
HAL Id: lirmm-03884259
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03884259v1

Submitted on 5 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SKG-Lock+: A Provably Secure Logic Locking
SchemeCreating Significant Output Corruption

Quang-Linh Nguyen, Sophie Dupuis, Marie-Lise Flottes, Bruno Rouzeyre

To cite this version:
Quang-Linh Nguyen, Sophie Dupuis, Marie-Lise Flottes, Bruno Rouzeyre. SKG-Lock+: A Provably
Secure Logic Locking SchemeCreating Significant Output Corruption. Electronics, 2022, 11, pp.3906.
�10.3390/electronics11233906�. �lirmm-03884259�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03884259v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

����������
�������

Citation: Nguyen, Q.-L.; Dupuis, S.;

Flottes, M.-L.; Rouzeyre, B.

SKG-Lock+: A Provably Secure Logic

Locking Scheme Creating Significant

Output Corruption. Electronics 2022,

11, 3906. https://doi.org/10.3390/

electronics11233906

Academic Editor: Paris Kitsos

Received: 30 October 2022

Accepted: 21 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

SKG-Lock+: A Provably Secure Logic Locking Scheme
Creating Significant Output Corruption
Quang-Linh Nguyen †, Sophie Dupuis * , Marie-Lise Flottes and Bruno Rouzeyre

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,
CNRS, CEDEX 5, 34095 Montpellier, France
* Correspondence: sophie.dupuis@lirmm.fr; Tel.: +33-499-585-134
† Current affiliation: STMicroelectronics, 12 Rue Jules Horowitz, 38019 Grenoble, France.

Abstract: The current trend to globalize the supply chain in the Integrated Circuits (ICs) industry has
raised several security concerns including, among others, IC overproduction. Over the past years,
logic locking has grown into a prominent countermeasure to tackle this threat in particular. Logic
locking consists of “locking” an IC with an added primary input, the so-called key, which, unless fed
with the correct secret value, renders the ICs unusable. One of the first criteria ensuring the quality of
a logic locking technique was the output corruption, i.e., the corruption at the outputs of a locked
circuit, for any wrong key value. However, since the introduction of SAT-based attacks, resulting
countermeasures have compromised this criterion in favor of a better resilience against such attacks.
In this work, we propose SKG-Lock+, a Provably Secure Logic Locking scheme that can thwart
SAT-based attacks while maintaining significant output corruption. We perform a comprehensive
security analysis of SKG-Lock+ and show its resilience against SAT-based attacks, as well as various
other state-of-the-art attacks. Compared with related works, SKG-Lock+ provides higher output
corruption and incurs acceptable overhead.

Keywords: logic locking; SAT attack; Design-for-Trust; hardware security; IP protection; overproduction

1. Introduction

In today’s semiconductor industry, outsourcing has become the prevailing business
model [1]. Outsourcing and offshoring the fabrication process in particular has been a
major trend for decades, due to ever-increasing manufacturing costs, leading ultimately to
an increased exposure of Intellectual Property (IP) and Integrated Circuits (ICs) to external—
possibly unreliable—actors. Due to this loss of control, combined with an increasing risk
due to ever-growing adversarial capabilities throughout the supply chain, several threats,
such as IC overproduction, counterfeiting, IP piracy and Hardware Trojan insertion, have
become major sources of concern [2].

Numerous Design-for-Trust approaches have introduced preventive mechanisms over
the last years [3]. One of the most prominent approaches against IC overproduction and
IP piracy is logic locking [4,5]. Logic locking is based on adding key inputs into a design
so that the circuit behaves as expected only in the presence of the correct secret key value.
For incorrect keys, circuit’s outputs are corrupted and provide erroneous data. The correct
key is programmed post-fabrication by a trusted party thereby remaining unknown to
manufacturers and end-users. Therefore, logic locking helps design houses protect their
IPs from untrusted entities. The first logic locking technique was proposed in 2008 [6],
introducing the concept of XOR/XNOR key-gates insertion at random locations inside a
design (RLL) (cf. Figure 1). The following works proposed different types of key-gates
(AND/OR gates, MUXes, LUTs, etc.) and insertion strategies [7–11]. The most important
insertion criterion, introduced by Fault-based Logic Locking (FLL) [7], aims to provide
sufficient errors observed at a locked circuit’ outputs, referred to as high output corruption.

Electronics 2022, 11, 3906. https://doi.org/10.3390/electronics11233906 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11233906
https://doi.org/10.3390/electronics11233906
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4876-2982
https://orcid.org/0000-0002-7231-3976
https://doi.org/10.3390/electronics11233906
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11233906?type=check_update&version=3

Electronics 2022, 11, 3906 2 of 24

However, such key-gate-based logic locking techniques have been reported to be
highly susceptible to the so-called SAT attack in 2015 [12], which represents a milestone
in the logic locking research area. This attack uses a Boolean satisfiability (SAT) solver
and an unlocked circuit, referred to as the oracle, to iteratively and efficiently prune out
wrong key values. Most subsequent logic locking techniques aimed at counteracting the
SAT attack, by exponentially increasing its computing time [13,14]. In other words, thanks
to the use of a one-point function, the SAT attack could only eliminate one key value
per iteration, which made it as ineffective as a brute-force attack. However, to do so,
output corruption was dramatically diminished [15], making the ICs mostly functional
despite being supplied with a wrong key value. Furthermore, these Provably Secure Logic
Locking (PSLL) schemes introduced an isolated block leaving structural traces allowing the
identification of the block by an attacker [16]. How to improve these PSLL schemes has
been an extremely prolific field of research over the last years [15,17–23], aiming at reaching
an acceptable trade-off between attack (both functional/SAT-based and structural-based)
resilience, output corruption, and area overhead. This research has also been coupled with
improvements in attacks, mimicking an extremely prolific cat and mouse game, which
motivates all the more the proposal of new protection methods, while making this task
even more challenging.

(a) (b)

Figure 1. Logic locking technique: (a) original circuit, (b) key-gate insertion based logic locking.

To address the limitations of previous schemes, we proposed SKG-Lock [24], featuring
the characteristics of causing corruption at multiple signals with different corruptibilities.
In this paper, we present SKG-Lock+, which also provides high security against attacks
while further improving corruption. The two main contributions of this work are as follows:

1. We present an improved structure of the so-called switch controller with respect to
the one introduced in SKG-Lock, which further improves output corruption;

2. We propose a new key-gate insertion strategy FPLL, which, based on the computa-
tion of signal probabilities, allows maximizing output corruption, with a far shorter
computation time than previously proposed methods.

Furthermore, we provide a thorough security analysis of SKG-Lock+ against oracle-
guided attacks, proving that SKG-Lock+ achieves maximum resilience against the SAT
attack regardless of different corruptibilities of the switchable key-gates, as well as its
evaluation in terms of attack resilience, output corruption and overheads, along with
comparisons with state-of-the-art techniques.

The rest of the paper is organized as follows. Section 2 provides background on criteria
for logic locking, SAT attack and its countermeasures, and recent works on both attacks
and defenses. Section 3 presents our proposed logic locking scheme, SKG-Lock+. Security
analysis of SKG-Lock+ against state-of-the-art attacks is discussed in Section 4. Experi-
mental results are shown in Section 5, in terms of computation time, output corruption,
resilience against publicly available attacks and area/delay overheads. Discussions and
conclusion follow in Sections 6 and 7.

Electronics 2022, 11, 3906 3 of 24

2. Preliminaries
2.1. Output Corruption

Output corruption means that a locked circuit behaves (sufficiently) erroneously upon
application of any wrong key value. In order to be properly quantified, it should be further
categorized into several criteria as follows.

Output corruptibility—often termed Hamming distance [7] due to how it is computed—
is estimated by the average Hamming Distance HD between the outputs of a locked and
an unlocked circuit. For our experimentation, we applied to a locked circuit NK key values,
each with NI input patterns, and observed its m-bit output OL along with the output O of
the original circuit with the same input patterns, to compute the HD as follows:

1
NK × NI ×m

NK

∑
i=1

NI

∑
j=1

HD(OL(Ij, Ki), O(Ij))× 100% (1)

Output corruptibility is the original and most often used criterion to quantify output
corruption. Its targeted value is 50% for maximum obscureness for an attacker. However,
even a good output corruptibility may not be sufficient for preventing the usage of locked
circuits. Among others, a good output corruptibility does not indeed ensure that all outputs
can be impacted. In the image processing domain, for instance, a locked circuit could still
be used, e.g., if the more significant bits of the output are not impacted.

Output corruption rate—also termed output error rate or error rate [17,25]—presents
the probability of observing erroneous bit(s) at the output vector of a locked circuit. It is
measured by the percentage of input patterns that lead to errors at circuit outputs when
any incorrect key value is applied:

1
NK × NI

NK

∑
i=1

NI

∑
j=1

c× 100% (2)

where,

c =

{
1, if HD(OL(Ij, Ki), O(Ij)) ≥ 1
0, otherwise

(3)

Output corruption coverage presents the magnitude of corruption propagated to
circuit outputs. It is characterized by the maximum number of output bits that can be
corrupted, i.e., the maximum Hamming distance between the outputs on applying any
wrong key and the correct key:

l
m
× 100% (4)

where,
l = max(HD(OL(Ij, Ki), O(Ij)))∀i ∈ [1...NK], j ∈ [1...NI] (5)

To complement output corruptibility in a relevant way, output corruption rate (100%
target) ensures that all input patterns lead to corruption and output corruption coverage
(100% target) ensures that there is no output that is never corrupted.

2.2. Threat Model

Logic locking aims at preventing an untrustworthy foundry from selling overproduced
ICs on the black market, by rendering those inoperable, until they are properly activated.
The attacker is therefore the foundry—or at least a rogue employee in the foundry—that, as
a consequence, aims at unlocking the ICs/circumventing the protection (for example by
finding the value of the secret key). Two types of attacks have been proposed.

Oracle-guided attacks—such as the SAT attack—whose threat model is described in
Figure 2, assume that the attacker has access to two fundamental assets:

Electronics 2022, 11, 3906 4 of 24

• The locked netlist, i.e., the netlist containing the logic locking structure—possibly
obtained from reverse-engineering (e.g., the manufacturer can obtain it from the
layout of the logic locked design);

• An oracle, i.e., an unlocked IC (with accessible scan chains).

Fabrication

IC Activation Test
Packaging

Market

Attack

Locked
Design

Locked IC

Locked IC

Functional IC

Key

Reverse-engineered

Netlist

Functional IC

Design
+ Logic Locking

Key

Figure 2. IC supply chain and threat model on logic locking.

Oracle-less attacks, on the other hand, assume that the attacker does not have access
to an oracle, only to the locked netlist. Structural attacks belong to this category, including
removal attacks aiming to detect the protection logic to remove/disconnect it.

Note that, in this paper, we also assume that the physical security of the key—e.g.,
stored in a tamper-proof memory—to prevent direct access by the attacker is guaranteed.
The veracity of this assumption, which may be undermined by attacks such as optical
probing [26], is out of the scope of this paper. Furthermore, one should notice that logic
locking methods generate a unique global key value. Logic locking security can nevertheless
be improved thanks to the individualization of the key value for each IC, by using the
pre-step scheme, using process variations, provided by PUFs for example [7].

2.3. The SAT Attack and “Post SAT” Related Works
2.3.1. The SAT Attack

The SAT attack [12] is an iterative process, as presented in Figure 3. In each iteration,
the attack finds a so-called Distinguish Input Pattern (DIP), i.e., an input pattern that results
in different output values for two different key values. The DIP is then applied to the oracle
to prune out the wrong key values. Note that the attack is able to prune out all key values
that generate corruption for this particular input pattern—referred to as equivalent keys or
keys of an equivalence class. By adding the observed disagreement between the locked
netlist and the oracle as new constraints to the SAT solver, the attack reduces the key search
space iteratively until no more DIP can be identified. Then, the SAT solver deduces the
correct key.

Locked netlist

Locked netlist

!=

K1 O1

O2
K2

I

Build miter CNF SAT solver DIP exists?

Oracle

Unlocked

IC

DIP Output

Add constraints

Return key

Yes

No

Figure 3. The SAT attack [12].

This attack represents a milestone in logic locking research. Most of the methods
released since 2015 attempt to be effective against this attack, alongside new attacks. Three
tracks were studied to prevent the attack:

1. Prevent it from being launched, e.g., by preventing the formalization of the circuit into
a directed acyclic graph. This can be done with the introduction of cyclic interconnec-
tion [27] (countered by an enhanced SAT version assuming that “there is one correct
key that will generate an acyclic circuit” [28]). The idea of delay locking has also

Electronics 2022, 11, 3906 5 of 24

been introduced in [29], in which the key determines the correct functionality along
with the correct timing profile of a circuit (also countered by the SMT enhanced SAT
attack [30]). In the particular case of sequential circuits, which need to be modeled as
combinational ones thanks to the use of scan-chains, countermeasures based on the
protection of scan chains exist also, thereby preventing the use of the oracle [31–33].
However, this kind of solution may be suitable to all defenders, e.g., those who do
not have control over the test infrastructure of their designs.

2. Lengthen tremendously the attack computational time:

(a) By increasing the computational time of each iteration. To that end, researchers
have proposed countermeasures based on SAT-hard structures, such as cryp-
tographic ciphers [10,34], nevertheless having impractically high overheads.
Full-Lock [35] introduces another kind of SAT-hard structure, programmable
logic and routing blocks (countered by an SAT-based attack with advanced
modeling techniques [36]). However, an SAT-based attack guided by a neural-
network has recently been proposed to solve such structures, as multipliers,
crossbars, LUTs and AND-trees [37].

(b) By increasing the number of iterations needed by the attack. It is this research
direction that has been the most studied, and of which our proposal is a part.
We therefore detail it in the following sub-sections.

2.3.2. Provably Secure Logic Locking

The first provable SAT countermeasures were SARLock [13] and Anti-SAT [14]. As
already introduced, they use a point-function (i.e., a boolean function that outputs the value
‘1’ for exactly one input pattern) based structure inserted beside the circuit (cf. Figure 4a)
to maximize the number of iterations of the SAT attack to 2n (n being the key size): the
point-function only corrupts the circuit output for one corresponding key value per input
pattern [17]. Let us define the SAT resilience level of a logic locking technique, which is
n-secure if the number of iterations returned by the SAT attack on its locked circuits is 2n.

Since output corruption is dramatically low with this type of technique, a naive way to
increase corruption is to insert additional key-gates beside the point-function lock [13,14].
In these so-called compound schemes, the key is divided into two distinct parts (cf. Figure 4b):
the strength of the solution against the SAT attack is provided by the key bits dedicated
to the SAT protection, whereas the other key bits are dedicated to the increase of the
output corruption.

(a) (b)

(c) (d)

Figure 4. General structures of PSLL: (a) point-function based, (b) compound (point-function + logic
locking), (c) CAC, (d) SKG-Lock+.

Electronics 2022, 11, 3906 6 of 24

2.3.3. Post-SAT Attacks

Approximate attacks, notably AppSAT [15] and Double-DIP [38], are oracle-guided
attacks that aim at finding an approximately correct key, i.e., a key value for which output
corruption of the locked circuit is very low. Due to additional capabilities such as error
estimation and random query reinforcement, they can avoid being trapped into solving the
point-function. The Bypass attack [39] aims to build a bypass circuit to correct the output
of a circuit locked by a point-function based technique. The attack collects disagreeing
input patterns of two copies of the locked circuit supplied with different wrong key values.
The bypass circuit is built to correct circuit outputs for these input patterns.

Regarding compound schemes, such attacks can be used, if combined with a pre-
processing step to differentiate the key bits corresponding to the key-gate insertion tech-
nique to those corresponding to the SAT protection [40]. For example, both the SAT attack
and the Bypass attack can be used on each part of the key. Fa-SAT has also been pro-
posed [41], which takes advantage of the fault-injection principle to aid the SAT attack
tackle compound schemes. Ref. [42] is a statistical-based attack that utilizes the variation in
output corruption for different key bits to also tackle compound schemes.

Since point-function based blocks are connected to the circuit through a single signal,
an attacker can aim at detecting the output of this block in order to remove it and retrieve the
original design. Several oracle-less removal attacks [43,44] (initially dedicated to a particular
protection) were proposed to exploit such vulnerabilities thanks to: (i) signal probability
analysis (since the block output has exceptionally skewed probabilities), (ii) fanin analysis
(since all key-inputs converge at this signal), (iii) partitioning algorithms (since the block is
isolated and its size can be estimated).

2.3.4. Improved PSLL

In order to mitigate structural vulnerabilities of PSLL schemes or/and enhancing
output corruption, new point-function structures have been proposed. Diversified Tree
Logic (DTL) [15] provides tunable output corruption with the modification of a few gates
in the point-function based block. By replacing some of the gates in an AND tree structure
with OR/AND/XOR gates, the corruptibility of the added block can indeed be increased,
generating an increase in output corruption and output corruption rate. Noise-based logic
locking [21] introduces an improvement of the Anti-SAT block with non-complementary
sub-blocks, which avoids a block output with probabilities skewed toward 0 or 1. By us-
ing non-complementary functions, a wide variety of structures can be implemented, less
susceptible to removal attacks. CAS-Lock [22] proposes cascaded structures for the com-
plementary sub-blocks. Instead of an AND tree structure, the cascaded structures in this
technique contain AND and OR gates. The proposed CAS-Lock block increases exponen-
tially the complexity for an SAT attack, while providing considerable output corruption. Its
output corruption is tunable by changing the location and number of AND/OR gates in
the sub-blocks. G-Anti-SAT [23] introduces a generalized approach to designing the SAT
resilient logic lock. The work identifies a set of constraints for the function of each sub-block
that can enable achieving maximum SAT resilience as well as non-trivial corruption. It
then uses K-maps to implement such functions. A large variety of structures for sub-blocks
can be realized, either complementary or non-complementary, AND tree or non-AND tree.
Thus, Anti-SAT and CAS-Lock can be considered as special cases of G-Anti-SAT.

2.3.5. Corrupt-and-Correct Schemes

On the other hand, point-functions based on a Corrupt-And-Correct (CAC) scheme
were also proposed, in order to mitigate structural vulnerabilities. TTLock [45] introduced
the CAC concept, in which the original circuit is transformed so that its output is flipped for
one so-called protected input pattern (which is also the correct key value): a perturbation
unit consisting of a comparator is added to strip the functionality of the original design,
and an additional restore unit is also inserted to correct the output in the presence of
a correct key value (cf. Figure 4c). An attacker aiming at removing the added block

Electronics 2022, 11, 3906 7 of 24

may be able to remove the restore unit, but not the perturb unit, thus obtaining a circuit
still not functioning properly. Then, the Stripped Functionality Logic Locking (SFLL)
method [17–19] generalised the concept, by e.g., allowing to choose the Hamming distance
h between the protected input patterns and the correct key (SFLL-HD) or to choose directly
the c protected input patterns (SFLL-flex). By increasing h or c, the output corruption
can grow, however, at the cost of decreasing SAT-attack resilience and increasing the
area overhead.

2.3.6. Post-PSLL/CAC Attacks

Recently, oracle-guided and oracle-less attacks have been enhanced to tackle improved
PSLL and/or CAC schemes. SFLL was attacked by the removal FALL attack [16], which
manages to detect and remove its perturbation unit. CAS-lock was attacked by both an
oracle-guided and an oracle-less attack in [46]. The SPI attack [47] is an oracle-guided
and structural-based attack that exploits the properties of EDA tools to undermine CAC
schemes. However, a property consisting of wisely choosing the protected input pattern(s)
intrinsic to the CAC technique is also proposed by the authors to counteract the attack. The
removal attack GNNUnlock+ [48] uses a graph neural network to identify all previously
proposed PSLL methods. To do so, it identifies the specific and common characteristics
of signals in the different blocks and, after training, the graph neural network is able to
classify which signals belong to the protection blocks.

Other types of oracle-less attacks have also been introduced. Synthesis-based attacks
aim to extract the secret key by synthesizing the locked netlist upon applying constraints
on key-inputs. The SCOPE attack [49] tackles each key bit individually. For each key-input,
it consists of making two circuit copies, each with logic 1 or 0 assigned to the key-input,
then synthesizing and optimizing the two circuits, before comparing them using statistical
analysis. The deduced key bit is the one associated with the more optimized circuit copy.
Ref. [50] prunes out incorrect keys that introduce a significant level of logic redundancy.
CLIC-A [51] is an ATPG-based attack, which exploits the use of a protected input patterns
in CAC schemes.

3. Proposed Logic Locking Scheme: SKG-Lock+

In line with proposals based on improved point-function structures, which aim at
increasing output corruption, we have proposed SK-Lock in [24]. SKG-Lock+ improves on
this version, as will be detailed in this section. To the best of our knowledge, these solutions
are the only ones to propose an improvement of a compound scheme, making good use of
the advantages of both a point-function lock and key-gate insertion (cf. Figure 4d).

3.1. Framework

The structure of the SKG-Lock+ comprises two types of components, Switchable Key-
Gates (SKGs) and a Switch Controller (SWC), as depicted in Figure 5. Two sets of key
inputs are included in SKG-Lock+, the activation key (KA) and the decoy key (KD):

• KA is connected to the inserted SKGs:

– Inserting the correct value of KA nullifies all SKGs and unlocks the circuit (this
correct value is set by the designer during the design phase);

– On the contrary, any wrong value of KA generates corruption through the SKGs
(as long as they are triggered by the switch-signals);

– The size of KA (denoted as m) indicates the effort of a brute-force attack.

• KD is connected to the switch controller:

– Inserting the correct value of KD triggers the SKGs through the switch-signals;
– On the contrary, any wrong value of KD disables some SKGs;
– Note that the circuit can be unlocked irrespective of the value of KD, inserting the

correct value of KA is sufficient;

Electronics 2022, 11, 3906 8 of 24

– The size of KD (denoted as n) determines the security level against the SAT attack
(as proven thereafter).

SKG
PI PO

sw

SKG S0'S0

m

n

n

KD

KA

S1'S1

...SWC

... ...

sw0
sw1

swn-1

KD
PI

n
sw2

X
N
O
R

S
S'

sw
KA KA = 1

KA = 0

S

sw
KA

S'

(a) (b)(a) (b) (c)

Figure 5. Original structure of SKG-Lock+ components: (a) general structure, (b) switch controller,
(c) switchable key-gates.

KD and KA both come from a protected memory and are physically indistinguishable
from the attacker’s point of view. In other words, they are both controllable key inputs in
the locked netlist used in oracle-guided attacks.

3.2. Switchable Key-Gates
3.2.1. Structure

The structure of the SKGs is depicted in Figure 5c. An SKG has three inputs: the
signal S from the locked circuit that is meant to be corrupted and two control signals—KA
and the so-called switch-signal. Compared to a traditional XOR key-gate, beside the key
input, an SKG has an additional control signal. Both control signals must be asserted in
order to make an SKG corrupt S. Corruption indeed only happens when an incorrect KA
value is inserted and ’1’ is set on the switch-signal (in case of SKGs with positive switch;
note that SKGs with negative switch can be constructed with OR and XNOR gates). As a
consequence, the choice of the switch-signal allows tuning the SKGs’ ability to corrupt
the circuit.

3.2.2. Insertion strategy FPLL

Since SKG-Lock+ provides security against SAT-based attacks (cf. proof in Section 4.2),
the criteria for SKG insertion strategy we chose is to maximize output corruption (One
should notice that the key-gate insertion strategy is independent of the use of SKG-Lock+.

In other words, any existing insertion existing strategy can be used in the SKG-Lock+
framework.). The proposed key-gates insertion strategy based on fault analysis coming
from probabilities computation FPLL consists of ranking signals in the circuit based on the
co-called Output Corruption Score (OCS) to select signals for key-gate insertion.

The principle of the proposed strategy is to rank every signal of the circuit according to
its OCS. For each signal, this metric reflects the impact on outputs if the signal is corrupted
due to an inserted key-gate. Similar to FLL, this strategy emulates the corruption by
inserting stuck-at-faults (s-a-f) on signals. Applying a wrong key bit is indeed equivalent
to the activation of a stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1) on the corresponding corrupted
signal. Then, the impact of each given fault on outputs is measured by recording the
difference in the outputs’ probabilities (to be logic ‘1’ (For the rest of the chapter, we use
probability of a signal to refer to its probability to be logic ‘1’.)) with and without the
fault as follows (cf. Figure 6). Calculating signals’ probabilities in a netlist consists of
propagating the probability of each signal from the circuit inputs (circuit primary inputs
are assigned a probability of 0.5, as well as the outputs of FFs for sequential circuits) to the
circuit outputs (cf. Figure 6a). A signal with an s-a-0 or s-a-1 changes its initial probability
to 0 or 1, respectively, thereby influencing the probabilities of the signals in its fan-out
(cf. Figure 6b,c).

Electronics 2022, 11, 3906 9 of 24

0.5

x

0.5

0.5

0.5

0.5

0.5

0.25

0.25

0.25

0.125

0.125

0.5

0.5

0.5

0.5

0.5

0.5

0.25

s-a-0

0.25

0

0

0.5

0.5

0.5

0.5

0.5

0.5

0.25

s-a-1

0.25

0.25

0.25

x
0 1

(a) (b) (c)

Figure 6. Signals probabilities when inserting stuck-at-faults: (a) initial probabilities, (b) modified
probabilities if case of a s-a-0, (c) modified probabilities in case of a s-a-1.

The calculation of the OCS for each signal consists of computing the probability of
outputs. Firstly, the probability of outputs in the original circuit is measured. Then, s-a-1/0
is inserted at that signal and the probability is recomputed. By comparing the probabilities
before and after the fault insertion, one obtains the total probability difference ∆psa f and the
number of outputs that have their probability changed nsa f . ∆psa f is the sum of absolute
probability difference of each circuit output:

∆psa f =
nO

∑
i=1
|pi − pisa f | (6)

where nO is the number of circuit outputs.
The OCS is calculated as:

OCS = ∆psa0 × nsa0 + ∆psa1 × nsa1 (7)

Inserting key-gates at signals with high scores will impact most of the outputs for most
of the input patterns, resulting in high output corruption coverage and corruption rate.
One can notice that signals at circuit outputs always have an OCS of 1 since there is only
one output affected and the total probability difference due to s-a-0 and s-a-1 ∆psa0 + ∆psa1
is 1. On the other hand, internal signals with large fan-out potentially have a high OCS
score and are favored by the strategy to achieve higher output corruption coverage.

Algorithm 1 describes the FPLL strategy, using key-gate insertion. The output corrup-
tion score of each signal is first calculated and signals are ranked according to their score in
a descending order. After, signal selection starts from the one with the highest score. Here,
an additional criterion is applied; the signals that have the same score as the previously
chosen signal will not be selected for key-gate insertion. This is because signals that have
the same score are structurally close to each other, such as signals connected by a buffer.
Thus, selecting only one among these signals avoids series of key-gates.

The execution time of the FPLL strategy is essentially the signal ranking step. It can be
estimated as:

TFPLL = tprob × N (8)

where tprob is the amount of time for calculating the output corruption score of a signal, N
is the number of signals. In comparison with FLL, which redoes the ranking each time a
key-gate is inserted (cf. Equation (9)), FPLL only ranks signals once.

TFLL = tsim × N × K (9)

Therefore, our strategy is more scalable than FLL. Furthermore, the time of the simula-
tion needed by FLL may be quite long. If reconvergent paths are not taken into account, the
probability-based computation of FPLL can be quite short (the version taking into account
reconvergent paths takes obviously more time).

Electronics 2022, 11, 3906 10 of 24

Algorithm 1: The FPLL strategy.
Data: netlist, keySize
Result: Locked netlist

1 signalList = [inputs, signals, outputs]
2 NbInsertedKeyGates = 0
3 for I in signalList do
4 Calculate OCS score of I
5 end
6 rankedSignalList = rank(signalList, descending order based on OCS)
7 while NbInsertedKeyGates < keySize do
8 Signal, Score = rankedSignalList.pop(0)
9 if Score 6= previousScore then

10 Insert a key-gate at Signal
11 NbInsertedKeyGates += 1
12 else
13 continue (to avoid series of key-gates)
14 end
15 end
16 return locked netlist

3.3. Switch Controller

The SWC generates the switch-signals, thereby, determining the corruptibility of each
SKG. Its inputs are an n− bits key input KD and an equal number of circuit inputs, which
can include primary inputs (PIs) and pseudo primary inputs (flip-flop outputs).

3.3.1. Original SWC

A typical design for the SWC is depicted in Figure 5a. Its structure is a comparator,
constructed with a row of XNOR gates and a cascade of AND gates. Its outputs are n
switch-signals, each of which from each signal in the AND cascade. The output at the
end of the cascade swn−1 is essentially the output of a point-function between KD and
circuit inputs. This switch-signal has a highly skewed probability, i.e., a low activity, since
it switches i f f the value of the connected inputs is equal to KD. Therefore, swn−1 presents
low corruptibility but maximal complexity for the SAT attack. The SKG connected to it is
referred to as the Lowest-Corruptibility SKG (LC-SKG). Other switch-signals have a higher
probability (to be logic 1); thus, SKGs driven by them have higher corruptibility, compared
to LC-SKG (the corruptibility C of each SKG is the probability of its switch-signal: Csw0 = 1

2 ,
Csw1 = 1

22 , etc.). Consequently, the SKG with highest corruptibility is the one driven by sw0.
Depending on the designer’s settings, several SKGs may be driven by the same switch-
signal, and/or certain switch-signals may be unused (e.g., in cases when n 6= m). For
example, to reduce output corruption, high-probability switch-signals may be left unused,
and low-probability switch-signals can be connected to more SKGs. Experimental results
will detail the possible trade-off between SAT resilience and output corruption according
to the choice of switch-signals mapping.

3.3.2. Improved SWC

However, with the original SWC structure presented in Figure 5a, there is an overlap
in the input patterns that activate each switch-signal, resulting in a still quite large number
of input patterns for which there is no corruption. A 3-bit example of the SWC structure
used in SKG-Lock is illustrated in Figure 7a. In the corresponding switch-signals truth-
tables, the rows present the primary inputs possibilities and the columns, the key values
possibilities. With the original structure, due to overlap of input patterns that result in ’1’
for each switch-signal (cf. light orange boxes in the truth tables), there can only be half of
all patterns (4 out of 8) that can lead to corruption. Therefore, it is necessary to improve

Electronics 2022, 11, 3906 11 of 24

such an SWC structure in order to increase the number of patterns for which there can
be corruption, as presented in Figure 7b. With this improved structure, different input
patterns assert different switch-signals; hence, there are 7 out of 8 patterns for which there
can be corruption. In cases when all inserted KA bits are incorrect, one can expect an output
corruption rate up to almost 100%.

In
pu

t [
2,

 0
] 1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1 1

1
1 1
1 1

1
1 1

1

1
1 1

1

In
pu

t [
2,

 0
] 1

0
0
0
0
0
0

0
0
0
0
0
0

0
0

0
0
0
0

0
0

0
0
0
0

0
0
0
0

0
0

0
0
0
0

0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
1

1
1

1
1

1

1
1

1
1

1
1

1
1

0
0
0
0
0
0
0

0

0
0
0
0
0
0

0
0

0
0
0
0
0

0
0
0

0
0
0
0

0
0
0
0

0
0
0

0
0
0
0
0

0
0

0
0
0
0
0
0

0

0
0
0
0
0
0
0

1
1

1
1

1
1

1

1

KD[2, 0] KD[2, 0]

In
pu

t [
2,

 0
]

KD[2, 0]

sw1

sw0

sw2

KD0

KD1

KD2

I1

I2

I0

sw0 sw1 sw2

(a)

1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
1

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1 1

1
1 1
1 1

1
1 1

1

1
1 1

1

In
pu

t [
2,

 0
]

KD[2, 0]

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0

0
0
0
0

0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0

0
0

0
0

0
0

1
1
1

1

1
1
1

1

0
0

0
0

0
0

0
0

0
0

0
0

1
1
1

1

1
1
1

1

KD[2, 0]

In
pu

t [
2,

 0
]

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0

0
0
0
0

0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1

1
1

1

KD[2, 0]

In
pu

t [
2,

 0
]

sw1

sw0

sw2

KD0

KD1

KD2

I1

I2

I0

sw0 sw1 sw2

(b)

Figure 7. Switch controller structures (3-bits KD for example) and corresponding switch-signals truth
tables: (a) the original structure, (b) the proposed improved structure avoiding overlapping in the
inputs patterns that activate each switch-signal.

3.4. Locking Algorithm

Algorithm 2 describes how a netlist is locked with SKG-Lock+. The designer defines:

• The key sizes:

– The size of KA, hence the number of SKGs;
– The size of KD, hence the SAT-attack secure level;

• A list of signals for SKG insertion (note that if the netlist already contains key-gates,
the designer can easily replace them with SKGs);

• A rule to map switch-signals to SKGs:

– Which switch-signals to use: the SAT-attack-secure level (resp. output corruption)
increases with increasing number of SKGs mapped to the switch-signal with the
lowest (resp. highest) switching activity;

– Which SKG to be mapped to which switch-signal, e.g., SKGs at strategic locations
could be mapped with high-activity switch-signals to increase output corruption.

A locked netlist is then formed from the original netlist, by inserting SKGs and the
SWC block, mapping circuit inputs to the SWC and switch-signals to SKGs, as depicted
on a toy example in Figure 8. Note that this insertion process is, although linear to the key
size, almost instantaneous and independent of the size of the circuit. The total procedure
computation time also includes the step of creating the signals list for the insertion of the
SKGs, which is more time consuming than the insertion itself.

Electronics 2022, 11, 3906 12 of 24

Algorithm 2: SKG-Lock+ locking algorithm.
Data: Netlist, size of KA (m), size of KD (n), candidate signals list, SKG-sw

mapping rule
Result: Locked netlist

1 Locked netlist = Netlist;
2 Add n− bit KD and m− bit KA to Locked Netlist primary inputs;
3 Insert SWC block in Locked Netlist with 2n inputs and n outputs;
4 Map n SWC inputs to KD;
5 Map other n SWC inputs to n randomly chosen primary inputs;
6 for each bit KAi in KA do
7 Insert an SKG at signali of candidate signals list in Locked Netlist;
8 Map ka control input signal to KAi;
9 Map switch control input signal to one sw according to SKG-sw mapping rule;

10 end
11 Return Locked netlist;

Figure 8. SKG-Lock+ insertion on a toy example.

3.5. Area Overhead

The area overhead of the SKG-Lock+ is dependant of the key size. The number of
SKGs is indeed equal to the size of KA (each SKG generates 1 XOR/XNOR gate and 1
AND gate), and the size of the SWC is proportional to the size of KD. Compared to the
original structure, the proposed improved SWC structure requires a little more area; for
an n-bit SWC, it uses additional n-2 AND gates and its number of gates is estimated as n
XOR/XNOR gates and 2× n− 2 AND gates. Additional XOR-gates are also present in case
of an obfuscated SWC.

By comparison with methods of the same type, for the same SAT resilience, SKG-Lock+
has a comparable cost in area to CAS-Lock (2× n + 1 XOR/XNOR gates and 2× n + 1
AND/OR gates), but much less than SFLL-HD, which contains HD counters.

4. Security Analysis of SKG-Lock+ Against Oracle Guided Attacks
4.1. Key Sensitization Attack

The key sensitization attack [8] is able to counter key-gate-based logic locking by
targeting each key-gate and sensitizing individual key-input. With SKG-Lock+, for each
SKG, there is a convergence path between its KA signal and its switch-signal. Furthermore,
switch-signals are convergent with (one to) several KD signals. Since KD key-inputs and
KA key-inputs are indistinguishable from the attacker’s point of view, there is interference
among key-inputs. In addition, an interference-based strategy [10] can be used as the

Electronics 2022, 11, 3906 13 of 24

SKG insertion strategy to further provide interference among KA key-inputs. Therefore,
SKG-Lock+ is resistant against the key sensitization attack.

4.2. SAT Attack

Without loss of generality, we can assume that the size of KD and circuit PI is n; the
correct value of each bit of KA is 1 for every SKG; and each SKG is inserted at a different
circuit output so that any corruption is observed at an output. A DIP produced at the i-th
iteration by the SAT attack is denoted as Xi. Let us denote N as the number of iterations of
an SAT attack.

Let us consider the case of SKG-Lock, including a switch controller and only one SKG
controlled by swn−1. Wrong key values that can be ruled out by a DIP Xi satisfying the
following condition:

(KA = 0) ∧ (~KD = ~Xi) (10)

For any given Xi, there is one way to select KA and one way to select KD to satisfy
the condition in Equation (10). Thus, each iteration identifies only one wrong key value.
Hence, the number of iterations required by the SAT attack to eliminate all (2n) wrong key
values is N = 2n. The circuit is n-secure against an SAT attack.

Following the same assumptions, let us now consider the case where the circuit is
locked with two SKGs: one SKG is driven by swn−1 and another SKG is driven by swn−2.
The condition for any wrong key value to be identified by a given Xi is:[

(~KA[0] = 0, ~KA[1] ∈ B) ∧ (~KD = ~Xi)
]
∨[

(~KA[0 : 1] = ~10) ∧ (~KD[0 : n− 2] = ~Xi[0 : n− 2])
]

(11)

Thus, when ~KA[0] = 0, the set of wrong key eliminated by Xi has the following form:

(~KA[0] = 0, ~KA[1] ∈ B, ~KD = ~Xi) (12)

There is a one-to-one matching between KD and Xi. Thus, any input pattern can be
selected as a DIP to identify a unique set of wrong keys in the form of (12). Therefore, the
total number of SAT iterations is N = 2n. The circuit is n-secure against an SAT attack.

Figure 9 illustrates this proof with two examples of truth tables. In these examples, there
is a 2-bit KA, connected to two SKGs, and a 3-bit KD, connected to a 3-bit SWC. Each truth
table is divided into four sub-parts according to the four possible values of KA (and in each
sub-part, eight possible values for KD). The two control signals of the first SKG are KA[0] and
swn−1 = sw2. The two control signals of the second SKG are KA[1] and sw1 in Figure 9a or sw0
in Figure 9b. In both figures, the point-function behavior appears when KA[0] is not correct but
KA[1] is correct (third sub-part of the truth tables), which imposes on the SAT attack at least
2n(n = 3) iterations to eliminate all wrong key values in this sub-part. Furthermore, when
KA[1] is not correct (first and second sub-part), the corruption (of the signals on which the SKGs
are inserted) is increased, depending on which switch signal is used.

(a) (b)

Figure 9. The truth tables representing corruption (1 in light orange) with the proposed improved
SWC structure, depending on the possible key values (correct bits in green and incorrect bits in red):
(a) one SKG connected to sw2 and one SKG connected to sw1, (b) one SKG connected to sw2 and one
SKG connected to sw0.

Electronics 2022, 11, 3906 14 of 24

More generally, the presented proof holds for the case where there are more than
two SKGs. n-secure SAT-resilience level is achieved as long as there is at least one SKG
connected with swn−1. The achieved SAT resilience depends on the size of the SWC.

4.3. AppSAT Attack

The AppSAT attack [15] aims to find an low-corruption key, i.e., a key value for which
the output corruption of the locked circuit is very low. However, AppSAT is not effective
against logic locking techniques when different key values correspond to different amounts
of output corruption [52]. This is the case for SKG-Lock+ since each key value indicates a
different set of incorrect key bits for SKGs and each SKG has a different corruptibility. The
key value that results in the lowest corruption is the one in which only the key bit of the
lowest corruptibility SKG is incorrect. Therefore, one can expect that AppSAT on SKG-Lock+
returns a key value that has several wrong key bits, which leads to considerable corruption.

4.4. Bypass Attack

The Bypass attack [39] aims to construct a bypass circuit to correct the corrupted
outputs of a locked circuit. The attack builds a miter circuit (with two copies of the locked
circuit applied with two random key values) to find all input patterns that cause corrupted
outputs. In SKG-Lock+, two random key values may contain same wrong key bits for SKGs.
Hence, the two locked copies may have the same wrong outputs for several input patterns,
which then would go unnoticed by the attack. Furthermore, an incorrect key value could
lead to a significant output corruption rate and coverage, which results in an impractically
large bypass circuit. Therefore, the attack is not efficient against SKG-Lock+.

5. Experimental Results

To evaluate FPLL and SKG-Lock+, we implemented them on ISCAS’85, ISCAS’89,
MCNC or/and ITC’99 benchmarks [53,54]. The experiments were executed on an 8-core
Intel processor running at 1.90 GHz with 16 GB RAM.

5.1. FPLL

For measuring probabilities, we used the Signal Probability Reliability Analysis (SPRA)
tool [55]. In our experiments, we chose not to use the option that takes into account
reconvergent paths. Without this option, the program takes much less time, despite slightly
less accurate measurement, than with this option [56]. Nevertheless, as will be shown,
optimal results for output corruption were nevertheless obtained, showing that this option
is not useful.

To evaluate the output corruption of FPLL, we implemented XOR/XNOR key-gate
insertion with our strategy, FLL, and RLL, each on six benchmarks. For each benchmark,
the number of inserted key-gates is 5% of the number of gates in the circuit (130 for i8,
124 for c5315, 178 for seq, 186 for c7552, 269 for apex4, 336 for des). For this evaluation,
each circuit was simulated with 100 wrong key values, each with 1000 random input
patterns. The results are presented in Figure 10. As FPLL and FLL are optimized for output
corruption, both achieve optimal results in all metrics. For FPLL, most circuits achieved
output corruptibility from 40% to the optimum 50%. Its output corruptibility is equivalent
with that of FLL; the results are slightly better for four circuits. It also has maximum output
corruption coverage due to the fact that it favors signals that effect the most outputs as
possible; the results are better than that of FLL for two circuits. It achieves 100% corruption
rate in all circuits, which is equal to FLL and better than RLL for one circuit. FPLL performs
significantly better than RLL, especially in output corruptibility and corruption coverage.

Electronics 2022, 11, 3906 15 of 24

des apex4c7552 seq c5315 i8
0

20

40

60

80

100

50%

O
ut

pu
tC

or
ru

pt
ib

ili
ty

(%
)

FPLL FLL RLL

des apex4c7552 seq c5315 i8
0

50

100

O
ut

pu
tC

or
ru

pt
io

n
R

at
e

(%
)

des apex4c7552 seq c5315 i8
0

50

100

O
ut

pu
tC

or
ru

pt
io

n
C

ov
er

ag
e

(%
)

(a) (b) (c)

Figure 10. Output corruption evaluation of FPLL and comparison with FLL and RLL (benchmarks
are in decreasing size order): (a) uutput corruptibility, (b) output corruption rate, (c) output corrup-
tion coverage.

Table 1 shows the execution time results in an increasing order. In general, larger
circuits, i.e., circuits with a higher number of signals (cf. second column), require more
time than smaller ones; however, it is a non-linear relation; the runtime scales up faster
than the size of the circuit. This is because the probability measurement runtime depends
on the circuit size. Nevertheless, for small circuits, the FPLL strategy finished in a matter
of minutes.

A preliminary comparison with FLL shows that, regarding benchmark c7552, FPLL
finished in 10 min whereas it is reported in [7] that FLL took two hours, which makes FPLL
92% faster. Nevertheless, the comparison may not be relevant due to possible discrepancies
in time measurements, such as the workstation specifications. To better compare FPLL and
FLL, we made experiments on three small benchmarks (c432, c1355 and i9), which showed
that FPLL was 85% to 95% faster, confirming previous data.

In summmary, FPLL is as efficient as FLL in terms of output corruption, with signifi-
cantly shorter execution time.

Table 1. FPLL runtime.

Bench Nb Signals Runtime (s)

c5315 2485 225.35
i8 2597 205.15

s5378 3050 495.23
seq 3560 469.87

c7552 3720 605.5
apex4 5370 1609.4

des 6729 3340.83
s9234 5844 3729.66

s13207 8729 12,351.7
b15_C 8922 14,337.47
b14_C 10,098 19,663.67
s15850 10,397 25,355.29

5.2. SKG-Lock+

We set in each benchmark an equal size of KA and KD, n = m, the total key size is
therefore 2n. The n inputs of the SWC were randomly selected. n SKGs were inserted and
n switch-signals were used, each of which was driving each SKG.

5.2.1. Security Evaluation

As mentioned in Section 4.2, the security level against the SAT attack depends directly
on the size of KD (i.e., the number of inputs connected to the switch controller). Therefore,
the expected number of iterations for each benchmark is 2n in order to be n-secure against
the SAT attack.

Electronics 2022, 11, 3906 16 of 24

The evaluation of SAT resilience of the base configuration of SKG-Lock+ with increas-
ing key size is shown in Figure 11 (for the sake of understanding the trends, we made
experiments with small key sizes). For all benchmarks, the number of SAT iterations is
bigger than the expected number for n-secure. The cause of the extra iterations (could
be thousands of iterations) stems from the locations of inserted SKGs. Propagating SKGs
corruption to circuit outputs indeed involves controlling several inputs. Thus, inputs that
are not connected to the switch controller may also be taken into account (in addition to
the connected ones) when the attack identifies DIPs.

10 11 12 13

210

211

212

213

n

N
um

be
r

of
SA

T
it

er
at

io
ns des

c7552
seq
i8

c5315
dalu

Figure 11. Evaluation of SAT resilience vs. key size.

The level of security against approximate attacks depends on the key size (as for the
SAT attack). Furthermore, the accuracy of the approximate key potentially found by the
attack—directly related to the output corruption generated by this key—is also of interest.
We applied AppSAT on SKG-Lock+ 32-secure against SAT (i.e., n = 32). We used the same
attack configuration as in [25]: 50 random queries were applied after every 12 SAT iterations
and the settlement threshold was 5 and ran the attack ten times on each benchmark.

The results in Table 2 show the output corruption of the circuit when applied with
the key values returned from AppSAT. We observed that the KA part of the AppSAT keys
contains several wrong key bits. To measure the output corruption with the produced keys,
for each key value, we applied 1,000,000 random input patterns and compared the outputs
observed from the locked circuit to the golden outputs. It is apparent that AppSAT failed to
reduce the output corruption rate of SKG-Lock to a point-function corruptibility (1/232 in
this case). The observed corruption rates range from 0.1% to 6%, indicating that the circuit,
if run at 1MHz, may produce several thousands of errors each second. Moreover, we also
observed sufficient output corruption coverage on several benchmarks.

Table 2. AppSAT attack result on SKG-Lock+ (n = 32).

Bench
Output Corruption Due to AppSAT Key

Output Corruption Rate (%) Output Corruption Coverage (%)

des 0.14 24.49
c7552 3.1 25.23

i8 1.03 98.76
c5315 6.64 32.52
dalu 2.18 100

Note that we have not conducted experiments on some recent proposed oracle-guided
attacks, dedicated to “classical” compound schemes or CAC schemes, SKG-Lock+ being
in nature a structurally different approach (note also that not all attack frameworks are
made available by the authors). Attacks dedicated to CAC schemes indeed often exploit
the protected input pattern(s) of those schemes, feature that SKG-Lock+ does not have.
Furthermore, output corruption variation is far more linear with SKGLock+ than with
classical compound schemes, in which the variation in output corruption is the feature
exploited [42]. Making further experiment to validate the efficiency of SKG-Lock+ against
these attacks is nevertheless part of our future work.

Electronics 2022, 11, 3906 17 of 24

5.2.2. Output Corruption

We implemented SKG-Lock+ (n = 64) along with FPLL and provide a comparison with
previously proposed SKG-Lock (combined with FLL), for the same SAT resilience level, and
with one of the most recently improved PSLL schemes, CAS-Lock. The CAS-Lock block contains
a cascade of AND gates followed by an OR gate, which allows the highest corruptibility possible
among all configurations of CAS-Lock, and is inserted at a high-controllability signal in the
circuit. For SKG-Lock, the mapping between the SKGs and the switch-signals was conducted
randomly since the input was a locked circuit with FLL with no further information about the
fault-impact of each signal used to perform the locking process. In other words, all switch-signals
were used, and the choice of which switch signal to connect to and which SKG was random.
Conversely, thanks to the use of the FPLL insertion strategy—and therefore the knowledge
of all signals’ OCS—along with SKG-Lock+, it was possible to choose a more pertinent SKG-
sw mapping rule. To maximize corruption, we chose to map switch-signals with decreasing
corruptibility to signals with decreasing OCS.

Table 3 presents the results for output corruption rate and output corruption coverage.
As can be seen, SKG-Lock+ achieves far better results than CAS-Lock in both metrics, and
slightly better results that SKG-Lock for the output corruption rate. One can observe that,
due to the scattering of SKGs throughout the circuit, SKG-Lock and SKG-Lock+ are able to
affect all circuit outputs in several cases. Conversely, CAS-Lock only corrupts one signal in
the circuit, thereby affecting only a few outputs. Furthermore, since FPLL and FLL have
been shown to produce somewhat equivalent output corruption, one can therefore deduce
that the better results of SKG-Lock stem for the new SWC structure. In terms of output
corruptibility, SKG-Lock+ with FPLL obtains significantly better results that SKG-Lock with
FLL and CAS-Lock. For example, for the des benchmark, SKG-Lock+ produces a 16.5%
output corruptibility, whereas SKG-Lock produces 1% and CAS-Lock 0.1%. It should be
noted that, in comparison, for the same SAT resilience, SARLock, Anti-SAT, and SFLL-HD0

have a corruption rate of 1/264 = 5.4e−18%.

Table 3. Output corruption evaluation on SKG-Lock+ (n = 64).

Bench
Output Corruption Rate (%) Output Corruption Coverage (%)

SKG-Lock+ SKG-Lock CAS-Lock SKG-Lock+ SKG-Lock CAS-Lock
FP LL FLL FP LL FLL

des 48.5 49.4 23.47 100 100 0.8
c7552 50 49.6 8.79 61.68 58.88 0.93
c5315 49.5 23.9 12.46 63.42 78.05 1.63

i8 36 11.6 8.89 100 100 1.235
dalu 12.24 31 3.12 100 100 25

Average 39.25 33.1 11.35 85.02 87.39 5.59

We also measured the maximum output corruption that SKG-Lock+ can produce. It is
the case when all inserted KA bits are wrong. The results, reported in Table 4, show that in
several cases, the output corruption rate reaches close to 100%. The high output corruption
rate is achieved thanks to the proposed improved SWC structure.

Table 4. Maximum output corruption of SKG-Lock+ (n = 64).

Bench
Output Corruption Rate (%) Output Corruption Coverage (%)

SKG-Lock+ SKG-Lock SKG-Lock+ SKG-Lock
FP LL FLL FP LL FLL

des 97 98.61 100 100
c7552 99.9 99.9 64.5 86.9
c5315 99 47.87 68.3 78

i8 71.63 22.16 100 100
dalu 24.35 61.92 100 100

Electronics 2022, 11, 3906 18 of 24

We further investigated the relation between SAT resilience and output corruption. To
create even higher SAT-resilient configurations of SKG-Lock+, we restricted the number
of switch-signals and the selection was made according to the decreasing corruptibility
order. Thus, the number of switch-signals can range from n down to 1, where n stands
for the base configuration (all switch-signals are used) and 1 stands for the lowest output
corruption (only swn−1 is used for all SKGs).

These results are reported in Figure 12. Once again, the number of SAT iterations
is higher than expected. Furthermore, also as expected, lower output-corruption con-
figurations are inclined to have higher gain in iterations. Nevertheless, using multiple
times swn−1 does not necessarily lead to a significant increase in the number of iterations
(between 2n and 2n + 1 for most benchmarks), but significantly reduces output corruption
rate. Note that output corruption coverage is not impacted since it depends on the locations
of the SKGs rather than the mapping between SKGs and the SWC. These results confirm
that mapping each switch-signal to a different SKG (cf. first column in Figure 12) is the
most optimal way to achieve both high SAT resilience and high output corruption.

1 2 3 4 5 6 7 8 9 10
210

211

212

213

Number of SKGs connected to swn−1

N
um

be
r

of
SA

T
it

er
at

io
ns

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

Number of SKGs connected to swn−1

O
ut

pu
tc

or
ru

pt
io

n
ra

te
(%

)

1 2 3 4 5 6 7 8 9 10

10
20
30
40
50
60
70
80
90

100

Number of SKGs connected to swn−1

O
ut

pu
tc

or
ru

pt
io

n
co

ve
ra

ge
(%

)

des
c7552
c5315

i8
dalu

(a) (b) (c)

Figure 12. Evaluation of SAT resilience and output corruption according the switch-signals used: (a)
Number of SAT iterations, (b) Output corruption rate, (c) Output corruption coverage.

5.2.3. Overhead Evaluation

The overhead of SKG-Lock+ was evaluated in terms of area, power, and delay over-
heads, on the synthesized netlist using a STMicroelectronics 65 nm CMOS process, using
Design Compiler. The benchmarks were implemented with SKG-Lock+ with FPLL insertion
strategy (and no re-synthesis step).

Figure 13a shows the overhead on different benchmarks as a 32-bit key. For medium
benchmarks such as des and c7552, the average overhead is less than 10%. For smaller
benchmarks, the overhead is bigger. Figure 13b presents the overhead as the key size
increases on benchmark c7552. The area and power overhead scale linearly with the key
size. The delay overhead is equivalent to the number of SKGs inserted at the critical path
of the circuit. Thus, it does not depend directly on the key size. Note that, to limit the delay
overhead, an additional constraint to prevent the insertion of key-gates in critical paths can
easily be incorporated in the strategy.

des c7552 seq c5315 i8

−20

0

20

40

60

80

O
ve

rh
ea

d
(%

)

32 48 64 80

−20

0

20

40

n

O
ve

rh
ea

d
(%

)

area
delay
power

(a) (b)

Figure 13. Overhead evaluation of SKG-Lock+: (a) overhead with n = 32 (benchmarks are in
decreasing size order), (b) overhead evaluation vs. key size (benchmark is c7552).

Electronics 2022, 11, 3906 19 of 24

5.2.4. Comparison with Related Works

The comparison of SAT resilience level of SKG-Lock+ with related works is presented
in Table 5. For a fair comparison, the logic locking structure is connected with n circuit
inputs, which corresponds to a key size of n bits in SFLL, and 2n bits CAS-Lock, SKG-Lock,
and SKG-Lock+ (if m = n) and all possible values above n for the compound scheme (we
can assume 2n for sufficient output corruption). Whereas initial PSLL techniques sacrificed
output corruption for SAT resilience, CAC techniques such as SFLL trade resilience for a
little more corruption. As for CAS-Lock, SKG-Lock, and SKG-Lock+, they achieve n-secure
without compromising output corruption.

Comparison with other types of methods, e.g., based on scan-chain protection [32,33],
is also of interest and part of our future work.

Table 5. Comparison of SKG-Lock+ with related works.

Techniques Compound
CAC Improved PSLL

SFLL-HD SFLL-flex CAS-Lock SKG-Lock SKG-Lock+

SAT resilience level n n−
⌈
log2(

n
h)
⌉

n−
⌈
log2c

⌉
n ≥ n † ≥ n †

Output corruption High Low Low Medium High High(er)

Average overhead Low High High Low Low Low
† Higher level can be achieved with lower-corruption configurations.

6. Discussion and Future Work

What about manufacturing test? Back to the threat model, with logic locking, outsourced
stages (including fabricating, testing, and packaging) are completed on locked ICs, by
untrustworthy offshore foundry and OSAT. The foundry fabricates silicon ICs of the locked
design. The manufacturing test is performed before IC activation/on locked ICs also.
This is possible since the manufacturing test, which is essentially a structural test, can be
performed irrespective of circuit functionality [57]. Furthermore, test pattern generation
can be conducted without constraints on the key-bits, so the faults in the SWC of SKG-Lock+
and those on the key lines of the SKGs can be tested without any problem, the controllability
of the signals in the logic cones driven by an SKG are also improved. In summary, the
fault coverage is not decreased by the addition of SKG-Lock+, it can even be increased in
some cases.

What about hardware Trojan horses? Considering that in the threat model considered,
the foundry is the primary attacker a designer wants to protect against, it is reasonable to
assume that they would also test the manufactured ICs against potential inserted hardware
Trojan horses, especially those inserted especially for leaking the secret key [58].

What about oracle-less attacks? As already explained, oracle-less attacks include removal
attack and synthesis-based attacks.

Removal attacks consist of analyzing the circuit structure to detect and remove the
protection. The SWC is a critical component of SKG-Lock+; if removed, all SKGs could be
switched off. Structural analysis methods such as skewed-probability signal identification,
circuit partitioning, and fanin analysis have been used to identify similar SAT-resistant
blocks. SKG-Lock+ generates structural entanglement between the SWC and the locked
circuit thanks to its multiple connections with the SKGs, in contrast to previous point-
function-based techniques. Thus, a partitioning algorithm [43] cannot be used to separate
this block from the circuit. Fanin analysis [44] is used to find the output of an obfuscated
point-function block due to the convergence of all key-inputs. In SKG-Lock+, while KD
key-inputs are connected to the SWC, KA key-inputs are connected to SKGs, which are
inserted in the locked circuit. Therefore, finding the convergence points of all key-inputs
leads an attacker to signals in the locked circuit rather than in the SWC. Since the SWC is
based on a point function, it contains a few signals with highly skewed probabilities. XOR

Electronics 2022, 11, 3906 20 of 24

key-gates could be added to balance the probabilities of signals (without compromising
SAT resilience).

Furthermore, one should notice that a subsequent re-synthesis step may transform the
recognizable structures of both the SWC and the SKGs, and merge them with neighbor gates
in the locked circuit, thereby preventing an attacker from detecting them to remove them.
To corroborate this claim, we performed the following experiment. We have re-synthesized
the same locked benchmark with SKG-Lock+ (on benchmarks c2670) multiple times, using
different optimization parameters and delay constraints. We obtained 521 different re-
synthesized netlists, for which we observed the types of the gates connected to KA and
KD bits. These preliminary results are summarized in Table 6. As one can see, KA key bits,
initially only connected to AND gates or inverters, are now also connected to OR gates
mainly. Even more interesting, KD key bits, initially connected to XNOR gates, are now
connected mainly to inverters, AND and OR gates. These preliminary results confirm that
a re-synthesis step should prevent an attacker from distinguishing the SWC and KA from
KD bits.

More experiments are nevertheless needed, especially since re-synthesis has recently
been attacked, to some extent, by SAIL [59] (also combined with functional analysis [60]),
SnapShot [61], and OMLA [62], which rely on machine learning model to retrieve the—
small, localized and predictable—structural changes induced by re-synthesis. These attacks
are nevertheless currently only dedicated to key-gate-based logic locking methods.

Table 6. Evaluation of SKG-Lock+ against removal attacks after re-synthesis (n = 64).

Gate Type KA KD

NOT 3879 6477
BUF 4 0

NAND 0 0
NOR 0 0
AND 5950 17,536
OR 7678 14,288

XOR 0 94
XNOR 0 94

SKGLock+ should also be secure against the FALL and CLIC-A attacks [16,51] since it
does not rely on a protected input pattern, which is the feature, common to TTLock and
SFLL among others, that is exploited by these attacks.

Regarding synthesis-based attacks, the SKGs structure is not secure against the SCOPE
attack [49] (cf. Figure 14a). However, thanks to a simple countermeasure, the attack can
be thwarted. As shown in Figure 14b, thanks to an additional XOR/XNOR gate (making
the SKGs to be controlled by two key-inputs, one for a KA bit and the other for a KD
bit) assigning either value to a key-input only removes the additional XOR/XNOR gate.
Therefore, it is challenging for the attack to determine which circuit copy is more optimized,
hence, making it unable to recover the key bit.

S
S'sw

S S'
S

S'
sw
KA KA = 0 KA = 1

KA = 0
S

S'
sw

KAi KAi = KDi

S'

KDi

S

sw
KDi
KAi KAi != KDi

(a) (b)

Figure 14. Vulnerability and countermeasure of SKG-Lock+ against the SCOPE attack: (a) vulnerabil-
ity of SKG-Lock, (b) countermeasure based on a new SKG structure.

In summary, SKG-Lock+ is, to some extent, secure against most oracle-less attacks.
Part of our future work is to better assess SKG-Lock+ against these attacks, with also the
help of the Valkyrie assessment tool [63] to better assess potential structural vulnerabilities.

Electronics 2022, 11, 3906 21 of 24

What about RTL/FSM locking? FSM/RTL locking was introduced around the same time
as gate-level logic locking [64] and has also been a very prolific subject of study to this
date [65,66]. Among other things, it was also attacked by SAT-based attacks. A thorough
comparison of SKG-Lock+ with such proposals could be of interest. Interested readers
about FSM/RTL locking can refer to [67].

7. Conclusions

In this paper, we proposed an improvement of a previously proposed logic locking
technique, referred to as SKG-Lock+, for preventing locked circuit usage without requiring
an unlock procedure from the designer. SKG-Lock and SKG-Lock+ based on novel switch-
able key-gates and a switch controller, controlled by decoy key-inputs. Futher, an improved
structure of the switch-controller combined with a newly proposed key-gates insertion
strategy FPLL make SKG-Lock+ superior to its preliminary version in terms of the output
corruption reached.Futhermore, SKG-Lock+ is highly configurable: one can choose the
exact number of key-bits dedicated to SAT protection—hence, the SAT resilience level—and
those to output corruption, as well as the key-gates insertion strategy (SKG-Lock+ is easily
adaptable to any strategy), and the mapping rule between its two mains components to
further tune output corruption at will.

To the best of our knowledge, SKG-Lock and SKG-Lock+ are the first methods of their
kind being enhanced compound structures that take advantage of the combined benefits of
both a point-function and the insertion of key-gates (hence, corruption at multiple points
of insertion) with intrinsic entanglement between the two.

Author Contributions: Q.-L.N. proposed the ideas and implemented the framework including
obtaining the experimental results. S.D., M.-L.F. and B.R. gave technical feedbacks. S.D. and
Q.-L.N. wrote the manuscript. M.-L.F. and B.R. reviewed the manuscript and discussed the writing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by project MOOSIC ANR-18-CE39-0005 of the French National
Research Agency (ANR).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

References
1. Kumar, R. Simply Fabless! IEEE-Solid-State Circuits Mag. 2011, 3, 8–14. [CrossRef]
2. Guin, U.; Huang, K.; DiMase, D.; Carulli, J.M.; Tehranipoor, M.; Makris, Y. Counterfeit Integrated Circuits: A Rising Threat in the

Global Semiconductor Supply Chain. Proc. IEEE 2014, 102, 1207–1228. [CrossRef]
3. Rajendran, J.; Sinanoglu, O.; Karri, R. Regaining Trust in VLSI Design: Design-for-Trust Techniques. Proc. IEEE 2014, 102, 1266–1282.

[CrossRef]
4. Chakraborty, A.; Jayasankaran, N.G.; Liu, Y.; Rajendran, J.; Sinanoglu, O.; Srivastava, A.; Xie, Y.; Yasin, M.; Zuzak, M. Keynote:

A Disquisition on Logic Locking. IEEE Trans. -Comput.-Aided Des. Integr. Circuits Syst. (TCAD) 2019, 39, 1952–1972. [CrossRef]
5. Dupuis, S.; Flottes, M.L. Logic Locking: A Survey of Proposed Methods and Evaluation Metrics. J. Electron. Test. Theory Appl.

(JETTA) 2019, 35, 273–291. [CrossRef]
6. Roy, J.A.; Koushanfar, F.; Markov, I.L. EPIC: Ending piracy of integrated circuits. In Proceedings of the Design, Automation and

Test in Europe (DATE), Munich, Germany, 10–14 March 2008; pp. 1069–1074.
7. Rajendran, J.; Zhang, H.; Zhang, C.; Rose, G.S.; Pino, Y.; Sinanoglu, O.; Karri, R. Fault Analysis-Based Logic Encryption.

IEEE Trans. Comput. 2015, 64, 410–424. [CrossRef]
8. Rajendran, J.; Pino, Y.; Sinanoglu, O.; Karri, R. Security analysis of logic obfuscation. In Proceedings of the Design Automation

Conference (DAC), San Francisco, CA, USA, 3–7 June 2012; pp. 83–89.

http://doi.org/10.1109/MSSC.2011.942448
http://dx.doi.org/10.1109/JPROC.2014.2332291
http://dx.doi.org/10.1109/JPROC.2014.2332154
http://dx.doi.org/10.1109/TCAD.2019.2944586
http://dx.doi.org/10.1007/s10836-019-05800-4
http://dx.doi.org/10.1109/TC.2013.193

Electronics 2022, 11, 3906 22 of 24

9. Dupuis, S.; Ba, P.S.; Di Natale, G.; Flottes, M.L.; Rouzeyre, B. A novel hardware logic encryption technique for thwarting illegal
overproduction and Hardware Trojans. In Proceedings of the IEEE International On-Line Testing Symposium (IOLTS), Platja
d’Aro, Spain, 7–9 July 2014; pp. 49–54.

10. Yasin, M.; Rajendran, J.J.; Sinanoglu, O.; Karri, R. On Improving the Security of Logic Locking. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. (TCAD) 2016, 35, 1411–1424. [CrossRef]

11. Alasad, Q.; Bi, Y.; Yuan, J.S. E2LEMI:Energy-Efficient Logic Encryption Using Multiplexer Insertion. Electronics 2017, 6, 16.
[CrossRef]

12. Subramanyan, P.; Ray, S.; Malik, S. Evaluating the security of logic encryption algorithms. In Proceedings of the IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), Washington, DC, USA, 5–7 May 2015; pp. 137–143.

13. Yasin, M.; Mazumdar, B.; Rajendran, J.J.V.; Sinanoglu, O. SARLock: SAT attack resistant logic locking. In Proceedings of the IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 3–5 May 2016; pp. 236–241.

14. Xie, Y.; Srivastava, A. Anti-SAT: Mitigating SAT Attack on Logic Locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
(TCAD) 2019, 38, 199–207. [CrossRef]

15. Shamsi, K.; Meade, T.; Li, M.; Pan, D.Z.; Jin, Y. On the Approximation Resiliency of Logic Locking and IC Camouflaging Schemes.
IEEE Trans. Inf. Forensics Secur. (TIFS) 2019, 14, 347–359. [CrossRef]

16. Sirone, D.; Subramanyan, P. Functional Analysis Attacks on Logic Locking. IEEE Trans. Inf. Forensics Secur. (TIFS) 2020,
15, 2514–2527. [CrossRef]

17. Yasin, M.; Sengupta, A.; Nabeel, M.T.; Ashraf, M.; Rajendran, J.J.; Sinanoglu, O. Provably-Secure Logic Locking: From Theory To
Practice. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS), Dallas, TX, USA,
30 October–3 November 2017; pp. 1601–1618.

18. Sengupta, A.; Nabeel, M.; Yasin, M.; Sinanoglu, O. ATPG-based cost-effective, secure logic locking. In Proceedings of the IEEE
VLSI Test Symposium (VTS), San Francisco, CA, USA, 22–25 April 2018; pp. 1–6.

19. Sengupta, A.; Nabeel, M.; Limaye, N.; Ashraf, M.; Sinanoglu, O. Truly Stripping Functionality for Logic Locking: A Fault-based
Perspective. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (TCAD) 2020, 39, 4439–4452. [CrossRef]

20. Juretus, K.; Savidis, I. Increased Output Corruption and Structural Attack Resiliency for SAT Attack Secure Logic Locking.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (TCAD) 2020, 40, 38–51. [CrossRef]

21. Rezaei, A.; Mahani, A. Noise-Based Logic Locking Scheme against Signal Probability Skew Analysis. IET Comput. Digit. Tech.
2021, 15, 279–295. [CrossRef]

22. Shakya, B.; Xu, X.; Tehranipoor, M.; Forte, D. CAS-Lock: A Security-Corruptibility Trade-off Resilient Logic Locking Scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2020, 175–202. [CrossRef]

23. Zhou, J.; Zhang, X. Generalized SAT-Attack-Resistant Logic Locking. IEEE Trans. Inf. Forensics Secur. (TIFS) 2021, 16, 2581–2592.
[CrossRef]

24. Nguyen, Q.L.; Flottes, M.L.; Dupuis, S.; Rouzeyre, B. On Preventing SAT Attack with Decoy Key-Inputs. In Proceedings of the
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, 7–9 July 2021; pp. 114–119.

25. Shamsi, K.; Li, M.; Meade, T.; Zhao, Z.; Pan, D.Z.; Jin, Y. AppSAT: Approximately deobfuscating integrated circuits. In Proceedings of
the IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Mclean, VA, USA, 1–5 May 2017; pp. 95–100.

26. Rahman, M.T.; Tajik, S.; Rahman, M.S.; Tehranipoor, M.; Asadizanjani, N. The Key is Left under the Mat On the Inappropriate
Security Assumption of Logic Locking Schemes. In Proceedings of the IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), San Jose, CA, USA, 7–11 December 2020; pp. 262–272.

27. Shamsi, K.; Li, M.; Meade, T.; Zhao, Z.; Pan, D.Z.; Jin, Y. Cyclic Obfuscation for Creating SAT-Unresolvable Circuits. In Proceedings
of the Great Lakes Symposium on VLSI (GLSVLSI), Banff, AB, Canada, 10–12 May 2017; pp. 173–178.

28. Zhou, H.; Jiang, R.; Kong, S. CycSAT: SAT-Based Attack on Cyclic Logic Encryptions. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017.

29. Xie, Y.; Srivastava, A. Delay Locking : Security Enhancement of Logic Locking against IC Counterfeiting and Overproduction.
In Proceedings of the ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017.

30. Azar, K.Z.; Kamali, H.M.; Homayoun, H.; Sasan, A. SMT Attack : Next Generation Attack on Obfuscated Circuits with Capabilities
and Performance Beyond the SAT Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. (CHES) 2018, 2019, 97–122. [CrossRef]

31. Karmakar, R.; Kumar, H.; Chattopadhyay, S. Efficient Key-gate Placement And Dynamic Scan Obfuscation Towards Robust Logic
Encryption. IEEE Trans. Emerg. Top. Comput. (TETC) 2019, 9, 2109–2124. [CrossRef]

32. Nguyen, Q.L.; Valea, E.; Flottes, M.L.; Dupuis, S.; Rouzeyre, B. A Secure Scan Controller for Protecting Logic Locking.
In Proceedings of the IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS), Napoli, Italy,
13–15 July 2020; pp. 1–6.

33. Limaye, N.; Kalligeros, E.; Karousos, N.; Karybali, I.G.; Sinanoglu, O. Thwarting All Logic Locking Attacks: Dishonest Oracle
with Truly Random Logic Locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (TCAD) 2020, 40, 1740–1753. [CrossRef]

34. Saha, A.; Saha, S.; Chowdhury, S.; Mukhopadhyay, D.; Bhattacharya, B.B. LoPher: SAT-Hardened Logic Embedding on Block Ciphers.
In Proceedings of the ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020; pp. 1–6.

35. Kamali, H.M.; Azar, K.Z.; Homayoun, H.; Sasan, A. Full-Lock: Hard Distributions of SAT instances for Obfuscating Circuits
using Fully Configurable Logic and Routing Blocks. In Proceedings of the ACM/IEEE Design Automation Conference (DAC),
Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6.

http://dx.doi.org/10.1109/TCAD.2015.2511144
http://dx.doi.org/10.3390/electronics6010016
http://dx.doi.org/10.1109/TCAD.2018.2801220
http://dx.doi.org/10.1109/TIFS.2018.2850319
http://dx.doi.org/10.1109/TIFS.2020.2968183
http://dx.doi.org/10.1109/TCAD.2020.2968898
http://dx.doi.org/10.1109/TCAD.2020.2988629
http://dx.doi.org/10.1049/cdt2.12022
http://dx.doi.org/10.46586/tches.v2020.i1.175-202
http://dx.doi.org/10.1109/TIFS.2021.3059271
http://dx.doi.org/10.46586/tches.v2019.i1.97-122
http://dx.doi.org/10.1109/TETC.2019.2963094
http://dx.doi.org/10.1109/TCAD.2020.3029133

Electronics 2022, 11, 3906 23 of 24

36. Sweeney, J.; Heule, M.J.H.; Pileggi, L. Modeling Techniques for Logic Locking. In Proceedings of the IEEE/ACM International
Conference On Computer Aided Design (ICCAD), San Diego, CA, USA, 2–5 November 2020; pp. 1–9.

37. Azar, K.Z.; Kamali, H.M.; Homayoun, H.; Sasan, A. NNgSAT: Neural Network guided SAT Attack on Logic Locked Complex
Structures. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, CA,
USA, 2–5 November 2020; pp. 1–9.

38. Shen, Y.; Zhou, H. Double DIP: Re-Evaluating Security of Logic Encryption Algorithms. In Proceedings of the Great Lakes
Symposium on VLSI (GLSVLSI), Banff, Alberta, Canada, 10–12 May 2017; pp. 179–184.

39. Xu, X.; Shakya, B.; Tehranipoor, M.M.; Forte, D. Novel Bypass Attack and BDD-based Tradeoff Analysis Against all Known
Logic Locking Attacks. In Proceedings of the Cryptographic Hardware and Embedded Systems (CHES), Taipei, Taiwan,
25–28 September 2017; Volume 10529, pp. 189–210.

40. Shen, Y.; Rezaei, A.; Zhou, H. SAT-based Bit-flipping Attack on Logic Encryptions. In Proceedings of the Design, Automation
& Test in Europe (DATE), Dresden, Germany, 19–23 March 2018; pp. 635–638.

41. Limaye, N.; Patnaik, S.; Sinanoglu, O. Fa-SAT: Fault-aided SAT-based Attack on Compound Logic Locking Techniques.
In Proceedings of the Design, Automation and Test in Europe (DATE), Grenoble, France, 1–5 February 2021; pp. 1166–1171.

42. Kaur, A.; Saha, S.; Karfa, C.; Mukhopadhyay, D. Corruption Exposes You: Statistical Key Recovery from Compound Logic Locking.
In Proceedings of the International Symposium on Quality Electronic Design (ISQED), San Jose, CA, USA, 6–7 April 2022.

43. Xie, Y.; Srivastava, A. Mitigating SAT Attack on Logic Locking. In Proceedings of the Cryptographic Hardware and Embedded
Systems (CHES), Santa Barbara, CA, USA, 17–19 August 2016; Volume 9813, pp. 127–146.

44. Yasin, M.; Mazumdar, B.; Sinanoglu, O.; Rajendran, J. Removal Attacks on Logic Locking and Camouflaging Techniques.
IEEE Trans. Emerg. Top. Comput. (TETC) 2017, 8, 517–532. [CrossRef]

45. Yasin, M.; Sengupta, A.; Schafer, B.; Sinanoglu, O. ; Rajendran, J.J. What to Lock? Functional and Parametric Locking.
In Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), Banff, Alberta, Canada, 10–12 May 2017; pp. 351–356.

46. Sengupta, A.; Limaye, N.; sinanoglu, O. Breaking CAS-lock and its variants by exploiting structural traces. IACR Trans. Cryptogr.
Hardw. Embed. Syst. (TCHES) 2021, 2021, 418–440. [CrossRef]

47. Han, Z.; Yasin, M.; Rajendran, J. Does logic locking work with EDA tools? In Proceedings of the USENIX Security Symposium,
Virtual, 11–13 August 2021.

48. Alrahis, L.; Patnaik, S.; Hanif, M.A.; Saleh, H.; Shafique, M.; Sinanoglu, O. GNNUnlock+: A Systematic Methodology for
Designing Graph Neural Networks-based Oracle-less Unlocking Schemes for Provably Secure Logic Locking. IEEE Trans. Emerg.
Top. Comput. 2021, 10, 1575–1592. [CrossRef]

49. Alaql, A.; Rahman, M.M.; Bhunia, S. SCOPE: Synthesis-Based Constant Propagation Attack on Logic Locking. IEEE Trans. Very
Large Scale Integr. (Vlsi) Syst. 2021, 29, 1529–1542. [CrossRef]

50. Li, L.; Orailoglu, A. Piercing Logic Locking Keys through Redundancy Identification. In Proceedings of the 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 540–545.

51. Duvalsaint, D.; Jin, X.; Niewenhuis, B.; Blanton, R.D. Characterization of locked combinational circuits via ATPG. In Proceedings
of the International Test Conference (ITC), Washington, DC, USA, 9–15 November 2019; pp. 1–10.

52. Shen, Y.; Rezaei, A.; Zhou, H. A Comparative Investigation of Approximate Attacks on Logic Encryptions. In Proceedings of the
Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, Korea, 22–25 January 2018; pp. 271–276.

53. Brglez, F.; Fujiwara, H. A neutral netlist of 10 combinational benchmark circuits and a target translator in FORTRAN. In Proceed-
ings of the International Symposium on Circuits and Systems (ISCAS), Kyoto, Japan, 5–7 June 1985.

54. Yang, S. Logic Synthesis and Optimization Benchmarks User Guide Version 3.0; Microelectronics Center of North Carolina (MCNC):
Durham, NC, USA, 1991; p. 45.

55. Pagliarini, S.N.; Naviner, L.A.d.B.; Naviner, J.F. Selective Hardening Methodology for Combinational Logic. In Proceedings of
the Latin American Test Workshop (LATW), Quito, Ecuador, 10–13 April 2012; pp. 1–6.

56. Torras Flaquer, J.; Daveau, J.M.; Naviner, L.; Roche, P. Handling Reconvergent Paths Using Conditional Probabilities in
Combinatorial Logic Netlist Reliability Estimation. In Proceedings of the IEEE International Conference on Electronics, Circuits
and Systems (ICECS), Athens, Greece, 12–15 December 2010; pp. 263–267.

57. Yasin, M.; Seed, S.M.; Rajendran, J.; Sinanoglu, O. Activation of Logic Encrypted Chips: Pre-Test or Post-Test? In Proceedings of
the Design, Automation & Test in Europe (DATE), Dresden, Germany, 14–18 March 2016; pp. 139–144.

58. Jain, A.; Zhou, Z.; Guin, U. TAAL: Tampering Attack on Any Key-based Logic Locked Circuits. IEEE Trans. Very Large Scale Integr.
(Vlsi) Syst. 2019, 26, 28. [CrossRef]

59. Chakraborty, P.; Cruz, J.; Bhunia, S. SAIL: Analyzing Structural Artifacts of Logic Locking Using Machine Learning. IEEE Trans.
Inf. Forensics Secur. 2019, 16, 3828–3842. [CrossRef]

60. Chakraborty, P.; Cruz, J.; Bhunia, S. SURF: Joint structural functional attack on logic locking. In Proceedings of the IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 6–10 May 2019; pp. 181–190.

61. Sisejkovic, D.; Merchant, F.; Reimann, L.M.; Srivastava, H.; Hallawa, A.; Leupers, R. Challenging the Security of Logic Locking
Schemes in the Era of Deep Learning: A Neuroevolutionary Approach. J. Emerg. Technol. Comput. Syst. 2021, 17, 1–26. [CrossRef]

62. Alrahis, L.; Patnaik, S.; Shafique, M.; Sinanoglu, O. OMLA: An Oracle-less Machine Learning-based Attack on Logic Locking.
IEEE Trans. Circuits Syst. II Express Briefs 2021, 7747, 1–5. [CrossRef]

http://dx.doi.org/10.1109/TETC.2017.2740364
http://dx.doi.org/10.46586/tches.v2021.i3.418-440
http://dx.doi.org/10.1109/TETC.2021.3108487
http://dx.doi.org/10.1109/TVLSI.2021.3089555
http://dx.doi.org/10.1145/3442379
http://dx.doi.org/10.1109/TIFS.2021.3096028
http://dx.doi.org/10.1145/3431389
http://dx.doi.org/10.1109/TCSII.2021.3113035

Electronics 2022, 11, 3906 24 of 24

63. Limaye, N.; Patnaik, S.; Sinanoglu, O. Valkyrie: Vulnerability Assessment Tool and Attack for Provably-Secure Logic Locking
Techniques. IEEE Trans. Inf. Forensics Secur. 2022, 17, 744–759. [CrossRef]

64. Chakraborty, R.S.; Bhunia, S. Security through obscurity: An approach for protecting Register Transfer Level hardware IP.
In Proceedings of the IEEE International Workshop on Hardware-Oriented Security and Trust (HOST), San Francisco, CA, USA,
27 July 2009; pp. 96–99.

65. Limaye, N.; Chowdhury, A.B.; Pilato, C.; Nabeel, M.T.; Sinanoglu, O.; Garg, S.; Karri, R. Fortifying RTL Locking against
Oracle-Less (Untrusted Foundry) and Oracle-Guided Attacks. In Proceedings of the Design Automation Conference (DAC),
San Francisco, CA, USA, 5–9 December 2021; pp. 91–96.

66. Li, L.; Orailoglu, A. JANUS-HD: Exploiting FSM Sequentiality and Synthesis Flexibility in Logic Obfuscation to Thwart SAT
Attack While Offering Strong Corruption. In Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition, (DATE), Antwerp, Belgium, 14–23 March 2022; pp. 1323–1328.

67. Kamali, H.M.; Azar, K.Z.; Farahmandi, F.; Tehranipoor, M. Advances in Logic Locking: Past, Present, and Prospects. Cryptol.
Eprint Arch. 2022. Available online: https://eprint.iacr.org/2022/260.pdf (accessed on 29 October 2022).

http://dx.doi.org/10.1109/TIFS.2022.3149147
https://eprint.iacr.org/2022/260.pdf

	Introduction
	Preliminaries
	Output Corruption
	Threat Model
	The SAT Attack and ``Post SAT'' Related Works
	The SAT Attack
	Provably Secure Logic Locking
	Post-SAT Attacks
	Improved PSLL
	Corrupt-and-Correct Schemes
	Post-PSLL/CAC Attacks

	Proposed Logic Locking Scheme: SKG-Lock+
	Framework
	Switchable Key-Gates
	Structure
	Insertion strategy FPLL

	Switch Controller
	Original SWC
	Improved SWC

	Locking Algorithm
	Area Overhead

	Security Analysis of SKG-Lock+ Against Oracle Guided Attacks
	Key Sensitization Attack
	SAT Attack
	AppSAT Attack
	Bypass Attack

	Experimental Results
	FPLL
	SKG-Lock+
	Security Evaluation
	Output Corruption
	Overhead Evaluation
	Comparison with Related Works

	Discussion and Future Work
	Conclusions
	References

