
HAL Id: lirmm-03920648
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03920648v1

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

RedOak: a reference-free and alignment-free structure
for indexing a collection of similar genomes

Clément Agret, Annie Chateau, Gaetan Droc, Gautier Sarah, Manuel Ruiz,
Alban Mancheron

To cite this version:
Clément Agret, Annie Chateau, Gaetan Droc, Gautier Sarah, Manuel Ruiz, et al.. RedOak: a
reference-free and alignment-free structure for indexing a collection of similar genomes. Journal of
Open Source Software, 2022, 7 (80), pp.4363. �10.21105/joss.04363�. �lirmm-03920648�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03920648v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

RedOak: a reference-free and alignment-free structure
for indexing a collection of similar genomes
Clément Agret 1,2,5¶, Annie Chateau 1,4, Gaetan Droc 2, Gautier
Sarah 3, Manuel Ruiz 2,4, and Alban Mancheron 1,4

1 LIRMM, Univ Montpellier, CNRS, Montpellier, France 2 Cirad, UMR AGAP, Avenue Agropolis,
Montpellier, France 3 INRA, UMR AGAP, 2 Place Pierre Viala, Montpellier, France 4 Institut de
Biologie Computationnelle, Montpellier, France 5 CRIStAL, Centre de Recherche en Informatique Signal
et Automatique de Lille, Lille, France ¶ Corresponding author

DOI: 10.21105/joss.04363

Software
• Review
• Repository
• Archive

Editor: Lorena Pantano
Reviewers:

• @swatimanekar
• @samhorsfield96

Submitted: 15 February 2022
Published: 28 December 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Here we present RedOak, a reference-free and alignment-free software package that allows for
the indexing of a large collection of similar genomes. RedOak can also be applied to reads from
unassembled genomes, and it provides a nucleotide sequence query function. Our method is
about the analysis of complete genomes from the 3000 rice genomes sequencing project, but
our indexing structure is generic enough to be used in similar projects. This software is based
on a k-mer approach and has been developed to be heavily parallelized and distributed on
several nodes of a cluster. The source code of our RedOak algorithm is available at RedOak.

Statement of need
RedOak may be really useful for biologists and bioinformaticians expecting to extract information
from large sequence datasets.

The indexation of complete genomes is an important stage in the exploration and understanding
of data from living organisms. Complete genomes, or at least a set of sequences representing
whole genomes, i.e., draft genomes, are becoming increasingly easy to obtain through the
intensive use of high-throughput sequencing. A new genomic era is coming, therein not only
being focused on the analyses of specific genes and sequences regulating them but moving
toward studies using from ten to several thousands of complete genomes per species. Such a
collection is usually called a pan-genome [Computational Pan-Genomics (2016)](Golicz et al.,
2016). Within pan-genomes, large portions of genomes are shared between individuals. This
feature could be exploited to reduce the storage cost of the genomes.

Based on this idea, this paper introduces an efficient data structure to index a collection of
similar genomes in a reference- and alignment-free manner. A reference-free and alignment-
free approach avoids the loss of information about genetic variation not found in the direct
mapping of short sequence reads onto a reference genome (Computational Pan-Genomics,
2016). Furthermore, the method presented in this paper can be applied to next-generation
sequencing (NGS) reads of unassembled genomes. The method enables the easy and fast
exploration of the presence-absence variation (PAV) of genes among individuals without needing
the time-consuming step of de novo genome assembly nor the step of mapping to a reference
sequence.

Agret et al. (2022). RedOak: a reference-free and alignment-free structure for indexing a collection of similar genomes. Journal of Open Source
Software, 7(80), 4363. https://doi.org/10.21105/joss.04363.

1

https://orcid.org/0000-0002-7404-7253
https://orcid.org/0000-0003-4760-8171
https://orcid.org/0000-0003-1849-1269
https://orcid.org/0000-0001-5179-972X
https://orcid.org/0000-0001-8153-276X
https://orcid.org/0000-0001-9249-7592
https://doi.org/10.21105/joss.04363
https://github.com/openjournals/joss-reviews/issues/4363
https://gite.lirmm.fr/doccy/RedOak
https://doi.org/10.6084/m9.figshare.21711767
https://lpantano.github.io/
https://orcid.org/0000-0002-3859-3249
https://github.com/swatimanekar
https://github.com/samhorsfield96
https://creativecommons.org/licenses/by/4.0/
https://gite.lirmm.fr/doccy/RedOak
https://doi.org/10.21105/joss.04363

Complexity
In this part, we present the time and space complexity of the algorithm, using the notations
below: Total number of distinct k-mers: 𝑁 = 𝐾 Total number of core k-mers: 𝑁 ∗ = 𝐾∗

Total number of shell k-mers: 𝑁+ = 𝐾+ Total number of cloud k-mers: 𝑁− = 𝐾− Number
of instances running in parallel: 𝑛𝑝 Size in bits of a memory word: 𝑢

Theorem1. The space needed for indexing 𝑛 genomes is equal to 2𝑘2𝑁+𝑁+(𝑛+𝑢)+𝑂(4𝑘1𝑛)
bits.

If 𝑘1 is defined as 𝑘1 = log(𝑁)−log(log(𝑁))+𝑂(1)
2 ,then the memory space required by RedOak to

index the k-mers of 𝑛 genomes is increased by 𝑁(2, 𝑘2 + 𝑛) + 𝑜(𝑛,𝑁) bits.

Theorem 2. The time needed to index the 𝑁 distinct k-mers of 𝑛 genomes is 𝑂(𝑛𝑁𝑘).

Theorem 3 Assuming that the number of genomes per indexed k-mer follows a Poisson
distribution of parameter 𝜆 (where 𝜆 is the average number of genome sharing a k-mer), the
size of 𝑁 is 𝑂(𝑛𝑚𝜆).

Proof Since the run time clearly depends on the number of indexed k-mers, let us use a simple
model to approximate the time complexity. Suppose that each genome has 𝑚 distinct k-mers
and that each k-mer has a fixed probability 𝑝𝑖 to be shared exactly by 𝑖 genomes out of 𝑛.
The total number of indexed k-mers is then

𝑁 = 𝑛
𝑛
∑
𝑖=1

𝑝𝑖𝑚
𝑖

= 𝑛𝑚
𝑛
∑
𝑖=1

𝑝𝑖
𝑖

.

Implementation
RedOak is implemented in C++ and its construction relies on parallelized data processing. A
preliminary step, before indexing genomes, is performing an analysis of the composition in
k-mers of the different genomes. During this step, k-mer counting tools could be involved
and their performance is crucial in the whole process(Manekar & Sathe, 2018). We looked
for a library allowing us to handle a large collection of genomes or reads, zipped or not,
working in RAM memory, and providing a sorted output. Indeed, RedOak uses libGkArrays-
MPI from private communication, Mancheron et al. which is based on the Gk Arrays library
(Nicolas Philippe et al., 2011). The Gk array library and libGkArrays-MPI are available under
CeCILL license (GPL compliant). The libGkArrays-MPI library is highly parallelized with both
Open~MPI and OpenMP.

To manipulate k-mers, the closest method is Jellyfish (Marcais & Kingsford, 2011). This
approach is not based on disk but uses memory and allows the addition of genomes to an
existing index. However, we did not use it because in the output, k-mers are in “fairly
pseudo-random” order and “no guarantee is made about the actual randomness of this order”
(see the Jellyfish documentation).

Value of 𝑘 and 𝑘1, in most of the k-mer based studies, the k-mer size varies between 25 (with
reference genome) and 40 (without reference genome). The value of this parameter can be
statistically estimated as stated in (N. Philippe et al., 2009).

The 𝑘1 prefix length in our experiments has been defined on the basis of analytic considerations
presented in (Park et al., 2009) but can be arbitrarily fixed to some value between 10 and 16,
which respectively leads to an initial memory allocation from 8MiB to 32GiB, equally split
across the running instances of RedOak. Setting a higher value is not necessary; otherwise, it
may allocate unused memory.

To efficiently store and query the k-mers, each k-mer is split into two parts: its prefix of size
𝑘1 and its suffix of size 𝑘2, with 𝑘1 + 𝑘2 = 𝑘. Actually, the k-mers are clustered by their

Agret et al. (2022). RedOak: a reference-free and alignment-free structure for indexing a collection of similar genomes. Journal of Open Source
Software, 7(80), 4363. https://doi.org/10.21105/joss.04363.

2

https://doi.org/10.21105/joss.04363

common prefix, and for each cluster, only the suffixes are stored. The choice of the value of 𝑘1
minimizing memory consumption is guided by both analytic considerations (Park et al., 2009)
and empirical estimation. Each k-mer can be associated a bit vector of size 𝑛 to denote the
presence (1) or absence (0) in each genome. Structure1. Representation of the data structure
used to index the k-mers from 𝑛 genomes. The (A) The green array represent core k-mers,
(B) Blue cells the shell k-mers, and (C) in orange the cloud k-mers Structure2.

The concrete representation of the data structure used to store the k-mers having the same
prefix is shown in (Structure 2). The k-mers absent from all genomes are obviously deduced
from present k-mers and thus are not physically represented (and they all share the same
0-filled bit vector). The k-mers present in all genomes (core k-mers) are simply represented
by a sorted vector where each suffix is encoded by its lexicographic rank (array (𝐴)). These
k-mers share the same 1-filled bit vector. The other k-mers (shell k-mers) are represented by
an unsorted vector where each suffix is encoded by its lexicographic rank (array (𝐶)). To each
suffix is associated its presence/absence bit vector (array (3)). The order relationship between
the suffixes is stored in a separate vector (array (𝐵)).

In the RedOak implementation, both the core and shell k-mer suffixes are stored using ⌈2𝑘2⌉
8

bytes each. The remaining unused bits are set to 0. This choice greatly improves the comparison
time between k-mers suffixes. Moreover, because the presence/absence bit vectors are all of
size 𝑛 (the number of genomes), RedOak provides its own implementation for that structure,
which removes the need to store the size of each vector. This implementation also emulates
the 0-filled and 1-filled bit vector (arrays (4) and (5) of the Structure 1).

The choice of this data structure was guided by the desire to allow genome addition without
having to rebuild the whole structure from scratch. Indeed, indexing a new genome can be
represented by some basic operations on sets. First, it is obvious that the only case where the
set of core k-mers expands is when the first genome is added. The other updates of the core
k-mers occur and only lead to the removal of some k-mers from this set.

Example
Analysis of presence–absence variation (PAV) of genes among different genomes is a classical
output of pan-genomic approaches. RedOak has a nucleotide sequence query function (including
reverse complements) that can be used to quickly analyze the PAV of a specific gene among a
large collection of genomes. Indeed, we can query, using all k-mers contained in a given gene
sequence, the index of genomes. For each genome, if the k-mer is present in any direction
we increment the score by 1. If the k-mer is absent but the preceding k-mer (overlapping on
the first k − 1 nucleotides) is present, we note that there is an overlap, but RedOak does not
increase the score. If the score divided by the size of the query sequence is greater than some
given threshold, then we admit that the query is present in the genome. As an example, we
indexed the 67 rice genomes with RedOak using k = 30, and we accessed the PAV of all the
genes from Nipponbare and one gene from A. Thaliana using a threshold of 0.9. The gene
Pstol, which controls phosphorus-deficiency tolerance. For a specific genome (GP104), we
were able to detect the gene presence of the gene Pstol.

We need to keep in mind that this score under-estimates the percentage of identity. Indeed, let
us suppose that the query sequence (of length ℓ) can be aligned with some indexed genome
with only one mismatch, then all the k-mers (of the query) overlapping this mismatch may not
be indexed for this genome. This implies that only one mismatch can reduce the final score by
ℓ−𝑘
ℓ , whereas the percentage of identity is ℓ−1

ℓ . In this experiment, a query having a score �
0.9 can potentially be aligned with a percentage of identity greater than 97%.

Agret et al. (2022). RedOak: a reference-free and alignment-free structure for indexing a collection of similar genomes. Journal of Open Source
Software, 7(80), 4363. https://doi.org/10.21105/joss.04363.

3

https://www.biorxiv.org/content/10.1101/2020.12.19.423583v2
https://www.biorxiv.org/content/10.1101/2020.12.19.423583v2
https://doi.org/10.21105/joss.04363

Results

900s

1800s

2700s

3600s

4500s

5400s

6300s

7200s

8100s

9000s

9900s

10800s

 10 20 30 40 50 60

0 B

93GiB

186GiB

279GiB

373GiB

466GiB

559GiB

T
im

e
(s

)

S
iz

e
(G

iB
)

Number of genomes

benchmark-(JellyFish-RedOak-BFT)

RedOak-RAM
JellyFish-RAM

BFT-RAM
RedOak-TIME
JellyFish-TIME
BFT-TIME/100

Figure 1: Performance comparison between RedOak, Jellyfish and BFT for the index build step.

The size of the data set was successively set to 10, 20, 30, 40, 50, 60 and 67 genomes out of
the original data set (x-axis). A dot represents the wall-clock run time (y-axis) or the RAM
usage (y2-axis) required to build the index. The colors represent the software used: RedOak,
Jellyfish or BFT. For BFT, we divided the construction time by 100 to fit our figure Figure 1.

References
Computational Pan-Genomics, C. (2016). Computational pan-genomics: Status, promises and

challenges [Journal Article]. Brief Bioinform. https://doi.org/10.1093/bib/bbw089

Golicz, A. A., Batley, J., & Edwards, D. (2016). Towards plant pangenomics [Journal Article].
Plant Biotechnol J, 14(4), 1099–1105. https://doi.org/10.1111/pbi.12499

Manekar, S. C., & Sathe, S. R. (2018). A benchmark study of k-mer counting methods for
high-throughput sequencing [Journal Article]. Gigascience, 7(12). https://doi.org/10.
1093/gigascience/giy125

Marcais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics, 27(6), 764–770. https://doi.org/10.1093/
bioinformatics/btr011

Park, G., Hwang, H.-K., Nicodème, P., & Szpankowski, W. (2009). Profiles of Tries. Journal
on Computing, 38(5), 1821–1880. https://doi.org/10.1137/070685531

Philippe, N., Boureux, A., Brehelin, L., Tarhio, J., Commes, T., & Rivals, E. (2009). Using
reads to annotate the genome: influence of length, background distribution, and sequence
errors on prediction capacity. Nucleic Acids Research, 37(15), e104. https://doi.org/10.
1093/nar/gkp492

Philippe, Nicolas, Salson, M., Lecroq, T., Léonard, M., Commes, T., & Rivals, E. (2011).
Querying large read collections in main memory: a versatile data structure. BMC Bioinfor-
matics, 12(1), 242. https://doi.org/10.1186/1471-2105-12-242

Agret et al. (2022). RedOak: a reference-free and alignment-free structure for indexing a collection of similar genomes. Journal of Open Source
Software, 7(80), 4363. https://doi.org/10.21105/joss.04363.

4

https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1111/pbi.12499
https://doi.org/10.1093/gigascience/giy125
https://doi.org/10.1093/gigascience/giy125
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1137/070685531
https://doi.org/10.1093/nar/gkp492
https://doi.org/10.1093/nar/gkp492
https://doi.org/10.1186/1471-2105-12-242
https://doi.org/10.21105/joss.04363

	Summary
	Statement of need
	Complexity
	Implementation
	Example
	Results
	References

