
HAL Id: lirmm-03892336
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03892336

Submitted on 9 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Addressing Power Issues in Biologging: An
Audio/Inertial Recorder Case Study

Jonathan Miquel, Laurent Latorre, Simon Chamaillé-Jammes

To cite this version:
Jonathan Miquel, Laurent Latorre, Simon Chamaillé-Jammes. Addressing Power Issues in Biolog-
ging: An Audio/Inertial Recorder Case Study. Sensors, 2022, 22 (21), pp.8196. �10.3390/s22218196�.
�lirmm-03892336�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03892336
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Miquel, J.; Latorre, L.;

Chamaillé-Jammes, S. Addressing

Power Issues in Biologging: An

Audio/Inertial Recorder Case Study.

Sensors 2022, 22, 8196. https://

doi.org/10.3390/s22218196

Academic Editors: Kaya Kuru,

Osman Erogul and Xavier Chavanne

Received: 27 September 2022

Accepted: 21 October 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Addressing Power Issues in Biologging: An Audio/Inertial
Recorder Case Study
Jonathan Miquel 1,*, Laurent Latorre 1 and Simon Chamaillé-Jammes 2

1 LIRMM, University Montpellier, CNRS, 34095 Montpellier, France
2 CEFE, University Montpellier, CNRS, EPHE, IRD, University Paul Valéry, 34293 Montpellier, France
* Correspondence: jonathan.miquel@umontpellier.fr

Abstract: In the past decades, biologging, i.e., the development and deployment of animal-borne
loggers, has revolutionized ecology. Despite recent advances, power consumption and battery size
however remain central issues and limiting factors, constraining the quantity of data that can be
collected and the size of the animals that can be studied. Here, we present strategies to achieve
ultra-low power in biologging, using the design of a lightweight audio-inertial logger as an example.
It is designed with low-power MEMS sensors, and a firmware based on a small embedded RTOS.
Both methodologies for power reduction and experimental results are detailed. With an average
power consumption reduced to 5.3 mW, combined with a battery of 1800 mAh, the logger provides
900 h of continuous 8 kHz audio, 50 Hz accelerometer and 10 Hz magnetometer data.

Keywords: bio-logging; low power; audio; inertial data; MEMS sensors

1. Introduction

As general awareness of human negative impact on wildlife increases, understanding
animals’ responses to short-term disturbances (e.g., activity disruption by people) or
long-term changes (e.g., habitat reduction, temperature increase) becomes critical [1]. In
recent decades, behavioural ecologists have greatly benefited from the developments in
miniaturized electronics: biologging—i.e., the development and deployment of animal-
borne loggers—has become a key tool, critical to many studies [2–5]. Numerous types
of biologgers have been developed, to track an animal’s location over time using GPS,
monitor its activity using an accelerometer, or record through sound or video collection
some information about its environment [6]. Biologging is still a very active field of research
with, for instance, for audio-recording, new products appearing regularly [7–10].

In most species, biologging is strongly constrained by the maximum acceptable size
and weight of the logger [3], with the battery usually representing a significant if not
a major share of these. Reducing battery size naturally reduces the duration of data
acquisition, possibly to the point that data collection becomes useless given the logistical
and financial efforts required to deploy loggers, and the fact that capturing an animal biases
its behaviour for a while and thus further reduces the actually meaningful data collection
temporal window. Battery size reduction could however be achieved with less trade-offs
if one is able to compensate for the loss of capacity by a reduced power consumption of
the logger. Finding ultra-low power solutions is therefore a clear goal for developments in
power-hungry biologging applications, such as audio or video recording.

Achieving ultra-low power is however difficult when using fast-to-develop-on and
flexible minicomputers (350 mW announced by the SOLO raspberry-based architecture [11])
or commercial equipment that were designed to have batteries replaced frequently, such as
those used and carried by people. Commercial equipment also has the limitation that the
logger specifications and behaviour (e.g., recording schedule) can rarely be finely adjusted
to the task for which the logger will be used. Overall, more flexible and energy-wise effec-
tive solutions can emerge when focusing on dedicated hardware and firmware solutions.
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We demonstrate this here in the context of the development of an audio-inertial logger
that we previously designed [12,13]. The initial intended application of the device is to
record audio and inertial data on large mammals (>20 kg) to better infer their behaviour
through biologging. The device would be attached to a collar, and as such, we aimed to
have the whole device weigh less than 100 g.

In this article, we describe hardware and firmware choices as well as optimizations
made to reduce power consumption. Approaches for energy savings are detailed at several
processing stages, from the data acquisition to the mass storage, with embedded audio
compression and firmware (including RTOS) tuning in between.

2. Hardware Architecture
2.1. System Overview

Figure 1 below shows the functional logger hardware architecture. It is simply built
around a low-power microcontroller that (i) gathers data from two MEMS devices (mi-
crophone and inertial sensing unit) and (ii) stores it onto an SD card. The whole sys-
tem is battery-powered with a simple low dropout voltage regulator providing a single
power domain. The following subsections detail hardware choices that were made for
each function.
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Figure 1. System architecture.

2.2. Sensors

Audio capture requires a microphone. The microphone choice is driven by several
concerns; among them are audio performance, output interface, power consumption and
integration capability (dimensions, assembly). Because a microphone must be somewhat
exposed to the environment to “hear” incoming sounds, mechanical robustness and water
resistance are also to be considered. Finally, cost (including integration) is an obvious crite-
rion. Regarding the output interface, microphones deliver audio data either as an analog
signal or by means of a digital interface. The MEMS microphone market offers a wide range
of equivalent solutions in terms of performance, cost, integration, and robustness. The
most important design option concerns the signal output format, either analog or digital,
with marked difference in terms of intrinsic power consumption. We investigated both.

Analog microphones offer lower intrinsic power consumption but require extra on-
board analog signal processing such as amplification and anti-alias filtering. These intro-
duce additional energy and integration costs. Conversion into the digital domain must then
be performed using either (i) MCU-available ADC or (ii) an external converter. Because of
the limited resolution of embedded ADCs (typically 10 to 12 bits), the latter solution is pre-
ferred. The requirement for anti-alias filtering can be circumvented using a Σ∆ modulator
that produces effective noise shaping. A validated solution for analog microphones was
introduced in [12] and is shown in the bottom part of Figure 2. It is based on a waterproof
MR28406 microphone from Knowles, a discrete FAN3850A Σ∆ modulator from Fairchild
and additional 18 dB on-board amplifier. We measured the supply current of the sole audio
chain (microphone + amplifier + Σ∆ modulator) under the direct application of a nominal
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3 V supply voltage from a laboratory DC source, and with a 2 MHz clock provided to the
Σ∆ modulator. We observed a total power consumption of 3 mW, close to what we can
achieve with a fully integrated digital microphone. Note that the assembly of an analog
microphone, an amplifier stage and a Σ∆ modulator is nothing else than building a digital
microphone on board. The only advantage of the analog choice for the microphone is
the availability of hardened products that better resist harsh environments. It comes at
the cost of integrating more components on board, a higher footprint, and no benefit on
power consumption.
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For these reasons, the actual logger integrates a digital MEMS microphone (MP34DT05
from STMicro) as shown in the upper part of Figure 2. It offers a cost and footprint effective
solution with a 2 mW power consumption (as measured under the same conditions as
for the analog approach: 3 V, 2 MHz). Audio is delivered as Pulse Density Modulation
stream (PDM), which corresponds to the output of a Σ∆ modulator. Audio quality will
be discussed later, in the results section. Such microphones are not designed for severe
environments and must be protected from humidity at the logger package level.

Movement capture requires an inertial sensor unit: 9-DOF inertial measurement units
commonly cover three-dimensional accelerations, rotation speeds and orientation with
respect to the Earth’s magnetic field. Due to their inherently higher power consumption,
gyroscopes have not been considered for this application. A 6-DOF device was retained
(LSM303 from the STMicro E-Compass product range) providing three-axis acceleration
and three-axis magnetic field orientation.

2.3. Data Storage

Regarding data storage, the main characteristics besides power consumption are the
storage capacity, the transfer bandwidth (both for writing and for recovering data), the
integration capability, and the cost. In the context of our application, the amount of data
to store ranges from a few kB/s to a few tens of kB/s, which is low regarding the existing
physical storage options, and therefore is not a limiting factor. However, for a 1000 h
campaign, collected data reach several tens of Gigabytes. We therefore need high storage
capacity, reasonable writing times, and a fast-reading approach to recover a large amount
of data. The obvious option is a removable SD card. It provides a cost-effective solution
and easy data recovery by directly interfacing with a computer (assuming data writing
uses a standard file system layer).
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2.4. MCU

The market is not short in low-power microcontrollers that could fulfil our logger
requirements. What makes a difference is the ability to interface with on-board sensors and
mass storage devices. An interesting feature available on few STM32 products is a periph-
eral called DFSDM (Digital Filter for Sigma Delta Modulators) which basically implements
clock generation and a decimation filter suitable with PDM digital microphones. Together
with a DMA (Direct Memory Access) controller, one can foresee the buffering of audio
samples (from microphone into memory) without any CPU activity, which is a good start
in an energy-saving context. Based on this idea, our final choice is a STM32L476 device
from the low-power STM32 range. Based on an ARM Cortex-M4 CPU, this microcontroller
might seem overstated at first glance. However, native SD interface (Secure Digital and
Multi-Media Card) is only available on high-end MCUs. Finally, as it will be later dis-
cussed, having some on-chip processing power can be interesting, even in the context of
power saving.

3. Data Flow

What we call data flow here are the steps required to transform the physical informa-
tion (measurand) to its final digitized form on a storage drive.

• At the front end, an acquisition is performed by a sensor (transceiver) that transforms
the physical input into raw digital data.

• At the back end, storage saves data into the non-volatile memory.
• In between, the data are processed to accommodate acquisition and storage formatting

and to address global performance.

Addressing power consumption concerns every stage of this data flow. The following
subsections provide details regarding the design of each one.

3.1. Data Acquisition
3.1.1. Microphone

When powered, the MP34DT05 microphone continuously transmits audio data in
the form of a PDM signal, which frequency corresponds to the frequency of the provided
clock. This signal is converted into audio samples by the DFSDM hardware, which in turn
requests DMA transfer each time a new sample is available. The process of buffering audio
samples into MCU memory is therefore fully performed by a dedicated hardware and does
not involve CPU. The DFSDM peripheral is also in charge of generating the clock driving
the microphone internal Σ∆ modulator.

The PDM stream is filtered by the DFSDM peripheral and converted into a 24 bit audio
sample using the following z-domain transfer function:

H(z) =
(

1 − z−FOSR

1 − z−1

)X

(1)

where FOSR is the oversampling ratio and X the sinc filter order. Setting X = 2 for instance
produces the corresponding function for a second order filter:

Yn = 2Yn−1 − Yn−2 + Xn − 2Xn−FOSR + Xn−2FOSR (2)

where Yn represents the nth audio sample (output) and Xn the nth input bit.
Both FOSR and X are parameters that can be set by software to adjust the filter response

according to microphone characteristics and targeted audio quality. The filter output can
be further averaged by an additional summing stage (integrator) that reduces throughput
while increasing the dynamic range. The corresponding sample rate SR is given by:

SR =
fclk

FOSR × IOSR
(3)
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where fclk is the Σ∆ modulator clock frequency, and IOSR is the number of samples to sum-up
before delivery. From there, audio bandwidth can be deduced with the Shannon criterion:

BW = SR/2 (4)

Finally, the filter output full scale can be adjusted for a given FOSR by adjusting the
filter order X:

FS = ±FOSRX × IOSR (5)

This allows for tuning the microphone “digital” sensitivity independently from
the bandwidth.

A higher sampling rate provides better audio quality. In this study, two audio configu-
rations have been investigated to target two different mission profiles. Referring to sample
rate, the so-called “32 kHz” version focuses on the audio quality, covering most of the human
ear audio bandwidth. The so-called “8 kHz” version is a downgrade in audio quality. With a
reduction by four of the data amounts to process and store, this version is expected to provide
a better autonomy/weight ratio. It is aimed for applications where the requirements in audio
quality are not critical, yet are appropriate for machine-learning-assisted classification.

Parameters for both alternatives are summarized in Table 1. Note that microphone
clock frequency of 2 MHz is set according to the datasheet.

Table 1. Logger DFSDM configurations summary for both the high-quality (32 kHz) and extended
autonomy (8 kHz) versions of the audio front-end.

Version Name fclk FOSR IOSR Actual SR Audio BW

8 kHz
2 MHz

32 8 7812.5 Hz 3.9 kHz
32 kHz 64 1 31,250 Hz 15.6 kHz

3.1.2. Inertial Measurement Unit

The LSM303 inertial measurement unit is made of two independent devices (accelerom-
eter and magnetometer) packaged together and sharing the same SPI bus (with distinct
select lines) for data transfer to and from the MCU. Two individual interrupt lines are
available for signalling when new data are available. The SPI transaction is then initiated
by software. The CPU is therefore required for a short time, for every new three-axis
data sample.

Output data rates are set separately for each sensor: 50 Hz for the accelerometer and
10 Hz for the magnetometer. They rely on an internal RC clock that is neither precise nor
stable in frequency. Moreover, as there is no hardware synchronization between inertial
data and audio data, a software alignment approach has been implemented.

3.2. Data Storage

Data are written onto an SD card using the standard File Allocation Table (FAT) file
system. Audio is directly written as standard WAV files, allowing the end user to read
and play recorded audio from basically any computer/OS. Inertial data are written as
binary files that require some post-processing (e.g., Matlab®, Python, R, . . . ) before they
can be exploited.

Hardware-wise, an SD card is driven by the MCU SDMMC peripheral that handles na-
tive standard 4 bit SD transactions. Making use of the available DMA, the time-consuming
transport of large data chunks, from the MCU memory, over the SDMMC and to the SD
card, is fully operated by dedicated hardware, leaving the CPU free for other tasks, includ-
ing sleeping. The CPU is only required for a short time at the beginning and at the end of
the transaction.

However, SD card operations are energy-hungry processes that deserve some focus.
In a separate study using the same hardware, we developed a dedicated firmware that
repeatedly performs dummy SD card writings, while varying the length of the data chunk.
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The transient supply current is captured using a Keysight CX1102A current probe connected
to the main supply and a CX3324A waveform analyser. Note that no sensors are being
powered during this measure, therefore observed energy only accounts for the linear 3 V
LDO stage, the MCU (including CPU, DMA and SDMMC) and the SD card. The supply is
provided by a laboratory DC source mimicking a fully charged 1S Li-Ion battery (4.2 V).
An MCU output pin is toggled to signal the beginning and the end of the data transfer
so that energy can be further calculated by summing transient current over the writing
time window.

Figure 3 shows the “per byte” energy requirement (log-log scale), measured on a
selection of SD card candidates. The X-axis represents the size of the data chunk to be
written in one go, expressed as an entire number of SD card sectors of 512 bytes. Given
that variability between writing cycles on the same card is important, Y-value energies are
obtained by averaging the results over 100 writing cycles with the same parameters (SD
card model and data chunk size).
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The obtained results demonstrate that it is always more efficient to write a larger
chunk of data in one go. This can be explained by the constant power overhead that is
required to initiate and to stop data transfer. The SD card manufacturer does not provide
power consumption information. As expected, notable variations occur across different
SD card capacities and brands, but the common pattern is a logarithm decrease in the per
byte energy along with the data size. Higher-capacity cards (64 Gb) tend to require more
energy than their lower-capacity counterparts. The graph also shows that beyond about
40 sectors (i.e., writing chunk > 20 kB), the per-byte energy seems close to reaching a floor
below 0.2 µJ with lower-capacity cards.

3.3. Data Processing
3.3.1. Inline Audio Compression

With a FOSR = 256 and a 2 MHz clock, the microphone generates 32 bit samples
at 7812 Hz. Audio samples are shrunk (roundoff) to 16 bit integers, bringing the data
rate of the microphone to 15,624 bytes per second. With such throughput, filling a buffer
corresponding to 15 SD sectors (7680 bytes) takes a mere 491.55 ms. Although this process
requires very little CPU, it generates considerable SD activity.
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Two approaches were investigated to manage this amount of data. The first one is a
straightforward saving of raw audio 16 bit samples, keeping the CPU in a low-power mode
as much as possible. The second approach is to implement a software data compression
before saving, thus increasing the CPU usage for an expected benefit at storage level. To
achieve this, the compression algorithm must be simple enough for fast execution, while still
providing an effective compression ratio. ADPCM ticks both properties. It is a light-weight
algorithm that encodes a 4 bit difference between two consecutive samples achieving a
4:1 compression ratio at low CPU cost. To prevent drift over time, the WAV-ADPCM format
imposes to process input data in small chunks of 505 samples, thus creating ADPCM blocks
of 256 bytes made of 504 compressed samples (252 bytes) and a 4-byte header containing
one plain 16 bit sample to keep the common mode under control. Figure 4 compares the
current consumption of the logger during a ~2 s sequence of audio recording without (top)
and with (bottom) the embedded ADPCM compression. Reported currents are measured
at main 4.2 V supply, using the same equipment as for the previous SD card study and thus
include the whole audio system power consumption including the 3 V onboard voltage
regulator. To make the comparison fair, the same amount of data is written onto the SD
card every time it is required, placing both approaches at the same arbitrary per-byte
writing efficiency, corresponding to chunks of 15 SD sectors. Without compression, the
microcontroller is left in a sleeping state between SD card operations. At 7812 Hz, these
operations occur every (15 × 512)/(7812 × 2) = 0.49 s. When compression is engaged, the
CPU is woken up every 505/7812 = 64.6 ms, but the period between the SD card writes is
now four times greater (1.94 s).
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Table 2 reports the energy required by the two approaches during the same 2 s window
frame. As a result, inline audio ADPCM compression not only saves 75% mass storage
space but also saves about 30% of power consumption. Because ADPCM is a destructive
algorithm, this obviously impairs audio quality. This matter is addressed later in the result
section. For now, and for the sake of autonomy, compression is retained as a de facto
implementation in the firmware.
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Table 2. Energy required for a 2 s recording without and with embedded ADPCM compression.

Vsupply = 4.2 V I (mA) t (ms) × E (mJ)
Raw data

Sleep 1.35 455.10 4 9.83
Process

(roundoff) 1.68 12.02 4 0.32

Store 23.34 23.47 4 8.79
Total 18.94

ADPCM
Sleep 1.35 52.77 30 8.55

Process (encode) 1.68 11.40 30 2.30
Store 23.34 23.47 1 1.19
Total 13.04

3.3.2. Buffering Strategy

Knowing that the audio compression divides by a factor 1:4, the audio data rate on
the SD card, we can calculate each sensor contribution in the SD card activity and deduce
an optimal buffering strategy regarding the “per byte” writing efficiency. Figure 5 below
summarizes the amount of data to store. It shows that even in 8 kHz configuration of
the logger data amount is mostly defined by the compressed audio size, making it the
determining point in SD card writing efficiency.
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Figure 3 clearly shows that the per byte writing efficiency improves with larger data
chunks. It is therefore obvious that some level of buffering scheme must be implemented
in the MCU before storage. Regarding audio data and considering ADPCM compression,
we need two buffering layers:

• First layer: A raw audio data buffer (32 bit samples) that is automatically filled by
audio samples coming from the microphone-DFSDM-DMA hardware stream. It is
labelled MIC buffer in Figure 6.

• Second layer: An ADPCM-compressed audio data buffer (4 bit samples). This buffer
is filled by software every time the CPU performs ADPCM compression on raw audio
samples. It is labelled ADPCM buffer in Figure 6.

• A simpler buffer scheme applies to inertial data with two additional buffers:
• An accelerometer data buffer (3 × 16 bit samples). This buffer is filled by the CPU

every time an accelerometer interruption occurs.
• A magnetometer data buffer (3 × 16 bit samples). This buffer is filled by the CPU

every time a magnetometer interruption occurs.
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Figure 6. Audio data buffering scheme.

Let us focus on audio data first, which represents the larger data source. If we only
consider memory saving, one should therefore call for data compression every 505 audio
samples (i.e., one single ADPCM bloc) and retain audio data mostly in its compressed 4 bit
form. However, doing so would call the CPU for a compression task every ≈ 60 ms or
every ≈ 15 ms for the 8 and 32 kHz versions, respectively, making low-power strategies
difficult to deploy.

For this reason, we sized the first buffering layer, receiving raw samples from the
DFSDM peripheral so that 10 ADPCM blocks can be computed every time the CPU is
called (i.e., 5050 32 bit audio samples). For this layer being automatically filled by DMA, a
synchronization mechanism must be implemented to avoid read and write collisions. This
is performed by means of a feature of the DMA controller that can generate interruptions
when either half or a complete transfer is achieved. For that reason, the first layer is doubled
in size so that 5050 samples are stored in the lower half “A”, and another 5050 samples are
stored in the upper half “B”. When DMA signals that a half buffer has been filled (either A
or B), software can safely read data from that half buffer, while DMA starts filling the other
one, the process being circular. A continuous stream of incoming data can be seamlessly
processed this way, assuming that the reading and processing is faster than the filling. The
first layer is therefore sized for 10,100 samples, corresponding to 40,400 bytes.

The second buffer layer (ADPCM buffer in Figure 6) is sized to retain 60 ADPCM
blocks so that the SD card writing is performed in chunks of 256 × 60/512 = 30 sectors.
Referring to Figure 3, this places us in a very good per-byte writing efficiency, close enough
to the supposed floor. The same A/B half-buffer strategy as for first layer is implemented
in the software here. This is performed to enforce the second layer robustness, making it
able to cope with huge SD card writing time variability (from ≈40 ms most of the time up
to ≈1 s in casual worst cases). The second layer size is then 2 × 60 × 256 = 30,720 bytes.

The first layer calls for ADPCM compression when 20,200 bytes have been written in
the MIC buffer (At 8 kHz audio, it occurs every 631 ms). The result of the compression is
10 ADPCM blocs (15,360 bytes) which are stored in the ADPCM Buffer. When this process
has been repeated six times, the ADPCM buffer is half full, thus triggering an SD card
writing of 15,360 bytes corresponding to 30 full sectors on the SD card (this occurs every
3.7875 s at 8 kHz audio). At 32 kHz, the amount of data generated is multiplied by a factor
four and so are both the processing (158 ms) and SD card writing (0.947 s) frequencies.

Regarding inertial data, rates can be configured in the firmware. At this moment,
we have been working with fixed rates of 50 Hz for the accelerometer and 10 Hz for the
magnetometer. These rates are under the control of the sensors themselves, which do
not provide stable and precise time bases. Since it is important for the subsequent data
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analysis to perfectly align the audio and inertial data, a 32 bit time code is embedded with
each single inertial sample. An actual sample record structure is shown in Figure 7. The
timecode is based on a 32 bit system counter with typical resolution of 1 ms rolling over
about every 50 days, which is more than comfortable for easy data alignment. Note that
the audio is timestamped as well using the same counter. However, since the audio rate
is precisely controlled by an external RTC crystal oscillator, audio timestamping is only
performed once per hour with the timecode inserted into WAV file header.
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Figure 7. Structure of the 12-byte array representing a timestamped 3D inertial sample.

Inertial data are buffered into arbitrarily sized 6 kB buffers, doubled to 12 kB as
for audio data to implement an A/B approach as shown in Figure 8. At 50 Hz, ac-
celerometer data fill a buffer every 6144/(12 × 50) = 10.24 s, triggering an SD write
operation on 6144/512 = 12 sectors. Magnetometer data are written on the SD card
every 6144/(12 × 10) = 51.2 s.
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Figure 8. Accelerometer data buffering scheme. The same applies to magnetometer data.

Table 3 summarizes RAM usage based on a total of 128 kB available (STM32L476RE).
Up to 73% is dedicated to data buffering to optimize mass storage operations both in terms
of power efficiency and robustness. The rest of the memory is used by firmware, including
RTOS heap that supplies memory for kernel objects and tasks stacks, and statically allocated
global variables.

Table 3. RAM usage.

Data Buffers Size 73%

MIC Buffer 39.5 kB 30.8%
ADPCM Buffer 30 kB 23.4%

ACCL Buffer 12 kB 9.4%
MAG Buffer 12 kB 9.4%

Firmware 11%

RTOS Heap 11 kB 8.6%
Files management 3.7 kB 2.9%

Miscellaneous 2.4 kB 1.87%

Free 17.4 kB 16%

4. Firmware Tuning
4.1. Software Architecture

Because data delivery among the three sensors is intrinsically asynchronous, and
because SD card writing times are not deterministic, a bare-metal sequential process is not
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the best approach for firmware development. The software architecture therefore relies on
the use of a real-time OS (FreeRTOS) that provides a better CPU resource sharing approach.

Figure 9 shows the event-based software architecture used in the logger. At the lower
level, three tasks handle data collection. The Audio_Task waits for DMA interrupts and
subsequent xAudio_Sem semaphore to process the MIC buffer and store compressed samples
into the ADPCM buffer. When the ADPCM buffer is full, the Audio_Task pushes a message
into the xSTORE_Queue FIFO. Both Accl_Task and Mag_Task work on the same principle,
waiting for sensor interruptions and corresponding xAccl_Sem, xMag_Sem semaphores and
then pushing a message into the same xSTORE_Queue queue. The Store_Task is activated
upon message availability in the xSTORE_Queue FIFO. Depending on message origin, this
task records data onto the SD card, using separate files for the audio, accelerometer, and
magnetometer data. Because the accelerometer and the magnetometer share the same
package and SPI bus, a mutex (SPI_Mutex) is used as resource protection to avoid two
tasks trying to access the bus at the same time. At the top of the software hierarchy,
the State_Machine_Task oversees the logger sequencing, SD card file management, and
user interface for initialization (time and date settings) and recording start/stop. Because
both State_Machine_Task and Store_Task may access the SD resource, it is protected by
means of a mutex. Finally, the user can program recording windows with a subset of
data to be recorded. For that purpose, the State_Machine_Task can toggle (on/off) each
data-collecting task by means of a special kind of non-resetting semaphores (Audio_REC,
Accl_REC, Mag_REC) working as blocking flags (event group).
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4.2. Dynamic Power Management Policy

The idea behind a Dynamic Power Management (DPM) policy is to clearly identify
runtime device states and then only supply what is strictly required in each of these
states [14]. In our case, three states can be distinguished, which are illustrated in Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 22 
 

 

Because both State_Machine_Task and Store_Task may access the SD resource, it is pro-

tected by means of a mutex. Finally, the user can program recording windows with a sub-

set of data to be recorded. For that purpose, the State_Machine_Task can toggle (on/off) 

each data-collecting task by means of a special kind of non-resetting semaphores (Au-

dio_REC, Accl_REC, Mag_REC) working as blocking flags (event group). 

 

Figure 9. Firmware RTOS architecture. 

4.2. Dynamic Power Management Policy 

The idea behind a Dynamic Power Management (DPM) policy is to clearly identify 

runtime device states and then only supply what is strictly required in each of these states 

[14]. In our case, three states can be distinguished, which are illustrated in Figure 10. 

• A “ apture” state during which (i) audio samples are collected and put into the MIC 

buffer with no CPU load, and (ii) the inertial sensor is performing its measure. 

• A “Process” state during which the CPU is called for either (i) ADPCM compression, 

or (ii) inertial data reading and subsequent casual (iii) SD card writings. 

• A “Standby” state that represents the deepest low-power state. It is the default state 

before and after a scheduled recording is performed. During this state, it is assumed 

that only minimal hardware resources are required to keep track of time and date 

(M U’s Real-Time Clock (RTC)). 

 

Figure 10. Dynamic power management policy. 

Let us put the Standby state apart, as it will be addressed later. Interesting states are 

“ apture” and “Process” because the device continuously commutes from one state to the 

other during recording, with CPU switching between on and off states accordingly. Alt-

hough it is a trivial use case when coding bare-metal, the use of an RTOS makes the situ-

ation substantially more complicated. The RTOS scheduler is called at regular time inter-

vals by a hardware interruption (tick) that compromises power efficiency, making the 

CPU impossible to keep sleeping over a long period. 

Still, when no operational functions require CPU attention, the RTOS enters a default 

“Idle” task. This event can be detected, and then two tactics for addressing power con-

sumption can be setup [15]: 

• The “Idle Hook” approach: The hook is a function called by the OS scheduler when-

ever it enters the idle task. The role of this hook is simply to disable unused periph-

erals and set the CPU in a sleep state. Exit from this state occurs upon any event 

Figure 10. Dynamic power management policy.

• A “Capture” state during which (i) audio samples are collected and put into the MIC
buffer with no CPU load, and (ii) the inertial sensor is performing its measure.

• A “Process” state during which the CPU is called for either (i) ADPCM compression,
or (ii) inertial data reading and subsequent casual (iii) SD card writings.

• A “Standby” state that represents the deepest low-power state. It is the default state
before and after a scheduled recording is performed. During this state, it is assumed
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that only minimal hardware resources are required to keep track of time and date
(MCU’s Real-Time Clock (RTC)).

Let us put the Standby state apart, as it will be addressed later. Interesting states are
“Capture” and “Process” because the device continuously commutes from one state to
the other during recording, with CPU switching between on and off states accordingly.
Although it is a trivial use case when coding bare-metal, the use of an RTOS makes the
situation substantially more complicated. The RTOS scheduler is called at regular time
intervals by a hardware interruption (tick) that compromises power efficiency, making the
CPU impossible to keep sleeping over a long period.

Still, when no operational functions require CPU attention, the RTOS enters a de-
fault “Idle” task. This event can be detected, and then two tactics for addressing power
consumption can be setup [15]:

• The “Idle Hook” approach: The hook is a function called by the OS scheduler whenever
it enters the idle task. The role of this hook is simply to disable unused peripherals
and set the CPU in a sleep state. Exit from this state occurs upon any event (either a
sensor interrupt or an OS event, including ticks). This method introduces very little
overhead to the code execution. However, the CPU is still activated for a short time
every OS tick so that it can be combined with an increase in tick periods.

• The “Tickless Idle” approach: It consists in preventing OS ticks to occur when there
is no CPU load, which in practice means suspending execution of the OS scheduler.
Doing so requires careful setup of extra mechanisms that (i) keep track of time during
the tickless period instead of the OS and (ii) allow for exiting the idle state when an
event requiring the CPU occurs. Expected events can be a sensor interruption or the
end of a programmed delay. This approach introduces small execution overhead for
entering and exiting the tickless mode.

Each tactic therefore has its pros and cons. Figure 11 illustrates where energy is lost
using either the Idle Hook or the Tickless Idle approach. Note that the Idle states are used to
put the microcontroller into one of its low-power modes. There are several levels of energy
savings depending on the amount of hardware resource that is turned off, while turning off
can be applied to the clock, power supply or both. In our case, the MCU peripherals and
RAM are always active because they are involved in the audio data capture. This limits
possible low power mode to simply stop the unused peripherals and CPU clocks.
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Figure 11. Low power strategies when using RTOS.

Table 4 presents the average consumption during the Capture (Idle) and Process
states. Under normal conditions, with a 4 MHz CPU clock, we observe a 1.32 mA current
consumption when the MCU is in low power mode, and 1.65 mA when the CPU is
performing tasks. That is a 20% difference, making the implementation of a low-power
strategy worthy.
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Table 4. Average supply current (mA) measured during Capture and Process states for various tick
rates and low-power idle strategies.

Low-Power Mode Tick Rate Capture Process Average

None 10 Hz - 1.6403 1.6403
None 1 kHz - 1.6355 1.6403
None 10 kHz - 1.6678 1.6403

Idle Hook 10 Hz 1.3210 1.6630 1.4855
Idle Hook 1 kHz 1.3301 1.6512 1.4907
Idle Hook 10 kHz 1.4733 1.6412 1.5986

Tickless Idle 10 Hz 1.3133 1.6567 1.4883
Tickless Idle 1 kHz 1.3247 1.6547 1.4905
Tickless Idle 10 kHz 1.3468 1.6350 1.5652

Effects of tick rate are not visible for lower frequencies (≤1 kHz). The reason is that
tick density is in practice very low compared to the CPU execution cycles and that the
power loss due to regular wakeups is negligible. That is the reason why both Idle Hook
and Tickless Idle exhibit about the same performance at tick rates of 1 kHz and below.
However, if the tick rate is raised to 10 kHz, the Capture state managed with the Idle Hook
strategy shows higher average power consumption (1.47 mA), while this consumption
remains unaffected using the Tickless Idle option, for obvious reasons (ticks are stopped
in this case). In addition, pushing the tick rate too high is never a good idea because it
increases the OS self-contribution in the total CPU load, making in practice the CPU less
responsive to application tasks. This phenomenon is well illustrated in Figure 12.
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From these results, it appears that keeping a 1 kHz tick rate, associated with a Tickless
Idle low-power state management, provides a good trade-off between energy consumption,
OS responsiveness and timing robustness.
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4.3. Build Optimizations

Previous attempts to improve power efficiency essentially focused on the vertical axis
of the problem (i.e., the amount of required supply current for each state). Let us now
examine the horizontal axis (time). Can we make the process state shorter with respect
to the capture state? Or in other words, improve the activity duty-cycle ratio? During
the process state, the most demanding task is ADPCM encoding (remember that SD card
operations have been left apart). The algorithm itself is simple and provides no opportunity
for a more efficient code. However, the compiler optimization level set at build time has, as
expected, a direct effect on the execution performance. Because it makes debugging less
easy, these optimizations are not engaged is early development phases, nor necessarily on
the whole firmware code. Here, let us examine the effect of compiler optimization applied
on the sole APCPM algorithm function code.

Table 5 presents CPU usage depending on compiler optimization level. We note that
enabling the first level of optimization (−O1) reduces ADPCM compression execution
time almost by a factor three. Then, no further noticeable improvement is observed
with higher optimization levels. Explaining the faster code execution under compiler
optimization is easily performed by analysing the generated assembly code. A simple
variable assignment (=operator in C) leads to three atomic operations when no optimization
is engaged: (i) loading data from RAM, (ii) performing assignment, and (iii) saving result
back in RAM. With −O1 optimization and beyond, loading from and saving to RAM is
only performed outside loops. Within loops, variables are replaced by CPU registers, then
acting as a cache and saving unnecessary multiple access to the RAM memory, effectively
producing a 1:3 performance improvement in code execution.

Table 5. Average supply current (mA) measured during Capture and Process states for various tick
rates and low-power idle strategies.

Optimization
Level (gcc) Capture (ms) Process (ms) Duty-Cycle Supply Current (mA)

−O0 322 325 50.2 1.49
−O1 527 120 18.5 1.38
−O2 532 116 17.9 1.38
−O3 531 116 17.9 1.38

−Ofast 531 115 17.9 1.38

Figure 13 illustrates the effect of ADPCM optimization on transient currents. Having
a ×3 faster compression algorithm produces an additional 8% gain in the logger power
consumption, which is not negligible.
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4.4. CPU and Peripherals Clock Frequency

The MCU’s internal clock frequencies have a strong impact on the global power con-
sumption and should be selected carefully, as low as possible according to the application
requirements. Two factors need to be considered here: peripheral requirements and CPU
load. In our case, the major constraint comes from the digital microphone that requires a
fast 2 MHz clock for its Σ∆ modulator. Because of the internal MCU clock tree architecture,
the minimal CPU clock frequency is then twice that of DFSDM peripheral, resulting in a
4 MHz CPU clock frequency. Note that this is low in the context of modern MCUs and way
below the maximum frequency of 80 MHz this CPU can accept. Furthermore, running the
MCU at low speed allows for internal power regulators to work in a more efficient mode.

Regarding CPU load, and after compiler optimization is engaged, we confirmed that
the 4 MHz clock frequency provides enough computing ability for both the 8 and 32 kHz
audio data rates.

4.5. Standby Mode and Recorder Scheduler

The logger relies on MCU’s internal RTC (Real-Time Clock) to split into files, label
and timestamp recorded data. This RTC must be set to the actual time and date before the
logger mission starts. This is performed in the lab and for the time between RTC setup and
recording, and the logger is put in a standby mode where only the RTC domain remains
powered with an ultra-low current consumption of 35 µA. For field experiments that do not
require a 24/24, 7/7 recording, it is possible to start and shutdown the recording process
during predetermined time slots. These time slots are user defined and are written (using
an ad hoc web-based application or a R script) in a formatted text file to be put on the
logger SD card before powering on. The scheduler then puts the logger back in standby
mode during non-recording time slots, so that logger can sample data over a longer time.

5. Results

A first production batch of 100 loggers has been completed. Figure 14 shows the
electronic board with its main components. The board is 3.5 × 2.7 cm in size and
weighs 4.9 g.
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5.1. Audio Performances

Audio performance analysis are carried out using dedicated high-end audio equip-
ment (Audio Precision APX525) to generate jitter-free clock and pure test tone and to
capture both analog and PDM streams.

The first matter of interest in our application is the MEMS microphone frequency
response. For this measure, a reference microphone with calibrated flat frequency response
in the audio 20 Hz–20 kHz band is used (Earthworks, Milford, CT, USA® M23) besides the
MEMS under test. Both microphones are exposed to the same white noise, generated by the
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audio analyser, and are played by a conventional (i.e., non-flat) loudspeaker, in a standard
(i.e., non-acoustically controlled) office room. The digital MEMS microphone receives its
power supply and clock directly from the audio analyser, which also processes microphone
output. The spectrums obtained are reported in Figure 15. The non-flat nature of the two
frequency responses is likely due to (i) loudspeaker nonlinearities and (ii) room effects, so
that only the difference between spectrums is relevant here. Result reveals that the MEMS
microphone exhibits an acceptable frequency response with no significant localized peaks
or dips. Note that spectrums have been vertically aligned in order to ease comparison, and
that nothing can be concluded regarding respective SNR in this experiment.
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Figure 15. Frequency response comparison of the logger MEMS microphone with a reference microphone.

The second concern is the effects of the embedded processing on the audio quality, in
terms of signal-over-noise (SNR) ratio. For this study, the analyser provides the MEMS
microphone with a steady clock and a 90 dB 1 kHz test tone at 10 cm, close to the microphone
saturation level. Both the clock and microphone output PDM are then captured and
are post-processed using a Scilab® script that perfectly mimics the embedded digital
processing within the DFSDM peripheral, the ADPCM compression, and then computes
the corresponding FFT.

According to Equations (1)–(4), audio bandwidth and dynamic range depend on PDM
demodulation parameters FOSR (over-sampling ratio) and X (decimation filter order). To
these parameters, one should add the destructive effect of ADPCM compression, which
also depends on the audio data rate, with lower degradation at higher rates.

Figure 16 shows the effect of the filter order X with a fixed oversampling ratio
FOSR = 32. As expected, higher filter orders provide better smoothing and less quan-
tization noise. However, increasing X also increases the dynamic range of the filter output,
which we need to keep within a 16 bit data. Experimentally, with our microphone, setting
X = 3 provided an acceptable dynamic range with no saturation when exposed to loud
audio sources.

Figure 17 shows the effect of ADPCM compression on the noise floor obtained with
various sample rates (i.e., FOSR values). There is an obvious rise in the noise power as sam-
ple rate diminishes (i.e., higher values of FOSR). Still, the noise floor is kept around −60 dB
so that no dramatic degradation is observed when compared to intrinsic microphone SNR,
even at lower sample rates.



Sensors 2022, 22, 8196 17 of 22

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

localized peaks or dips. Note that spectrums have been vertically aligned in order to ease 

comparison, and that nothing can be concluded regarding respective SNR in this experi-

ment. 

 

Figure 15. Frequency response comparison of the logger MEMS microphone with a reference mi-

crophone. 

The second concern is the effects of the embedded processing on the audio quality, 

in terms of signal-over-noise (SNR) ratio. For this study, the analyser provides the MEMS 

microphone with a steady clock and a 90 dB 1 kHz test tone at 10 cm, close to the micro-

phone saturation level. Both the clock and microphone output PDM are then captured 

and are post-processed using a Scilab®  script that perfectly mimics the embedded digital 

processing within the DFSDM peripheral, the ADPCM compression, and then computes 

the corresponding FFT. 

According to Equations (1)–(4), audio bandwidth and dynamic range depend on 

PDM demodulation parameters FOSR (over-sampling ratio) and X (decimation filter or-

der). To these parameters, one should add the destructive effect of ADPCM compression, 

which also depends on the audio data rate, with lower degradation at higher rates. 

Figure 16 shows the effect of the filter order X with a fixed oversampling ratio FOSR 

= 32. As expected, higher filter orders provide better smoothing and less quantization 

noise. However, increasing X also increases the dynamic range of the filter output, which 

we need to keep within a 16 bit data. Experimentally, with our microphone, setting X = 3 

provided an acceptable dynamic range with no saturation when exposed to loud audio 

sources. 

 

Figure 16. Effect of the filter order on the noise shaping. 

  0

 80

  0

 60

 50

 40

 30

 20

 0  00  000  0,000

 
i 

ro
 

h
o

 
e 

 
u

t 
u

t 
  

 
 

 re ue        

M MS Mic

Reference Mic

  60

  40

  20

  00

 80

 60

 40

 20

0

20

 0  00  000  0,000

 
e 

el
  

 
 

 

 re ue        

   

  2

  3

Figure 16. Effect of the filter order on the noise shaping.
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5.2. Recorded Data Alignment

An example of post-processed recorded data is provided in Figure 18. As expected, au-
dio and inertial data time alignments are perfect due to the sample-accurate timestamping
approach. Visually, this is shown using gentle tapping on hard surfaces during the record
session so that sharp and easy-to-locate events are produced both on the audio and inertial
data. This alignment is precious considering that data analysis and classification are to be
automated at some point, and that training of machine learning models will greatly benefit
from such a synchronization of various information.
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Figure 18. Example of time-aligned recorded data.

5.3. Battery Autonomy

Real conditions autonomy has been measured using an 1800 mA·h Li-ion battery,
with both non-optimized and optimized firmware. The logger was kept static and at
room temperature for the whole duration of the experiment. Measurements are performed
hourly using available MCU’s ADC and recorded onto the SD card as part of the system
log. Figure 19 reports the maximum measured battery voltage over a 24 h running window.
Optimized versions of the firmware exhibit a significantly extended autonomy. The 8 kHz
version gets very close to an extra reference design featuring audio only, no RTOS and a
straightforward sleeping scheme.
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At 8 kHz audio, the logger produces nearly 900 h of continuous audio and inertial
data which correspond to 15 GB of data. At 32 kHz audio, the logger still manages to record
about 500 h of data for a total storage usage of 29 GB.

5.4. Power Contributors

Figure 20 presents the relative contributions of main logger tasks in the global energy
consumption. These are expressed as an equivalent static current, calculated by averaging
transient currents over a long period. The “Storage” part includes all SD card activity for
both audio and inertial data. The “Inertial” part represents the cost of powering the sensor
and collecting its data. The “Audio” part includes both the microphone supply and MCU
hardware processing chain. Finally, the “MCU” part mostly concerns ADPCM compression
when active, or the sleep state.
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When sampling audio at 8 kHz, we observe that storage contribution is only 29% of
the total energy. Audio and inertial sensors already make half of this total energy, leaving
little room for improvement on the sole software side. At 32 kHz, the storage part grows
up to 54%, making it the main power consumption contributor. In this case, working with
a more aggressive compression algorithm (at the cost of more MCU power) might provide
some improvements.

5.5. Related Works

Other audio loggers have been developed and are available either as commercial
products or academic open-source solutions. The more direct comparison we can make of
our design is with the Audiomoth [16], a former academic development now sold under
the Open Acoustic Devices brand. It is an audio only recorder, with similar architecture
as the one herein presented, including a MEMS analog microphone which has been suc-
cessfully involved in the recent application of passive acoustic monitoring [17–19]. SOLO
is an open-source architecture based on low-cost embedded computer [11]. As a more
generic approach to recording, it is highly configurable and is an appealing solution for
researcher [20–22], but its power consumption is rather high. On a more high-end level,
both Wildlife Acoustics with their Song-Meter product range [23], and Frontier Labs with the
BAR-LT device [24] make high-quality field audio recording solutions available. Despite a
significantly higher cost of those devices, partly due to the quality housing, it is a relevant
alternative for field recording seeing consistent usage [25,26]. It is difficult to make precise
comparisons of these devices regarding power consumption because details are not always
available, and requirements in terms of audio quality and features are very application
specific. Nevertheless, considering available data, Table 6 provides hints regarding the
current consumption of our solution with the above-listed alternatives. Power consumption
also depends on SD cards choice, which is left to the end user. Based on these numbers, we
see that our device is at least six times better than the closest alternative, with the added
value of capturing movement data as well.
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Table 6. Average power consumption of commonly deployed audio recording tools.

Sampling Rate Supply Voltage Supply Current Power

This Work
8 kHz

3.8 V 1SLi-Ion
1.97 mA 7.5 mW

32 kHz 3.45 mA 13.1 mW

AudioMoth [16]
8 kHz

4.5 V (3 × AA) or 6 V
10 mA 45 mW

32 kHz 13 mA 58 mW

SOLO [11] 16 kHz 5 V - 350 mW

Song Meter Micro [23] 8 kHz
4.5 V (3 × AA) - 63 mW

32 kHz 88 mW

BAR-LT [24]
16 kHz

3.8 V 1S Li-Ion
20.6 mA 78 mW

32 kHz 22.6 mA 86 mW

6. Conclusions

This paper details the design of a biologging device, covering both hardware and
software dimensions. A particular focus is brought to power consumption, which is a
major concern, particularly with animal-borne trackers where the autonomy/weight ratio
is critical. Power savings are addressed at hardware level by a careful selection of power-
efficient components, and then at software level by (i) reducing the CPU load, (ii) using
audio compression to reduce storage energy, and (iii) implementing RTOS low-power
strategies. The result is a logger that provides 900 h of continuous audio/inertial data
recording on its 8 kHz audio configuration, which establishes the state of the art.

There is always room for improvement. For instance, investigating audio compression
algorithms seeking a more efficient approach might be of interest. In addition, the use of
Adaptive Frequency Scaling (AFS) [27,28] which aims at dynamically setting CPU clock
frequency to its most efficient spot at any given time is yet to be investigated. Finally,
on-board data filtering to reduce storage activity has shown promising results [29].

Although this paper focuses on design, let us mention that loggers have been fabricated
and deployed on several species including zebras, lions, hyenas, elephants, and horses.
A sealed 3D-printed enclosure has been designed for this purpose which allows for easy
attachment of the logger onto existing collars. It includes a SAFT LS17500 Li-Ion 3.6 V
3.4 Ah battery weighing 23.5 g. The total logger weight is then about 60 g. Successful
recordings were achieved, yet a critical issue remains regarding waterproofing. A Gore-
Tex® thin membrane was used to protect the microphone while being transparent regarding
sound filtering. This design offers sufficient sealing to resist rain and splashes but hardly
survives full immersion.
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