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Abstract: The execution of machine learning (ML) algorithms on resource-constrained embedded
systems is very challenging in edge computing. To address this issue, ML accelerators are among
the most efficient solutions. They are the result of aggressive architecture customization. Finding
energy-efficient mappings of ML workloads on accelerators, however, is a very challenging task. In
this paper, we propose a design methodology by combining different abstraction levels to quickly
address the mapping of convolutional neural networks on ML accelerators. Starting from an open-
source core adopting the RISC-V instruction set architecture, we define in RTL a more flexible and
powerful multiply-and-accumulate (MAC) unit, compared to the native MAC unit. Our proposal
contributes to improving the energy efficiency of the RISC-V cores of PULPino. To effectively evaluate
its benefits at system level, while considering CNN execution, we build a corresponding analytical
model in the Timeloop/Accelergy simulation and evaluation environment. This enables us to quickly
explore CNN mappings on a typical RISC-V system-on-chip model, manufactured under the name
of GAP8. The modeling flexibility offered by Timeloop makes it possible to easily evaluate our
novel MAC unit in further CNN accelerator architectures such as Eyeriss and DianNao. Overall, the
resulting bottom-up methodology assists designers in the efficient implementation of CNNs on ML
accelerators by leveraging the accuracy and speed of the combined abstraction levels.

Keywords: design methodology; energy-efficient embedded systems; machine learning accelerators;
simulation; multiply and accumulate; RISC-V; GAP8; Eyeriss; DianNao

1. Introduction

With edge computing, embedded systems and servers interact with sensor data to
carry out a variety of tasks. A typical task is analyzing and extracting information from
environment data by using machine learning (ML) algorithms. In order to reduce the
response time and energy consumption of these tasks as much as possible, embedded
systems have been deployed closer to the sensors [1,2].

The convolutional neural network (CNN) is a popular machine learning model that can
be used for both training and inference. In order to execute it at the edge, it needs energy-
efficient embedded systems. For such systems to be designed successfully, it is imperative
to understand the computational complexity and size of the main CNN components. A
breakdown of the major parameters for five typical CNN models can be found in Table 1.
The neural networks are composed of convolutional layers and fully connected layers for
classifying images. Convolution layers achieve a high number of multiply-and-accumulate
(MAC) operations, between 564 million and 15.5 billion. To successfully execute such
CNNs, powerful MAC execution units, along with adequate memory management, are
required.

A central focus of this paper is the definition of a methodology for evaluating the
development and incorporation of a powerful MAC unit into CNN accelerator architectures
for energy-efficient model execution. In recent years, quantization [3] has become extremely
popular for reducing the power consumption of CNN workloads by, for example, reducing
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the bit-width representation of weight parameters. Existing research on deep CNNs has
demonstrated the importance of applying quantization at the layer level: layers can have
different quantization thresholds. As a result, CNN models with mixed precision are
produced.

The following questions are therefore of interest to us.

• How can a flexible and energy-efficient MAC unit be designed that can handle wide
bit-width data representations, ranging from 2 to 32 bits?

• How can we easily integrate candidate MAC units into typical CNN accelerator
architectures to quickly evaluate their impact on their energy efficiency, when mapping
and executing CNNs?

There are several abstraction levels that can be applied to design methodologies,
depending on the tradeoff expected between speed and accuracy in the design evaluation
process (see Figure 1). The design space of systems has been studied for decades [4].

Table 1. Main parameters in selected CNN models (M = million, B = billion).

MobileNet AlexNet GoogleNet ResNet-50 VGGNet-16
2017 [5] 2012 [6] 2014 [7] 2015 [8] 2014 [9]

Input size 224 × 224 227 × 227 224 × 224 224 × 224 224 × 224

Num. of convolution layers 22 5 57 53 13

Num. weights 3.17 M 2.3 M 6 M 23.5 M 14,7 M

Num. of MAC operations 564 M 666 M 1,43 B 3,86 B 15.3 B

Num. of fully-connected layers 1 3 1 1 3

Num. of weights 1 M 58.6 M 1 M 2 M 124 M

Num. of MAC operations 1 M 58.6 M 1 M 2 M 124 M

Total weights 4.2 M 61 M 7 M 25.5 M 138 M

Total MAC operations 564 M 724 M 1.43 B 3.9 B 15.5 B

Figure 1. Abstraction levels for design space exploration.

Design evaluation can be enhanced by considering typical hardware implementa-
tions [10], such as field-programmable gate array (FPGA) or application-specific integrated
circuit (ASICs). This is the most accurate method. The tedious implementation phases, how-
ever, limit its flexibility for early exploration of design options. To partially overcome this
required design effort, some work proposed systematic engineering methods to facilitate
hardware development from higher-level modeling [11–14]. In other approaches, designs
are defined at register–transfer level (RTL). VHDL and Verilog are commonly used for
creating and simulating target system models. Although less accurate than hardware-based
design, they provide a high level of precision for reliable design assessment. Even so,
exploring the design space at the RTL level is known to be time consuming [15]. Further
approaches focus on system design assessment at the cycle-accurate or cycle-approximate
abstraction level. They often consider software simulators, which provide good design
flexibility [16–18]. These simulators are quite accurate, but they are often slow and cannot
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accommodate large design areas. By using transaction-level modeling (TLM) [19–22], simu-
lation and modeling of complex systems are possible at a faster rate than at a cycle-accurate
level. The transmission delay of communications is not taken into account when simulating
communication transactions. By doing so, the modeled system is executed more rapidly.
Last but not least, analytical modeling allows designers to quickly assess systems [23–26].
Thus, such approaches can be used to explore early design space. This advantage, however,
comes at the cost of a lower level of modeling accuracy. Most analytical approaches rely on
mathematical descriptions of the system’s behavior in order to analyze it.

Every method outlined above has its own advantages and disadvantages when it
comes to exploring the design space. It is possible to adopt different abstraction levels at
different stages of the exploration process. By using a top-down approach, for example,
one could begin with a high abstraction level and then move to a lower abstraction level in
order to refine the design evaluation over a smaller design space. A bottom-up approach,
on the other hand, can first accurately define some basic system components in order to
extract precise behavioral properties, such as latency and power consumption, from them.
By utilizing this information, high-level models can be calibrated and assessed quickly.

1.1. Our Contribution

The purpose of this paper is to propose a bottom-up design methodology for the
efficient execution of CNNs on improved accelerator architectures. We consider two
abstraction levels among the five aforementioned ones: the RTL and analytical modeling
levels. By using a two-step bottom-up design methodology, we first study an energy-
efficient MAC unit dedicated to ML accelerator architectures. In the first step, we develop a
flexible MAC unit design at RTL level by using the open-source RI5CY core, which is based
on the RISC-V instruction set architecture (ISA) [27]. The GAP8 processor is also based on
the RISC-V core architecture [28]. Data bit-width representations between 32 and 2 bits
are supported in our proposed architecture, as well as asymmetric bit-width operations.
A comparison between our novel MAC unit and the native MAC unit of the RI5CY core
shows savings of 25% and 10% in power and area, respectively.

In a second step, we create a more abstract model of our MAC in the Timeloop/Accelergy
environment [29,30]. This allows us to simulate and evaluate the execution of CNNs
mapped to specific accelerator architectures. The simulation is realized by Timeloop,
whereas the energy estimation is achieved by Accelergy. It should be noted that combining
complementary tools such as Timeloop and Accelergy for system simulation and evalu-
ation is not a novel concept. At the cycle-approximate level, similar approaches exist, as
illustrated in [31] in which gem5 is combined with McPAT and NVSim to assess the design.
As part of this study, we leverage the advantages of an analytical Timeloop/Accelergy
approach to assess CNN mappings on target architectures in order to explore a broader
design space. Specifically, we are able to evaluate the impact of our proposed MAC unit on
ML accelerators, such as Eyeriss and DianNao, beyond GAP8. It is demonstrated here that
energy efficiency can be improved, by evaluating both homogeneous and heterogeneous (i.e.
mixed precision) bit precision with regard to CNN layers. Recently, Timeloop/Accelergy
has been applied to analyzing approximate computing in hardware accelerators [23].

In general, this paper illustrates how a typical bottom-up design methodology can be
used by designers to explore the design space of CNN executions on accelerator architecture,
whether it is RISC-V or another instruction set architecture. It is worth noting that the
first step of our methodology is completely based on our prior work [32] on the design
of MAC units for smart, low-power edge computing. Consequently, the present paper is
an expanded version of this seminal work. The goal of this paper is to demonstrate how
such a MAC component may also be abstracted at a higher level and incorporated into ML
accelerator architectures in order to evaluate energy-efficiency gains at system level. The
focus in [32] was mainly on the MAC design at RTL level.
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1.2. Outline

The remainder of this paper is organized as follows. Section 2 discusses some related
work on machine learning accelerator architectures. Section 3 introduces the general
methodology proposed in the current study. Section 4 describes a flexible MAC unit
designed at RTL level that improves the efficiency of an existing RISC-V core. To explore a
broader range of designs at system level, the resulting MAC design is modeled at a higher
abstraction level in Section 5. Finally, some concluding remarks are given in Section 6.

2. Related Work

Matrix multiplications are commonly processed by convolutional neural networks,
which can then be decomposed into vector multiplications in the context of linear algebra.
This is achieved by performing parallel data processing at the processing element (PE) level
and/or within each PE. In the following paragraphs, we provide a brief overview of CNN
accelerators [33,34]. We discuss three mainstream design approaches: CPU or GPU-based,
FPGA-based, and specialized ASIC-based. Last but not least, we discuss some design and
evaluation approaches for the RISC-V instruction set architecture.

CPU or GPU-based designs. Tightly-coupled multicore clusters provide highly parallel
processing capabilities, which are suited to CNN models with high data parallelism. The
GAP8 multicore accelerator proposed by Gautschi et al. [28] relies on this paradigm by
using RISC-V cores. In its cluster, CNN weights and input data are stored in a shared
scratchpad memory. Another CPU-based accelerator has been proposed in [35] to provide
higher flexibility thanks to its CPUs capability to execute a wide range of operations supported
by their ISA. The von Neumann fetch–decode–execute model is used in both [28,35], which is
potentially power-consuming [36].

The single instruction multiple data (SIMD) execution model has become widely used
in modern CPUs to overcome the limitations of the von Neumann paradigm [28,37]. Date
bit widths are usually predefined in SIMD. As a practical matter, hardware support and ISA
limitations often restrict bit widths to a limited range. For example, SIMD units in ARM
M-cortex cores can only handle data with 8 or 16 bit widths [37]. In the GAP8 architecture,
the RISC-V RI5CY core implements a SIMD unit that supports 2, 4, 8, and 16 bit widths [27].
In this case, each data precision level has its own SIMD unit. This significantly increases
the overhead in terms of area and consumption.

FPGA-based designs. Models and techniques associated with machine learning are rapidly
evolving. The hardware designs implementing these models should therefore be flexible
enough to postpone their obsolescence as much as possible. A reprogrammable hardware
device such as an FPGA is an excellent candidate for solving this problem. In existing
work [38–40], CNN-specific functions can be implemented on FPGAs. In spite of high
performance levels, FPGA accelerators consume more energy than ASIC accelerators [41].

Specialized ASIC CNN accelerators. Recent edge computing requirements have increased
the demand for lightweight, energy-efficient ASIC CNN accelerators. Energy efficiency
is affected by several factors, including the memory hierarchy, the parallelism level im-
plemented, and the processing unit. When designing the latter, optimization goals can
be set in order to target these key factors. In order to meet this requirement, the Eyeriss
accelerator optimizes the memory hierarchy, the on-chip communication interconnect, and
the dataflow execution model [42,43]. A number of accelerators, including DianNao [44],
EIE [45], and others [46–48] share similar optimization targets. By using flexible compute
units, accelerators such as Bit Fusion [49], Loom [50], and others [51,52] aim to improve
energy efficiency. Table 2 summarizes some popular CNN accelerators. A very recent and
comprehensive survey of accelerators can be found in [34].
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Table 2. Selected convolutional neural network accelerators.

Name Technology
(nm)

Frequency
(MHz)

Energy Eff.
(TOPS/W)

MAC
Adaptivity

Supported
Bit Widths

Eyeriss [42] 28 200 0.15–0.35 no 16

Eyeriss V2 [43] 65 200 0.96 no 8

Envision [53] 28 200 0.53–10 yes 2, 4, 8, 16

UNPU [51] 65 200 3.08–50 yes 1–16

DNPU [54] 65 200 2.1–8.1 yes 4, 8, 16

Origami [46] 65 500 0.44–0.80 no 12

BRein memory[48] 65 400 2.3–6.0 no 2, 3

QUEST [52] 40 330 0.88 yes 1, 4

Zhe Yuan et al. [55] 65 100 0.13–13.3 - 1, 2, 4, 8

DianNao [44] 65 980 0.93 no 16

EIE [45] 45 800 10.49 no 4

Bit Fusion [49] 45 500 - yes 2, 4, 8, 16

Loom [50] 65 1000 - yes 2, 4, 8, 16

Yin et al. [47] 65 200 1.27 yes 8–16

Wang et al. [56] FPGA 200 10.3 yes 1–8

CNN processing relies heavily on MAC units to perform matrix multiplications. Their
characteristics and performance directly influence the efficiency of processing. CNN model
quantization improves computation efficiency at the edge by enabling CNN accelerators to
execute with a variety of precision [57]. Therefore, mix-precision quantization has become
prevalent [58–61]. Alternatively, techniques that duplicate MAC units with different bit
widths [27] are inefficient in terms of area overhead. Due to this, flexible MAC unit designs
have emerged [49–53,62], which are also advocated in our proposal.

Design and evaluation approaches for RISC-V ISA. Tools for developing RISC-V archi-
tectures are still in their infancy. However, some simulation and emulation environments
have been extended to support RISC-V implementations. As an example, the gem5 cycle-
approximate simulator [63] currently supports RISC-V as well as x86, ARM, Alpha, and
MIPS. The Spike simulator [64] allows defining possible extensions of the RISC-V ISA and
simulating their corresponding instructions. RISC-V ISA improvements can therefore be
investigated by using Spike as a research simulator. The riscvOVPsim simulator [65] has
been derived from the well-known OVP simulator for prototyping embedded software
on an x86 computer by using cross-compilations. The RISC-V Assembler, Simulator, and
Runtime (RARS) [66] promotes an easy way for beginners to run assembly code on RISC-V-
compliant architectures. In contrast to previous tools, QEMU, which is also open source, is
capable of emulating 32-bit and 64-bit RISC-V implementations [67]. Furthermore, RISC-V
development boards such as HiFive Unleashed of SiFive and PolarFire of Microchip are
also supported by QEMU.

It is possible to design and evaluate RISC-V systems quickly by using the approaches
described above, but only a few platforms allow for a more accurate evaluation of design.
PULPino [28], for instance, defines a family of platforms that support monocore and
multicore processor architectures. The architectures are implemented at RTL level and can
be synthesized on FPGAs. A commercial version of one of these prototype architectures can
be found in the GAPuino development board [68]. In the corresponding system-on-chip,
known as GAP8, eight cores are optimized for vectorized and parallel algorithms along
with a CNN accelerator.

Our approach differs from the aforementioned approaches in that we design a design
methodology on top of a RISC-V open-source system platform [28] and the analytical
modeling Timeloop/Accelergy framework [29,30]. As a first step, we focus on the design
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improvement of a hardware component, the MAC unit, which is crucial for the efficient
execution of CNNs. In order to accurately quantify the gains enabled by the novel MAC unit,
this issue is addressed at the RTL level. Nevertheless, conducting a wide range of system-
level evaluations that incorporate this unit at RTL level is a tedious task. As a result, we
derive a consistent analytical model to make this possible. This analytical modeling also has
the advantage of being easily integrated into other accelerator architectures beyond RISC-V
compliant architectures within Timeloop/Accelergy. It is therefore possible to quickly
analyze the execution of CNNs by exploring a large mapping space on the considered
architectures. By using our bottom-up methodology, we demonstrate how to explore a
nontrivial design space by taking advantage of different levels of abstraction.

In the following, we devise a flexible and energy-efficient MAC unit that can be
integrated in typical CNN accelerators for a better energy efficiency. In particular, we will
compare our solution against some of the aforementioned architectures, namely the GAP8
RISC-V SoC, the Eyeriss and DianNao ASIC CNN accelerators. More details on these three
architectures will be provided later in Section 5, which focuses on their evaluation and
comparison with our solution.

3. Overview of the Proposed Design Methodology

Our bottom-up design methodology is organized around a flexible and energy-efficient
MAC unit. It consists of two main steps shown in Figure 2, as follows.

1. Accurate RTL design [32]. First, we present an efficient MAC unit and assess its
energy gain in comparison to the current RISC-V GAP8 MAC unit.

2. Fast analytical design. Secondly, we explore the impact of the above MAC on energy
efficiency at the chip or system level, and we develop an abstract model of the above
MAC and integrate it into multiple ML accelerator architectures, besides GAP8.

Figure 2. Overview of the proposed design methodology.

Our first step is to revisit the general design of microprocessors with regard to data
quantization requirements. A microprocessor’s basic multiply unit allows for only one
MAC iteration per clock cycle. With the addition of SIMD units, ML algorithms can perform
more MAC iterations per clock cycle. Aside from the additional hardware requirements for
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SIMD, the operations are usually limited to bit widths of 16 bits and/or 8 bits [37]. From
both a power consumption and space perspective, this is inefficient for embedded systems.
Thus, we define and implement at the RTL level a flexible MAC unit architecture capable
of supporting asymmetric bit-width operations and data bit-width representations ranging
from 32 bits to 2 bits. We analyze its power and area gains in the context of RISC-V RI5CY.

The second step involves implementing a Timeloop abstraction [29] for the MAC unit
implemented in RTL above. By abstraction, we mean customizing Timeloop architecture
models in order to reflect both the structural and nonfunctional properties of the target RTL
models. Timeloop is used with Accelergy [30] to evaluate various mappings of CNNs on a
particular architecture. The topology of an architecture can be described by a combination
of arithmetic units and memory components. Timeloop requires information about the
CNN parameters, including its layers, inputs, and trained weights, in order to simulate
CNN inference workloads on a given architecture model. Any CNN training framework,
such as Keras or PyTorch, can provide such information. By simulating the described
architectures, one can determine how well they perform for a given CNN workload and
how energy efficient they are. The number of data transfers within the memory hierarchy
and the number of arithmetic operations performed are included in this measurement. A
general rule of thumb is to establish behavioral monotonicity between the RTL model and
its abstract Timeloop counterpart.

Definition 1 (Behavioral monotonicity with regard to a performance metric). Given M1 and
M2 two different models of the same system, they satisfy a behavioral monotonicity with regard to a
metric µ if the evaluation of µ on their respective behaviors follows the same value tendency, for the
same input sequence in both models.

For instance, let µ denote execution time or power consumption and i1...in represent an
input sequence for two models M1 and M2 satisfying the behavioral monotonicity property;
therefore,

∀k ∈ 1..n− 1, µM1(ik) ∼ µM1(ik+1)⇔ µM2(ik) ∼ µM2(ik+1)

where µMj(ik) evaluates metric µ on model Mj for input ik, and ∼∈ {≥,≤}.
Our current study focuses on the behavioral monotonicity between RTL and Timeloop/

Accelergy models in terms of energy consumption.

4. A Flexible MAC Unit Design at RTL Level

The MAC unit is developed by decomposing multiplication into 2-bit operands. We
use Figure 3a to illustrate this principle on a 4-bit data example.

(a) (b)

Figure 3. Illustration of 4-bit multiplication [32]: (a) General principle. (b) Operation decomposition.

In this example, A and B are operands defined by 1100 and 0111 respectively. Mul-
tiplications of two binary operands are classically performed as shown in Figure 3a 1
, where the former is multiplied by each bit of the latter before the partial products are
added. Therefore, 01010100 is obtained. Figure 3a 2 shows how this operation can be
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schematically represented by a simple 4-bit multiplier. In hardware implementations,
16 AND gates are required for bit-by-bit products, and 12 adders consisting of two AND
gates, one OR gate, and two XOR gates. It is, however, possible to design such an approach
in a variety of ways. Rather than using a 4-bit × 4-bit multiplication, we can decompose
it into four independent 2-bit × 2-bit multiplications, as illustrated in Figure 3b 1 . In
such a case, the final result can be obtained by adding the results of the four 2-bit × 2-bit
multipliers with a proper shift, as shown in Figure 3b 2 . Lastly, Figure 3b 3 presents the
basic blocks necessary to carry out the decomposed multiplication.

4.1. Proposed MAC Architecture

There are three distinct components of the proposed MAC unit: multipliers, adders,
and accumulators. This schematic is shown in Figure 4: a line of 2-bit multipliers on top,
adders and shifters in the middle, the shift control on the left, the output multiplexer on
the right, and the accumulator at the bottom.

Figure 4. Schematic representation of our MAC unit architecture [32].

The MAC unit of our system consists of 256 independent 2-bit multiplications in
order to support 32-bit multiplication. As explained in the previous section, multiplying
4 bits requires four separate 2-bit multiplications ((4/2)2). It follows that, for a 32-bit
multiplication, 256 independent 2-bit multiplications are required ((32/2)2).

Using adders with two inputs, the partial products are summed, facilitating multiplier
configuration and adaptivity. The addition of partial products requires bit shifting. One of
the inputs of each adder is shifted beforehand in order to reduce the number of shifts. Mul-
tiplication requires a maximum of eight adder levels, as shown in Figure 4. Multiplication
results are retrieved at the outputs of the 2-bit × 2-bit multipliers and at each adder level.

The accumulator performs the MAC operation as a final step. A dedicated register
stores the intermediate value of the previous accumulation. The data value is returned to
the accumulator via Op_C as depicted in Figure 4.

As shown in Figure 4, the 32-bit op_A and op_B operands are suitable for performing
SIMD operations. It is possible to load them with 2-bit × 16-bit, or 4-bit × 8-bit, or 8-bit ×
4-bit, or 16-bit × 2-bit operands, as described in Figure 5a. In SIMD mode, the proposed
MAC unit is capable of performing parallel operations in one clock cycle, as illustrated in
Figure 5b.
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(a) (b)

Figure 5. Details on supported operands and operations: (a) Representation of data contained in a
32-bit register for each data bit width. (b) Number of available operations for each data bit width.

4.2. Design Evaluation

Our MAC unit is implemented in SystemVerilog, a hardware description language.
Simulation and synthesis were performed by using ModelSim and Synopsys Design Com-
piler, respectively. The proposed MAC architecture is verified through simulation. It is also
possible to gather switching activity in order to obtain an accurate estimate of power. This
synthesis provides the area and power costs for the selected technology, which is 28 nm FD-
SOI at 200 MHz. As evaluation workload, we define a simple program consisting of a few
thousand multiplications and additions to be executed for assessing the energy efficiency
of MAC units. The evaluated metric is expressed as the number of MAC operations per
power consumption unit, referred to as Op/mW. For emulating mixed-precision quantized
operands, bit widths of different sizes are used, as illustrated in Figure 5b. Scripts written
in Python generate random values for the operands. A SystemVerilog benchmark is used
to load these data into the 32-bit input registers of the MAC unit. Each bit width is tested
1000 times with different values loaded into the MAC architecture’s input registers.

We compare our proposed MAC unit with that of the RI5CY core [28]. This core
is selected for two reasons: it is well-known within the RI5CY ISA community and its
operations are similar to those targeted by our MAC unit. It has also been developed in
SystemVerilog and is freely available on the web at [69]. In its associated MAC unit, there
are five types of multipliers, each representing a specific bit precision, as illustrated in
Figure 6. There is a similar parallelization capability to that of Table 5b. For simulation
and synthesis with FD-SOI technology from 28 nm to 200 MHz, ModelSim and Synopsys
Design Compiler are also used. In the RI5CY core, the native MAC unit does not support
the 4-bit:4-bit and 2-bit:2-bit configurations. To include them, we rely on the MAC unit
in [27]. A key difference between this unit and our adaptive MAC design is that it employs
hardware redundancy, i.e., each precision level requires a dedicated multiplier.

Figure 6. Redundant MAC unit design in the native RI5CY core.

Area estimation. Initially, the architecture synthesis provides the area surface value of
9930 µm2. Figure 7 shows the distribution of space among the various parts of the MAC
unit. Adders and shifters make up 75% of the circuit, while the 256 multipliers make up
20%. In the circuit, the accumulator occupies approximately 1% of the area, while the
connections and output multiplexers occupy the remaining 4%. During synthesis, weak
optimization capabilities result in the adders and offsets taking up 75% of the space. Figure
4 illustrates the data capture at each level of the adder towards the output. As a result of
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this capture, it is possible to retrieve the results of multiplication operations involving less
than 32 bits. Due to this limitation, synthesis tools cannot perform optimizations consisting
of reducing the number of logic gates.

Figure 7. The distribution of the surface occupied by the main functions of our MAC unit.

In the RI5CY core, the surface area of the native MAC unit is 10,830 µm2. Based on
our proposal, we are able to reduce the size of this unit by 10%. As the MAC unit of RI5CY
occupies approximately 40% of a core’s surface, this surface reduction is beneficial.

Power estimation. The static and dynamic power consumption of the two MAC architec-
tures can be seen in Figure 8. The dynamic power of our solution increases as the data bit
width increases. As a matter of fact, our solution activates only the hardware required for a
particular bit width. By using the divide-and-conquer principle, we activate only the logic
required to perform the multiplication proportional to the operand bit width.

Figure 8. Power estimation with synopsys design compiler, based on our considered testbench.

The amount of power dissipated is directly related to the number of logic gates ac-
tivated. As a consequence, 32-bit operations that utilize the multiplier’s logic consume
more energy. When compared with the native RI5CY design, 16 bits and 32 bits operations
consume more power. We believe that the less optimal placement of logic components
during synthesis is the cause of this. Due to the fact that our MAC unit consists of several
connections distributed across the circuit, there is a limited amount of space for optimiza-
tion. It should be noted that despite a smaller area, static power is slightly higher than
native RI5CY. In the MAC units, we observe two levels of dynamic power. Consequently,
the higher level corresponds to operands of the same bit width, while the lower level
corresponds to operands with asymmetric bit widths. By adding zeros, asymmetric bit
widths can be accommodated. The dynamic power dissipated by our newly designed
MAC unit is 25% less than that of RI5CY. The static power increases by about 21% with
our proposal. However, it represents a smaller portion of the global power consumption
dissipated by the design, as shown in Figure 8.

Energy-efficiency evaluation. A comparison of the energy efficiency of the two solutions
is shown in Figure 9. Both MAC architectures benefit from the lowest bit widths in terms
of energy efficiency. Energy efficiency decreases when the data bit width exceeds 16 bits.
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There is a 50% improvement in the energy efficiency of the proposed MAC unit over the
native design of the RI5CY core.

Figure 9. Energy efficiency with regard to dynamic power for different MAC operand bit widths.

Compared with the native unit, the novel MAC unit presented above shows notable
energy efficiency for the RI5CY core. The results confirm the benefits of the adaptive nature
of the proposed RI5CY MAC unit by reducing the area induced by the redundant design
used in the RI5CY MAC unit (see Figure 6). We note that another MAC unit with a similar
design principle has been developed for RI5CY [70].

5. Abstraction toward Analytical Modeling of Our MAC Unit

The GAPuino board uses the GAP8 chip to execute ML algorithms efficiently. In order
to design efficient ML-dedicated architectures, it is critical to take into account the memory
and arithmetic units that perform MAC operations. Our Timeloop modeling therefore
heavily relies on these components. Figure 10a illustrates a model of the GAP8 architecture.

Each component of the model can be assigned the desired technology node. Currently,
Timeloop supports 40-nm and 65-nm technologies. There are several characteristics that
are taken into account when modeling memories, such as the geometry of the memory
blocks (width and height), the data size, such as the "word-bits" attribute, and throughput.
Arithmetic units are characterized by their type of operation, size, and type of components.
The main modifications applied to devise the abstract model of the GAP8 in Timeloop
concern the overall memory architecture as well as the two MAC unit variants, namely
the native one and our proposal. As illustrated in Figure 10a, two intermediate memory
levels are modeled between the PEs and the main memory. Memory parameters include
word-bits, which are configured according to the precision level in data representation,
e.g., from 2 bits to 32 bits, including mixed precision representations. We assume different
layers of a CNN can have distinct data representations, so that a good compromise in
terms of overall CNN energy efficiency becomes possible (see later in Section 5.2). Then,
the remaining memory attributes are adjusted accordingly so that the overall memory
geometry is unchanged for the different data precision levels (otherwise, the memory
would be larger and therefore more energy consuming for 32 bits than for 2 bits). On the
other hand, parallel MAC units are created within each PE according to the supported bit
precision level (see Figure 5b). In the case of data bit widths including 32 bits, each PE will
contain one MAC unit, while for all other bit widths, from 2 to 16 parallel MAC units may
be used.
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(a) GAP8. (b) DianNao. (c) Eyeriss.

Figure 10. Considered accelerator architecture template models in Timeloop.

5.1. Timeloop-Based Modeling

In order for a high-level modeling tool such as Timeloop to be useful, it must be capa-
ble of producing relevant results based on the corresponding hardware implementation,
i.e. behavioral monotonicity. We first measure the power consumption of GAP8 on the
GAPuino compute board to meet this requirement. Through the use of a CNN workload
(here the MNIST CNN), we examine whether the energy consumption trends obtained
with the Timeloop GAP8 model and the GAPuino board are comparable.

Figure 11 compares the energy consumption of the Timeloop model and the GAPuino
board. The considered workloads consist of convolution layers because they are the most
energy-consuming parts of a CNN. We replicate such layers from 1 to 3 on the one hand,
and we vary the number of filters inside each layer on the other hand. Hence, “NxConv
F1-F2-...-FN” denotes a workload with N convolution layers, where the kth layer contains
Fk filters.

The energy consumption of the GAPuino is higher, between 10 mJ and a few joules,
while that of the Timeloop model is between 1.8 uJ and 50 uJ. Energy consumption trends
are generally similar across all CNN execution configurations.

Figure 11. Energy-based behavioral monotonicity: GAP8 model in Timeloop vs actual GAP8 SoC on
the GAPuino development board

Based on the similarity in trends, the Timeloop model for GAP8 architecture appears
to be valid for establishing behavioral monotonicity with regard to energy consumption.

Energy breakdown for on-chip components. Prior to investigating how our MAC unit
might be integrated into the three architectures, it is critical to assess how efficient optimiza-
tion can be achieved. We analyze the breakdown of energy consumption of the on-chip
microarchitecture components based on the native MAC unit model in Timeloop for each
accelerator. Figure 10 illustrates the architectures under consideration. We modified the
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templates provided in Timeloop only marginally for Eyeriss and DianNao. In contrast, we
developed a model for GAP8.

The Eyeriss architecture (see Figure 10c) is composed of processing elements. Each
PE contains three registers containing the weights (filters) of CNN filters, the input data
(ifmaps) and the partial sums (psums) computed by the MAC operations. An intermediate
SRAM buffer connects each PE to the DRAM main memory for the purpose of storing
data. Each PE in the DianNao architecture has a single register to store weight data (see
Figure 10b). Here, a PE receives data from three shared memories, NBin, NBout, and SB,
which contain input feature maps, output feature maps, and weights, respectively. DianNao
and Eyeriss organize PEs as two-dimensional matrices. The GAP8 architecture (note that
the CNN accelerator of the GAP8 chip is abstracted here in the same way as the other cores
due to the lack of information on its corresponding microarchitecture) consists of parallel
PEs arranged in rows (see Figure 10a). The PEs in GAP8 are similarly composed of three
registers that contain the CNN input filter weights, the input data, and the MAC output
data. DRAM main memory is accessed by the PEs via Level 1 (64 KB) and Level 2 (512 KB)
scratchpad memory levels.

For each accelerator, we execute the AlexNet CNN [6] and report the energy consump-
tion distribution in Figure 12.

(a) GAP8. (b) DianNao. (c) Eyeriss.

Figure 12. Energy breakdown based on considered accelerators models.

With the exception of the main memory, the obtained results indicate that the on-chip
energy consumption of the MAC units is not negligible. Accordingly, this is consistent with
the CNN parameter complexity mentioned in Table 1. Eyeriss and GAP8 consume approx-
imately 41% of energy for their respective MAC unit models, while DianNao consumes
approximately 75%. This distribution of energy indicates that the MAC unit is a viable
candidate for improvement in order to increase energy efficiency.

Figure 12 only shows the energy breakdown of on-chip components. Nevertheless,
we can point out that the energy consumption of the main memory (which is typically
located off-chip) represents approximately 60%, 95%, and 23% of the entire accelerator
model, respectively, for Eyeriss, DianNao, and GAP8.

5.2. Evaluation with regard to GAP8 RISC-V Architecture

Having assessed the relevance of the above analytical model, we now assess its
global impact on the GAP8 RISC-V architecture model. The integration of our proposed
MAC unit into this architecture is compared with that of the native MAC unit of GAP8
(Figures 13 and 14).

As a workload, we use AlexNet CNN in the next experiment. Figure 13 shows the
energy efficiency of the different convolution layers with different uniform bit precision.
CNN layers perform different operations and manipulate data in different ways. The
obtained results indicate that energy efficiency varies across the considered configurations.
In particular, the energy consumed by MAC units increases as bit precision increases.
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Especially interesting is the fact that the energy efficiency of convolution layers varies with
bit precision.

It is worth mentioning that Conv4 is the most expensive layer for 16 and 32-bit
precision (see Figure 13d), whereas Conv2 is the most expensive layer for 8-bit precision
(see Figure 13b). These variations suggest that mixing different bit precision levels for
different CNN layers may improve the efficiency of a network by selecting the most
appropriate precision for each layer.
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(d) 32-bit precision.

Figure 13. Details of GAP8 architecture energy efficiency for different data accuracy.

Figure 14 illustrates the performance of some alternative CNN models combining 2-bit
precision levels. As a result of combining 8-bit and 16-bit precision, CNN execution is more
energy efficient than it would be with 16-bit precision alone (see Figure 14a). Furthermore,
the previous uniform 32-bit representation (see Figure 13d) can be improved by combining
it with the 16-bit precision, as shown in Figure 14b.
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Figure 14. Details of GAP8 architecture energy efficiency for different data accuracy: (a) Eight- and
16-bit precision; (b) 16- and 32-bit precision.
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Based on the above evaluations, the Timeloop model of our MAC unit appears to
be less energy efficient than the original MAC unit of GAP8 for high bit precision, such
as 32 bits. In fact, this tendency was inherited from the RTL-level implementation we
used in our evaluation (see Section 4.2), where we observed a higher power consumption
for our MAC unit than GAP8’s, when using 32-bit precision. In order to maintain design
consistency (here, behavioral monotonicity), we calibrated our MAC unit’s Timeloop model
with the same overhead power consumption. Our proposal may be made more efficient
by means of applying various power optimization techniques, either offered by standard
physical synthesis design flows from RTL or arithmetic unit-specific techniques. It is also
possible to mitigate its lower energy efficiency compared to 32 bits by mixing different
precision levels. This is observed in the next section for the MAC unit in DianNao.

Meanwhile, a noteworthy insight is that the proposed MAC unit improves overall
energy efficiency with regard to smaller bit widths. Because a majority of CNN accelerators
are designed to handle smaller bit widths, as illustrated in the samples in Table 2, this is a
significant advantage. None of the popular CNN accelerators reported in this table feature
32-bit width. The first third of these accelerators supports a maximum 8-bit width, whereas
the remaining accelerators support up to 16-bit width. The support for 32-bit width may
further come in handy as per-layer quantization is increasingly popular, and offering the
opportunity to avoid quantization for specific layers can help minimize accuracy loss.

5.3. Evaluation with Regard to Further Architectures

Beyond the GAP8 model, we now evaluate the Eyeriss and DianNao models in
Timeloop to assess their energy efficiency when integrating our MAC into their respective
architectures. For this purpose, we compare configurations with each accelerator’s native
MAC unit against our proposed MAC unit. In addition, we assess the effects of the most
appropriate mapping choices determined by Timeloop on PE utilization ratios. Note that
for the sake of convenience, the results presented in the sequel rely on system configurations
including 96 PEs. Larger configurations could be explored, of course.

Impact of our MAC unit on energy-efficiency at chip level. Figure 15 summarizes the
energy efficiency of AlexNet CNNs executed on the three target architectures. Eyeriss and
DianNao show the greatest improvement, of 32% and 19%, respectively. This is a result
of our MAC unit’s ability to parallelize operations on data, especially with reduced data
precision. Neither DianNao nor Eyeriss have native MAC units that are capable of handling
more than one MAC operation at a time.
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Figure 15. Impact of our MAC unit on the energy efficiency of architectures: (a) The Eyeriss
architecture. (b) The DianNao architecture. (c) The GAP8 architecture.
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Our MAC unit for the GAP8 architecture is more efficient for reduced bit precision. It
is in accordance with the observations made in Section 4. Our MAC unit reduces energy
consumption per MAC operation by 23% as MAC precision increases from 2 bits to 16 bits.
When operating at 32-bits precision, our MAC unit increases the power consumption by
10% for both DianNao and GAP8.

Impact on the number of PEs utilized in the best CNN mappings. Figure 16 shows the PE
utilization ratios obtained from the best CNN mappings on the three architectures, with
and without our proposed MAC unit. In other words, it represents the number of PEs that
are required for the most energy-efficient execution of CNNs.
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(b) the DianNao architecture.
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Figure 16. Comparison of PE utilization ratios of the three architectures with and without our MAC
unit.
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Figure 16. Comparison of PE utilization ratios of the three architectures with and without our MAC
unit: (a) The Eyeriss architecture. (b) The DianNao architecture. (c) The GAP8 architecture.

When using Eyeriss and DianNao’s native single-precision MAC units, PE utilization
ratios are greater than 80%. The integration of our proposed MAC unit into these architec-
tures results in variable PE utilization ratios according to data precision. Particularly for
smaller data bit widths, PE utilization ratios are low. This is due to the parallel MAC opera-
tions supported by GAP8 MAC units (including the native MAC unit and the proposed
variant), inside each PE. Therefore, by distributing the workload and data over fewer PEs,
the Timeloop mapper minimizes overall energy consumption.

As illustrated in Figure 16c, it is interesting to note that the PE utilization ratio for
the GAP8 system is similar regardless of whether we consider either the native MAC unit
or our proposed MAC unit. This is due to the fact that both MAC units support similar
parallelism in MAC operations.

6. Concluding Remarks

This paper introduced a two-step bottom-up design methodology for assessing the
energy efficiency of CNNs executed on accelerator architectures. An RTL design of a
flexible and energy-efficient MAC unit is the first step in this methodology. In this way,
we are able to efficiently handle CNNs with a large number of MAC operations. Our
solution uses an open-source RISC-V core, also found in commercial chips. In order to
support multiple quantization modes simultaneously for different CNN convolution layers,
we developed a mixed-precision MAC unit. This implementation reduces the dynamic
power and area by approximately 25% and 10% respectively, when compared with the
native MAC unit of the considered RI5C-V processor, which is similar to that of the GAP8
SoC. Figure 17a summarizes the benefits of our solution with respect to the main figures
of merit. For the energy-efficiency metric, the higher the value, the better, whereas for
the power consumption and area footprint metric, the lower the value, the better. With
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the exception of static power consumption, our solution is generally more efficient than
the existing RISC-V MAC unit design. Furthermore, because the static power dissipation
in these designs is smaller than the dynamic one, we obtain an overall improvement in
power consumption.

As a second step, we abstracted the devised MAC component by using Timeloop/Accelergy.
At the system level, we tested the energy efficiency of the enhanced MAC unit when in-
tegrated with typical architectures such as GAP8, Eyeriss, and DianNao. The results
confirmed that system-level energy efficiency improved for both uniform and mixed pre-
cision data bit widths from 2 bits to 16 bits. Figure 17b summarizes the main figures of
merit when evaluating our MAC unit at the system level when integrated into the three
CNN-dedicated architectures. In comparison with Eyeriss and DianNao, we have observed
notable gains in energy efficiency as a result of the higher execution parallelism of our
MAC unit. As a result, the number of processing units required for execution is drastically
reduced, as illustrated by the PE utilization ratio (here, the lower the utilization ratio,
the better for power savings). However, the benefits observed at the MAC unit level are
moderate compared to GAP8. The native MAC unit of the latter also supports execution
parallelism, while being less area efficient.

(a) (b)

Figure 17. Normalized figures of merit comparing our proposal with regard to considered approaches:
(a) MAC unit-level evaluation and comparison with regard to GAP8-like MAC unit. (b) System-level
evaluation and comparison with regard to Eyeriss, DianNao, and GAP8 by using Timeloop. Here,
"adaptive" denotes a design variant wherein our MAC unit replaces the original unit in a system.

As demonstrated in our study, the proposed bottom-up design methodology can
facilitate the evaluation of CNN implementations on RISC-V and other architectures in
the future.
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Abbreviations
The following abbreviations are used in this manuscript:

MAC Multiply-and-Accumulate
CNN Convolutional Neural Network
DNN Deep Neural Network
RTL Register Transfer Level
TLM Transaction Level Modeling
ISA Instruction Set Architecture
ASIC Application-Specific Integrated Circuit
FPGA Field-Programmable Gate Array
SIMD Single Instruction Multiple Data
ML Machine Learning
SoC System-on-Chip
PE Processing Element
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