 2.540

INTdepth

S1 291.000 290.000 296.000
S2−C1 66.900 83.400 66.900
S2−C2 364.000 372.000 385.000
S3 – – 279.000

INTyaw

S1 22.500 21.800 17.000
S2−C1 22.500 19.400 19.700
S2−C2 19.000 19.600 19.900
S3 – – 21.300

configuration, we propose the following: First, a thread of
known length and negligible mass is tied from one end at
the base of the robot and from the other end to a payload
representing 4% of the robot’s weight. When the robot reached
the maximum depth (0.3m), the payload touched the floor of
the testing pool. This resulted in a sudden change in the matrix
from MMM⋆

ηηη(·) +∆MMM⋆
ηηη(·) to MMM⋆

ηηη(·), as shown in Fig. 4. It is
worth noting that this enables the assessment of the robustness
of all three autonomous control algorithms towards a reject
variation in the matrix MMM⋆

ηηη(·) of the robot’s dynamics, as well
as their efficiency in real-life tasks. Therefore, this can be
interpreted as the task of carrying tools/samples by the robot
from the surface to a deep-sea area (or seabed). Once the
payload was well attached, the robot tracked the desired time-
varying trajectories, as shown in Fig. 5 (top). As the robot
moved down to a depth of approximately 0.25m, the attached
load canceled out its effect on the robot because it suddenly
lay on the floor of the testing pool. This change causes both
the proposed S+RISE and standard RISE controllers to deviate
from the desired depth; however, the proposed CDO-S+RISE
controller smoothly rejects this effect in less than 2s. Both
the proposed S+RISE and standard RISE controllers oscillate
around the desired depth for approximately 3s and 4.5s,
respectively, before neutralizing the effect, as shown in Fig. 5
(top-left plot). Furthermore, the oscillations of both controllers
lead to a coupling effect on yaw tracking, as shown in Fig.
5 (top right plot). When the desired depth reaches 0.2m, the
load becomes suspended again, and changes back to the matrix
MMM⋆

ηηη(·) to its initial value. Despite this variation, the proposed
CDO-S+RISE control scheme smoothly keeps the robot very
close to the desired trajectories, as depicted in Fig. 5 (middle).
The bottom plot in Fig. 5 shows the evolution of control inputs
versus time.

2) Case 2: This test completes the objective of Scenario 2
by introducing parametric variations in both matrix DDD⋆

ηηη(·) and
vector ggg⋆ηηη(·) of the robot dynamics. Similar to the previous
test, we propose introducing variations in both the matrix
DDD⋆

ηηη(·) and the vector ggg⋆ηηη(·) through a physical reconfiguration
of the robot’s structure as follows: The first step involved
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Fig. 3. Obtained experimental results of the proposed schemes compared to RISE [1] for scenario 1 (nominal case).
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Fig. 4. Illustration of parametric variation for case 1 of scenario 2.

attaching a 0.45m×0.1m rigid plastic sheet at the front of
the robot (as illustrated in Fig. 6). This modification changes
the matrix DDD⋆

ηηη(·) by ∆DDD⋆
ηηη(·) =+90%, compared to its nominal

value. Subsequently, two floats were mounted on both sides
of the robot, as illustrated in Fig. 6. This modification
results in a variation of the vector ggg⋆ηηη(·) to ggg⋆ηηη(·) +∆ggg⋆ηηη(·),
where ∆ggg⋆ηηη(·) = +100% with respect to its nominal value.
The robot must follow the same reference trajectories as those
in the previous scenario. The obtained tracking performance
is shown in Fig. 7 (top). The depth tracking errors of the
proposed S+RISE and standard RISE controllers increase
owing to the parametric uncertainties in the robot dynamics,
as shown in Fig. 7 (middle). Although the yaw tracking
error of the proposed CDO-S+RISE control scheme is slightly
affected, its depth-tracking performance outperforms the other
two controllers. The slight yaw-tracking error may be due
to the tether of the robot, whose stiffness induces undesired
torques during the experiment. The numerical values of the
RMS tracking errors are summarized in TABLE III. It is
worth noting that the standard RISE, proposed S+RISE, and
proposed CDO-S+RISE consume approximately the same
amount of energy in this test, as illustrated in Fig. 7 (bottom).

This can be confirmed from the numerical values summarized
in TABLE III.
Remark 7 : The changes in the matrix CCC⋆

ηηη(·) of the robot
dynamics (7) are not considered in this work, based on
assumption A2.

F. Obtained Result of Scenario 3:

Based on the previous description of this scenario, it is
possible to generate external disturbances that can affect the
robot in a real-life marine mission with an external push, as
illustrated in Fig. 8. The magnitude of this push was estimated
as approximately 25% of the robot’s total weight. We propose
to validate the proposed CDO-S+RISE control scheme only in
this scenario because it would be almost impossible to make
a fair experiment-based comparison because of the following
critical issues. The same magnitude of this push needs to
be applied to all schemes in real time and under the same
conditions (time, point, direction, etc.), which is practically
impossible. In addition, according to the previous scenarios,
the proposed CDO-S+RISE scheme demonstrated better per-
formance compared to the other two schemes; accordingly,
we propose to focus on testing its ability to reject external
disturbances.

To apply external disturbances, a long stick was used to
push the robot while following the desired trajectories in real
time, as illustrated in Fig. 8. As tracking of the desired time-
varying depth and heading plays a crucial role in many marine
tasks, this external push is applied at several points on the two
degrees of freedom of the robot. As can be observed from the
curves in Figs. 9 (top left plot) showing the depth tracking,
the robot was disturbed at different depth conditions including
0.19m (a), 0.30m (b), 0.24m (c), 0.20m (d1,d2,d3, and d4),
which can be interpreted as the descent of the robot, a
hovering maneuver at a constant depth, a depth change, and
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Fig. 5. Obtained experimental results of the proposed schemes compared to RISE [1] for scenario 2-case 1 (robustness case).
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Fig. 6. Illustration of parametric variation for case 2 of scenario 2.

stabilization at the desired depth, respectively. Similarly, the
yaw of the robot is disturbed at the orientations +60.0◦ (e),
+49.7◦ ( f ), and −60.7◦ (g1 and g2), which correspond to
the robot maintaining a constant heading, changing its course,
stabilizing, and maintaining a constant heading, respectively
(as depicted in the top-right plot of Fig. 9). In both cases,
the proposed CDO-S+RISE rejected all external disturbances
within a short time (< 2s) and stabilized the robot back
around the desired trajectories. It is worth noting that the
coupling effects are non-negligible, particularly when the yaw
is disturbed, as indicated by the vertical dotted lines on the
depth trajectory in Fig. 9 (left)). Even though approximately
the same external push is applied along the yaw axis, yaw
tracking is less affected than depth tracking, as shown in Fig. 9
(middle). It is worth noting that good tracking is accompanied
by slightly higher energy consumption. The bottom plot in
Fig. 9 shows the evolution of the control signals generated
by the proposed CDO-S+RISE control scheme. TABLES III
summarizes the results obtained for the tracking errors and
energy consumption.

Remark 8 : Note that, as long as an external disturbance
does not cause saturation of the vehicle actuators, both the
proposed CDO-S+RISE and S+RISE, in this work, will be able
to compensate for such disturbances.

VI. CONCLUSION AND FUTURE WORK

In this study, a new robust observation-based (CDO-
S+RISE) control scheme was proposed. In the first step of the
control design, a new saturated super-twisting RISE (S+RISE)
controller is proposed to address the tracking problem of
autonomous underwater vehicles. Similar to the majority of
control algorithms proposed in the literature, the proposed
S+RISE requires continuous state measurements. Therefore,
a new continuous-discrete time observer (CDO) was proposed
and integrated to work in tandem with the proposed S+RISE
controller. In addition to estimating the vehicle states and
external perturbations, the proposed observer addresses the
multirate sampling problem associated with the vehicle sen-
sors. This approach differs from many studies in the literature
where the measurements are assumed to be synchronous and
continuous. The performance recovery of the overall closed-
loop error dynamics was proven. Subsequently, Leonard un-
derwater vehicle prototype was used to implement and test
the proposed CDO-S+RISE scheme in real time for depth
and yaw trackings. Furthermore, the proposed CDO-S+RISE
approach was studied and compared to both the proposed
S+RISE and standard RISE schemes through different sce-
narios. The obtained experimental results clearly demonstrate
the potential, efficiency, and robustness of the proposed CDO-
S+RISE technique. In the future, we may consider integrating
an intelligent functionality, such as obstacle avoidance, into
the proposed CDO-S+RISE control scheme. Subsequently, the
technique is deployed in multi-agent underwater vehicles.
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Fig. 7. Obtained experimental results of the proposed schemes compared to RISE [1] for scenario 2-case 2 (robustness case).
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Fig. 8. A sequence of snapshots illustrating external disturbance rejections.
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