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ABSTRACT GitHub hosts Git repositories and provides issues-tracking services to provide a better
collaboration environment for software developers. Issues and Pull-Requests are frequently used in GitHub
to discuss and review the software requirements (new features, bugs, etc.) and software solutions (source
code, test cases, etc.) respectively. The links between Issues and their corresponding Pull-Requests comprise
valuable information to keep tracking current development as well as documenting knowledge for future
development. Considering a large number of links, such information can be used to train machine learning
models for several purposes such as feature location, bug prediction and localization, recommendation
systems and documentation generation. To the best of our knowledge, no dataset has been proposed as a
ground-truth of links between Issues and Pull-Requests. In this paper, we propose, PI-Link, a new significant
and reliable ground-truth dataset composed of 50369 links that explicitly connect 34732 Issues with 50369
Pull-Requests. These links are automatically extracted from all (907,139) Android projects in GitHub
created between January 1, 2011 and January 1, 2021. To better organize and store the collected data,
we propose a metamodel based on the concepts of Issues and Pull Requests. Moreover, we analyze the
relationships between Issues and their linked Pull Requests based on four features related to their titles,
bodies, labels and comments. The selected features are analyzed in terms of their lengths and similarities
based on three lexical and one semantic similarity metrics. The results showed promising similarities
between Issues and their linked PRs at the lexical and semantic levels. In addition, some feature similarities
are sensitive to the text length, whereas other feature similarities are sensitive to the term frequency.

INDEX TERMS Android, GitHub, ground-truth dataset, Issue, link, Pull-Request.

I. INTRODUCTION
GitHub is a hosting platform for software development and
version control that supports the concept of collaborative
social coding. It provides a friendly environment for con-
tributors to communicate, collaborate, and promote software
development. Contributors can easily track bugs, request new
features, manage tasks, and handle continuous integration.

Issues and Pull-Request (PR) are common software arte-
facts that are used throughout all software development
lifecycles in GitHub. The Issue lets contributors track the
development work, and it is managed by the GitHub issue-
tracking system. The PRs lets other contributors review and

discuss the changes before they are submitted. Issues and PRs
contain much information about software development and
evolution, but from different perspectives: Issues capture the
software requirements (e.g. features, bugs), while PRs reflect
the software development solutions (e.g., source code, test
cases).

The links between PRs and Issues are vital and useful
because they link two development activities and can be
leveraged to learn from past experiences and predict fu-
ture solutions in different software engineering tasks. For
example, in the feature location task, PR-Issue links are
employed to identify mappings between features and their
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corresponding concrete implementation in the software arte-
facts [1]–[3]. In bug prediction, PR-Issue links are useful for
training data to feed and build bug prediction models [4]–
[6]. In bug localization, PR-Issue links are used to construct
localization models for finding potential buggy portions of
source code [7]–[9]. In bug assignment, PR-Issue links could
be used to build recommendation models for assigning bug
reports to relevant developers [10]–[12].

In GitHub, PR-Issue links are manually established by
contributors either implicitly by adding the Issue identifiers
in PR logs, or explicitly by adding the links using the GitHub
metadata. Moreover, it is manually hard to find and distin-
guish such links between Issues and their associated PRs
for different development and maintenance activities because
such a task is challenging, time-consuming, and error-prone
task, even for senior developers. Also, all PRs-Issues links
are miss-documented as a collection but it is individually
documented (implicitly and explicitly) and scattered over
hundreds or thousands of PRs and Issues of given reposito-
ries.

The links between Issues and their corresponding Pull-
Requests comprise valuable information to keep tracking
current development as well as documenting knowledge for
future development. Considering a large number of links,
such information can be used to train machine learning
models for several purposes such as feature location, bug
prediction and localization, recommendation systems and
documentation generation. To the best of our knowledge, no
dataset has been proposed as a ground-truth of links between
Issues and Pull-Requests.

In this paper, we propose, PI-Link, a new significant and
reliable ground-truth dataset composed of 50369 PR-Issue
links extracted from 5742 Android projects on GitHub. To
do so, we develop a GitHub scraper tool that automatically
extracts all explicit PR-Issue links (genuine and examined)
from all (907,139) Android GitHub projects created between
2011 and 2021. Moreover, we propose a metamodel to better
organize and store the collected PR-Issue links that contain
valuable detailed information about Issues and PRs of each
link. This ground-truth dataset can be exploited to evaluate
the effectiveness of different future works on this subjects.
For example, recovering the missing Issue-PR links, build
recommender systems, etc. To make our dataset accessible
for the community, we publish it on Kaggle 1 2: a well-known
dataset repository.

To better understand the content of our dataset, we analyze
the relationships between Issues and their linked PRs based
on four features related to their titles, bodies, labels and
comments. The selected features are analyzed in terms of
their lengths (i.e., number of tokens) and similarities. For
the similarity analysis, we rely on four similarity metrics
that are frequently used in NLP. These are Jaccard, Cosine,
and Levenshtine as lexical similarity metrics and BERT as

1https://www.kaggle.com/datasets/zakareaalshara/android-closed-issues-
20110101-20210101-clean

2API command: kaggle datasets download -d zakareaalshara/dataset

a semantic similarity metric. The results show that some
feature similarities are sensitive to the text length, whereas
other feature similarities are sensitive to the term frequency.

The rest of the paper is structured as follows. Section II
introduces the principle of GitHub flow and PR-Issue link.
Section III presents the approach to extract our ground-truth
dataset. Section IV illustrates our ground-truth metamodel.
The analysis of our dataset is presented in Section V. The
feature selection and the analysis results are introduced in
Section VI and Section 13 respectively. Threats to validity are
presented in Section VIII respectively. The use cases of our
dataset are introduced in Section IX. Section X discusses the
most closely related work. Finally, the conclusion and future
works are introduced in Section XI.

II. THE ANATOMY OF GITHUB
A. GITHUB FLOW
GitHub is a software development and version control host-
ing repository based on the Git version control system [13].
In addition to the distributed version control system provided
by Git, GitHub provides other features like access control,
bug tracking, task management, and continuous integration.
GitHub is commonly used to host open-source software de-
velopment projects, with over 100 million developers work-
ing on over 352 million repositories (more than 41 million
public repositories [14]) by November 2022 [15] [16].

GitHub flow is a distributed branch-based workflow de-
signed to work with Git and GitHub. The GitHub flow is
helpful for software development teams to manage each
phase of software development easily and make deployments
regularly. Branch-based workflow helps developers to work
on isolated development without affecting other branches
in the project (repository). In GitHub, each repository has
one default main branch, usually named Master, and other
branches added by developers. Usually, the Master branch
should always be deployable. Therefore, branches allow de-
velopers to contribute without affecting continuous develop-
ment and integration. For example, if a new feature is needed
to be added to the main branch, developers create a new
branch from the main one to add the needed feature. Once
the feature is ready, it is merged back into the main branch.
Therefore, it helps developers to work simultaneously on the
same repository without affecting the development process.

The GitHub flow is illustrated in Figure 1. First, a new
branch is created to develop new features, fix bugs, or do
some enhancements. The new branch is a safe container
to make and revert changes to solve any changes mistakes.
Then, developers push their changes (adding, editing, and
deleting files) as commits on the new branch. Each commit
has a descriptive message to help the owner and future
contributors understand the commit changes (e.g. add local-
ization feature, fix a typo, enhance performance). After the
changes are completed, the developers create a PR of its
commits. The PR has a summary (descriptive title and body)
of the changes and solved problems. Moreover, it keeps
records of changes to the code. If the PR handles an Issue
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created by others, the PR should be linked with that Issue to
show the working progress. Next, collaborators discuss (i.e.
adding comments) and review the PR to make a decision
(e.g. approve, reject, or enhance). Reviewers can comment
(i.e. leave questions, comments, and suggestions) on the PR
or on specific commits. PR review is effective; hence, it is
mandatory by some repositories before PRs merge to the
main branch. Finally, once the PR is approved and tested,
developers merge the PR into the main branch to reflect the
changes update. GitHub allows deploying from a branch for
final testing before merging with the main branch. When the
PR is merged, its state is automatically transferred from open
to closed.

B. PR-ISSUE LINKS IN GITHUB
Issues and PRs are software artefacts that are not supported
by Git but by GitHub. On the one hand, the primary purpose
of using Issues is to track development work on GitHub,
which is usually stored in issue-tracking systems. It can be
used to track new ideas, bugs, tasks, and other important
information. On the other hand, PRs are used to propose and
collaborate on changes with other reviewers and contributors,
which is usually stored in version control systems. Issue
and PR contain much information about software evolution,
but from different perspectives: Issues describe the problem
domain (e.g. requirements and bugs), while PRs reflect the
solution domain (developing requirements, fixing bugs). The
links between PRs and issues are important and valuable be-
cause they link the problems with their solutions. Therefore,
It can be used to better understand the changes and feed
experience and knowledge in various software engineering
tasks. For example, in feature location, PR-Issue links are
used for mappings between features and their implementing
source code [17]. Moreover, In bug localization, PR-Issue
links are helpful in building localization models [18], [19].

On GitHub, permitted contributors can link Issues to PRs
on the same repository. Consequently, collaborators can see
the working progress on these linked Issues and PRs. The
PR-Issue links might be residing in the same or different
repositories. When linked PRs are merged, the states of
their linked Issues are automatically transferred from open
to closed (solved). Contributors can link Issues to PRs either
implicitly or explicitly [20]. In the implicit manner, PRs are
linked to issues by using keywords supported by GitHub (i.e.
close(s, d), fix(es, ed), resolve(s, d)) in the PR’s description or
in its commit message (see Figure 2). However, this manner
may not be a natural workflow for every team and has many
consequences. First, editing or removing implicit PR-Issue
links is tedious; the owner must edit the PR description to edit
or remove the link’s keywords. Second, these keywords could
be used in a commit message. The related Issue will be closed
when the commit is merged into the branch, but the PR that
has the commit will not be linked to that Issue. Consequently,
the main link between the problem and its solution will be
missing.

In the explicit manner, PRs and Issues are manually linked

from either the PR sidebar or the Issue sidebar (see Figure 3).
So, contributors and reviewers can immediately see the status
of development work on the linked Issues and the associated
PRs. This manner guarantees the main link between the
problem and its solution. Moreover, the PR-Issue links can
be easily edited or removed by any permitted contributor.
Consequently, using this manner is considered better than
using the implicit one.

GitHub provides many APIs to automatically extract
many information (e.g. Issues, PRs, commits, etc.) regard-
ing GitHub repositories [21], [22]. One of these pieces of
information is the PR-Issue links. However, these APIs could
detect explicit relations but not implicit ones. The implicit
linked PRs with their Issues need more text investigations
and human efforts to ensure these relations because it is built
using the keywords. Consequently, in this paper, we aim to
extract explicit PR-Issue links.

III. DATASET EXTRACTION APPROACH
To automatically collect our dataset, we developed a GitHub
scraper tool named PR-Issue-Scraper using python. It is
published in GitHub5. PR-Issue-Scraper extracts explicit PR-
Issue links using GitHub GraphQL API [22]. We design
our tool to deal with the GraphQL request limitation; hence
GitHub GraphQL API rate limit is 5,000 points per hour [23].
We ran PR-Issue-Scraper to target all Android repositories on
GitHub in the time period between the 1st of January 2011 to
the 1st of January 2021. The run takes around 30 days (24/7)
to archive our target.

The architecture of PR-Issue-Scraper is composed of three
main components: Scraper, Request-meter and Validator, as
presented in Figure 4. The Scraper component is responsible
for managing queries requested from GitHub to collect data
using GraphQL APIs. The Request-meter component con-
trols the Scraper component to be within the request limit
range (i.e., 5,000 points 6 per hour). The Validator component
aims to verify the results of the Scraper and remove noise
data, e.g. Issue-Issue links, PR-PR links.

For better understanding, Algorithm 1 illustrates the de-
tailed process of PR-Issue-Scraper. In the beginning, all
Android repositories placed on GitHub were queried using
GitHub GraphQL API. To retrieve only Android projects, we
assume that an Android project should have the "Android"
keyword in its description and should be implemented using
Java or Kotlin programming languages. However, many non-
Android projects could have previous assumptions. There-
fore, all repositories returned from the query are filtered to
eliminate the non-Android projects. To do so, all repositories
are investigated to check whether they have an AndroidMani-
fest.xml file or not. This comes from the fact that any android
project contains an AndroidManifest.xml file. After that, for

3https://github.com/AdAway/AdAway/pull/784
4https://github.com/AdAway/AdAway/issues/781
5https://github.com/zakarea/PR-Issue-Scraper
6Every piece of information (e.g. a title, a label) acquired from GitHub

GraphQL costs one point.
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FIGURE 1: Branch-based workflow in GitHub.

FIGURE 2: A PR linked to an Issue implicitly.3

each Android project, the closed Issues are queried. We
targeted closed Issues to guarantee that they are solved and
could be linked with a PR. As open Issues do not have links
to PRs, we exclude them from our dataset. Next, all closed
Issues are inspected to check their explicit links with other
software artefacts. The explicit links can be found in the Issue
sidebars (c.f. Figure 3). We collect data from Issue sidebars
using the timelineitems interface provided by GraphQL APIs.
The returned explicit links connect the current Issue with
PRs, Issues or merge requests. As we aim to collect PR-Issue
links, we exclude the other ones. As a result, only Issues that
have PR-Issue links are returned in our dataset.

To deal with the rate limit of the GraphQL APIs, each
query is examined before it is submitted to the GraphQL
API using the RateLimitMeeterListener function. RateLim-
itMeeterListener verifies whether the current query exceeds
the limit rate or not. In case it exceeds, RateLimitMeeterLis-
tener divides the query to make it fit with the rate limit.

IV. DATASET MODEL
To better organize and store the collected data by our PR-
Issue-Scraper, we propose a metamodel of our ground-
truth dataset. This metamodel is described in Figure 5. The
metamodel is composed of Repository, Issue, PullRequest,
Comment, Label, and Commit. In the following, we describe
these metamodel elements.

FIGURE 3: A PR linked to an Issue explicitly.4

A. REPOSITORY
The repository is a container for the project’s files and its
revision history. Contributors can discuss and manage their
software development within the repository. Each repository
has a unique name over all GitHub repositories.

B. ISSUE
Issues are used to track ideas, tasks, bugs or feed-
back on GitHub. Issues tackle challenges in the require-
ments/specifications, workflow, design, implementation, or
even production in software development. Each Issue has a
unique number based on its repository. This unique number
could be used as a reference to its Issue (e.g. could be used to
establish an implicit link by a PR). The issue url is a web-
based url. The title and body are textual data to describe
the Issue. The creation and closing Issue time-stamps are
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Algorithm 1: PR-Issue-Scraper Algorithm.

Data: Points←
RateLimitMeeterListener(Points)

Result: ∀(PR↔ Issue) ∈ Android ∃ GitHub
AndroidRepos← GraphQL.query(“keyword :
Android”, “lang : Java|Kotlin”);
AndroidRepos←
FilterAndroidRepos(AndroidRepos);
AndroidIssues← GraphQL.query(“type :
issue”, “is : closed”);
PRIssueLinks←
getPRIssueLinks(AndroidIssues);

while N ̸= 0 do
if N is even then

X ← X ×X;
N ← N

2 *[r]This is a comment
else

if N is odd then
y ← y ×X;
N ← N − 1;

end if
end if

end while
Function FilterAndroidRepos(Repos):

AndroidRepos;
foreach repo ∈ Repos do

if “AndroidManifest.xml” ∈ repo then
AndroidRepos←− repo;

end if
end foreach
return AndroidRepos;

End Function
Function getPRIssueLinks(Issues):

Links;
foreach issue ∈ Issues do

foreach link ∈ issue do
if link ≡ PR↔ Issue then

Links←− link;

end if
end foreach

end foreach
return Links;

End Function
Function
RateLimitMeeterListener(Points):

Action;
if “Points” ≥ GraphQL.query(“limit”) then

Points − = GraphQL.query(“limit”);
else

Action←− DIV IDE −QUERY ;

end if
return Points;

End Function

Scraper

GitHub
API

Gr
ap
hQ
L

Request-Meter

Validator
PR-Issue
Links

FIGURE 4: The PR-Issue-Scraper architecture.

represented by createdAt and closedAt, respectively. Each
Issue must reside in one repository. Moreover, it may have
Comments and Labels. Comments are inserted by collabora-
tors to discuss many things related to the Issue. For example,
the comments could explain the optimal way to solve the
Issue or the responsible developers. Labels are selected from
the Issue creator to give Issue types. For example, if an Issue
talks about an existing security bug, its labels could be “bug"
and “security". Finally, the relationship between the Issue and
PR could be one of the three scenarios:

• In the first scenario, one PR is linked with one Issue. For
example, a bug Issue is solved only by one PR.

• In the second scenario, many PRs are linked to the same
Issue. For example, a bug Issue could be caused by
two parts of the implementation, and each part is the
responsibility of different development teams. In this
case, each team creates their PR. Then PRs will be
merged and linked to their Issue.

• In the third scenario, one PR is linked to many Issues.
For example, a bug Issue and an improvement Issue are
related to the same problem and could be solved by the
same development team. In this case, the corresponding
PR will be linked to both Issues.

C. PULL-REQUEST
The PullRequest is a container of changes that have been
done by developers. It allows reviewers to discuss and review
the changes with collaborators and make decisions before
they are merged into the main branch. Similar to the Issue,
PullRequest has a unique number that could be used as a
reference to its PR (e.g. could be used to establish a link
with Issues). It also has a web-based url, and textual data
represented by a title and body to describe the PR. The cre-
ation and closing time-stamps are represented by createdAt
and closedAt, respectively. A PR may also have comments
and labels. In addition to Issue, PullRequest could have code
Commits.

D. COMMENT
It includes a piece of textual information provided by review-
ers and developers.
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E. LABEL
Each label has a name and a textual description. Labels
are very useful for classifying Issues and PRs. The most
popular labels on GitHub are bug, enhancement, duplicate,
documentation, and wontfix.

F. COMMIT
The Commit has a url that is used to access many features
like file changes and differences between versions. Moreover,
each Commit should have a textual message that briefly
describes the changes.

Issue

+number
+url
+title
+body
+createdAt
+closedAt

Repository

+name

Comment

+body
PullRequest

+number
+url
+title
+body
+createdAt
+closedAt

1..*

Label

+name
+description

Commit

+commitUrl
+message

ownerowner

linke

0..*

0..*

0..*

0..*

1..*1..*

FIGURE 5: The metamodel of the dataset.

V. DATASET ANALYSIS
PR-Issue-Scrapper identifies 907,139 Android projects in
GitHub. Among these projects, it detects 5742 Android
projects that have explicit PR-Issue links. Table 1 provides
statistical descriptions of the ground-truth dataset in terms of
the total numbers in the whole dataset, the min, max, mean
and standard deviation (Std) at the level of projects.

TABLE 1: Ground-truth dataset statistics

Total Min Max Mean Std

Issue 34732 1 974 6.04 30.13

PR 50369 1 1570 8.77 44.78

Issue comment 96366 0 7185 16.78 109.51

PR comment 133865 0 3206 23.31 101.9

Issue label 22235 0 1087 3.87 26.96

PR label 8882 0 1192 1.54 23.01

commit 90740 0 3206 15.82 73.19

A. RESULTS OF ISSUES AND PRS
The results show that the dataset contains 34732 Issues linked
to 50369 PRs. The difference in the numbers of PRs and
Issues is due to the multiple cardinality relationships between
PRs and Issues. For a better illustration of their distributions,
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FIGURE 6: The distribution of Issue count over projects.

Figures 6 and Figures 7 show the distributions of Issues and
PRs over projects, respectively. These distributions show that
we have 3105 and 3101 projects having only a single Issue
or PR, respectively. However, these Issues and PRs only
represent 8% (3105/34732) of Issues and 6% (3101/50369)
of PRs of our dataset. On the other hand, the dataset includes
some projects that have large numbers of Issues and PRs.
For example, we have a project that includes 974 Issues
and 1570 PRs. These represent 2.8% (974/34732) and 3.1%
(1570/50369) of Issues and PRs of our dataset, respectively.
Considering another example from the data centralization,
we have 51 projects that have between 100 and 200 PRs. In
total, their PRs are 7022 which makes 13.9% (7022/50369) of
all PRs. Referring to the mean values, the average number of
Issues and PRs are 6.04 Issues and 8.77 PRs, respectively. As
a result, our dataset is representative for different types of PR-
Issue links in terms of their co-occurrences together within
the same projects starting from singular occurrences up to
a large number of co-occurrences (e.g., 947 co-occurrence
Issues). This helps to make our dataset not biased.

Concerning the multiple cardinality relationships, the re-
sults show that roughly 32% (1 − (6.04 ÷ 8.77)) of Issues
are linked to multiple PRs. This means that the solutions to
these Issues have been proposed by multiple contributors at
multiple levels.

B. RESULTS OF COMMENTS RELATED TO ISSUES AND
PRS

The Issues and PRs of our dataset have 96366 and 133865
comments in total, respectively. We find that 1296 Issues
(represents 3.7% (1296/34732) of Issues) and 8 PRs do not
have any comments. The reason is that the PRs usually go
through a review and discussion process represented by com-
ments in the PRs, but this process is not mandatory to have
happened for Issues. Another reason is that the corresponding
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FIGURE 7: The distribution of PR count over projects.

contributors have the privilege of skipping the review and
discussion stage because they are trusted enough by the com-
munity (e.g., having enough expertise). On the other hand, we
identify that some projects have a large number of comments,
e.g., 7185 comments related to Issues and 3206 ones related
to PRs. This means that the corresponding Issues and PRs
have got long discussions between the contributors to define
their solutions. On average, projects have 40.09 comments
(i.e., 16.78 comments for Issues and 23.31 comments for
PRs). Based on these results, we observe that the number
of comments per project is varied based on their standard
deviation values which are 109.51 and 101.9, respectively.
Indeed, these comments could be valuable for the research
community to extract knowledge, e.g., about how to solve
similar Issues.

C. RESULTS OF LABELS RELATED TO ISSUES AND
PRS

The total numbers of labels are 22235 and 8882 for Issues
and PRs, respectively. As it is noted, we have ≈ 2.5 more
labels for Issues than PRs. The reason is related to the fact
that contributors maybe not have a complete awareness of
the problems at the time of creating Issues. Thus, they could
use more labels (i.e., keywords) for describing the types of
the corresponding Issues. On the other hand, contributors of
PRs have a complete awareness of the types of problems as
they have already solved them. Thus, they use a few labels
to briefly describe the types of these PRs. On average, Issues
have 3.87 labels while PRs have only 1.54 ones. Based on the
standard deviation values, we note that Issues and PRs have
variability in terms of the number of labels.

Moreover, we find that %8.1 (2830/34732) of Issues and
%9.2 (4636/50369) of PRs do not have any label. Therefore,
it could be a future work to learn a machine learning model
for predicting the missing labels using the labelled Issues and

PRs in our dataset.

D. RESULTS OF COMMITS RELATED TO ISSUES AND
PRS
The total number of commits attached to the identified PRs is
90740. We note that only 11 PRs do not have any commits.
For instance, an Issue demands executing test cases. In this
case, the results of these test cases are attached in the body of
the corresponding PR, without changing the repository con-
tent (i.e., do not need to add a commit). However, these can
be neglected as they do not impact the quality of our dataset
compared to 90740 commits. On the other hand, for other
projects, we find a huge number of commits. For instance, we
identify 3206 commits in one project. On average, we have
15.82 commits connected to PRs per project. However, we
have a large variation in terms of the number of commits per
project based on the standard deviation (73.19). This means
that the size of solutions to Issues is varied. For example,
some Issues need a single commit to be solved, while some
others could need a large number of commits done probably
by different contributors (e.g., a development team).

VI. FEATURE SELECTION
In our dataset, we identify four main features that can be
used to distinguish between PR-Issue links. These features
are Title, Body, Comment and Label of Issues and PRs. We
select these features because they include much information
in terms of the textual representation of their Issues and
PRs. For instance, Titles provide short-term descriptions.
Bodies include long-term descriptions. Comments represent
the communication between the contributors. Labels refer to
the types of Issues and PRs.

In this section, we present the text size for each feature
to better understand their information amounts. We calculate
the text size in terms of word count. To do so, we first
pre-processed the text by cleaning up text (e.g. removing
unwanted words and punctuation marks). Then we count the
number of words represented by each feature text.

A. FEATURE PRE-PROCESSING
We apply the following standard pre-processing steps to
clean the dataset.

1) Tokenization: we tokenize (split) each feature text to
a list of words. The tokenization strategy considers
space as a separator and discards punctuation marks
and unnecessary symbols. To do so, we use the "spaCy"
library to end up with useful words.

2) Stopword Removal: in this step, we remove all stop-
words that frequently occur in the word list but do not
carry any meaning (e.g. the). We use "NLTK " (Natural
Language Toolkit) to remove all stop-words.

3) Stemming: it is a process of reducing words to their
root form. We use one of the most popular stemming
algorithms, "Porter stemmer", provided by NLTK li-
brary. Moreover, we convert the entire text into lower
case characters
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FIGURE 8: The number of words counted from Issue and PR
titles.

B. WORD-BASED MEASUREMENT RESULT
1) Title Word Count
Figure 8 shows the distribution of the Title sizes in terms
of the number of words for Issues and PRs in our dataset.
We can observe that the Issue Titles are slightly bigger than
the PR Titles, but almost both have the same median value.
The Title sizes range from one to 11 words and from one
to 10 words for Issues and PRs, respectively. The Title sizes
consider short compared with Body sizes.

2) Body Word Count
Figure 9 illustrates the distribution of the Body word sizes
for Issues and PRs in our dataset. We can see that the Body
sizes of the Issues are relatively vast bigger than the Body
sizes of the PRs. The median value is 52 in the case of Issue,
whereas the median value is 21 in the case of PR. The reason
behind this size variation between Issue and PR is that the
contributors need much more words to explain better a new
feature or bug (Issue ) while needing fewer words to explain
its solution (PR).

3) Comment Word Count
Figure 10 illustrates the distribution of the Comment word
sizes for Issues and PRs in our dataset. We can observe that
the Comment sizes of the Issues are relatively bigger and
much spread than the Comment sizes of the PRs. The median
values are relatively close to each other, 46 and 39 for Issue
and PR, respectively. As same as the median values, the mean
values are also close to each other. Hence the average values
of words are 145 and 140 for all Comments in Issue and PR,
respectively. The reason behind this size variation between
the Issue’s Comments and the PR’s Comments is that, in
many cases, we found a single Issue linked with more than
one PR. Therefore, The contributors comment in one place

FIGURE 9: The number of words counted from Issue and PR
bodies.

FIGURE 10: The number of words counted from Issue and
PR comments.

in case of Issue, whereas commenting in many places in case
of many PRs.

4) Label Word Count
Figure 11 shows the distribution of the Label sizes for Issues
and PRs in our dataset. As same as the Title sizes, the Label
sizes are small compared with the Body and the Comment
Sizes. The Label size range from one to 6 and from one to
3 for labelled Issue and PR, respectively. Figure 12 repre-
sents the top 20 Labels occurrences that occurred in more
than 1000 times for all Issues and PRs in our dataset. We
can obviously observe that the “bug" label has the biggest
share (13518 times) among the other Labels. The next two
Labels “enhancement", and “closed" occurred more than

8 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3232982

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5000 times, and the next two Labels “android", and “feature"
occurred more than 3000 times. Finally, the rest Labels
occurred between 1000 and 2000 times.

FIGURE 11: The number of words counted from Issue and
PR labels.
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FIGURE 12: The number of labels frequency.

VII. FEATURE ANALYSIS
To analyze the relationships between Issues and their linked
PRs, our feature analysis is based on measuring the similarity
between features of Issues and PRs belonging to the same
PR-Issue link. For a given PR-Issue link, we calculate the
similarity between the Issue title and the PR title, the Issue
body and the PR body, the Issue comment and the PR
comment, and the Issue label and the PR label. To do so, we
rely on four text similarity metrics that are commonly used
in NLP. As lexical metrics, we select Jaccard, Cosine and

Levenshtein metrics that are based on different measurement
techniques. As a semantic metric, we rely on the BERT
similarity metric. We select these metrics because they are
commonly used in the literature. Each similarity metric could
describe the data similarity from a different point of view. For
example, Jaccard focuses on similar words regardless their
frequency unlike Cosine. Levenshtein measures the similarity
at the level of characters unlike the other metrics that rely
on words. This means that Levenshtein is able to identify
similar words in case of abbreviations and typos. Unlike the
other lexical similarity metrics, BERT measures the semantic
(meaning) similarity between texts.

In the remaining of this section, we present how to measure
the similarity based on these four metrics. Then, we discuss
the results of comparing features of Issues and PRs based on
the four metrics.

A. SIMILARITY METRIC
1) Jaccard
Jaccard metric, also known as Jaccard Similarity Coefficient,
is used to measure the similarity and diversity of two texts
based on the lexical structure of their contents. The Jaccard
similarity score between two texts is calculated based on the
ratio between the number of unique common words and the
total number of unique words in both texts. In other words,
Jaccard similarity Jaccard(T1, T2) measures the similarity
between text T1 and text T2 by dividing the number of unique
common words in T1 and T2 on the total number of unique
words in T1 and T2. Jaccard similarity scores are formally
obtained based on Equation 1:

Jaccard(T1, T2) = 1− words(T1) ∩ words(T2)

words(T1) ∪ words(T2)
(1)

where words(T ) denotes the set of distinct words in text T .
Jaccard similarity scores range from 0 to 1 where 0 means no
similarity and 1 refers to complete similarity.

2) Cosine
Cosine similarity measures the lexical similarity between two
texts based on their term-frequency vectors (embeddings).
A term-frequency vector of a given text is represented by
attributes that record the frequency of distinct words in that
text. Cosine similarity measures the cosine angle between
the two vectors by computing the dot product of the vectors
divided by the product of their lengths. Cosine similarity
scores are formally obtained based on Equation 2:

Cosine(T1, T2) = cos(θ) =

−→
T1.
−→
T2

∥
−→
T1∥∥

−→
T2∥

(2)

where
−→
T1 and

−→
T2 denote to the vector of text T1 and text T2,

respectively.
For example, two identical texts represented by two sym-

metrical vectors have a Cosine similarity of 1, two orthogonal
vectors have a Cosine similarity of 0, and two opposite
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vectors have a Cosine similarity of -1. However, the Cosine
similarity is usually used in positive space, where the out-
come scores are neatly bounded in [0, 1]. A score closer to
0 implies less similarity, whereas a score closer to 1 implies
more similarity.

3) Levenshtein
Levenshtein similarity measures the lexical similarity be-
tween text T1 and text T2 based on the minimum number
of characters that need to be edited to make T1 identical to
T2 and the size of T1 and T2. An edit is defined by either
an insertion, a deletion, or a replacement of a character. The
lower number of edits required, the more the texts are similar
to each other.

For two Texts T1 and T2 with character lengths ∥T1∥ and
∥T2∥, the Levenshtein distance is defined as follows:

Levenshtein(T1, T2) = 1− minEdit(T1, T2)

max(∥T1∥, ∥T2∥)
(3)

The scores of Levenshtein similarity range from 0 to 1,
where 0 refers to no similarity and 1 denotes to complete
similarity.

4) BERT
BERT refers to Bidirectional Encoder Representations from
Transformers. It is one of the most popular deep-learning
models for NLP. BERT is a pre-trained language-based trans-
former model that is developed by Jacob et al. in Google [24].
The BERT transformer model can be used to embed (i.e.
vector representations) the semantics of texts. Therefore, it
can be used hand in hand with a similarity measurement to
measure the semantics between two texts. In this paper, we
used the BERT transformer that works based on “bert-base-
nli-mean-tokens" pre-trained model to measure the semantic
similarity score between two texts using the Cosine measure-
ment. The BERT transformer transforms text T1 and text T2

to vector
−→
T1 and

−→
T2, respectively. Then, the similarity score

is obtained using Equation 2.

B. SIMILARITY RESULTS
The results of the four feature analyses based on the four sim-
ilarity metrics are shown in Figure 13. It illustrates the box-
whisker plots of Jaccard, Cosine, Levenshtein, and BERT
similarity scores for Title, Body, Comment, and Label of
Issues and their linked PRs in our dataset.

1) Title Similarity Results
The results show that Levenshtein and BERT have a similar
distribution as their box-plots are almost symmetric and
identical. Based on their results, the titles of Issues and their
linked PRs have similarity scores of 55.3% and 56.3% on
average, respectively. As Levenshtein similarity is sensitive
to the lengths of the texts, its results show that titles of the
Issues and their linked PRs have akin lengths for most of the
PR-Issue links in our dataset.

Jaccard has a similar distribution as Levenshtein and
BERT but with lower scores. Although Q1, Q2 and Q3
have different values, the number of elements (i.e., similarity
scores) between Q1-Q2 and Q2-Q3 are almost the same.
The small difference in the position of the Jaccard box-plot
compared to Levenshtein and BERT ones is because Jaccard
ignores similarities coming from word frequency. As it is a
small difference, we do not have many words that have a
frequency.

The similarity scores obtained by Cosine have a com-
pletely different distribution compared to the other similarity
metrics. Based on its results, 25% of PR-Issue links do not
have any similarity (i.e., zero similarity) between their titles.
Moreover, most of the remaining similarity scores are spread
between zero and 42.9%. The reason behind that returns to
the nature of how Cosine similarity is calculated. As the sizes
of titles of Issue and PR are small (c.f., Figure 8, where the
average title size is five words), we have less probability
of identifying co-located frequency words. This negatively
affects the Cosine similarity scores.

2) Body Similarity Results

The results show a kind of agreement in the scores of Jaccard
for about 50% of bodies (i.e., a short box-plot). However,
these scores are less than the similarity scores of Levenshtein
and BERT. This means that bodies have many frequent
words. The diversity in the Levenshtein and BERT scores
denotes to the variability in the frequency of words over the
different bodies. This is justified by the long box-plots of
Levenshtein and BERT.

The similarity scores obtained by Levenshtein are a little
bit higher than the ones obtained by BERT. The median sim-
ilarity scores are 33% and 29.7% for Levenshtein and BERT,
respectively. The reason behind the aforementioned results
is due to the nature of the input texts and how Levenshtein
and BERT scores are computed. For example, we have high
Levenshtein and BERT scores as the textual representation of
bodies for Issues and their linked PRs have similar words in
terms of spelling and counts and a similar meaning.

The similarity scores obtained by Cosine are poor. Based
on their results, 25% of bodies do not have any similarities.
Furthermore, the next 50% of bodies have between zero and
20%.

3) Comment Similarity Results

The similarity scores obtained for Comment are very close
to that obtained for Body. The similarity scores obtained by
Levenshtein and BERT are higher than the scores obtained
by Jaccard and Cosine from the comments of Issues and their
linked PRs. And the similarity scores obtained by Leven-
shtein are varied spread than the similarity scores obtained by
BERT. However, the median similarity scores are 24.3% and
22.9% for Levenshtein and BERT, respectively. Moreover,
they have very close similarity scores on average of 26% and
25.7% for Levenshtein and BERT, respectively.
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FIGURE 13: The similarity scores between the features of Issues and the features of their linked PRs.

The similarity scores obtained by Jaccard and Cosine are
poor. Based on their results, the average similarity scores
between the comments on Issues and their linked PRs are
12.4% and 16.4%, respectively. Moreover, more than 75%
of their similarity scores are spread between zero and 26%.
The most remaining similarity scores are spread between
26% and 30%, whereas a few score cases spread between
30% and 66.6%. This is due to the fact that the contributors
that comment on the Issues may have different roles than
the contributors who comment on the PRs. For example, Is-
sue comments could describe a new feature’s specifications,
whereas the comments on PRs related to that Issue describe
the implementation evaluation for that feature.

4) Label Similarity Results
The similarity scores obtained for the Label are very different
to that obtained from other features. The similarity scores
obtained from the labels of Issues and their linked PRs
by Jaccard are the highest. Moreover, the similarity scores
obtained by Levenshtein and BERT are high too. The median
similarity scores are 50%, 44.4% and 44.4% by Jaccard, Lev-
enshtein and BERT, respectively. Moreover, they have very
close average similarity scores of 57.5%, 52% and 58.3% by
Jaccard, Levenshtein and BERT, respectively. This is due to
the repetition of using the labels (see Figure 12). There are
many labels that are well-known by social collaborators and
used frequently to label Issues and PRs.

We can observe that the similarity scores obtained by
Cosine are not normally distributed, where most similarity
scores are considered as out-layers. This is because of the
short number of labels for Issues and their linked PRs. After
investigation, we found that many Issues and PRs have one
or two labels (see Figure 11), and this negatively affects the
scores obtained by Cosine.

VIII. THREATS TO VALIDITY
During this research work, we identified a set of concerns as
threats to validity.

A. INTERNAL THREATS
- In GitHub, many (sub)projects may be hosted in the

same repository (called monorepo). If the monorepo

includes non-Android projects in addition to an Android
project, the proposed scraper tool fetches all projects to-
gether, and stores them in the dataset as target projects.
Therefore, some PR-Issue links in the dataset are not
from Android projects. However, after a focused inspec-
tion, this case does not frequently occur where only 6%
of all PR-Issue links are from non-Android projects.

- In our dataset, there are many projects with only one
PR-Issue link which give an impression that such links
are the reason behind the promising obtained results.
However, these links form just 8% of the dataset’s links
which will not impact the obtained results. Also, either
single and multiple PR-Issue link projects are from
the same subject (Android projects), which means that
textual information of single PR-Issue links have similar
vocabularies with others.

B. EXTERNAL THREATS
- The ground-truth dataset is collected around only An-

droid applications in GitHub. In fact, we limit ourselves
to Android applications because domain-based dataset
support establishing a recommender system in that sub-
ject (Android) in contrast to the general dataset. More-
over, the domain-based dataset is to guarantee a bias-
free dataset for their uses (e.g. especially in Machine
Learning) because it shares a lot of similar vocabularies.

- In this paper, the proposed scrapper tool is used to
collect PR-Issue links only from Android applications.
This gives the first-glance impression that the proposed
scrapper tool can not be generalize to other types of
applications. In fact, the proposed scraper tool works
with any type of application hosted on GitHub.

IX. USE CASES
Among other use cases, we discuss in this section three
prominent use cases to show how practitioners can use our
dataset to perform other research.

A. IDENTIFY MISSING PR-ISSUE LINK
In GitHub, PR-Issue links are usually manually established
by contributors (developers), specifically in large projects.
However, many incidents show that contributors might forget
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or be lazy to establish these links. There are only a tiny share
of PR-Issue links are established, but a large portion of links
are missed in the development history. However, manually
recovering PR-Issue links from evolutionary development
history is a challenging, time-consuming, and error-prone
task, even for expert developers.

For this challenge, our dataset can be used with ML and
deep-learning approaches to extract the missing PR-Issue
links. It can be used to feed the learning models and make
them able to predicate the missing links. For example, our
dataset can be used to determine the appropriate features that
are useful to build a PR-Issue clustering model that aims to
group PRs and Issues that should be linked with each other.

B. IDENTIFY DOCUMENTATION-CODE TRACEABILITY
LINK
Recovering the traceability links between documentation
and source code, especially in legacy systems, is important
for various software engineering tasks. It is mandatory for
software comprehension, software maintenance and analysis,
systematic software reverse, and software collaboration. The
major challenge is to develop a methodology to recover these
types of links which are rarely explicit. However, manually
recovering Documentation-Code links from large software
projects is a boring, challenging, time-consuming, and error-
prone task.

In this case, our dataset can help to define the relationships
between the code and its documentation. It can be used
to learn from ground-truth Documentation-Code links to
recover the missing ones. We can consider that the textual
description of our PR-Issue links represents the documenta-
tion and the code represented by commits. Therefore, we can
select the appropriate features that can be used for recovering
commit code and their textual documentation.

C. RECOMMENDATION SYSTEM SOCIAL CODING
PLATFORMS
On a practical level, our dataset can be used by social coding
platforms (e.g. GitHub) to recommend PR-Issue links for
current software development. Our dataset can be helped to
develop integrated tools for these social coding platforms that
can assist the developer to easily establish these links during
development. This kind of tool will help to reduce the number
of missing links that contain much valuable information
about software development and the evolution of current
development, and document experiences and knowledge for
future development.

X. RELATED WORK
Links can be recovered from various software artefacts like
requirements, source code and documentation [25]. Many ap-
proaches are proposed to recover the links between software
artefacts based on bug tracking (e.g., Bugzilla) and version
control (e.g., Git) systems. There are many platforms that
store these links between different software artefacts like

GitHub and Bitbucket. These platforms record much informa-
tion like PR-Issue links, Issue-Commit links, Bug-Commit
links, and Documentation-Code links. Consequently, many
research and tools have been proposed to identify this type
of information. To the best of our knowledge, it has yet to be
proposed a ground-truth dataset for PR-Issue links.

In this section, we review the most closely related work in
two aspects: the ground truth datasets for the links between
software artefacts, and the applications and tools proposed
based on these kinds of ground truth datasets.

A. GROUND-TRUTH DATASET
A ground-truth dataset for linking bugs with their bug-fixes
code (commits) is proposed by Bachmann et al. [26]. The
dataset was extracted from The Apache HTTP web server
project manually based on heuristic methods. It contains
256 bugs that are linked with 472 commits. However, the
dataset is considered small and it was extracted only from one
project. Therefore, the features that are extracted from this
dataset have not been evaluated on other Bug-Commit links
placed on other projects. Bird et al. [27] expand the dataset
by adding Bug-Commit links from another two Android
projects, ZXing and OpenIntents. They also manually read
change logs and the corresponding code commits to establish
links between bugs and their linked commits. The added
Android projects result from 236 new Bug-Commit links.
However, the dataset still considers small and confined to a
few sample projects.

Mehdi et al. presented a dataset for bots’ comments in
GitHub Issue and PR based on a manual analysis [28].
The dataset represents 527 bots accounts with at most 100
comments for each account from 5,000 distinct Github ac-
counts. A diverse dataset of Java Bugs is proposed by [18].
The dataset comprises 1,158 bugs and patches classified
into eight categories extracted from eight large and popular
GitHub Java projects. However, the extraction process of the
dataset from GitHub projects is evaluated manually by a few
people (at most three persons) that are not involved in these
projects. Therefore, it could have faulty information due to
the evaluation decisions.

Yue et al. [29] proposed a dataset of duplicate PRs in
GitHub using a semi-automatic approach. The data contains
2,323 pairs of duplicate PRs collected from 26 popular open-
source projects hosted on GitHub. Moreover, it includes
duplicate relations between PRs, the meta-data and reviews
of duplicate PRs. Another dataset for duplicate repositories
on GitHub was proposed by Spinellis et al. [30]. The dataset
presents 30 thousand duplicate, cloned, and forked GitHub
projects.

Fry et al. presented a dataset for real and alias developer
IDs [31]. The data shows that 14.8 million alias developer
IDs extracted from 38 million belong to 5.4 million different
developers (2 per developer). This data might be helpful in
analyzing developer behaviour. However, the real and alias
developer dataset are classified based on some assumptions
that could not be valid for some portions of the dataset.
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All of the aforementioned ground-truth datasets are ex-
tracted manually and based on heuristic methods. However,
manually extracted datasets are time-consuming, costly, and
error-prone. Moreover, the links between software artefacts
are extracted from projects by another person who is not
involved in the development of these projects. They are
assumed to be links based on heuristic methods but not
based on explicit notation provided by projects’ contributors.
Therefore, some of these links could be faulty. However,
our ground-truth dataset is automatically extracted and based
on explicit notation by the involved contributors themselves.
This makes the links represented by our dataset Reliable and
error-free.

B. GROUND-TRUTH DATASET APPLICATION
A full-automation tool named ReLink was proposed by Wu et
al. [32]. ReLink recovered Bug-Commit links based on three
heuristics: the bug and its commit resolving time should be
close to each other; the similarity of the bug and its commit
reports; and the bug and its commit contributor should be
the same. The ReLink results have been evaluated based
on the Bug-Commit links ground-truth dataset (mentioned
in the previous subsection) that is proposed by [26] and
[27]. Further improvements of ReLink were proposed by
Bissyande et al. [33] and tested with the same ground-truth
dataset.

Several approaches have been proposed to recover Issue-
commit links using machine learning techniques. A heuristic
approach named MLink proposed by Nguyen et al. [34] used
code heuristics to recover Issue-Commit links by analyzing
the similarity of code fragments depicted in Issue reports and
commits. MLink also used the ground-truth dataset that is
proposed by [26] to measure the accuracy of the results.

Another approach proposed by Le et al. [35] introduced
RCLinker, a clustering tool to predict Issue-Commit links
based on the metadata and the textual similarity for Issues
and commits. For this purpose, the authors collected 609
Issues-Commits links dataset that was extracted from six
Apache software projects. All these projects use JIRA as the
issue-tracking system and Git as the version control. Many
approaches have been proposed that use the same RCLinker
dataset. Sun et al. proposed FRLink in [36] and PULink
in [37] to recover Issue-commit links. FRLink filtered out ir-
relevant source code related to an Issue and added non-source
documents as a feature to recover missing similarity links
compared with other approaches. PULink used positive links
(the corresponding commit fixes the Issue) and unlabeled
links (links from commits that are not found in the positive
links) to achieve better recovery performance. Moreover,
Likewise, Rath et al. [38] recovered Issue-commit links by
using different metadata and textual similarity features. For
evaluation, they extracted their own dataset from different
domains that utilized Git and JIRA. The dataset contains
4,182 Issue-commit links that are manually extracted from
six projects.

XI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel approach to extract a
ground-truth dataset for the links between PRs and Issues in
collaborative software development repositories on GitHub.
We developed the PR-Issue-Scraper tool that extracted 50369
PRs explicitly linked to 34732 Issues from 5742 Android
projects on GitHub. We select four features, Title, Body,
Comment, and Label, to better understand the relationships
between the Issues and their linked PRs. After that, we
analyzed the selected features by using four textual similarity
metrics frequently used in NLP. We compute the lexical and
semantic similarity between each feature pair of Issue and
their linked PRs using Jaccard, Cosine, Levenshtine, and
BERT. The results show that some feature similarities are
sensitive to the text length, whereas other feature similarities
are sensitive to the term frequency.

In future work, we intend to use our ground-truth dataset to
recover the missing PR-Issue links. We are planning to build
a clustering model that can recover these missing links based
on the appropriate features. Finally, we are also planning to
extend our dataset to include other domain-based projects.

REFERENCES
[1] B. Andam, A. Burger, T. Berger, and M. R. V. Chaudron, “Florida:

Feature location dashboard for extracting and visualizing feature traces,”
in Proceedings of the Eleventh International Workshop on Variability
Modelling of Software-Intensive Systems, ser. VAMOS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 100–107.
[Online]. Available: https://doi.org/10.1145/3023956.3023967

[2] F. Beck, B. Dit, J. Velasco-Madden, D. Weiskopf, and D. Poshyvanyk,
“Rethinking user interfaces for feature location,” in 2015 IEEE 23rd
International Conference on Program Comprehension, 2015, pp. 151–162.

[3] B. Bassett and N. A. Kraft, “Structural information based term weighting
in text retrieval for feature location,” in 2013 21st International Conference
on Program Comprehension (ICPC), 2013, pp. 133–141.

[4] M. Borg, O. Svensson, K. Berg, and D. Hansson, “Szz unleashed: An open
implementation of the szz algorithm - featuring example usage in a study
of just-in-time bug prediction for the jenkins project,” in Proceedings of
the 3rd ACM SIGSOFT International Workshop on Machine Learning
Techniques for Software Quality Evaluation, ser. MaLTeSQuE 2019.
New York, NY, USA: Association for Computing Machinery, 2019, p.
7–12. [Online]. Available: https://doi.org/10.1145/3340482.3342742

[5] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How misclas-
sification impacts bug prediction,” in 2013 35th International Conference
on Software Engineering (ICSE), 2013, pp. 392–401.

[6] Y. Zhou and A. Sharma, “Automated identification of security issues from
commit messages and bug reports,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
914–919. [Online]. Available: https://doi.org/10.1145/3106237.3117771

[7] Z. Yang, J. Shi, S. Wang, and D. Lo, “Incbl: Incremental bug localization,”
in 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2021, pp. 1223–1226.

[8] S. H. Tan and Z. Li, “Collaborative bug finding for android apps,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ser. ICSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1335–1347. [Online]. Available:
https://doi.org/10.1145/3377811.3380349

[9] K. C. Youm, J. Ahn, J. Kim, and E. Lee, “Bug localization based on
code change histories and bug reports,” in 2015 Asia-Pacific Software
Engineering Conference (APSEC), 2015, pp. 190–197.

[10] A. Sajedi-Badashian and E. Stroulia, “Guidelines for evaluating bug-
assignment research,” Journal of Software: Evolution and Process, vol. 32,
no. 9, p. e2250, 2020.

[11] P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs,”

VOLUME 10, 2022 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3232982

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/3023956.3023967
https://doi.org/10.1145/3340482.3342742
https://doi.org/10.1145/3106237.3117771
https://doi.org/10.1145/3377811.3380349


Journal of Systems and Software, vol. 85, no. 10, pp. 2275–
2292, 2012, automated Software Evolution. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0164121212001240

[12] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github,” in 2013 IEEE 24th international symposium on
software reliability engineering (ISSRE). IEEE, 2013, pp. 188–197.

[13] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: Transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, ser. CSCW ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 1277–1286. [Online]. Available:
https://doi.org/10.1145/2145204.2145396

[14] Github Number of Public Repository Search,
“https://github.com/search?q=is:public,” online, accessed 01/11/2022,
November 2022, search result shows more than 41M public repositories.

[15] User search, “GitHub,” online, accessed 01/11/2022, November 2022,
search result shows more than 100M users.

[16] Github Number of Repository Search, “ https://github.com/search,” online,
accessed 01/11/2022, November 2022, search result shows more than
352M repositories.

[17] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.567

[18] R. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. Prasad, “Bugs.jar: A large-
scale, diverse dataset of real-world java bugs,” in 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR), 2018,
pp. 10–13.

[19] Z. Tóth, P. Gyimesi, and R. Ferenc, “A public bug database of github
projects and its application in bug prediction,” in Computational Science
and Its Applications – ICCSA 2016, O. Gervasi, B. Murgante, S. Misra,
A. M. A. Rocha, C. M. Torre, D. Taniar, B. O. Apduhan, E. Stankova,
and S. Wang, Eds. Cham: Springer International Publishing, 2016, pp.
625–638.

[20] GitHub Inc., “Linking a pull request to an issue,” online, accessed
1/10/22, October 2022, https://docs.github.com/en/issues/tracking-your-
work-with-issues/linking-a-pull-request-to-an-issue.

[21] GitHub, Inc., “REST API,” online, accessed 1/10/22, October 2022,
https://docs.github.com/en/rest.

[22] GitHub Inc., “GraphQL API,” online, accessed 1/10/22, October 2022,
https://docs.github.com/en/graphql.

[23] GitHub Inc. , “GraphQL API,” online, accessed 1/10/22, October 2022,
https://docs.github.com/en/graphql/overview/resource-limitations.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[25] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder, and
A. Zisman, “Software traceability: Trends and future directions,” in
Future of Software Engineering Proceedings, ser. FOSE 2014. New
York, NY, USA: Association for Computing Machinery, 2014, p. 55–69.
[Online]. Available: https://doi.org/10.1145/2593882.2593891

[26] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: Bugs and bug-fix commits,” in Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 97–106. [Online]. Available:
https://doi.org/10.1145/1882291.1882308

[27] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein, “Linkster:
Enabling efficient manual inspection and annotation of mined data,” in
Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 369–370. [Online].
Available: https://doi.org/10.1145/1882291.1882352

[28] M. Golzadeh, A. Decan, D. Legay, and T. Mens, “A ground-truth
dataset and classification model for detecting bots in github issue and
pr comments,” Journal of Systems and Software, vol. 175, p. 110911,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S016412122100008X

[29] Y. Yu, Z. Li, G. Yin, T. Wang, and H. Wang, “A dataset of duplicate pull-
requests in github,” in Proceedings of the 15th International Conference
on Mining Software Repositories, ser. MSR ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 22–25. [Online].
Available: https://doi.org/10.1145/3196398.3196455

[30] D. Spinellis, Z. Kotti, and A. Mockus, “A dataset for github repository
deduplication,” in Proceedings of the 17th International Conference on
Mining Software Repositories, ser. MSR ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 523–527. [Online].
Available: https://doi.org/10.1145/3379597.3387496

[31] T. Fry, T. Dey, A. Karnauch, and A. Mockus, “A dataset and an
approach for identity resolution of 38 million author ids extracted from
2b git commits,” in Proceedings of the 17th International Conference
on Mining Software Repositories, ser. MSR ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 518–522. [Online].
Available: https://doi.org/10.1145/3379597.3387500

[32] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering
links between bugs and changes,” in Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 15–25. [Online].
Available: https://doi.org/10.1145/2025113.2025120

[33] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and L. Réveillère,
“Empirical evaluation of bug linking,” in 2013 17th European Conference
on Software Maintenance and Reengineering, 2013, pp. 89–98.

[34] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes,” in
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, 2012, pp. 1–11.

[35] T.-D. B. Le, M. Linares-Vasquez, D. Lo, and D. Poshyvanyk, “Rclinker:
Automated linking of issue reports and commits leveraging rich contextual
information,” in 2015 IEEE 23rd International Conference on Program
Comprehension, 2015, pp. 36–47.

[36] Y. Sun, Q. Wang, and Y. Yang, “Frlink: Improving the recovery of
missing issue-commit links by revisiting file relevance,” Information
and Software Technology, vol. 84, pp. 33–47, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584916303792

[37] Y. Sun, C. Chen, Q. Wang, and B. Boehm, “Improving missing issue-
commit link recovery using positive and unlabeled data,” in 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2017, pp. 147–152.

[38] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Mäder,
“Traceability in the wild: Automatically augmenting incomplete trace
links,” in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 834–845. [Online]. Available:
https://doi.org/10.1145/3180155.3180207

ZAKAREA ALSHARA received the Ph.D. de-
gree in computer and software engineering from
LIRMM and the University of Montpellier,
France, in 2016. He is currently an assistant pro-
fessor in Software Engineering department at Jor-
dan University of Science and Technology. More-
over, he is the team leader of collaboration with
the Compact Muon Solenoid (CMS) and the Euro-
pean Organisation for Nuclear Research (CERN)
in Geneva, Switzerland. His current research in-

terests include Software maintenance, Software evaluation, Software archi-
tecture, and Software modeling. He has published many papers in various
international journals, conferences and workshops on these topics.

14 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3232982

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.sciencedirect.com/science/article/pii/S0164121212001240
https://www.sciencedirect.com/science/article/pii/S0164121212001240
https://doi.org/10.1145/2145204.2145396
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.567
https://doi.org/10.1145/2593882.2593891
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/1882291.1882352
https://www.sciencedirect.com/science/article/pii/S016412122100008X
https://www.sciencedirect.com/science/article/pii/S016412122100008X
https://doi.org/10.1145/3196398.3196455
https://doi.org/10.1145/3379597.3387496
https://doi.org/10.1145/3379597.3387500
https://doi.org/10.1145/2025113.2025120
https://www.sciencedirect.com/science/article/pii/S0950584916303792
https://doi.org/10.1145/3180155.3180207


ANAS SHATNAWI is a senior research engineer
at Berger-Levrault, France. He obtained his Ph.D.
degree in Computer Science from Laboratory
of Computer Science, Robotics, and Microelec-
tronics (LIRMM) of University of Montpellier,
France. His research interest is in software reuse,
reengineering, reverse engineering and empirical
software engineering. He has published many pa-
pers in various international journals, conferences
and workshops on these topics. Contact him at

anas.shatnawi@berger-levrault.com.

HAMZEH EYAL-SALMAN received the Ph.D.
degree in software engineering from LIRMM Lab-
oratory and the University of Montpellier, France,
in 2015. He is currently an associate professor
in Software Engineering department at Mutah
University. His current research interests include
software product line engineering, software reuse,
software maintenance, and feature location. He
has published many papers in various international
journals, conferences on these topics.

DJAMEL SERIAI He is an associate professor
at University of Montpellier and a member of
the MaREL team of the LIRMM Laboratory. He
is co-head of the Software Engineering Master.
SERIAI is a senior software architect with more
than 25 years of experience as an engineer, archi-
tect, and project manager in software development
and maintenance field. and more than 20 years
of experience in innovation and related to applied
research projects.

MAAD SHATNAWI He is currently an assistant
professor in department of Electrical Engineer-
ing at Higher Colleges of Technology. His cur-
rent research interests include Data Mining and
Knowledge Discovery, Advanced Machine Learn-
ing, Optimization, and Modeling and Simulation.
He has published many papers in various inter-
national journals, conferences and workshops on
these topics.

VOLUME 10, 2022 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3232982

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	The Anatomy of GitHub
	GitHub Flow
	PR-Issue Links in GitHub

	Dataset Extraction Approach
	Dataset Model
	Repository
	Issue
	Pull-Request
	Comment
	Label
	Commit

	Dataset Analysis
	Results of Issues and PRs
	Results of Comments Related to Issues and PRs
	Results of Labels Related to Issues and PRs
	Results of Commits Related to Issues and PRs

	Feature Selection
	Feature Pre-Processing
	Word-Based Measurement Result
	Title Word Count
	Body Word Count
	Comment Word Count
	Label Word Count


	Feature Analysis
	Similarity Metric 
	Jaccard
	Cosine
	Levenshtein
	BERT

	Similarity Results
	Title Similarity Results
	Body Similarity Results
	Comment Similarity Results
	Label Similarity Results


	Threats to validity
	Internal Threats
	External Threats

	Use Cases
	Identify Missing PR-Issue link
	Identify Documentation-Code traceability link
	Recommendation System Social coding platforms

	Related Work
	Ground-Truth Dataset
	Ground-Truth Dataset Application

	Conclusion and Future work
	REFERENCES
	Zakarea ALSHARA
	Anas SHATNAWI
	 Hamzeh EYAL-SALMAN
	Djamel SERIAI
	Maad SHATNAWI


