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A Convergence of Algorithm 1

The convergence of Algorithm 1 can be proved based on the assumption that each of the steps ∥p d,k+1 -p d,k ∥ are finite, which is the typical application of the proposed control scheme. A detailed discussion on this matter is presented in the following.

Theorem 1: Consider any given sequence of desired points P d = {p d,1 , p d,2 , . . . }, end-effector position p ∈ R 3 and positive integer k 0 . If there is a positive scalar ε such that

∆p d,k = ∥p d,k+1 -p d,k ∥ ⩾ ε > 0, ∀ k ∈ {k 0 , k 0 + 1, . . . } (23) 
then the Algorithm 1 converges to a positive integer k ⩾ k 0 .

Proof of Theorem 1. Consider a given k ⩾ k 0 such that e T j (p -p d,j ) ⩾ ∆p d,j ∀ j ∈ {k 0 , k 0 + 1, . . . , k}.

with e j = (p d,j+1 -p d,j )/∥p d,j+1 -p d,j ∥. This represents a case in which a true value for the condition λ j = e T j (p -p d,j ) ⩾ ∆p d,j

was obtained in step 3 of Algorithm 1 for j ∈ {k 0 , k 0 + 1, . . . , k}. The solution of Algorithm 1 is obtained when j = k such that (25) is violated (false value in step 3).

Let V k+1 be the defined as

V k+1 = v ∈ R 3 : ∥v -p d,k ∥ ⩾ ε and (26a) v -p d,k ∥v -p d,k ∥ T (p -p d,k ) ⩾ ∥v -p d,k ∥ . (26b) 
The set V k+1 is used to study the conditions on which v = p k+1 will lead to a false or true value in condition (25) for j = k + 1. Thanks to (26b),

p d,k+1 ∈ V k+1 ⇔ p d,k+1 -p d,k ∥p d,k+1 -p d,k ∥ T (p -p d,k ) = e T k (p -p d,k ) ⩾ ∥p d,k+1 -p d,k ∥ = ∆p d,k ,
leading to a true value of condition (25). Conversely, since (23) implies that v = p d,k+1 necessarily satisfies (26a), then

p d,k+1 / ∈ V k+1 ⇔ e T k (p -p d,k ) < ∥p d,k+1 -p d,k ∥ = ∆p d,k ,
which implies that a false value is obtained in step 3 of Algorithm 1 for k, thus converging to k = k. Note also that the combination of (26a) and (26b) leads to

d k = ∥p -p d,k ∥ < ε ⇒ V k+1 = {∅} ⇒ p d,k+1 / ∈ V k+1 . (27) 
In short, (27) implies that d k < ε leads to a false value in condition (25).

The Theorem 1 is proved showing that V k shrinks of a finite volume for each step of Algorithm 1. This is proved studying the upper bounds of the sequence

d k = ∥p -p d,k ∥. ( 28 
)
To do so, consider the maximum value d k+1 that the expression d k+1 = ∥p -p d,k+1 ∥ can lead for any p d,k+1 ∈ V k+1 for given p and p d,k . The value of d k+1 can be computed according to

d k+1 = max v∈R 3 ∥v -p∥ (29a) s.t. ∥v -p d,k ∥ ⩾ ε and (29b) v -p d,k ∥v -p d,k ∥ T (p -p d,k ) ⩾ ∥v -p d,k ∥. ( 29c 
)
After some straightforward manipulations, the first order Karush-Kuhn-Tucker optimality conditions [START_REF] Nocedal | Numerical optimization[END_REF]Section 12.3] for the problem (29) can be written as

(v -p) + λ 1 (v -p d,k ) + λ 2 (p -p d,k ) -2 (v -p d,k ) = 0 (30a) f 1 (v) = ∥v -p d,k ∥ -ε ⩾ 0 (30b) f 2 (v) = (v -p d,k ) T ∥v -p d,k ∥ (p -p d,k ) -∥v -p d,k ∥ ⩾ 0 (30c) λ 1 ⩾ 0 (30d) λ 2 ⩾ 0 (30e) λ 1 f 1 (v) = 0 (30f) λ 2 f 2 (v) = 0 (30g)
The solutions of (30) can be summarized into the following three sets:

(I) ⇒      v ∈ R 3 : (v -p d,k ) T (v -p d,k ) = ε 2 (v -p d,k ) T (p -p d,k ) = ε 2 λ 1 = λ 2 = 1 (31) (II) ⇒        v = p d,k + p-p d,k ∥p-p d,k ∥ ε λ 1 = 1 - p-p d,k ε λ 2 = 0 (32) (III) ⇒ v = p λ 1 = λ 2 = 0 ( 33 
)
The square of the cost function (29a) for a solution v = v (I) of case (I) can be rewritten as

∥v (I) -p∥ 2 = (v (I) -p) T (v (I) -p) = (v (I) -p d,k + p d,k -p) T (v (I) -p d,k + p d,k -p) = (v (I) -p d,k ) T (v (I) -p d,k ) ε 2 -2 (v (I) -p d,k ) T (p -p d,k ) ε 2 + (p -p d,k ) T (p -p d,k ) d 2 k = ε 2 -2 ε 2 + d 2 k = d 2 k -ε 2
where the conditions of ( 31) and (28) were used. For a non-empty V k+1 , (27) implies that

∥v (I) -p∥ = d 2 k -ε 2 ⩾ d k -ε ⩾ 0.
Accordingly, the sets of solutions (I)-(III) can be sorted as in

∥v (I) -p∥ = d 2 k -ε 2 ⩾ ∥v (II) -p∥ = d k -ε > ∥v (III) -p∥ = 0 (34)
Therefore, the global solution of ( 29) is given by

d k+1 = d 2 k -ε 2 (35)
taking as optimal argument p * d,k+1 = v (I) any vector satisfying

(p * d,k+1 -p d,k ) T (p * d,k+1 -p d,k ) = ε 2 (p * d,k+1 -p d,k ) T (p -p d,k ) = ε 2 (36) 
The geometrical interpretation of the solution of (29) is illustrated in Figure 9.
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Figure 9: Geometrical interpretation of the solutions of (29).

One may repeat the optimization (29) to obtain d k+2 substituting p * d,k+1 into p d,k for (29b)-(29c), which leads to

d k+2 = d 2 k+1 -ε 2 (37)
Repeating the procedure recursively, one can obtain for any i > k

d 2 i+1 -d 2 i = -ε 2 ⇒ (d i+1 -d i )(d i+1 + d i ) = -ε 2 ⇒ (38) d i+1 -d i = -ε 2 d i+1 + d i ⩽ -ε 2 2 d k . ( 39 
)
Therefore, the sequence d i can be majorized by

d i ⩽ d k - ε 2 2 d k (i -k), (40) 
such that, in accordance with (27

) i > 2 d k ε 2 (d k -ε) + k = k ⇒ d i ⩽ d i < ε ⇒ V i+1 = {∅}. (41) 
Therefore, the solution k of Algorithm 1 satisfy

k ⩽ 2 d k ε 2 (d k -ε) + k, (42) 
proving the assertion of the theorem.

B Self-intersecting Curves

The ability to track self-intersecting curves is a crucial characteristic for path following control schemes. Several strategies fail on this matter, e.g. [START_REF] Goncalves | Vector Fields for Robot Navigation Along Time-Varying Curves in n -Dimensions[END_REF][START_REF] Yao | Path following control in 3D using a vector field[END_REF]. In the case of vector field path following control, for instance, the vector field is singular in crossing points, which leads to a null guidance signal [START_REF] Yao | Singularity-Free Guiding Vector Field for Robot Navigation[END_REF]. Similarly to [START_REF] Gill | Spline path following for redundant mechanical systems[END_REF], the proposed control scheme is able to track self-intersecting reference curves thanks to the sequential search proposed in Algorithm 1. As a reminder, the applied rationale is illustrated in Figure 10. For k = {k 0 , k 0 + 1, . . . } evaluated sequentially in an increasing order, the algorithm stops whenever e T k (p -p d,k ) < ∆p d,k . 

p d,k + 1 0 p d,k + 2 p d,k + 3 0 ∆ p d, k ∆p d,k k = k 0 k = k + 1 0 k = k + 2 0 k = k + 3 = k 0 ∆ p d ,k p d,k + 4 0 0 < 0
S k = v ∈ R 3 ∃ j ∈ {k 0 , k 0 + 1, . . . , k} : e T j (v -p d,j ) < ∆p d,j (43) 
Note that Algorithm 1 converges when reaching a k such that p ∈ S k . Since this condition is tested in an increasing sequence k = {k 0 , k 0 + 1, . . . }, the algorithm is stopped for the first k satisfying p ∈ S k . Thanks to that, a reference point following the correct sequence in a selfintersecting path is obtained instead of missing a closed portion of the curve. This is shown in Figure 11 and in Video (i)1 . Taking a k 0 for which p d,k0 is close to a self-intersecting point, Figure 11 shows how the searched region S k is extended until p ∈ S k . Four different cases are considered. In particular, scenario (c) (Case (II) in the video) shows a worst case of the position p in which S k includes In order to complete the demonstration that the proposed algorithm is able to track a selfintersecting curve, a 3D printing was performed applying the reference path depicted in Figure 12. The printing procedure is available in the Video (ii)2 .

C External Controllers

An external controller should be integrated to the proposed PPFC in order to control the interaction between the tool and the surface. More precisely, the external controllers proposed as typical applications can be divided with respect to the controlled physical variable as follows:

(i) Distance between the tool position and the surface;

(ii) Applied force perpendicular to the surface.

The next paragraphs discuss more in detail how these types of external controllers can be integrated to the proposed control scheme.

C.1 Distance control

In case (i), the displacements along n are used to track a distance h d between the tool and the surface based on the measured distance h m . Reminding that n points towards the interior of the object of interest, a simple strategy able to perform the tracking of h d could apply an external controller position velocity ṗec as proposed in the letter:

ṗec = k lh (h m -h d ) n, (22) 
with a positive scalar gain k lh . Although (22) applies velocities based uniquely on the measured error e h = h d -h m , it is possible to show that e h → 0 for t → ∞. A draft of the proof of this assertion is presented in the following.

Consider that the errors due to the tracking of the PPFC scheme are negligible. Figure 13 illustrates that the trajectory generated with null velocity along n leads to a constant distance between the tool and the surface. Since the orientation n is continuously updated, the translational velocity ṗP P F C generated by the PPFC controller is kept tangential to the surface. Therefore, the nominal variation of the measured distance is caused uniquely by the external controller velocity ṗec . More precisely, in accordance with Figure 14,

ḣm = -∥ ṗec ∥ = k lh (h d -h m ). ( 44 
)
For a constant h d , the closed-loop system (44) leads to

ėh = ḣd -ḣm = -k lh (h d -h m ) = -k lh e h , (45) 
which is a first order linear system with e h (t) = e h (0) e -k hl t ⇒ lim t→∞ e h (t) = 0 lim t→∞ ṗec (t) = 0 (46) In short, in spite of the simplicity of (22), this external controller is asymptotically stable if the path following control is able to track the desired positions p d,k and orientations n d,k with sufficient precision.

Clearly, this conclusion depends on the stability of the path following control. The experimental results presented in Section V indicate that the introduced strategy leads to satisfactory results in this matter. A formal stability analysis of the proposed predictive control should be addressed in future works.

C.2 Force control

In case (ii), the displacements along n are used to control the contact force normal to the surface. A simple strategy able to perform the tracking of a desired force f d based on a measured force f could apply ṗec

= k f (f d -f ) n, (47) 
with a positive scalar gain k f . One may apply a rationale similar to the one used in the last section. Nevertheless, the interaction between the tool and the surface leads to additional complexities in this case.

Firstly, one should verify that the precision of the path following control is robust with respect to the friction due to the contact between the tool and the surface. Secondly, the relation between the tool penetration s and the normal force f should be addressed, as illustrated in Figure 15. In order to apply the same rationale used in the last section, one could consider that the normal force can be written as a strictly increasing function of the penetration, i.e.

f = f (s) : df ds > 0 ∀ s ⩾ 0. ( 48 
)
In words, (48) implies that f can be written as function of s such that increased penetrations lead to increased forces. The condition s ⩾ 0 is necessary to guarantee that the tool is in contact to the surface. 
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 10 Figure 10: Illustration of a case in which the searched area is extended until e T k (p -p d,k ) < ∆p d,k and p ∈ S k for k = k 0 + 3.

Figure 11 :

 11 Figure 11: Four different cases indicating that the proposed algorithm is able to track the correct sequence of reference positions for self-intersecting paths. Cases (a), (b) and (c) show that the searched area S k is expanded starting from k 0 . Case (d) illustrates multiple positions of p that lead to e T k0 (p -p d,k0 ) < 0, such that p is within the first searched area and Algorithm 1 converges with k 0 = k.
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 12 Figure 12: Experimental results for a self-intersecting path.
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 13 Figure13: Illustration that if the tracking of n is able to keep this vector normal to the surface, the PPFC translational velocity is tangential and the h m is constant.
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 14 Figure 14: Influence of ṗec on the distance h m .
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 15 Figure 15: Notations used to correlate the penetration and the normal force.
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Additionally, as in relation (44), one can conclude that

Considering the Lyapunov function V (f ) = (f d -f ) 2 the following conditions can be verified:

In addition, for s > 0, the time derivative of V can be written as

which, thanks to (48), leads to

Relations ( 50) and (51) prove that the closed-loop system obtained with (47) is asymptotically stable, such that lim t→∞ f (t) = f d lim t→∞ ṗec (t) = 0 (52)