
HAL Id: lirmm-03971078
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03971078

Submitted on 3 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guiding Feature Models Synthesis from User-Stories:
An Exploratory Approach

Thomas Georges, Liam Rice, Marianne Huchard, Mélanie König, Clémentine
Nebut, Chouki Tibermacine

To cite this version:
Thomas Georges, Liam Rice, Marianne Huchard, Mélanie König, Clémentine Nebut, et al.. Guiding
Feature Models Synthesis from User-Stories: An Exploratory Approach. VaMoS 2023 - 17th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems, Jan 2023, Odense,
Denmark. pp.65-70, �10.1145/3571788.3571797�. �lirmm-03971078�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03971078
https://hal.archives-ouvertes.fr

Guiding Feature Models Synthesis from User-Stories: An
Exploratory Approach

Thomas Georges
LIRMM, Univ Montpellier, CNRS

ITK - Predict & Decide
Montpellier, France

thomas.georges@lirmm.fr
thomas.georges@itk.fr

Liam Rice
LIRMM, Univ Montpellier, CNRS

Montpellier, France
liam.rice@lirmm.fr

Marianne Huchard
LIRMM, Univ Montpellier, CNRS

Montpellier, France
marianne.huchard@lirmm.fr

Mélanie König
ITK - Predict & Decide

Clapiers, France
melanie.konig@itk.fr

Clémentine Nebut
LIRMM, Univ Montpellier, CNRS

Montpellier, France
clementine.nebut@lirmm.fr

Chouki Tibermacine
LIRMM, Univ Montpellier, CNRS

Montpellier, France
chouki.tibermacine@lirmm.fr

ABSTRACT
User-stories are commonly used to define requirements in agile
project management. In Software Product Lines (SPL), a user-story
corresponds to a feature description (or part of it), that can be shared
by several products. In practice, large SPL include a huge number
of user-stories, making variability hard to grasp and handle. In
this paper we present an exploratory approach that aims to guide
the synthesis of Feature Models that capture and structure the
commonalities and the variability expressed in these user-stories.
The built Feature Models aim to help the project understanding,
maintenance and evolution. Our approach first decomposes the
user-stories to extract the roles and the features, using natural
language processing techniques. In a second step, we group user-
stories having the same topics thanks to a clustering method. This
contributes to extract more general features. In a third step, we
leverage the use of Formal Concept Analysis to extract logical
constraints between the features that guide FeatureModel synthesis.
We illustrate our approach using a dataset from our industrial
partner.

CCS CONCEPTS
• Software and its engineering → Software reverse engineer-
ing; Software configurationmanagement and version control
systems; Agile software development.

KEYWORDS
Software Product Line, Agile Process, User Story, Reengineering,
SPL domain engineering, Feature Model, Natural Language Pro-
cessing, Formal Concept Analysis

1 INTRODUCTION AND MOTIVATION
In modern IT projects, development teams organize themselves
around Agile project specifications, like epics and user-stories dis-
tributed over sprints. Nowadays, many industrial projects are con-
ducted based on this organization and leverage the use of platforms,
like Github, Gitlab, Jira or Bitbucket. In parallel, Software Product
Lines (SPL) are successfully introduced in a growing number of
projects, for their qualities regarding the efficient development of
similar products. Combining Agile approaches and SPL paradigm

is challenging, raising organizational, technical and social ques-
tions [17]. Integrating Agile development methods in existing SPL
has been considered for example in [18].

Our working context is a collaboration with an industrial partner
(ITK1) which currently develops a family of similar applications for
agriculture decision-making (e.g. yield forecast and disease preven-
tion) with an Agile approach. The partner is willing to migrate to
an SPL approach, thus considering an inverse problem compared
to [18]. The partner builds its applications based on specifications
written through user-stories and on a well documented code base,
managed on a Gitlab server. As a step towards a migration to an
SPL, our work aims at analyzing their large set of user-stories to
evaluate if it is possible to use them for guiding a feature model
synthesis [30, 31].

In this paper, we present our preliminary work conducted to
achieve this goal. We have designed a process which takes as input
a set of user-stories and which produces a set of logical constraints
that aim to guide to potential feature models. This process goes
through multiple steps in which user-stories are analyzed using
Natural Language Processing (NLP) tools to identify

roles and features [35]. Then features are grouped into topics
to identify more abstract features and to introduce a specializa-
tion hierarchy in the feature model. At last we leverage the use of
Formal Concept Analysis [16] in order to identify and structure
variability among the features depending on roles. We conjecture
that these logical constraints are a relevant help in synthesizing
feature models, as proposed in [9].

The remaining of the paper is organized as follows. In Section
2, we present the research questions tackled in this paper. We
outline the proposed approach to answer these research questions
in Section 3. In Section 4, we present a guide to build feature models
from the produced logical constraints. We present the related work
in Section 5, and then conclude in Section 6.

2 RESEARCH QUESTIONS
Before going into the details of the proposed solution, we present
the research questions tackled in this exploratory work.

1https://www.itk.fr/en/

RQ. :How can user-stories of a software family be used for
guiding feature models synthesis?We split this question into
two sub-questions that respectively focus on identifying roles and
(concrete) features, abstract features and logical constraints. In our
industrial context, different roles do not share concrete features,
but the abstract features may be shared. The logical constraints are
to be used for guiding the building of a feature model.

RQ1. :How to identify roles and features fromuser-stories?
Our partner actively uses the user-stories as the means for specify-
ing the applications and maintaining this specification up-to-date.
We then rely on these user-stories as a trusted source for finding
the features of the partner applications. Most of these user-stories
are composed of only two parts, respectively describing a role, and
the functionality written from the point of view of this role. We
hypothesize they correspond to ’features’ in the meaning of SPLs.

RQ2. : How to identify the logical constraints that could
guide the feature model synthesis? Once the features are iden-
tified for each application and role in this application, we dispose
of a flat (tabular) description of the variability. This description
implicitly contains the logical constraints, that we aim to identify
and structure. Nevertheless, a feature model is not only a represen-
tation of a set of logical constraints. It is also built along ontological
relationships (e.g. is-a, or refines) that our approach does not cap-
ture. In this work, we focus on assisting an expert in synthesizing
a feature model by combining her ontological expertise and the
identified logical constraints.

3 OUTLINE OF THE APPROACH
In order to answer the previous research questions, we have de-
signed a process which is depicted in Figure 1. The process takes
as input a set of user-stories of different products of the same “in-
formal” family. These user-stories are analyzed throughout this
process to produce at the end a set of structured logical constraints
that aim to guide the building process of a feature model. In the
following subsections, we detail the three steps of the process. Steps
1 and 2 answer RQ1; Step 3 answers RQ2.

Step 1. Processing User-Stories as Text Documents. User-stories are
described using the following template, which is a quite common
way of describing this kind of software requirements, as mentioned
in [11]:

“As a [persona], I [want to], [so that].”
• Persona = the role that interacts with the application;
• Want to = the feature we want to identify;
• So that = the final goal of the user-story. In our partner
user-stories, this part is not often described. We have thus
simply ignored it in our work.

We use an illustrative example inspired by our partner applications2.
It contains 12 user-stories, appearing in 3 decision-making soft-

ware dedicated to Vine, Orchard and Almond crops respectively.,
e.g. US1 and US12 are:
“As a Farmer, I can refresh the predicted weather.”
“As an Admin, I can relaunch all failed simulations.”

2The example can be shown at: https://gite.lirmm.fr/tgeorges/artefacts-guiding-feature-
models-synthesis-from-user-stories-an-exploratory-approach

Products x User-Stories

Products x (Roles x
Features)

Logical constraints structured
in an AOC-poset

Products x (Roles x
Features)

+ AbstractFeatures

Input

Output

Formal Concept Analysis

NLP incl.
POS Tagging

Topic Identification

Figure 1: Proposed Process to Synthesize FeatureModels from
User-Stories.

In the first step, we analyze each user-story using NLP tech-
niques, including tokenization, removal of stop words, lemmati-
zation, and then POS (Part-Of-Speech) Tagging [6]. This analysis
has two purposes: separate the role and the feature from the user-
stories and prepare the clustering (Step 2). In Step 1, POS tagging
allows us to separate roles from the initial set of features, e.g. US1 is
separated into: ’Farmer’ (the role), and ’refresh the predicted
weather’ (the feature). The role is extracted from a user-story by
considering the “first nominal group” as a POS tag. We then dis-
tribute the features in different sets, each set corresponding to a
role. Table 1 schematizes the distribution of the 12 user-stories of
our example over the products and the roles. The remaining steps
separately apply on each set of features (one per role).

Products Roles
Features Feat. no. Vine Orchard Almond Farmer Admin

refresh the predicted weather 1 x x x
CRUD plots 2 x x x x
edit the parameters of a plot
(current season) 3 x x x

sort my plots in the list 4 x x
filter my plots in the list 5 x x
export observation data for a plot 6 x x
know when my plots
will be in danger 7 x x x

manage my irrigations and
recommendations in my favorite unit 8 x x

choose my preferred
irrigation unit in my user-settings 9 x x

view my irrigation
recommendations in my favorite unit 10 x x x

CRUD a farmer 11 x x x
relaunch all failed simulations 12 x x x x

Table 1: Schematizing an example: 12 user-stories from 3
products, distributed along the identified roles. Features,
products and roles after NLP. Row i corresponds to the user-
story i without the role and the part "I can", "I want to be
able", "I know".

Step 2. Topic Modeling. In order to have a richer set of features,
we leverage the use of a clustering method, currently K-Means [7],

2

https://gite.lirmm.fr/tgeorges/artefacts-guiding-feature-models-synthesis-from-user-stories-an-exploratory-approach
https://gite.lirmm.fr/tgeorges/artefacts-guiding-feature-models-synthesis-from-user-stories-an-exploratory-approach

to identify “Topics”. These topics aim to represent more abstract
features that may appear later as intermediate nodes in the synthe-
sized feature models. We start from the set of features identified in
the user-stories. At this point, the user-stories are tokenized, lem-
matized and POS tagged to get a better result during the clustering.
The following user-story "As a Farmer, I can manage my irrigations
and recommendations in my favorite unit" is transformed into: man-
age irrigations recommendations favorite unit. The Part of speech
tagging provides as an output: “manage_VB irrigations_NNS
recommendations_NNS favorite_JJ unit_NN”, with “VB” stands
for a verb, “NN” for a noun, “NNS” for a plural noun and “JJ” for an
adjective.

Since clustering methods require the choice of a number of clus-
ters that we cannot know a priori, we used Elbow method [32] to
identify the optimal number of clusters for our data. This method
measures the distribution of our input data and tries to optimize
the number of clusters so that intra-cluster cohesion is maximized.

Elbow and K-Means need data represented as numbers. In our
case, we provide these methods with vector representations of
features. For doing so, we have used Doc2Vec [20] to vectorize the
extracted features. The vectorization puts the user-stories to a d-
dimension vector (d is the number of user-stories), like for example
<0.4125, -1.6098, 0.6047, ... ,-1.4257, -1.2321>. Then,
K-Means uses euclidean distance to group the nearest user-stories
to form clusters.

Given a set of observations (x1, x2, ..., xn), where each obser-
vation is a d-dimensional real vector, k-Means clustering aims to
partition the n observations into k (≤ n) sets S = {S1,S2, ...,Sk} so as
to minimize the within-cluster sum of squares.

The choice of Elbow, K-Means and Doc2Vec is motivated by the
good results obtained with them in existing works [4, 12], their
complete documentation and the existence of an effective tool sup-
port. K-Means is a common used clustering method. In our case it
was the most effective method, compared to other methods that we
have experimented on our dataset, including LSA/LSI and LDA.

The topics obtained for our example are depicted in Table 2. They
appear in the ’AbstractFeatures’ column. Currently the abstract
features have no automatically generated name. This is left as future
work and has been done manually for our example.

Step 3. Logical constraints identification and structuring in an AOC-
poset. In the third step, we use Formal Concept Analysis (FCA) for
highlighting and structuring the logical constraints, similarly to [9].
Information obtained after topic modeling (e.g. Table 2) is split
into as many tables as there are roles. These new tables (called
formal contexts according to the vocabulary of FCA) describe the
different products by their identified features and abstract features.
The formal context is shown for the role Farmer

in Table 3. Formal concepts can be extracted from these formal
contexts. A formal concept is a maximal group of products (extent)
associated with the maximal group of features (intent) they share.
For example {𝑂𝑟𝑐ℎ𝑎𝑟𝑑,𝑉 𝑖𝑛𝑒,𝐴𝑙𝑚𝑜𝑛𝑑}, {(2), 𝑃𝑙𝑜𝑡𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡} is
a concept that can be extracted from Table 3. The formal concepts
of a formal context can be structured with a specialization order
based on their intent inclusion. This leads to a hierarchical repre-
sentation, as shown in Figure 2. The representation is simplified
so that a feature (resp. a product) of a concept is inherited in its

sub-concepts (resp. super-concepts). We restrict here the concepts
to those that introduce a product or a feature. The resulting hier-
archy is called an AOC-poset3. The AOC-Poset can be interpreted
into a propositional logic formula which is equivalent to the one
expressed in the Formal Context [8]. In this AOC-poset, we can
visually read mandatory features, feature co-occurrences, mutex
and implications, and candidate OR and XOR groups as explained
in [9]. For example, Feature CRUD ...(2) , being in Top Concept
0, is a mandatory feature. Feature manage my irrigations and
recommendations in my favorite unit (8) (in sub-concept 4)
implies Feature view my irrigation recommendations in my
favorite unit (10) (in super-concept 5). Other constraints are
discussed in Section 4.

Implementation. We are developing a prototype tool to imple-
ment the previous process. Our preprocessing and topic modeling
are implemented in Python thanks to the large number of available
well documented tools and libraries. For example Gensim has been
used for topic modeling and nltk for NLP. Formal Concept Analysis
tasks are implemented using Cogui 4, a tool for graph based knowl-
edge representation and management that also implements FCA.
Finally editing the feature model is done in the FeatureIDE plugin
for Eclipse5.

4 GUIDING THE BUILDING OF A FEATURE
MODEL FROM THE AOC-POSET

In this section, we aim to highlight the potential of the approach
for guiding experts during a feature model synthesis. The guidance
begins with the supply of the AOC-Poset depicted in Figure 2 and
ends with a feature model as shown in Figure 3. We hereafter
present examples of the guidance process.

We observe in the AOC-Poset that the abstract feature Plot Man-
agement and the feature CRUD plots (2) are shared by all the prod-
ucts (mandatory), as they are both introduced in the top concept.
One of them could be used to root the feature model or the experts
could consider that none of them is the root. Let us suppose that
they choose the second solution, rooting the feature model in a
general feature called FeaturesOfFarmer. Below the root, the two
mandatory features should appear. They can be positioned at the
same level, or not. The expert may know that CRUD plots is a spe-
cialization of the abstract feature PlotManagement, or this could be
deduced from the fact that CRUD plots is an element of the group
PlotManagement formed at Step 2.

The abstract featuresWeatherManagement and IrrigationMan-
agement are introduced in the sibling Concepts 1 and 5. The extents
of Concepts 1 and 5 intersect (Vine is a common product of both),
and their union covers the extent of Concept 0. This suggests that
WeatherManagement and IrrigationManagement are (1) either two
optional features, (2) or children in an OR group. These optional
or children features can be rooted (a) in FeaturesOfFarmer, (b)
in PlotManagement, (c) in CRUD a plot. Let us consider that the
experts choose solution (1)(a). Feature 2 (CRUD a plot) and other
features related to plots (3,4,5,6,7) are attached by the experts below

3AOC-poset stands for a Partially Ordered Set of Attribute Object introducing Concepts
(concepts that introduce an attribute or an object).
4https://www.lirmm.fr/cogui/
5https://featureide.github.io/

3

Products Roles AbstractFeatures

Features Features no. Vine Orchard Almond Farmer Admin Weather
Management

Plot
Management

Irrigation
Management

Simulation
Management

Farmer
Management

refresh the predicted weather 1 x x x x
CRUD plots 2 x x x x x
edit the parameters of a plot
(current season) 3 x x x x

sort my plots in the list 4 x x x
filter my plots in the list 5 x x x
export observation data for a plot 6 x x x
know when my plots will be in danger 7 x x x x
manage my irrigations and
recommendations in my favorite unit 8 x x x

choose my preferred irrigation
unit in my user-settings 9 x x x

view my irrigation
recommendations in my favorite unit 10 x x x x

CRUD a farmer 11 x x x x
relaunch all failed simulations 12 x x x x x

Table 2: Data after topic modeling: The columns AbstractFeatures have been added to Table 1. Weather, Plot and Irrigation are
short names in the text for WeatherManagement, PlotManagement and IrrigationManagement.

Farmer Features AbstractFeatures
1 2 3 4 5 6 7 8 9 10 Weather Plot Irrigation

Vine x x x x x x x x x x
Orchard x x x x x x x x
Almond x x x x x

Table 3: Formal Context for the Farmer role.

PlotManagement. Features 1, 3, 4, 5, 6, 7, 8, 9, 10 are optional fea-
tures as they are not shared by the 3 products. Other information
can be extracted from the AOC-poset for these features due to their
position in the concepts. For example, sort my plots in the list (4)
and filter my plots in the list (5) appear in the same concept, belong
to the same abstract feature and are co-occurring. This can be used
to generate the crosscutting constraint: sort my plots in the list ⇔
filter my plots in the list which is shown below the feature model of
Figure 3. For two features from the same concept extent without
the same abstract feature, the crosscutting constraints are more
susceptible to be accidental. In all cases, the experts have to assess
these constraints.

Concept 5 and its sub-concepts 3 and 4 introduce, besides the
abstract feature IrrigationManagement, concrete features that refine
it (features 6, 8, 9 ,10), and feature 6 which is related to plots. As
features 8, 9 and 10 were grouped at Step 2 in the group called
IrrigationManagement, and at least one of them should be present
in a product, the experts may choose to make them children in an
OR group. The AOC-poset indicates that every feature among 6, 8
and 9 implies feature 10. The experts are free to use this information
or to consider that these are accidental implications observed due
to the low number of analyzed products (only 3).

Concept 1 introduces the abstract featureWeatherManagement
and the three concrete features it groups (features 1, 3, 7). As the
examined products contain at least one of these 3 concrete features,
the experts are inclined to make them children in an OR group in
the feature model rooted atWeatherManagement.

We launched the complete process on 127 formatted user-stories
from our industrial partner. They describe the features of 8 products.
The number of clusters determined by the Elbow method ranges

0 (I: 2, E: 3)

PlotManagement
CRUD...(2)

1 (I: 6, E: 2)

WeatherManagement
refresh...(1)

edit...(3)
know...(7)

2 (I: 8, E: 1)

sort...(4)
filter...(5)

Orchard

3 (I: 10, E: 1)

export...(6)
choose...(9)

Vine

5 (I: 4, E: 2)

IrrigationManagement
view...(10)

4 (I: 5, E: 1)

manage...(8)

Almond

Figure 2: The Farmer AOC-Poset.

between 10 and 15 with 10 features on each on average. At first
glance, the formed clusters share similar features, but we need to
analyze thoroughly the obtained results. We plan in the near future
to evaluate the quality of the obtained clusters with our industrial
partner, and to build the feature model with them, as described
previously.

We are aware that the construction of the feature model requires
some work from the domain expert, who is guided by the AOC-
Poset. First she/he needs to identify the logical constraints to taking
them into consideration to build a consistent feature model. The
interpretation of the AOC-Poset is required from the domain expert,
and this may require some effort from a beginner with FCA. In a
future work, we plan to evaluate the overhead of this interpretation
by measuring the efforts necessary to produce the feature model
from the AOC-Poset. We also envisage to provide an assistance in
this interpretation, based for example on the work of Jessie Galasso-
Carbonnel et al. on equivalence classes of feature models in [9].

4

Figure 3: One possible Farmer Feature Model.

5 RELATEDWORK
In our work we have been inspired by several similar approaches,
like the use of NLP to exploit user-stories to generate UML use case
diagrams [23] or to generate UML sequence diagrams [14].

The work in [6] leverages the use of topic modeling and POS-
tagging, as in our work, for supporting creativity in Requirement
engineering. In contrast to our work, this approach does not deal
with user-stories and does not consider feature models.

Some related works [24, 33] assessed the effectiveness of user-
stories in software development processes. They however do not
address the specific context of software product lines. A focus on
Requirement engineering in a software product lines context has
been developed in [3]. For pre-processing, the authors use NLP
techniques equivalent to those used in our process. But, in con-
trast to our work, they do not consider user-stories, but another
type of requirements. The interest of an automatic technique for
requirement analysis with natural language processing is shown
in [2]. We used some equivalent methods and tools to transform
textual specifications into visual models as detailed in [26] to de-
sign our approach. A Systematic Literature Review (SLR) on 13
studies highlights the systematic use of NPL techniques for feature
identification on requirements described in natural language [5].
We tried some of the proposed techniques (e.g. POS tagging, LSA,
LDA, k-means) and it would be relevant to consider some others in
future work (e.g. hierarchical agglomerative tagging).

Formal concept analysis has been used in software product lines
for addressing several tasks, e.g. for requirements [25], for logical
constraints extraction [15, 22], feature model synthesis [27], for
feature-to-code traceability [28], recovering SPL architecture [29],
or for feature location in [1, 34].

To complete our process, in a future work, we plan to apply
feature location techniques based on agile requirements. Some
techniques that may inspire us are detailed in [10, 13, 21]. One of
our future works is also to improve our topic modeling by the use
of an ontology as in [19].

6 CONCLUSION
We presented in this paper a preliminary research work on the
analysis of Agile software specifications (in our case user-stories)
of a product family, to identify features and guide feature model
synthesis. For doing so, we designed a process that leverages the
use of a variety of techniques, including NLP ones, Clustering and
Formal Concept Analysis. We illustrated this process on a small
set of user-stories inspired by a real-world project of our industrial
partner. In the near future, we plan to evaluate the approach by
taking into consideration the whole dataset of user-stories of our
industrial partner, in addition to other datasets of user-stories from
open-source repositories.Wewill probably face some scalability and
“dirty data” issues with such large datasets. We need in these cases
to proceed to some decomposition and cleansing tasks upfront in
the process. We will probably also need an ontology to represent the
vocabulary of the domain of user-stories to better identify clusters.

We also will design a methodology and a tool, inspired by [9], to
assist the experts in feature model synthesis. As a perspective to this
work, we plan to analyze other useful information that accompany
user-stories, like commit contents, merge requests and technical
issues in order to refine feature model synthesis and then to proceed
to feature location.

ACKNOWLEDGMENT
This work is funded by ITK and has been partially supported by
the ANR SmartFCA project Grant ANR-21-CE23-0023 of the French
National Research Agency.

REFERENCES
[1] Ra’Fat Al-Msie’deen, Abdelhak Seriai, Marianne Huchard, Christelle Urtado,

Sylvain Vauttier, and Hamzeh Eyal Salman. 2013. Feature Location in a Collection
of Software Product Variants Using Formal Concept Analysis. In Safe and Secure
Software Reuse - 13th International Conference on Software Reuse, ICSR 2013, Pisa,
Italy, June 18-20. Proceedings (Lecture Notes in Computer Science, Vol. 7925), JohnM.
Favaro and Maurizio Morisio (Eds.). Springer, 302–307. https://doi.org/10.1007/
978-3-642-38977-1_22

[2] Vincenzo Ambriola and Vincenzo Gervasi. 1997. Processing Natural Language
Requirements. In 1997 International Conference on Automated Software Engineer-
ing, ASE 1997, Lake Tahoe, CA, USA, November 2-5, 1997. IEEE Computer Society,
36–45. https://doi.org/10.1109/ASE.1997.632822

[3] Maximiliano Arias, Agustina Buccella, and Alejandra Cechich. 2018. A Frame-
work for Managing Requirements of Software Product Lines. Electronic Notes in
Theoretical Computer Science 339 (2018), 5–20. https://doi.org/10.1016/j.entcs.
2018.06.002 The XLII Latin American Computing Conference.

[4] Wesley Klewerton Guez Assunção and Silvia Regina Vergilio. 2014. Feature
location for software product line migration: a mapping study. In 18th Interna-
tional Software Product Lines Conference - Companion Volume for Workshop, Tools
and Demo papers, SPLC ’14, Florence, Italy, September 15-19, 2014, Stefania Gnesi,
Alessandro Fantechi, Maurice H. ter Beek, Goetz Botterweck, and Martin Becker
(Eds.). ACM, 52–59. https://doi.org/10.1145/2647908.2655967

[5] Noor Hasrina Bakar, Zarinah M. Kasirun, and Norsaremah Salleh. 2015. Feature
extraction approaches from natural language requirements for reuse in software
product lines: A systematic literature review. Journal of Systems and Software
106 (2015), 132–149. https://doi.org/10.1016/j.jss.2015.05.006

[6] Tanmay Bhowmik, Nan Niu, Juha Savolainen, and Anas Mahmoud. 2015. Lever-
aging topic modeling and part-of-speech tagging to support combinational cre-
ativity in requirements engineering. Requirements Engineering 20 (04 2015).
https://doi.org/10.1007/s00766-015-0226-2

[7] Hans-Hermann Bock. 2007. Clustering Methods: A History of k-Means Algorithms.
Springer Berlin Heidelberg, Berlin, Heidelberg, 161–172. https://doi.org/10.1007/
978-3-540-73560-1_15

[8] Jessie Carbonnel, David Delahaye, Marianne Huchard, and Clémentine Nebut.
2019. Graph-Based Variability Modelling: Towards a Classification of Existing
Formalisms. In Graph-Based Representation and Reasoning - 24th International
Conference on Conceptual Structures, ICCS 2019, Marburg, Germany, July 1-4,
2019, Proceedings (Lecture Notes in Computer Science, Vol. 11530), Dominik Endres,

5

https://doi.org/10.1007/978-3-642-38977-1_22
https://doi.org/10.1007/978-3-642-38977-1_22
https://doi.org/10.1109/ASE.1997.632822
https://doi.org/10.1016/j.entcs.2018.06.002
https://doi.org/10.1016/j.entcs.2018.06.002
https://doi.org/10.1145/2647908.2655967
https://doi.org/10.1016/j.jss.2015.05.006
https://doi.org/10.1007/s00766-015-0226-2
https://doi.org/10.1007/978-3-540-73560-1_15
https://doi.org/10.1007/978-3-540-73560-1_15

Mehwish Alam, and Diana Sotropa (Eds.). Springer, 27–41. https://doi.org/10.
1007/978-3-030-23182-8_3

[9] Jessie Carbonnel, Marianne Huchard, and Clémentine Nebut. 2019. Modelling
equivalence classes of feature models with concept lattices to assist their extrac-
tion from product descriptions. Journal of Systems and Software 152 (2019), 1–23.
https://doi.org/10.1016/j.jss.2019.02.027

[10] Kunrong Chen and Václav Rajlich. 2000. Case Study of Feature Location Using
Dependence Graph. In 8th International Workshop on Program Comprehension
(IWPC 2000), 10-11 June 2000, Limerick, Ireland. IEEE Computer Society, 241–247.
https://doi.org/10.1109/WPC.2000.852498

[11] Mike Cohn. 2004. User Stories Applied: For Agile Software Development. Addison
Wesley Longman Publishing Co., Inc., USA.

[12] Daniel Cruz, Eduardo Figueiredo, and Jabier Martinez. 2019. A Literature Review
and Comparison of Three Feature Location Techniques Using ArgoUML-SPL. In
Proceedings of the 13th InternationalWorkshop on Variability Modelling of Software-
Intensive Systems (Leuven, Belgium) (VAMOS ’19). Association for Computing
Machinery, New York, NY, USA, Article 16, 10 pages. https://doi.org/10.1145/
3302333.3302343

[13] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: A taxonomy and survey. Journal of Software
Maintenance and Evolution: Research and Practice 25 (01 2013). https://doi.org/10.
1002/smr.567

[14] Meryem Elallaoui, Khalid Nafil, and Raja Touahni. 2015. Automatic generation of
UML sequence diagrams from user stories in Scrum process. In 10th International
Conference on Intelligent Systems: Theories and Applications, SITA 2015, Rabat, Mo-
rocco, October 20-21, 2015. IEEE, 1–6. https://doi.org/10.1109/SITA.2015.7358415

[15] Jessie Galasso and Marianne Huchard. 2023. Extending Boolean Variability
Relationship Extraction to Multi-valued Software Descriptions. In Handbook of
Re-Engineering Software Intensive Systems into Software Product Lines, Roberto E.
Lopez-Herrejon, Jabier Martinez, Wesley Klewerton Guez Assunção, Tewfik Ziadi,
Mathieu Acher, and Silvia Vergilio (Eds.). Springer International Publishing, 143–
173. https://doi.org/10.1007/978-3-031-11686-5_6

[16] Bernhard Ganter and Rudolf Wille. 1999. Formal Concept Analysis - Mathematical
Foundations. Springer. https://doi.org/10.1007/978-3-642-59830-2

[17] Philipp Hohl, Jürgen Münch, Kurt Schneider, and Michael Stupperich. 2017.
Real-Life Challenges on Agile Software Product Lines in Automotive. In Product-
Focused Software Process Improvement - 18th International Conference, PROFES
2017, Innsbruck, Austria, November 29 - December 1, 2017, Proceedings (Lecture
Notes in Computer Science, Vol. 10611), Michael Felderer, Daniel Méndez Fernández,
Burak Turhan, Marcos Kalinowski, Federica Sarro, and Dietmar Winkler (Eds.).
Springer, 28–36. https://doi.org/10.1007/978-3-319-69926-4_3

[18] Jil Ann-Christin Klünder, Philipp Hohl, Nils Prenner, and Kurt Schneider. 2019.
Transformation towards agile software product line engineering in large compa-
nies: A literature review. J. Softw. Evol. Process. 31, 5 (2019). https://doi.org/10.
1002/smr.2168

[19] Sven Koerner and Torbenbrumm. 2011. NATURAL LANGUAGE SPECIFICA-
TION IMPROVEMENT WITH ONTOLOGIES. International Journal of Semantic
Computing 03 (11 2011). https://doi.org/10.1142/S1793351X09000872

[20] Quoc V. Le and Tomás Mikolov. 2014. Distributed Representations of Sentences
and Documents. CoRR abs/1405.4053 (2014). arXiv:1405.4053 http://arxiv.org/
abs/1405.4053

[21] Adrian Lienhard, Orla Greevy, and Oscar Nierstrasz. 2007. Tracking Objects to
Detect Feature Dependencies. In 15th International Conference on Program Com-
prehension (ICPC 2007), June 26-29, 2007, Banff, Alberta, Canada. IEEE Computer
Society, 59–68. https://doi.org/10.1109/ICPC.2007.38

[22] Felix Loesch and Erhard Ploedereder. 2007. Restructuring Variability in Software
Product Lines using Concept Analysis of Product Configurations. In 11th Euro-
pean Conference on Software Maintenance and Reengineering, Software Evolution
in Complex Software Intensive Systems, CSMR 2007, 21-23 March 2007, Amsterdam,
The Netherlands, René L. Krikhaar, Chris Verhoef, and Giuseppe A. Di Lucca
(Eds.). IEEE Computer Society, 159–170. https://doi.org/10.1109/CSMR.2007.40

[23] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn Van der Werf, and Sjaak Brinkkem-
per. 2016. Improving agile requirements: the Quality User Story framework and
tool. Requirements Engineering 21 (09 2016). https://doi.org/10.1007/s00766-016-
0250-x

[24] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E. M. van der Werf, and Sjaak
Brinkkemper. 2016. The Use and Effectiveness of User Stories in Practice. In
Requirements Engineering: Foundation for Software Quality - 22nd International
Working Conference, REFSQ 2016, Gothenburg, Sweden, March 14-17, 2016, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 9619), Maya Daneva and Oscar
Pastor (Eds.). Springer, 205–222. https://doi.org/10.1007/978-3-319-30282-9_14

[25] Nan Niu and Steve M. Easterbrook. 2009. Concept analysis for product line
requirements. In Proceedings of the 8th International Conference on Aspect-Oriented
Software Development, AOSD 2009, Charlottesville, Virginia, USA, March 2-6, 2009,
Kevin J. Sullivan, Ana Moreira, Christa Schwanninger, and Jeff Gray (Eds.). ACM,
137–148. https://doi.org/10.1145/1509239.1509259

[26] Cristina-Claudia Osman and Paula Zalhan. 2016. From Natural Language Text to
Visual Models: A survey of Issues and Approaches. Informatica Economica 20 (12

2016), 44–61. https://doi.org/10.12948/issn14531305/20.4.2016.05
[27] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. 2011. Extraction of fea-

ture models from formal contexts. In Software Product Lines - 15th International
Conference, SPLC 2011, Munich, Germany, August 22-26, 2011. Workshop Proceed-
ings (Volume 2), Ina Schaefer, Isabel John, and Klaus Schmid (Eds.). ACM, 4.
https://doi.org/10.1145/2019136.2019141

[28] Hamzeh Eyal Salman, Abdelhak-Djamel Seriai, and Christophe Dony. 2013.
Feature-to-code traceability in a collection of software variants: Combining
formal concept analysis and information retrieval. In IEEE 14th International
Conference on Information Reuse & Integration, IRI 2013, San Francisco, CA, USA,
August 14-16, 2013. IEEE Computer Society, 209–216. https://doi.org/10.1109/IRI.
2013.6642474

[29] Anas Shatnawi, Abdelhak-Djamel Seriai, and Houari A. Sahraoui. 2017. Recover-
ing software product line architecture of a family of object-oriented product vari-
ants. J. Syst. Softw. 131 (2017), 325–346. https://doi.org/10.1016/j.jss.2016.07.039

[30] Steven She, Krzysztof Czarnecki, and Andrzej Wąsowski. 2012. Usage Scenarios
for Feature Model Synthesis. In Proceedings of the VARiability for You Workshop:
Variability Modeling Made Useful for Everyone (Innsbruck, Austria) (VARY ’12).
Association for Computing Machinery, New York, NY, USA, 15–20. https://doi.
org/10.1145/2425415.2425419

[31] She, Steven. 2013. Feature Model Synthesis. Ph. D. Dissertation. University of
Waterloo. http://hdl.handle.net/10012/7834

[32] Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the
Number of Clusters in a Data Set Via the Gap Statistic. Journal of the Royal
Statistical Society Series B 63 (02 2001), 411–423. https://doi.org/10.1111/1467-
9868.00293

[33] Yves Wautelet, Samedi Heng, Manuel Kolp, and Isabelle Mirbel. 2014. Unifying
and Extending User Story Models. In Advanced Information Systems Engineering
- 26th International Conference, CAiSE 2014, Thessaloniki, Greece, June 16-20, 2014.
Proceedings (Lecture Notes in Computer Science, Vol. 8484), Matthias Jarke, John
Mylopoulos, Christoph Quix, Colette Rolland, Yannis Manolopoulos, Haralambos
Mouratidis, and Jennifer Horkoff (Eds.). Springer, 211–225. https://doi.org/10.
1007/978-3-319-07881-6_15

[34] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. 2012. Feature Location in a
Collection of Product Variants. In 19thWorking Conference on Reverse Engineering,
WCRE 2012, Kingston, ON, Canada, October 15-18, 2012. IEEE Computer Society,
145–154. https://doi.org/10.1109/WCRE.2012.24

[35] Pamela Zave. 2003. An experiment in feature engineering. Springer New York,
New York, NY, 353–377. https://doi.org/10.1007/978-0-387-21798-7_17

6

https://doi.org/10.1007/978-3-030-23182-8_3
https://doi.org/10.1007/978-3-030-23182-8_3
https://doi.org/10.1016/j.jss.2019.02.027
https://doi.org/10.1109/WPC.2000.852498
https://doi.org/10.1145/3302333.3302343
https://doi.org/10.1145/3302333.3302343
https://doi.org/10.1002/smr.567
https://doi.org/10.1002/smr.567
https://doi.org/10.1109/SITA.2015.7358415
https://doi.org/10.1007/978-3-031-11686-5_6
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-319-69926-4_3
https://doi.org/10.1002/smr.2168
https://doi.org/10.1002/smr.2168
https://doi.org/10.1142/S1793351X09000872
https://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
https://doi.org/10.1109/ICPC.2007.38
https://doi.org/10.1109/CSMR.2007.40
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1145/1509239.1509259
https://doi.org/10.12948/issn14531305/20.4.2016.05
https://doi.org/10.1145/2019136.2019141
https://doi.org/10.1109/IRI.2013.6642474
https://doi.org/10.1109/IRI.2013.6642474
https://doi.org/10.1016/j.jss.2016.07.039
https://doi.org/10.1145/2425415.2425419
https://doi.org/10.1145/2425415.2425419
http://hdl.handle.net/10012/7834
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1007/978-3-319-07881-6_15
https://doi.org/10.1007/978-3-319-07881-6_15
https://doi.org/10.1109/WCRE.2012.24
https://doi.org/10.1007/978-0-387-21798-7_17

	Abstract
	1 Introduction and Motivation
	2 Research Questions
	3 Outline of the Approach
	4 Guiding the building of a feature model from the AOC-poset
	5 Related Work
	6 Conclusion
	References

