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Supplementary Materials

Decoupled Model Predictive Control for Path Following on

Complex Surfaces

João Cavalcanti Santos, Lenäıc Cuau, Philippe Poignet, Nabil Zemiti

February 28, 2023

This article presents supplementary materials of the paper entitled Decoupled Model Predictive

Control for Path Following on Complex Surfaces, published in IEEE Robotics and Automation

Letters, 2023. Sections, equations, figures and references are numbered such as the numbering is

consistent with the main paper.

A proof of convergence of Algorithm 1 is performed in Section A. The capability of the pro-

posed control scheme to track self-intersecting curves is discussed in Section B. Finally, Section C

presents further details on the integration of external controllers to the proposed PPFC.
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A Convergence of Algorithm 1

The convergence of Algorithm 1 can be proved based on the assumption that each of the steps

∥pd,k+1 − pd,k∥ are finite, which is the typical application of the proposed control scheme. A

detailed discussion on this matter is presented in the following.

Theorem 1: Consider any given sequence of desired points Pd = {pd,1, pd,2, . . . }, end-effector
position p ∈ R3 and positive integer k0. If there is a positive scalar ε such that

∆pd,k = ∥pd,k+1 − pd,k∥ ⩾ ε > 0,∀ k ∈ {k0, k0 + 1, . . . } (23)

then the Algorithm 1 converges to a positive integer k̂ ⩾ k0.

Proof of Theorem 1. Consider a given k ⩾ k0 such that

eTj (p− pd,j) ⩾ ∆pd,j ∀ j ∈ {k0, k0 + 1, . . . , k}. (24)

with ej = (pd,j+1 − pd,j)/∥pd,j+1 − pd,j∥. This represents a case in which a true value for the

condition

λj = eTj (p− pd,j) ⩾ ∆pd,j (25)

was obtained in step 3 of Algorithm 1 for j ∈ {k0, k0 + 1, . . . , k}. The solution of Algorithm 1 is

obtained when j = k̂ such that (25) is violated (false value in step 3).

Let Vk+1 be the defined as

Vk+1 =

{
v ∈ R3 :

∥v − pd,k∥ ⩾ ε and (26a)(
v − pd,k

∥v − pd,k∥

)T

(p− pd,k) ⩾ ∥v − pd,k∥

}
. (26b)

The set Vk+1 is used to study the conditions on which v = pk+1 will lead to a false or true

value in condition (25) for j = k + 1. Thanks to (26b),

pd,k+1 ∈ Vk+1 ⇔(
pd,k+1 − pd,k

∥pd,k+1 − pd,k∥

)T

(p− pd,k) = eTk (p− pd,k) ⩾ ∥pd,k+1 − pd,k∥ = ∆pd,k,

leading to a true value of condition (25). Conversely, since (23) implies that v = pd,k+1 necessarily

satisfies (26a), then

pd,k+1 /∈ Vk+1 ⇔ eTk (p− pd,k) < ∥pd,k+1 − pd,k∥ = ∆pd,k,

which implies that a false value is obtained in step 3 of Algorithm 1 for k, thus converging to

k̂ = k. Note also that the combination of (26a) and (26b) leads to

dk = ∥p− pd,k∥ < ε ⇒ Vk+1 = {∅} ⇒ pd,k+1 /∈ Vk+1. (27)
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In short, (27) implies that dk < ε leads to a false value in condition (25).

The Theorem 1 is proved showing that Vk shrinks of a finite volume for each step of Algo-

rithm 1. This is proved studying the upper bounds of the sequence

dk = ∥p− pd,k∥. (28)

To do so, consider the maximum value dk+1 that the expression dk+1 = ∥p−pd,k+1∥ can lead for

any pd,k+1 ∈ Vk+1 for given p and pd,k. The value of dk+1 can be computed according to

dk+1 = max
v∈R3

∥v − p∥ (29a)

s.t. ∥v − pd,k∥ ⩾ ε and (29b)(
v − pd,k

∥v − pd,k∥

)T

(p− pd,k) ⩾ ∥v − pd,k∥. (29c)

After some straightforward manipulations, the first order Karush–Kuhn–Tucker optimality

conditions [30, Section 12.3] for the problem (29) can be written as

(v − p) + λ1 (v − pd,k) + λ2

(
(p− pd,k)− 2 (v − pd,k)

)
= 0 (30a)

f1(v) = ∥v − pd,k∥ − ε ⩾ 0 (30b)

f2(v) =
(v − pd,k)

T

∥v − pd,k∥
(p− pd,k)− ∥v − pd,k∥ ⩾ 0 (30c)

λ1 ⩾ 0 (30d)

λ2 ⩾ 0 (30e)

λ1 f1(v) = 0 (30f)

λ2 f2(v) = 0 (30g)

The solutions of (30) can be summarized into the following three sets:

(I) ⇒

 v ∈ R3 :

{
(v − pd,k)

T (v − pd,k) = ε2

(v − pd,k)
T (p− pd,k) = ε2

λ1 = λ2 = 1

(31)

(II) ⇒


v = pd,k +

p−pd,k

∥p−pd,k∥ ε

λ1 = 1− p−pd,k

ε

λ2 = 0

(32)

(III) ⇒

{
v = p

λ1 = λ2 = 0
(33)
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The square of the cost function (29a) for a solution v = v(I) of case (I) can be rewritten as

∥v(I) − p∥2 = (v(I) − p)T (v(I) − p) =

(v(I) − pd,k + pd,k − p)T (v(I) − pd,k + pd,k − p) =

(v(I) − pd,k)
T (v(I) − pd,k)︸ ︷︷ ︸
ε2

−2 (v(I) − pd,k)
T (p− pd,k)︸ ︷︷ ︸

ε2

+(p− pd,k)
T (p− pd,k)︸ ︷︷ ︸
d2
k

=

ε2 − 2 ε2 + d2k =

d2k − ε2

where the conditions of (31) and (28) were used. For a non-empty Vk+1, (27) implies that

∥v(I) − p∥ = d2k − ε2 ⩾ dk − ε ⩾ 0. Accordingly, the sets of solutions (I)-(III) can be sorted as in

∥v(I) − p∥ =
√
d2k − ε2 ⩾ ∥v(II) − p∥ = dk − ε > ∥v(III) − p∥ = 0 (34)

Therefore, the global solution of (29) is given by

dk+1 =
√
d2k − ε2 (35)

taking as optimal argument p∗
d,k+1 = v(I) any vector satisfying{
(p∗

d,k+1 − pd,k)
T (p∗

d,k+1 − pd,k) = ε2

(p∗
d,k+1 − pd,k)

T (p− pd,k) = ε2
(36)

The geometrical interpretation of the solution of (29) is illustrated in Figure 9.

ε

p
constraint (30b)

pd,k-1

pd,k

p

ek-1

v(I)

v(II)

d k

d k+
1

d,k+1

constraint (30c)

Figure 9: Geometrical interpretation of the solutions of (29).
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One may repeat the optimization (29) to obtain dk+2 substituting p∗
d,k+1 into pd,k for (29b)-

(29c), which leads to

dk+2 =

√
d
2

k+1 − ε2 (37)

Repeating the procedure recursively, one can obtain for any i > k

d
2

i+1 − d
2

i = −ε2 ⇒ (di+1 − di)(di+1 + di) = −ε2 ⇒ (38)

di+1 − di =
−ε2

di+1 + di
⩽

−ε2

2 dk
. (39)

Therefore, the sequence di can be majorized by

di ⩽ dk − ε2

2 dk
(i− k), (40)

such that, in accordance with (27)

i >
2 dk
ε2

(dk − ε) + k = k ⇒ di ⩽ di < ε ⇒ Vi+1 = {∅}. (41)

Therefore, the solution k̂ of Algorithm 1 satisfy

k̂ ⩽
2 dk
ε2

(dk − ε) + k, (42)

proving the assertion of the theorem.
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B Self-intersecting Curves

The ability to track self-intersecting curves is a crucial characteristic for path following control

schemes. Several strategies fail on this matter, e.g. [31, 32]. In the case of vector field path

following control, for instance, the vector field is singular in crossing points, which leads to a null

guidance signal [33].
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Figure 10: Illustration of a case in which the searched area is extended until
eTk (p− pd,k) < ∆pd,k and p ∈ Sk for k̂ = k0 + 3.

Similarly to [34], the proposed control scheme is able to track self-intersecting reference curves

thanks to the sequential search proposed in Algorithm 1. As a reminder, the applied rationale is

illustrated in Figure 10. For k = {k0, k0 + 1, . . . } evaluated sequentially in an increasing order,

the algorithm stops whenever eTk (p− pd,k) < ∆pd,k.
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Figure 11: Four different cases indicating that the proposed algorithm is able to
track the correct sequence of reference positions for self-intersecting paths. Cases
(a), (b) and (c) show that the searched area Sk is expanded starting from k0. Case
(d) illustrates multiple positions of p that lead to eTk0

(p− pd,k0
) < 0, such that p is

within the first searched area and Algorithm 1 converges with k0 = k̂.

Consider given step k, pd,k and pd,k+1. The inequality eTk (p − pd,k) < ∆pd,k determines a

region in space delimited by the plane eTk (p−pd,k) = ∆pd,k for which the solution of Algorithm 1

is found. In order to have a record of the accumulated searched region, let Sk be defined by

Sk =
{
v ∈ R3

∣∣∣ ∃ j ∈ {k0, k0 + 1, . . . , k} : eTj (v − pd,j) < ∆pd,j

}
(43)

Note that Algorithm 1 converges when reaching a k such that p ∈ Sk. Since this condition

is tested in an increasing sequence k = {k0, k0 + 1, . . . }, the algorithm is stopped for the first

k satisfying p ∈ Sk. Thanks to that, a reference point following the correct sequence in a self-

intersecting path is obtained instead of missing a closed portion of the curve. This is shown in

Figure 11 and in Video (i)1.

Taking a k0 for which pd,k0
is close to a self-intersecting point, Figure 11 shows how the

searched region Sk is extended until p ∈ Sk. Four different cases are considered. In particular,

scenario (c) (Case (II) in the video) shows a worst case of the position p in which Sk̂ includes

1https://seafile.lirmm.fr/f/a93502cf54ea454abd0b/
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Figure 12: Experimental results for a self-intersecting path.

almost the whole plane. Additionally, as shown in case (d), it is worth noting that any p satisfying

eTk0
(p− pd,k0

) < 0 leads to k̂ = k0, with Algorithm 1 converging in the first step.

In order to complete the demonstration that the proposed algorithm is able to track a self-

intersecting curve, a 3D printing was performed applying the reference path depicted in Figure 12.

The printing procedure is available in the Video (ii)2.

2https://seafile.lirmm.fr/f/074035dfe33446c2b2f1/
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C External Controllers

An external controller should be integrated to the proposed PPFC in order to control the

interaction between the tool and the surface. More precisely, the external controllers proposed as

typical applications can be divided with respect to the controlled physical variable as follows:

(i) Distance between the tool position and the surface;

(ii) Applied force perpendicular to the surface.

The next paragraphs discuss more in detail how these types of external controllers can be

integrated to the proposed control scheme.

C.1 Distance control

In case (i), the displacements along n are used to track a distance hd between the tool and the

surface based on the measured distance hm. Reminding that n points towards the interior of the

object of interest, a simple strategy able to perform the tracking of hd could apply an external

controller position velocity ṗec as proposed in the letter:

ṗec = klh (hm − hd)n, (22)

with a positive scalar gain klh. Although (22) applies velocities based uniquely on the measured

error eh = hd − hm, it is possible to show that eh → 0 for t → ∞. A draft of the proof of this

assertion is presented in the following.

Consider that the errors due to the tracking of the PPFC scheme are negligible. Figure 13

illustrates that the trajectory generated with null velocity along n leads to a constant distance

between the tool and the surface. Since the orientation n is continuously updated, the translational

velocity ṗPPFC generated by the PPFC controller is kept tangential to the surface. Therefore, the

nominal variation of the measured distance is caused uniquely by the external controller velocity

ṗec. More precisely, in accordance with Figure 14,

ḣm = −∥ṗec∥ = klh (hd − hm). (44)

For a constant hd, the closed-loop system (44) leads to

ėh = ḣd − ḣm = −klh (hd − hm) = −klh eh, (45)

which is a first order linear system with

eh(t) = eh(0) e
−khlt ⇒

{
limt→∞ eh(t) = 0

limt→∞ ṗec(t) = 0
(46)
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desired path

h
d

pn PPFC

Figure 13: Illustration that if the tracking of n is able to keep this vector normal to
the surface, the PPFC translational velocity is tangential and the hm is constant.

pec

h m

h d

Figure 14: Influence of ṗec on the distance hm.

In short, in spite of the simplicity of (22), this external controller is asymptotically stable if

the path following control is able to track the desired positions pd,k and orientations nd,k with
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sufficient precision.

Clearly, this conclusion depends on the stability of the path following control. The experi-

mental results presented in Section V indicate that the introduced strategy leads to satisfactory

results in this matter. A formal stability analysis of the proposed predictive control should be

addressed in future works.

C.2 Force control

In case (ii), the displacements along n are used to control the contact force normal to the

surface. A simple strategy able to perform the tracking of a desired force fd based on a measured

force f could apply

ṗec = kf (fd − f)n, (47)

with a positive scalar gain kf . One may apply a rationale similar to the one used in the last section.

Nevertheless, the interaction between the tool and the surface leads to additional complexities in

this case.

Firstly, one should verify that the precision of the path following control is robust with respect

to the friction due to the contact between the tool and the surface. Secondly, the relation between

the tool penetration s and the normal force f should be addressed, as illustrated in Figure 15.

In order to apply the same rationale used in the last section, one could consider that the normal

force can be written as a strictly increasing function of the penetration, i.e.

f = f(s) :
df

ds
> 0 ∀ s ⩾ 0. (48)

In words, (48) implies that f can be written as function of s such that increased penetrations

lead to increased forces. The condition s ⩾ 0 is necessary to guarantee that the tool is in contact

to the surface.

s(t)

f(t)

tool

Figure 15: Notations used to correlate the penetration and the normal force.
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Additionally, as in relation (44), one can conclude that

ṡ = ∥ṗec∥ = kf (fd − f). (49)

Considering the Lyapunov function V (f) = (fd − f)2 the following conditions can be verified:

V (f) = 0 ⇔ f = fd (50a)

V (f) > 0 ⇔ f ̸= fd (50b)

In addition, for s > 0, the time derivative of V can be written as

V̇ (f) = −2 (fd − f) ḟ = −2 (fd − f)
df

ds
ṡ = −2 (fd − f)

df

ds
kf (fd − f)

= −2 kf
df

ds
(fd − f)2,

which, thanks to (48), leads to

f = fd ⇔ V̇ (f) = 0 (51a)

f ̸= fd ⇔ V̇ (f) < 0. (51b)

Relations (50) and (51) prove that the closed-loop system obtained with (47) is asymptotically

stable, such that {
limt→∞ f(t) = fd

limt→∞ ṗec(t) = 0
(52)
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