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Estimation and control of Zero Moment Point (ZMP) is a widely used concept for planning the locomotion of 

bipedal robots and is commonly measured using integrated joint angle encoders and foot force sensors. 

Contemporary methods for ZMP measurement involve built-in contact sensors such as joint encoders or 

instrumented foot force sensors. This paper presents a novel approach for computing ZMP for a humanoid robot 

using inertial sensor-based wireless foot sensor modules (WFSM). The developed WFSMs, strapped at different 

limb segments of a bipedal robot, measure lower limb joint angles in real-time. The joint angle trajectories, further 

transformed into cartesian position coordinates, are used for estimating the ZMP positions of humanoid robots 

using the planar biped model. The whole framework is presented through experimental studies for different real-

life walking scenarios. Since the modules work based on the limb motion and inclination, any ground unevenness 

would be automatically reflected in the module output. Hence, this measurement process can be a convenient 

method for applications requiring humanoid control on uneven surfaces/ outdoor terrains. To compare the 

performance of the proposed model, ZMP is simultaneously measured from inbuilt foot force sensors and joint 

encoders of the robot. Statistical tests exhibit a high linear correlation between the proposed method with integrated 

encoders and foot force sensors (Pearson’s coefficient, r > 0.99). Results indicate that ZMP estimated by WFSM 

is a viable method to monitor the dynamic gait balance of a humanoid robot and has potential application in 

outdoor and uneven terrains. 
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1. Introduction 

Bipedal robots 1-3 and their application in various sectors is an important topic of current 

research. The goal of a bipedal locomotion control4 is to provide mobility to perform the 

specified task efficiently. One major challenge towards this goal is ensuring balance and 

stability by compensating for any action that may lead to unrecoverable falling motion. It 

is a challenge owing to the number of Degrees of Freedom (DoF) of the robot and motion 

dynamics, including disturbances. One of the most widely adopted stability indicators for 

biped walking is Zero Moment Point (ZMP) 5-9. ZMP specifies the point w.r.t. which the 

reaction force at the contact of the foot with the ground does not produce any moment in 

the horizontal direction. Furthermore, the behavior of all the forces acting on the 

mechanism can be replaced by a single force acting on that point. Walking is a cyclical and 

sequential activity with the repetition of single and double support phases and alteration of 

both legs. The double support phase is when both feet are in contact with the ground, and 

the overall system is mainly stable. As long as all the ground-sole contacts appear on a 

single plane surface, the Center of Pressure (CoP) and the ZMP are at the same point, called 

CoP-ZMP. Both these are two interpretations of the acting force-moment between the 

ground and the first link of a kinematic chain 10. In the Honda biped robots, an application 

of the CoP-ZMP control has been implemented, showing that the CoP notion is related to 

contact forces, and that of the ZMP signifies the gravity plus inertia forces 11. 

The dynamical postural stability of the robot is usually quantified by the distance between 

the ZMP and the boundaries of the polygon of support 12. During the single support phase, 

only one leg is in contact with the ground, and this phase tends to be statistically less stable 

compared to the double support phase. Hence, the coordinates of ZMP trajectory during 

walking are determined by the positions of the single support leg, and the robot tends to be 

stable when the ZMP lies within the support polygon. 13  proposed a Dynamic Linear 

Inverted Pendulum Model (DLIPM) to plan the robot trajectory w.r.t. change in dynamic 

balance (signified by the ZMP) to minimize the control error and reduce robot oscillations. 

Similarly, 14 proposed a cascaded control approach for balance control in a terrain-blind 

environment. The first stage of the cascaded controller is a capture-point controller 15 that 

updates with a stable ZMP value that counters the disturbances. The adjusted ZMP acts as 

a reference to the second stage of the controller (a balance controller). This dynamic ZMP 

adjustment w.r.t. variation in terrains ensures a robust operation of the bipedal robot. A 

similar capture-point tracking controller that mainly targets updating the zero moment point 

for bipedal walking dynamically is also reported in 9, 15, 16. 

The most prevalent ZMP estimation method is using foot pressure sensors and load cells 17-

20.  However, such measurement systems may not be effective in case of uneven surfaces 

where apposite foot contact with the ground is not possible. 21 reviewed and outlined the 

force-torque sensor used in state-of-the-art humanoid robots for zero-moment point 

estimation and dynamic control. A traditional force-torque sensor-based ZMP measurement 

requires the sensor to be compact, lightweight, repeatable, and overload protection with 

particular consideration for impact 21. Another important requirement for a foot force-based 

sensor is to ensure the measurement range is sufficient enough to account for any additional 

weights and the impact of the foot during ground contact 22. In the case of running, the 

vertical ground reaction force generated during a foot contact or foot lift is twice that of 

body weight 23. To protect the force sensors from damage resulting from the impact force, 
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robot foot soles need to be designed with impact-absorbing parts. As a result, different sizes 

of robots and applications that require carrying additional weights (service robots) will, in 

all likelihood, require customized sensing soles. Moreover, this technique requires the 

integration of force sensing modules in the robot foot, which may not always be 

available/feasible.  Another alternative method to compute the ZMP is from the variation 

of different joint angles 24, 25. In such technique, the robot is mainly modeled by an inverted 

pendulum system with simple joints and links 26-29. The joint angles information, measured 

from integrated joint encoders, is used for calculating the Cartesian position coordinates of 

the robot. The moments of individual links are combined to synthesize the ZMP of the 

overall mechanism. 

In the present work, we propose using our developed wireless foot sensor modules (WFSM) 

30 to estimate the ZMP during various humanoid robot motions. The WFSM is a compact 

and low-power sensing system that measures 3-axis rotational angles (roll, pitch, and yaw) 

around any joint. The measured joint angles from the WFSM are acquired wirelessly using 

a tool developed in LabVIEW and further processed in real-time to compute the ZMP 

during the robot locomotion. The basic principle and detailed working of the developed 

WFSM system is discussed in the next section. The aim and contribution of the reported 

work are to experimentally validate the concept of ZMP measurements from joint 

kinematics, using developed wireless inertial modules for a bipedal gait. Since the WFSMs 

are strapped/mounted on the limbs rather than the foot insole, they don’t alter the natural 

trajectory. Moreover, a WFSM weighs only 31 gm which can further be reduced with 

component integration. Moreover, in the present case, the contact impact has no mechanical 

effect on the WFSMs. As a result, the same approach can be extended for varying 

sizes/weights of bipedal robots. These modules can easily be strapped around a joint to 

measure the motion trajectory. They can be an extremely convenient method to compute 

the ZMP of bipedal systems with no built-in integrated foot sensors or encoders. Since a 

bipedal robot has a more demanding control requirement to maintain gait balance, the 

motion data recorded from these modules may further be used for balance and stability 

analysis of the robot. It is also a promising integration method for analyzing motions and 

ZMP evolution in scenarios involving outdoor applications and uneven terrains. Hence, 

these ‘ready-to-strap’ WFSMs present an alternate and viable solution to address the 

common challenges (as mentioned in the previous paragraph) associated with ZMP 

measurement using load cells or encoders. 

The rest of the paper is organized as follows: The working of the developed wireless module 

and the kinematic model of the NAO humanoid robot are detailed in section 2. This section 

also elaborates on the mathematical formulation for ZMP measurements from WFSM, 

encoders, and FSRs. The trial and data collection scenarios are highlighted in the last part 

of the same section.  Section 3 presents the results obtained by three different measurement 

methods for different walking scenarios. A comparative analysis of the measured ZMPs for 

all the measurement mentioned above methods and trial scenarios is also presented in the 

section's later part.  The paper concludes by highlighting the contribution and significance 

of the ZMP estimation using inertial sensors and possible future application. 

2. Material and methods 

This reported work involves estimating ZMP for a humanoid robot walking from an inertial 
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sensor-based measurement system. Real-time joint angle data from WFSMs are acquired 

and processed accordingly to estimate the evolution of ZMP during humanoid gait under 

different scenarios. The principle and working of the proposed method along with the 

detailed experimental design are presented below. 

2.1. Test and Measurement Platform 

The developed WFSM is a compact, low-power, wireless device (cf. figure1) that provides 

a measure of joint angle trajectories. The authors in their previous work 30 have reported its 

application for measurement of foot angle during human gait and subsequently for 

estimating the gait events. The WFSM is used for measuring the value of accelerations and 

angular velocities along the x-axis (ax and ωx), the y-axis (ay and ωy), and z-axis (az and ωz), 

respectively. The acceleration and angular velocity parameters are then used for computing 

the inclination angles. The gyro sensor estimates the angle (θgyro) by numeric integration of 

the angular velocity, that is 

ω =
𝑑𝜃𝑔𝑦𝑟𝑜

𝑑𝑡
     (1) 

 𝜃𝑔𝑦𝑟𝑜 = ∫ ω. 𝑑𝑡
𝑡

0
 ≈ ∑ ω(𝑡).𝑡

0 𝑇𝑠   (2) 

where  𝑇𝑠 is sampling time and  ω is the angular rate. The accelerometer angle (𝜃𝑎𝑐𝑐) is 

derived by computing the projection of the gravitation vector 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 as follows 31 

  θ𝑎𝑐𝑐 = tan−1 [
𝒂𝒙

√𝒂𝒚
𝟐+𝒂𝒛

𝟐
]    (3)  

Two major errors that inertial sensors are prone to are error accumulation due to gyroscopic 

drift and vibrations in the accelerometer due to ground impact 32, 33. Since the error is present 

in both systems, a complementary filter 34, 35 is implemented to compensate for the effects 

of the sensor’s individual weaknesses. Such a method is often useful when two different 

measurement sources are used to estimate a single variable and the noise properties of these 

sources are such that one source shows high performance in the low-frequency region and 

the other gives valid results in the high-frequency region. This argument holds good for 

inertial sensors consisting of accelerometers and gyroscopes. The output angle of the 

complementary filter (𝜃𝐶) is expressed by (4) 34 

 

θ𝐶 = 𝑘 × (𝜃𝐶 + 𝜃𝑔𝑦𝑟𝑜 × 𝑑𝑡) + (1 − 𝑘) × θ𝑎𝑐𝑐   (4)  

Here, 𝑘 is the optimized complementary filter coefficient, and 𝑑𝑡 is the sampling time. The 

output angle from the complementary filter is the fusion of gyroscope and accelerometers. 

At high frequencies, the gyro angle dominates, and the resultant angle at low frequencies 

is compensated by the accelerometer angle (θ𝑎𝑐𝑐) 36.  

A humanoid robot can be resolved into a simplified links and joints model, where the torso, 

shank, and calf represent the different links. Control and measurement of joint angles play 

an important role in generating the motion trajectory and stability of the humanoid robot. 

The recorded joint angles are used to estimate the Cartesian position coordinates of different 

limb segments and joints, which can be used to estimate the ZMP. 
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Fig. 1. Developed Wireless Foot Sensor Module. 

NAO is an autonomous humanoid robot (cf. figure 2) developed by Aldebaran Robotics, 

France and currently owned by Softbank Robotics, Japan. The robot can be programmed 

to perform numerous activities like walking, dance37 and is even used for therapeutic 

applications 38. It has various sensors like joint angle encoders, Force Sensitive Resistors 

(FSR), tactile and proximity sensors, cameras, and an inertial measurement unit 39. The 

joint encoders measure the joint angle variation during any activity, including walking, 

while the FSRs give measurement of distributed weights acting on different foot points. 

The inertial unit, consisting of two axes gyroscope and a three axes accelerometer located 

at the torso of the NAO, is used for ascertaining the inclination of the robot in sagittal and 

transverse planes. The robot supports up to 25 DoF with access to each individual joint 

control. 

 

Fig. 2. Illustration of the placement of wireless inertial modules on NAO’s body segments. 

2.2. Calculation of ZMP 

This section details the underlying principle of ZMP evaluation based on the three sensing 

techniques i.e., joint encoders, WFSMs and FSRs. For ZMP estimation based on built-in 

encoders, the humanoid robot is resolved into a planar biped model 3. The WFSM-based 

ZMP estimation begins with measuring the lower limb joint angles of the robot and further 
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feeding the joint angles into the planar biped model. The foot force sensor-based method is 

a widely used concept of ZMP estimation based on the weight distribution in the foot. 

2.2.1. Method 1: Using Joint Encoders 

A biped robot is generally resolved into a five-link model (Figure 3). The ankle joint of the 

stance leg is considered the origin of the coordinate system.  In this work, the walking is 

constrained in the sagittal plane, i.e. forward x-direction. The lengths and masses of 

different segments are summarized in Table 1. For a given set of joint angles, the Cartesian 

coordinates of a particular joint can be computed using polar coordinates transformation. 

Assume the coordinates of the left ankle (origin) are represented by (𝑋𝑙𝑎 , 𝑌𝑙𝑎 , 𝑍𝑙𝑎), then the 

position of the left knee can be expressed as 

𝑋𝑙𝑘 = 𝑋𝑙𝑎 + (𝑐𝑎𝑙𝑓𝑙 × sin(𝐿𝐾))  (5)  

𝑍𝑙𝑘 = 𝑍𝑙𝑎 + (𝑐𝑎𝑙𝑓𝑙 × cos(𝐿𝐾))  (6)  

𝑌𝑙𝑘 = 𝑋𝑙𝑘 × 𝑍𝑙𝑘    (7) 

Similarly, the point coordinates for the left hip (𝑋𝑙ℎ , 𝑌𝑙ℎ , 𝑍𝑙ℎ), the right hip (𝑋𝑟ℎ, 𝑌𝑟ℎ , 𝑍𝑟ℎ), 

the right knee (𝑋𝑟𝑘, 𝑌𝑟𝑘 , 𝑍𝑟𝑘) and the right ankle (𝑋𝑟𝑎, 𝑌𝑟𝑎 , 𝑍𝑟𝑎)  can be calculated. The 

position of the overall ZMP of the robot can be expressed as follow 25 

  𝑍𝑀𝑃𝑥 =
∑ 𝑚𝑖𝑖 (𝑍�̈�+𝑔)𝑋𝑖−∑ 𝑚𝑖𝑋𝑖̈𝑖 𝑍𝑖

∑ 𝑚𝑖𝑖 (�̈�𝑖+𝑔)
  (8) 

𝑍𝑀𝑃𝑦 =
∑ 𝑚𝑖𝑖 (𝑍�̈�+𝑔)𝑌𝑖−∑ 𝑚𝑖𝑌�̈�𝑖 𝑍𝑖

∑ 𝑚𝑖𝑖 (�̈�𝑖+𝑔)
  (9) 

where m corresponds to the mass of respective limb segment, g denotes the acceleration 

due to gravity, and i varies between 1-5, where i(1)=la, i(2)=lk, i(3)=rk, i(4)=la and i(5)= 

h. 

 

Fig. 3. Illustration of the planar biped model of the robot. 
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2.2.2. Method 2: Using WFSM 

A WFSM is placed at the torso, thigh, calf, and foot, as illustrated in Figure 2-a, of the NAO 

robot to collect the variation of joint angles w.r.t. any posture/motion in real-time. An 

application is developed in LabVIEW for data acquisition, processing, and data logging. 

All the modules are synchronized using a digital trigger before the start of the trial and any 

offset angle associated are automatically zeroed from the software. All the joint angles 

(relative angles) are computed from the absolute angles measured from the WFSM modules 

as illustrated in Figure 2-b as follows 

𝜃𝑃𝑒𝑙𝑣𝑖𝑠 = 𝜃𝑡𝑟𝑢𝑛𝑘   (10) 

𝜃ℎ𝑖𝑝 = 𝜃𝑡ℎ𝑖𝑔ℎ   (11) 

𝜃𝑘𝑛𝑒𝑒 = 𝜃𝑠ℎ𝑎𝑛𝑘 − 𝜃𝑡ℎ𝑖𝑔ℎ  (12) 

𝜃𝑎𝑛𝑘𝑙𝑒 = 90 + 𝜃𝑓𝑜𝑜𝑡 − 𝜃𝑘𝑛𝑒𝑒  (13) 

Table 1: Physical dimensions of the joint segments of NAO robot 

 Foot Shank Thigh Trunk 

Mass (kg) 0.17 0.29 0.39 1.74 

Length (m) 
0.04 0.10 0.10 0.21 

The knee angle is computed as the difference of variation of the thigh and shank as any 

variation in the thigh brings in equal changes in the shank, even when there is no motion 

produced in the knee joint. Similarly, for foot motion, the variation in the ankle angle is 

measured as the difference of measurements from the foot module and knee angle. These 

angle measurements are further used to calculate the position coordinates of the NAO 

segment joints, and subsequently the ZMP by using the method explained above in section 

2.2.1. 

2.2.3. Method 3: Using Foot FSR 

A simplified model for ZMP calculation based on plantar force variation is given in 40.  The 

position of the four FSRs under each foot is shown in Figure 4. The ZMP curve shifts 

alternatively towards the supporting leg during the swing phase of the contralateral foot. In 

this study, the left foot is considered the origin of the foot reference system as shown in 

Figure 4. The coordinates of all other FSRs including the right foot are obtained from the 

NAO technical specifications 39. The stance leg ZMP equation, which also corresponds to 

the CoP is given by 

𝑋𝑍𝑀𝑃(𝐿) =
𝐹1𝑥1−𝐹2𝑥2

𝐹1+𝐹2
  (14) 

𝑌𝑍𝑀𝑃(𝐿) =
𝐹3𝑦1−𝐹4𝑦2

𝐹3+𝐹4
  (15) 

where F1, F2 are the sum of FSR values (in sagittal plane, and F3 and F4 are the sum of 

sensors in y-direction, that is 𝐹1 = 𝑓1 + 𝑓2; 𝐹2 = 𝑓3 + 𝑓4; 𝐹3 = 𝑓1 + 𝑓3; 𝐹2 = 𝑓2 + 𝑓4; 

and f1-f4 denotes the individual ground reaction forces recorded by different FSRs, as 

shown in Fig. 4b. 
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For the right foot, the coordinates of the FSRs and hence 𝑌𝑍𝑀𝑃 is computed w.r.t. the origin 

of the left foot reference system considering the step width. For single-support phase, the 

overall ZMP of the system is described by the ZMP of the stance leg. With every alternative 

step, 𝑋𝑍𝑀𝑃 of the swing leg during next foot contact is incremented by the step length of 

the humanoid.  The overall ZMP for the robot during the double support phase is given by 

averaging the sum of ZMP of both individual foot, that is 

𝑋𝑍𝑀𝑃 =
𝑋𝑍𝑀𝑃(𝐿)+𝑋𝑍𝑀𝑃(𝑅)

2
   (16) 

𝑌𝑍𝑀𝑃 =
𝑌𝑍𝑀𝑃(𝐿)+𝑌𝑍𝑀𝑃(𝑅)

2
   (17) 

 

 
Fig. 4. (a) FSR position on NAO’s feet (b) ZMP evolution during one step gait. Here dx denotes the step width 

and dy denotes the step length. 

2.2.4. Trial Protocol 

Walking patterns for the robot were generated for three different conditions: Straight line 

Walk (WS), Walk with Turn (WT) and Walk with added Weight (WW). For WS, the 
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humanoid robot is programmed to walk for approximately 1.5 meter in straight line and 

stop. The speed of the robot is set at default with a maximum step length of 0.08 meters. 

During WT, the NAO walks straight (x-direction) and then takes a 180⁰ turn towards left 

and walk towards the direction of origin. Figure 5-a & 5-b illustrates the direction of 

progression of the NAO robot during WS and WT, respectively. For WW, a block of 250 

gm was strapped to forearm of the NAO (as shown in figure 5-c) and it followed the same 

protocol as WS. 

 

Fig. 5. (a) NAO trajectory for WS scenario (b) Direction of progression for WT scenario (c) the encircled 

portion shows the extra block of weight added to the NAO right arm 

3. Results 

All joint angle trajectories are recorded from the integrated NAO encoders and WFSMs 

simultaneously during the robot motion at a rate of 20Hz. Figure 6 shows the comparison 

of the right thigh angle, measured during straight walk, using WFSM and NAO  encoder. 
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Fig. 6. Comparison of right Thigh angle vs Time as measured from encoder and WFSMs. 

The FSRs based measurement is well-established method for computing ZMP of 

humanoids and thus, in this study, is considered as the ground truth for comparing the ZMP 

results estimated from joint encoders and WFSMs. Figure 7 displays the ZMP support area 

(Y-ZMP vs. X-ZMP) for the straight walk as computed from FSRs. This figure illustrates 

the ZMP evolution during transition of the foot from single support to double support phase 

to single support of the contralateral foot. 

 
Fig. 7. Evolution of the ZMP support area measured from FSRs. 

The comparison of the ZMP during the ‘Walk Straight’ protocol is presented in Figure 8. 

For ZMP progression along X-axis, the error (mean±SD) calculated using WFSMs and 

NAO encoders is -94±44 mm and -142±37 mm, respectively. The mean error reported 

between the two joint angle based ZMP calculation is 47±21 mm. Figure 9 depicts the ZMP 

(normalized) along Y-axis for the same trial. The average ZMP along Y-axis is about 123±2 
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mm, 116±3 and 74±32 mm as computed from encoders, WFSMs and FSRs, respectively. 

 

Fig. 8. Evolution of ZMP versus time along x-axis during the straight walking scenarios. 

Similarly, the error reported for X-ZMP with WFSM, NAO encoders during Walk and Turn 

is around 52±20 mm, and Walk with added weight is 52±34 mm, which is roughly 

equivalent to that of error reported during straight walk. A Bland-Altman plot for WW 

protocol showed the mean bias ± standard deviation (SD) between encoder and WFSM 

measurements for X-ZMP as 52.6 ± 34.96 cm, and the limits of agreement were −15.92 and 

121.13 mm (Figure 11). 

 

Fig. 9. Evolution vs. time of the normalized ZMP along y-axis during straight walk scenarios. 
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Fig. 10. Evolution of the ZMPx position versus time during walking with turn protocol. 

As pointed out previously, the ZMP analysis in this work is done along the sagittal plane 

i.e. x-axis. During the time when the robot takes a turn, it sweeps a little distance in the 

lateral side. However, there is insignificant change in the joint angles and hence ZMP in 

direction of forward progression. This phase is pointed out in the encircled area in figure 

10, where there is negligible progression along x-axis. To draw the correlation between the 

three measurement methods, Pearson’s correlation coefficient (𝑟) was computed for all 

three walk protocols. The estimated ZMP from WFSMs  exhibited high degree of 

correlation with measured ZMP for WS (𝑟 =0.9967),  WT (𝑟 = 0.9994) and WW (𝑟 =

0.9881) using encoders, and WS (𝑟 =0.9942),  WT (𝑟 = 0.9943) and WW (𝑟 = 0.9854) 

using FSRs. This signifies that the proposed measurement technique can be explored for 

dynamic walking balance analysis, even with constrained protocols/background. 

 

Fig. 11. Bland-Altman plot showing the limits of agreement between the proposed WFSM and joint encoder 

based ZMP evaluation method for X-ZMP during WW protocol. 

4. Conclusions and Future Work 
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ZMP is one of the most important aspect for maintaining balance and stability during 

bipedal walking. This work experimentally validates a method for ZMP estimation of a 

bipedal robot using wireless inertial sensor modules. These modules are light in weight 

(~31gms), low cost (~INR 1500) and has wireless data transmission capability. The WFSM 

modules records the joint trajectories of limb segments, which are further used to compute 

the position coordinates. Experiments shows that the proposed method can effectively be 

used for ZMP estimation of bipedal walk even under certain constraints like unbalanced 

weight distribution. One main distinct advantage the proposed WFSM based ZMP 

estimation possesses over force-torque sensor based measurement is its capability to be 

strapped to the body (rather than beneath the foot).  Owing to lightweight, easy to integrate 

and wireless data communication features, the same can easily be adopted to different 

situations without altering/affecting the pre-existing setups. This also shows a promising 

alternate to overcome certain challenges associated with a traditional foot-torque based 

sensor like stringent placement requirement, additional cushioning and customized solution 

for robots with varying shape and size. These factors make it suitable, for instance, for 

application in situations that require controlling a biped robot in an uneven surface or 

outside laboratory constraint. The real time approach of the proposed estimation method 

makes it promising alternate for effective response to emergency situations like fall. 

Moreover, the WFSM based measurements has tremendous potential for healthcare 

applications, especially towards fall detection in elderly. Gait imbalance and tendency of 

fall are very common in older age causing serious accidents and injuries. There are reported 

work for fall detection and prevention based on ZMP and CoP based measurements 41-43. 

The authors are working towards extending the work towards human gait balance 

assessment and envisages the use of WFSMs as a simple and reliable tool for postural 

balance assessment. 
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