
HAL Id: lirmm-03986553
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03986553

Submitted on 13 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cell-Aware Model Generation Using Machine Learning
Pierre D’hondt, Aymen Ladhar, Patrick Girard, Arnaud Virazel

To cite this version:
Pierre D’hondt, Aymen Ladhar, Patrick Girard, Arnaud Virazel. Cell-Aware Model Generation Using
Machine Learning. Frontiers of Quality Electronic Design (QED), Springer International Publishing,
pp.227-257, 2023, 978-3-031-16344-9. �10.1007/978-3-031-16344-9_6�. �lirmm-03986553�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03986553
https://hal.archives-ouvertes.fr

Pierre d’Hondt
STMicroelectronics, 38920 Crolles, FR, and LIRMM, University of Montpellier / CNRS,
34095, Montpellier, FR, e-mail: pierre.dhondt@st.com

Aymen Ladhar
STMicroelectronics, 38920 Crolles, FR, e-mail: aymen.ladhar@st.com

Patrick Girard, Arnaud Virazel
LIRMM, University of Montpellier / CNRS, 34095, Montpellier, FR
E-mail: patrick.girard@lirmm.fr, arnaud.virazel@lirmm.fr

Chapter 1
Cell-Aware Model Generation by Using
Machine Learning

Pierre d’Hondt, Aymen Ladhar, Patrick Girard, Arnaud Virazel

Abstract

Characterizing cell-internal defects of standard cell libraries is an essential step to
ensure high test and diagnosis quality. However, such a characterization process,
called cell-aware model generation, usually resorts to extensive electrical defect
simulations that are costly in terms of run time and utilization of SPICE simulator
licenses. Typically, the generation time of cell-aware models for few hundreds of
cells may reach up to several months considering a single SPICE license. This chap-
ter presents a methodology that does not use any electrical defect simulation to pre-
dict the response of a cell-internal defect once it is injected in a standard cell. More
widely, this methodology uses existing cell-aware models (generated from electrical
simulations) from various standard cell libraries and technologies to predict cell-
aware models (learning-based) for new standard cells independently of the technol-
ogy. Experiments done on several industrial cell libraries using different technolo-
gies demonstrate the accuracy and performance of the prediction method.

1 Introduction

Digital Integrated Circuits (ICs) are commonly synthesized with pre-defined librar-
ies of standard cells of various nature and complexity. As the semiconductor indus-
try moves to increasingly smaller geometries, new types of manufacturing defects
appear and need to be targeted by industrial test flows. Conventional fault models
like stuck-at, transition, as well as layout-aware (e.g. bridging) fault models are be-
coming less effective for ensuring desired test and diagnosis quality levels. Indeed,
these fault models only consider faults at the boundary of library cells. However, an
increasing number of defects in circuits fabricated with the most recent manufac-
turing technologies occur within the logic cell structures. They are called intra-cell
or cell-internal defects [1-3]. These defects are only covered fortuitously with con-
ventional fault models, and hence not surprisingly, these defects are found to be the
root cause of a significant fraction of test escape [4].

2

Cell-Aware (CA) test and diagnosis have been proposed recently to target those
subtle defects in ICs requiring highest product quality [5-9]. The realistic assump-
tion under this concept is that the excitation of a defect inside a cell is highly corre-
lated with the logic values at the input pins of the cell [10-11]. A preliminary step
when performing CA test and diagnosis is to characterize each standard cell of a
given library with respect to all possible cell-internal defects. Analog (SPICE) sim-
ulations are performed to identify which cell-internal defects are detected by which
cell patterns. The simulation results are encoded in a cell-internal-fault dictionary
or CA model (also referred to as CA fault model or CA test model in the literature)
[12-13].

One bottleneck of CA model generation is that it requires extensive computa-
tional efforts to characterize all standard cells of a library [14-15]. Typically, the
generation time of cell-aware models for few hundreds of cells may reach up to
several months considering a single SPICE license. Reducing the generation run
time of CA models and easing the characterization process is therefore mandatory
to faster deploy the CA methodology on industrial ICs and make it a standard in the
qualification process of silicon products [16]. To this end, Machine Learning (ML)
can be used to drastically accelerate the CA model generation flow.

This chapter presents a comprehensive flow experimented on industrial cell li-
braries and preliminary introduced in [17]. The flow is based on a learning method
that uses existing CA models of various standard cells developed using different
technologies to predict CA models for new standard cells independently of the tech-
nology. This is the first work to address this problem since previous works on ML
focused on cell library characterization without defect injection [18-20]. Experi-
ments performed on a standard cell population of reasonable size (about two thou-
sands of cells from different technology nodes and transistor sizes) show that the
generation time of CA models can be reduced by more than 99% (a few hours in-
stead of almost 3 months when CA models are generated using a single SPICE li-
cense). Part of these results are extracted from [17] in which the proposed flow has
been experimented on combinational cells of industrial libraries.

The remainder of this chapter is organized as follows. Section 2 gives some back-
ground on standard cell characterization, first for design purpose, and then for test
and diagnosis purpose. The last part of the section explains why using ML for cell
characterization can help reducing the generation time of CA models. Section 3
presents the ML-based CA model generation flow and details the two main steps of
the flow, namely the generation of training data and the generation of new data.
Section 4 shows how cell transistor netlists and cell-internal defects are represented
and manipulated by the proposed methodology. Section 5 presents experimental re-
sults gathered on industrial cell libraries and proposes a performance comparison
with a simulation-based approach. Section 6 presents the hybrid CA model genera-
tion flow developed for an industrial usage of the ML-based methodology. Section
7 summarizes the contribution and concludes the chapter.

3

2 Background on Standard Cell Characterization

2.1 Standard Cell Characterization for Design Purpose

Digital circuit designers use pre-defined standard cells to synthesize circuits with
various sizes and complexities [21-27]. As the simulation of a full circuit design can
take a huge amount of time, designers rely on standard cell characterization, a pro-
cess that produces simple models of functionality, timing, and power consumption
at the cell level. The (simplified) design and characterization flow for a standard
cell is summarized in Fig. X.0. It starts with the functional specification, which de-
scribes the logical function of the cell (AND, flip-flop, etc.) by using a Hardware
Description Language (HDL). The next step defines the cell’s transistors and their
connections in a SPICE netlist. This netlist is known as the cell’s schematic or struc-
ture. The layout describes the physical implementation of the cell on silicon, using
several layers and materials (metal, polysilicon, …) [28], and is designed from the
SPICE netlist. A parasitic extraction is then performed on the obtained layout, in
order to specify the parasitic resistors and capacitors introduced in the physical im-
plementation. The parasitic components are appended to the SPICE transistors
netlist in the Detailed Standard Parasitic Format (DSPF).

Cell characterization for design purpose uses the generated cell descriptions (also
called cell views) to perform electrical simulations of standard cells and extract the
power and delay information, as well as the identification of timing constraints
(setup and hold times). Typically, cell characterization requires the definition of
global parameters such as Process, Voltage, and Temperature, known as PVT cor-
ners, and global constraints such as wire loads and time limits for transitions. The
cell schematic and layout are iteratively modified until quality and constraint re-
quirements are met in terms of functionality, timing, and power consumption.

Once done, data describing every aspect (transition time, internal power, capac-
itance, sequential cells constraints, etc.) of the cell are written to dedicated files,
known as cell models. By using electrical simulations considering different values
of the global parameters, cell models are created to determine the behavior of stand-
ard cells in every condition that may occur during the lifetime of the circuit.

4

Fig. X.0 Schematized process of standard cell creation and characterization

2.2 Cell Internal Defect Universe

The first step of a standard cell characterization process for test and diagnosis pur-
pose (i.e., CA model generation) is to extract all potential and realistic defects
within each cell to be able to simulate their effect in a defective cell [29-33].

Figure X.1 gives an example of internal defects that may occur at the cell level.
These defects can be classified according to two main categories:

• Transistor defects, which are defects occurring at the transistor ports (source,
drain, gate and bulk). These defects can be modeled as short or open defects at
the transistor ports. As illustrated in Fig X.1.a, for a CMOS transistor, six shorts
(gate-drain, source-drain, gate-source, and each port to bulk) and three open
defects (gate, source and drain) can be identified. These nine defects are added
to the potential defects list for every transistor in the standard cell.

• Inter-transistor defects, which are defects occurring at the interconnexion be-
tween two different transistors. These defects can also be modeled as short or
open defects between two internal nodes. Their existence is bound to the actual
layout of the cell (e.g., two close polygons may be defectively shorted), so in-
ter-transistors defects require layout extraction to be identified.

Functional
Specifications

Layout
Design

HDL
Representation

Cell Layout
GDS II

Schematic
Design

Spice
Netlist

Parasitic
Extraction

DSPF

Cell Analysis

Timing Power Functionality

Standard
Cell Models

Meet
requirements

?

Model Generation

no

yes

5

Figure X.1: (a) Illustration of the six short defects and three open defects that can affect a CMOS

transistor’s ports (b) Example of cell-internal defects in a simple structure made of various transistors

Figure X.2 gives an example of inter-transistor defects and their locations on the
cell layout. There are two possible solutions to extract inter-transistor defects. The
first one consists in reading the layout database of each standard cell and creating a
SPICE transistor netlist in the DSPF format including parasitic elements like resis-
tors and capacitors. These elements represent the list of inter-transistor defects to be
considered during the characterization. A parasitic capacitor exists between two
polygons that are supposed not to be connected. Consequently, the location of a
potential short defect and a defective resistor can become an open defect. Even if
this method is easy to apply, its main drawbacks are the huge number of parasitic
elements listed by the DSPF netlist (on average, 61 times the number of transistors
in the cell) and the fact that some of these parasitic elements cannot be considered
as realistic defect locations (e.g., the distance between two nets may be large enough
to ensure non-defective manufacturing but still described by a small value parasitic
capacitor, some layers are not sensitive to open defects but still described with their
own resistors, etc.). In addition, several parasitic elements are equivalent, and there
is no solution to recognize them without characterization (e.g., a single physical net
is described by several serial resistors and any defect on one of these resistors is
equivalent to a defect on the whole net).

To address these limitations, a second method based on Design Rule Checking
(DRC) can be used. This solution allows the localization of neighbored internal nets
as well as the localization of potential open defects that can be identified for the cell

D
G

S

Bulk

M1,2 & PO shorts

G-S short

D-S short

D-G short

D Opens

G Opens

S Opens

CO & Via1 Opens

G delay

G: Gate
S: Source
D: Drain

CO : COntact
M: Metal
PO: POly

(a)

(b)

6

characterization. The DRC-based method limits the number of potential defect lo-
cations to 4.3 times the number of transistors in the cell, on average.

Fig. X.1: Example of inter-transistor defects

2.3 Standard Cell Characterization for Test and Diagnosis
Purpose

A typical CA model generation flow, as shown in Fig. X.3, has as input a SPICE
netlist representation of a standard cell which is usually derived from a layout de-
scription, e.g., a GDSII file. This DSPF cell netlist is then used by an electrical
simulator to simulate each potential defect against an exhaustive set of stimuli.
Those stimuli include static (one vector) and dynamic (two vectors) input patterns
of the cell (called cell-patterns in the sequel). Once the simulation is completed, all
cell-internal defects are classified into defect equivalence classes with their detec-
tion information (required input values for each defect within each cell) and are
synthetized into a CA model. As standard cells may have more than ten inputs, and
thousands of cells with different complexities are usually used for a given technol-
ogy, the generation time of CA models for complete standard cell libraries of a given
technology may reach up to several months, thus drastically increasing the library
characterization process cost.

Figure X.2 Conventional cell-aware model generation flow

Analog Defects
Simulation

Cell-Aware Model
Generation

Netlist
&

Defects
Simula0on

results CA models

7

Once the CA model of a given standard cell is generated, it can be used either
for Automatic Test Pattern Generation (ATPG) or for fault diagnosis:

• ATPG usage. Using the CA models, which is a dictionary mapping cell-patterns
to the cell-internal faults they detect, an ATPG tool identifies for each cell in
the CUT the minimum set of stimuli detecting all cell-internal defects. Then, it
generates test patterns exercising this test stimuli at the input pins of the cell
under test and ensures the fault propagation to an observation point.

• Fault diagnosis. A diagnostic tool extracts the failing and passing logic values
at the input pins of the defective cell. This information is then matched with the
CA model of the defective cell in order to identify the suspect internal defect.

2.4 Cell-Aware Model Generation: A Machine-Learning
Friendly Process

Machine learning can be used to significantly accelerate the CA model generation
process. The motivation behind the use of ML is the result of several observations
made while performing comparisons between several CA models coming from dif-
ferent standard cell libraries and technologies:

• Several cell-internal defects, such as stuck-open defects, are independent of the
technology and transistor size [34-35].

• For the same function, two cell-internal structures are usually quite similar for
two different technologies.

• Detection tables for static and dynamic defects, in the form of binary matrices
describing the detection patterns for each cell-internal defect, are ML friendly.

• CA models may change with respect to test conditions and PVT corners. In
fact, CA model generation for the same cell with different test conditions may
exhibit slight differences. Few defects can be of different types (i.e., static or
dynamic) or may have different detection patterns. Since CA models are gen-
erated for specific test conditions and can be used with different ones, it may
lead to inaccurate characterization. This inaccuracy is usually allowed in indus-
try since it is marginal. This indicates that we can also tolerate few error per-
centages in the ML-based prediction.

• Very simple CA models are used to emulate short and open defects, for which
resistance values are often identical for all technologies.

• A large database of CA models is usually available and can be used to train a
ML algorithm.

All these observations intuitively indicate that CA model generation through ML
is possible. However, the first challenging task is to be able to describe cell transis-
tor netlist as well as corresponding cell-internal defects in a uniform (standardized)
manner, so that a ML algorithm can learn and infer from data irrespective of their

8

incoming library and technology. Indeed, similar cells (e.g., cells with same logic
function, same number of inputs and same number of transistors) may be described
differently in transistor-level (SPICE) netlists of various libraries (e.g., a transistor
label does not always correspond to the same transistor in two similar cells coming
from two different libraries). It is therefore mandatory to standardize the description
of cells and corresponding defects for the ML-based defect characterization meth-
odology. Heuristic solutions developed to this purpose are described in Section 4.
The second challenging task is to find a way to represent all these information /
input data so that they can be ML friendly. A matrix description of cells and corre-
sponding defects is used to this purpose.

3 Learning-Based Cell-Aware Model Generation Flow

The learning-based CA model generation flow initially introduced in [17] is used to
predict the behavior of a cell (combinational or sequential) when affected by intra-
cell defects. The flow is sketched in Fig. X.4. It is based on supervised learning that
takes a set of input data and known responses (labeled data) used as training data,
trains a model to classify those data, and then uses this model to predict (infer) the
class of new data.

Fig. X.4: Generic view of the ML-based CA model generation flow

Figure X.4 depicts the two main steps of the supervised learning process used for
ML-based CA model generation. A Random Forest Classifier is used for predicting
the class of each new data instance. This choice comes from the results obtained
after experimenting several learning algorithms (k-NN, Support Vector Machine,
Random Forest, Linear, Ridge, etc.) and observing their inference accuracies.
The first main step of the CA model generation flow consists in generating a Ran-
dom Forest model and to train it by using the training dataset. A Random Forest
Classifier is composed of several Decision Tree Classifiers, which are models pre-
dicting class of samples by applying simple decision rules. During training, a Deci-
sion Tree tries to classify data samples and its decision rules are modified until it
reaches a given quality criterion. Then, the Forest averages the responses of all
Trees and outputs the class of the data sample.

Model
Training Prediction

Random Forest Classifier

CA-Matrix
Creation

Trained ModelCA-MatrixCA Models

CA-Matrix
Creation

Library
Cells

Defects
List

CA New Data

Cell
patterns

New CA-Models

+ +

9

The second main step consists in using the Random Forest Classifier to make pre-
diction (or inference) when a new data instance has to be evaluated. Prediction for
a new data instance amounts to answer the question: “Does this stimulus detects this
defect affecting this cell?”. Answering this question allows obtaining a new CA
model for a given standard cell.

3.1 Generation of Training Data

Training data are made of various and numerous CA models formerly generated
by relying to brute-force electrical defect simulations. For each cell (combinational
or sequential) in a library, the CA model is transformed into a so-called CA-matrix
and filled in with meaningful information. Cells with the same number of inputs
and having the same number of transistors are grouped together to form the Training
dataset.

The CA-matrix creation flow is depicted in Fig. X.5. The flow starts by rewriting
the CA model so that it can be ML friendly. To this end, the CA model file is parsed
and its content is organized into a matrix which contains numbers and categories of
certain values (more details are given later on). Then, it identifies the activation
conditions of each transistor inside the cell with respect to input stimuli. Once the
activation conditions for each transistor have been identified, transistor renaming is
done. This is a critical step in this flow since it allows the usage of the training data
across different libraries and technologies. Finally, the CA-matrix is created with
the above information.

Fig. X.5: CA-matrix creation flow

Table I shows an example of a training dataset for a combinational NAND2 cell. It
is composed of four types of information:

• Cell patterns and responses. This gives the values applied on inputs (A, B) of
the cell as well as the cell response on output Z. As can be seen, the test pattern
sequence provides all the possible input stimuli that can be applied to the cell.
These stimuli must also be efficient to detect sequence depending defects like
stuck-open defects. For this reason, a four-valued logic algebra made of 0, 1, R
and F is used to represent input stimuli in the CA-matrix. R (resp. F) represents
a Rising (resp. Falling) transition from 0 to 1 (resp. from 1 to 0).

• Transistor Switching Activity. This indicates the activation conditions of each
transistor in the cell schematic. Each transistor can be in the following state:

CA Model
Parsing

CA-Models
Active/Passive

Transistor
Identification

Transistor
Renaming

Final
CA-Matrix
Creation

CA-Matrix

Commenté [AV1]: Peux-tu donner en une phrase de plus en
quoi cela consiste

10

active (1), passive (0), switching to active state (R), switching to passive state
(F).

• Defect description. This gives information about defect locations inside the cell
transistor schematic. This part contains a column for each transistors’ ports. In
Table I, ‘N1_D’ stands for the drain port of the NMOS transistor named N1,
and ‘N1_S’ for its source port. In these columns, a ‘1’ (resp. ‘0’) indicates that
the port is concerned (resp. non-concerned) by the described defect. For exam-
ple, D15 is a short between the drain and the source of transistor N1, so columns
‘N1_D’ and ‘N1_S’ contains a one, while other columns are filled with zeros.
The name and type of each defect are also given in this description. The matrix
also includes rows describing the cell with no defects (‘free’). This is presented
in more detail in Section 4.4.

• Defect detection. This is the class of the data sample (the output of the ML
classifier). A value ‘1’ (‘0’) means that the defect is detected (undetected) by
the cell pattern.

The first three types of information constitute the inputs of the ML algorithm.

TABLE I. EXAMPLE OF TRAINING DATASET FOR A NAND2 CELL
Cell inputs &

responses
Transistor switching

activity
Defect

description
About
defect

 Defect
detection

A B Z N0 N1 P0 … N1_D N1_G N1_S … name type fZ
0 0 1 0 0 1 … 0 0 0 … free free 0
0 1 1 0 1 1 … 0 0 0 … free free 0
0 F 1 0 F 1 … 0 0 0 … free free 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 1 1 0 1 1 … 1 0 1 … D15 short 1
1 1 0 1 1 0 … 1 0 1 … D15 short 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Fig. X.6: Block-level representation of a scan flip-flop example

In order to illustrate the various steps of the CA-matrix creation flow in the case of
sequential cells, let us consider the block-level representation of a scan flip-flop as
depicted in Fig. X.6. It consists of three main blocks (MUX, MASTER latch and
SLAVE latch) plus two transmission gates. It has four inputs (D, TI, TE, CLK), one
virtual input (Q-), and one output (Q). The virtual input represents the value loaded
in the flip-flop before applying the test stimulus.

Input selector
MUX

MASTER
latch

SLAVE
latch

TE

D

TI

CLK

CLK
Q

CLK

11

TABLE II. EXAMPLE OF TRAINING DATASET FOR A SCAN FLIP-FLOP WITH A NON-INVERTING
OUTPUT. THE CELL HAS FOUR PHYSICAL INPUT PINS: DATA (D), CLOCK (CLK), TEST ENABLE (TE),
TEST INPUT (TI), AND A VIRTUAL INPUT (Q-) WHICH CORRESPOND TO THE PREVIOUS STATE OF THE
OUTPUT PIN (Q)

Cell inputs &
outputs

Transistor
switching activity Defect description About

defect
 Defect

detection
D CLK TE TI Q- Q N0 N1 … P0 P1 … N1_D N1_G N1_S … P3_D P3_G P3_S name type fZ
0 P 0 0 0 0 P 0 … P 1 … 0 0 0 … 0 0 0 free free 0
R P 0 1 0 R P R … P F … 0 0 0 … 0 0 0 free free 0
0 P 0 F 1 0 P 0 … P 1 … 0 0 0 … 0 0 0 free free 0
⋮ ⋮	 ⋮	 ⋮ ⋮	 ⋮ ⋮ ⋮	 ⋮ ⋮	 ⋮	 ⋮ ⋮ ⋮ ⋮ ⋮	 ⋮	 ⋮	 ⋮ ⋮ ⋮ ⋮
0 P 0 1 0 0 P 0 … P 1 … 1 0 1 … 0 0 0 D15 short 1
F P 0 1 1 F P F … P R … 0 0 0 … 0 0 1 D47 open 1
⋮ ⋮	 ⋮	 ⋮ ⋮	 ⋮ ⋮ ⋮	 ⋮ ⋮	 ⋮	 ⋮ ⋮ ⋮ ⋮ ⋮	 ⋮	 ⋮	 ⋮ ⋮ ⋮ ⋮

Table II shows an example of a training dataset for the scan flip-flop shown in Fig.
X.6. It is composed of four types of information:

• Cell inputs and outputs. This gives the values applied on inputs (D, CLK, TE,
TI, Q-) of the cell as well as the cell response on output Q. The test pattern
sequence provides all the possible input stimuli that can be applied to the cell.
For the sake of readability, they are represented partially in Table II. These
stimuli must also be efficient to detect sequence depending defects like stuck-
open defects. For this reason, a six-valued logic algebra made of 0, 1, R, F, P
and A is used to represent input stimuli in the CA-matrix. R (resp. F) represents
a Rising (resp. Falling) transition from 0 to 1 (resp. from 1 to 0). P (resp. A)
represents a Pulse 010 (resp. Anti-pulse 101) and is used for the input clock
signal of the cell.

• Transistor Switching Activity. This indicates the activation conditions of each
transistor (e.g., N0, N1, etc. for NMOS transistors, and P0, P1, etc. for PMOS
transistors) in the cell schematic. Each transistor can be in one of the following
states: active (1), passive (0), switching to active state (R), switching to passive
state (F), pulsing (P), anti-pulsing (A).

• Defect description. This gives information about all defect locations in the cell
transistor schematic. In Table II, “N1_D” stands for “defect on the drain of
transistor N1”, “N1_G” stands for “defect on the gate of transistor N1”, and so
on. The name and type of each defect are also given in this description.

• Defect detection. This is the class of the data sample (the output of the ML
classifier). A value ‘1’ (‘0’) means that the defect is detected (undetected) by
the input pattern at the corresponding output of the cell.

As for combinational cells, the first three types of information are used as inputs for
the ML algorithm.

12

3.2 Generation of New Data

New data represent the cells to be characterized and are obtained for each stand-
ard cell from the cell description, the corresponding list of defects and the cell pat-
terns. The format of a new data instance is similar to that of the training data, except
that the class (label) of the new data instance is missing. The ML classifier is used
to predict that class. As for training data, new data are grouped together according
to their number of cell inputs and transistors, so that inference can be done at the
same time for cells with the same number of inputs and transistors.

4 Cell and Defect Representation in the Cell-Aware
Matrix

This section details the various steps required to represent a standard cell in a
CA-matrix. The starting point of this process is a transistor-level (SPICE) netlist of
the standard cell. The CA-matrix must be accurate enough to clearly identify each
transistor and each net of the cell transistor schematic. This description also associ-
ates each transistor to its sensitization patterns and reports the output response for
each cell-pattern. For this reason, the cell description process requires several suc-
cessive operations that are detailed below. Note that this process is applied to all
cells in a library to be characterized.

4.1 Identification of Active, Passive and Pulsing Transistors

The first step consists in identifying active and passive transistors in the cell netlist
with respect to an input stimulus. To this purpose, a single golden (defect-free) elec-
trical simulation of the cell to be characterized is first performed. By monitoring the
voltage of cell’s transistors gates, active and passive transistors are identified for
each input stimulus (cell-pattern). An active NMOS (resp. PMOS) transistor is a
transistor with a logic-1 (resp. logic-0) value measured on its gate port. A passive
NMOS (resp. PMOS) transistor is a transistor with a logic-0 (resp. logic-1) value
measured on its gate port. Note that for sequential cells, an active NMOS (resp.
PMOS) transistor is a transistor with a logic-1 (resp. logic-0) value appearing on its
gate port during application of the test pattern whose duration is one clock cycle. A
passive NMOS (resp. PMOS) transistor is a transistor with a logic-0 (resp. logic-1)
value appearing on its gate port during application of the test pattern. Clock-signal-
controlled transistors can be pulsing (resp. anti-pulsing), which means a 0-1-0 (resp.
1-0-1) sequence appears on the transistor gate port during application of the test
pattern. Note also that a Verilog simulation, with a CDL (Circuit Description

13

Language) netlist that should be written using NMOS and PMOS primitives, can
replace the single defect-free electrical simulation. This simulation also provides
the cell output value. With this information, each cell pattern can be associated to
the list of active transistors in the cell. After this step, the CA-matrix contains the
following columns:

• Cell inputs & responses columns. They contain all input stimuli (cell patterns)
that can be applied to the cell, and the corresponding responses.

• Transistor switching activity columns. They contain six possible values in-
dicating if the transistor is active (1), passive (0), switching from an active state
to a passive one (F), switching from a passive state to an active one (R), pulsing
(P) and anti-pulsing (A). Note that ‘P’ and ‘A’ are only used for sequential
cells. Since PMOS and NMOS transistors are activated in opposite way, the '-'
character is used before the PMOS values.

Figure X.7 shows (a) the transistor schematic of a 6-transistor AND2 cell and (b) a
partial representation of the CA-matrix of the cell. Columns A and B list all the
possible input stimuli for this cell. For each stimulus, active and passive information
about each transistor of the cell is entered in the CA-matrix. For example, AB=00
leads to two active PMOS transistors and two passive NMOS transistors in the
NAND2 block and one passive PMOS transistor and one active NMOS transistor
in the output inverter.

Fig. X.7: Example of a AND2 cell: (a) cell transistor schematic and (b) partial CA-matrix representation

A B Px Py Pinv N10 N11 Ninv
0 0 -1 -1 0 0 0 1
0 1 -1 0 0 0 1 1
1 0 0 -1 0 1 0 1
1 1 0 0 -1 1 1 0

A B

A

Z

VDD VDD

Px Py

N10

N11

Pinv

Ninv

B
(a) (b)

net0

14

Fig. X.8: Example of a LATCH structure: (a) cell transistor schematic and (b) partial CA-matrix repre-
sentation

Figure X.8.a represents the transistor schematic of a LATCH such as the ones used
inside the scan flip-flop depicted in Fig. X.6. In the partial representation of the CA-
matrix of the latch (Fig. X.8.b), columns D and CLK list all the possible input stimuli
for this structure.

4.2 Renaming of Transistors

In the CA model generation flow, the goal is to train a ML algorithm using this
representation of standard cells coming from different libraries and technologies.
However, this matrix representation is dependent on the transistor names and the
order they are defined in the SPICE netlist. Two standard cells having the same
schematic may have different transistor naming and the order of transistors in the
SPICE netlist may differ as well. This is because standard cell libraries are created
several months or years apart, by different teams, with sometimes new guidelines
in terms of best practices. Without an accurate naming convention of each cell tran-
sistor in the CA-matrix, any ML algorithm will fail to predict the behavior of the
cell in presence of a defect. To mitigate this issue, a second step consisting in re-
naming all cell transistors independently of their initial names and order in the input
SPICE netlist is required. The algorithm developed to this purpose is detailed in the
following.

In order to ensure that the CA-matrix is unique for a given cell and that the CA-

matrices of two cells having the same structure have identical transistor switching
activity columns (i.e. they have the same transistor names irrespective of their in-
coming library and technology), a transistor renaming procedure is required. The

VDD

VDD
D

P3

N3
P4

P5

N5

N4

D CLK P3 P4 P5 N3 N4 N5
0 P -1 P 0 0 P 1
1 P 0 P -1 1 P 0
… … … … … … … …
R P -F P -R R P F

CLK

(a)

(b)

15

first step consists in sorting the transistors of a standard cell in an algorithmic way
that only depends on the cell’s transistors structure. A transistors structure is a vir-
tual SPICE netlist without specification of the connections between transistor gates,
i.e., only source and drain connections between transistors are listed. Once the tran-
sistors are sorted, they are consistently and unambiguously renamed. The transistor-
renaming algorithm consists of the following two steps: determination of branch
equations and sorting of branch equations.

4.2.1 Determination of Branch Equations

The transistors structure of a standard cell is composed of one or more branches.
A branch is a group of transistors connected by their drain and source ports. The
entry (or gate) of each branch is the set of transistor gates and its exit (or drain) is
the connection net between the NMOS and PMOS transistors, which drives the gate
of the next branch. A branch’s source is connected to a power and/or a ground net.
A branch equation is a Boolean-like equation describing how the transistors of the
branch are connected, using Boolean-and (symbolized by '&') for serial transistors
or serial groups of transistors, and Boolean-or (symbolized by '|') for parallel tran-
sistors or parallel groups of transistors.

Sequential cells and complex combinational cells tend to integrate transmission
gates in their structures. A transmission gate is a transistor configuration acting as
a relay that can conduct or block depending on the control signal. It is composed of
one PMOS and one NMOS transistors in parallel (i.e., sharing drain and source),
and the control signal applied to the gate of the NMOS transistor is the opposite
(i.e., NOT-ed) of the signal applied to the gate of the PMOS transistor. A transmis-
sion gate directly connects the exit of a branch to the entry of another branch. As
such, a transmission gate is considered as an autonomous branch of the transistors
structure. The entry of such a branch is the set of transistor gates plus the exit of the
previous branch, and the exit is the entry of the following branch.

Fig. X.9: Example schematic

Figure X.9 shows an example of transistors structure. It is composed of three
branches, named as α, β and γ. The two-transistors output-inverter is the simplest

VDD

P1

P2 P3

P4

NMOS
part

VDD

Pinv

Ninv

ZY

X

N5

P5

Branch α Branch β Branch γ

Commenté [AV2]: Tu devrais les mettre en évidence sur la
Figure.

16

branch whose input is net Y and output is net Z (branch γ). The inverter creates two
paths between the branch output and the power nets, so its branch equation is
(Ninv!Pinv). The equation of the left-most branch α (PMOS branch driving net X) is
(P4|(P1&(P2|P3))). In order not to rely on any name present in the SPICE netlist,
the branch equations are anonymized, i.e., a NMOS is described by '1n' and a PMOS
by '1p'. The anonymized equation of the PMOS branch driving net X in Fig. X.9 is
therefore (1p|(1p&(1p|1p))). These two branches are separated by the β branch, i.e.,
a transmission gate composed of N5 and P5, which is anonymized as '1t'.

4.2.2 Sorting of Branch Equations
Once all the branch equations for the considered cell have been determined, they

are sorted by using the following deterministic criteria:

• Level of each branch. It is defined in ascending order with respect to the cell
output (level-1 branches drive the cell output, level-2 branches drive the gates
of transistors in level-1 branches, and so on and so forth),

• Number of transistors in each branch - in ascending order,
• Anonymized branch equation - in alphabetical order.

Table III reports all the branch equations of the schematic in Fig. X.9 sorted accord-
ing to the above criteria.

TABLE III. BRANCH EQUATIONS FOR THE SCHEMATIC OF FIG.X.9

Level Number of transistors Anonymized equation Comment
1 2 (1n|1p) Branch α Inverter

2 2 1t Branch β Transmission gate

3 4 (1p|(1p&(1p|1p))) Branch γ PMOS structure

4.3 Identification of Parallel Transistors

Because of parallel transistors, the identification of branch equations is not
enough to unambiguously rename all transistors. Specifically, two or more parallel
transistors in a branch share the same drain and source, making their identification
quite difficult. For example, transistors P2 and P3 in Fig. X.9 can be either repre-
sented as “P2|P3” or as “P3|P2”, thus leading to a confusing situation. A solution to
solve this problem consists in sorting transistors inside their branch according to
their activity with respect to the input stimuli. The algorithm developed to this pur-
pose proceeds as follows. For each transistor, an activity value is computed. This
value summarizes the states of the transistor (active, passive, pulsing) for all possi-
ble stimuli applied to the cell. The input stimuli range from (0…,0) to (1…,1) for
combinational cells and from (P,0…,0) to (P,1…,1) for sequential cells. For each of
these stimuli, the transistor is either active (1), passive (0), pulsing (P) or anti-

17

pulsing (A). The activity value is defined as a word made of 0, 1, P and A, in which
the first symbol corresponds to the state of the transistor when the first stimulus is
applied, second symbol for second stimulus, and so on for the whole stimuli range.

To compute the activity values, one needs to know whether the transistor is ac-
tive or passive for each input stimulus. This information is already available in the
CA-matrix as described in Section 3. To illustrate this process, activity values for
the transistors of the AND2 cell given in Fig. X.7 are listed in Table IV.

TABLE IV. ACTIVITY VALUES FOR THE AND2 CELL IN FIG.X.7

 Old names

A B Comments Px Py N10 N11 Pinv Ninv

0 0 First stimulus 1 1 0 0 0 1

0 1 1 0 0 1 0 1

1 0 0 1 1 0 0 1

1 1 Last stimulus 0 0 1 1 1 0

Activity value 1100 1010 0011 0101 0001 1110

↓ Renaming ↓

P2 P1 N0 N1 P0 N2

Finally, transistors of each branch are sorted by their activity values (alphabetical
order) to give the final description of the cell in the CA-matrix. For the AND2 cell
in Fig. X.7, the renaming process is illustrated in Table IV.

The whole transistors renaming process for the transistors of the LATCH structure
presented in Fig. X.8 is summarized in Table V, starting with the structure branches
extraction and sorting, the computation of activity values, then the renaming process
itself.

TABLE V. ACTIVITY VALUES FOR THE LATCH STRUCTURE IN FIG.X.8

Branches
Extraction
and sorting

(left to right)

Level 1 2
Number of
transistors 2 4

Anonymized
equation (1n|1p) (1n&1n|1p&1p)

CLK D N3 P3 N4 N5 P4 P5

Commenté [AV3]: Utilises le même style pour les tableau.
Le précédant a un contour en trait épais.

18

Activity
Value within

branches

P 0 0 1 P 1 P 0

P 1 1 0 P 0 P 1

Activity value 01 10 PP 01 PP 01

Renaming of
transistors

 ↓ Renaming ↓

N1 P1 N3 N2 P3 P2

4.4 Defect Representation in the Cell-Aware Matrix

To describe cell-internal defects in a standardized and ML friendly manner, the
CA-matrix contains a set of categorical columns representing the cell’s transistors’
ports. Cell internal defects are classified into:

• Intra-transistor defects. These defects affect transistor ports (source, drain, gate
and bulk) and can be either an open defect or a short. In order to describe these
defects, all transistor ports are listed as a column in the CA-matrix (cf. Table
I). For an open defect, a value ‘1’ indicates that this transistor port is affected
by the defect, ‘0’ otherwise. For a short, a value ‘1’ on two transistor ports
indicates that a short exists between these two ports, ‘0’ otherwise.

• Inter-transistor defects. These defects affect a connection(s) between at least
two different transistors. Though these defects are not considered in this work,
the matrix representation is flexible enough to represent them. For these de-
fects, the same representation mechanism as for intra-transistor defects is used.

TABLE VI. Example of defect columns for the AND2 presented in Fig. X.7

Py_S Py_D Px_S Px_D … N10_S N10_D N11_S N11_D Comment
0 0 0 0 … 1 1 0 0 source-drain short on N10
1 0 1 0 … 1 0 0 1 net0 & VDD short

Table VI is an example of defect description in the CA-matrix of the AND2 cell
in Fig. X.7. The row with red cells describes the intra-transistor short defect between
drain and source ports of transistor N10 (newly N0). The row with purple cells de-
scribes the inter-transistor short defect between VDD at PMOS sources and “net0”
(net0 connects N10-source and N11-drain).

5 Validation on Industrial Cell Libraries

The ML-based CA model generation flow has been implemented in a python
program. The ML algorithms were taken from the publicly available python module

19

called scikit-learn [35]. A dataset composed of 1712 combinational standard cells
coming from standard cell libraries developed using three technologies – C40 (446
cells), 28SOI (825 cells) and C28 (441 cells) – was assembled. Another dataset
composed of 219 sequential cells coming from the same libraries and technologies
– C40 (27 cells), 28SOI (108 cells) and C28 (84 cells) – was also used for validation.
All these cells already had a CA model generated by a commercial tool. The CA-
matrix was generated for each cell. The flow was experimented in two different
ways. First, the ML model was trained and evaluated using cells belonging to the
same technology. Second, the model was trained on one technology and evaluated
on another one. Combinational and sequential cells were considered separately. Part
of these results are extracted from [17].

5.1 Predicting Defect Behavior on the Same Technology

5.1.1 Combinational Standard Cells

The ML model was first trained on cells of the 28SOI standard cell library. Cells

were grouped according to their number of transistors and inputs. For m cells avail-
able in a given group, the ML model was trained over m-1 cells and its prediction
accuracy was evaluated on the m-th cell. A loop ensured that each cell is used as
the m-th cell. On average, a group contains 8.6 cells. All possible open and short
defects (static and dynamic) were considered for each cell. Results presented in Ta-
bles VII report the prediction accuracy for open defects. Results achieved for short
defects are similar.

TABLE VII. Average Prediction Accuracy for combinational cells in the same technology

Table VII presents the prediction accuracy achieved for open defects. For the sake
of conciseness, only results for cells with less than 7 inputs and 48 transistors are

Predicion Number of inputs
accuracy (%) 2 3 4 5 6

N
um
be
r
of
tr
an
sis
to
rs

6 99.98 99.99
8 99.91 99.96 99.91
9 100.0
10 99.98 99.81 99.96
12 99.72 99.73 100.0 99.91 99.93
14 99.7 99.56 99.83 99.92 99.96
16 99.99 100.0 99.94 99.98
18 99.99 99.94
20 100.0 99.98 100.0 99.73
22 99.84 99.98 99.62
24 100.0 99.84 99.97 99.85
26 100.0 99.7 100.0 99.89
28 99.49 99.98 100.0 99.88 99.81
30 99.75 100.0 100.0
32 100.0 100.0 99.98
42 100.0
44 100.0
46 99.81
47 99.98 99.95

Commenté [AV4]: Ajouter une reference.

20

reported, although experiments have been done on cells with up to 8 inputs and 112
transistors. Non-empty boxes report the average prediction accuracy obtained for
a group of cells. Empty boxes mean that there is zero or one cell available and that
the group cannot be evaluated. A green background indicates that the maximum
prediction accuracy in this group is 100%, i.e. the ML model can perfectly predict
the defective behavior of at least one cell. In contrast, white background indicates
that no cell was perfectly predicted in that group (all prediction accuracies are less
than 100%). For example, let us consider the circled box in Table VII, that corre-
sponds to 24 cells having 4 inputs and 24 transistors: (i) 15 cells are perfectly pre-
dicted (100% accuracy), which leads to a green background, (ii) the prediction ac-
curacy for the 9 remaining cells ranges from 99.82% to 99.99%, (iii) the average
prediction accuracy over all 24 cells is 99.97%.

5.1.2 Sequential Standard Cells

For these experiments, the ML model was trained on a group of sequential stand-
ard cells coming from C40 standard cell libraries. Cells were grouped according to
their number of transistors and inputs. As for combinational cells, for m cells avail-
able in a given group, the ML model was trained over m-1 cells and the prediction
accuracy was evaluated on the m-th cell. A loop ensured that each cell is used as
the m-th cell. On average, a group contains 4.5 cells. All possible open and short
defects (static and dynamic) in each cell were considered. Results in Table VIII
report the prediction accuracy for short defects. Results achieved for open defects
are similar.

TABLE VIII. Average Prediction Accuracy for sequential cells in the same technology

Prediction accuracy (%) Number of inputs
4 5 6 7

N
um

be
r o

f t
ra

ns
ist

or
s

32 100
34
36
38
40 100
42 100
44 100
46 100
48 100 100
50 100
52 100

Results are reported according to the number of transistors and number of inputs of
each cell. Non-empty boxes report the average prediction accuracy obtained for a
group of sequential cells. Empty boxes mean that there is zero or one cell available
and that the group cannot be evaluated. As can be seen in Table VIII, the maximum
prediction accuracy (100%) was always obtained for each group, i.e., the ML model
can perfectly predict the defective behavior of all cells in each group. This means
that the CA model generated by ML fit the real behavior achieved with electri-
cal simulations.

21

The above cell category with good prediction score has been analyzed manually
to identify why it led to good results. The analysis showed that all these cells have
at least one cell in the training dataset with the same transistors structure or a very
similar one.

These results show that the ML model can accurately predict the behavior of a
sequential cell affected by a given defect. The goal of the next subsection is to lev-
erage on existing CA models to generate CA models for a new technology.

5.2 Predicting Defect Behavior on Another Technology

5.2.1 Combinational Standard Cells

Another set of experiments was conducted on combinational standard cells be-
longing to two different technologies. Evaluation was slightly different compared
to the previous one. Here, the ML model was trained over all available cells of a
given technology and the evaluation was done on one cell of another technology. A
loop was used to allow all cells of the second technology to be evaluated. Cells were
grouped according to their number of inputs and transistors. Table IX shows the
prediction accuracy achieved on open defects of the C28 cells after training on the
28SOI cells. Results are averaged over all cells in each group (same number of in-
puts and number of transistors). The average prediction accuracies are globally
lower compared to those of Table VII. After investigation, it appears that the be-
havior of most of the cells (68% of cells) is accurately predicted (accuracy > 97%),
while accuracy for few cells is quite low. This phenomenon is discussed in Section
5.2.2.

To verify the efficiency of the ML-based CA model generation method when
different transistor sizes are considered, the ML model was trained over the 28SOI
standard cells and used to predict the behavior of C40 cells. Table X shows the
prediction accuracy achieved on open defects of the C40 cells after training on the
28SOI cells. Results are averaged over all cells in each group (same number of in-
puts and transistors). This time, 80% of cells are accurately predicted (accuracy >
97%), proving that the ML-based characterization methodology could be used to
generate CA models for a (large) part of combinational cells of a new technology.

22

TABLE IX. Average Prediction Accuracy for combinational cells in different technologies

TABLE X. Average Prediction Accuracy for combinational cells using different transistor sizes

5.2.2 Analysis and Discussion

A first analysis was done on cells for which the defect characterization method-
ology gives excellent prediction accuracy as well as those for which the prediction
accuracy was quite low. Then, the limitations of the CA model generation method
were investigated. After running several experiments on different configurations
using one fault model at a time, the following behaviors were noticed:

Predicion Number of inputs
accuracy (%) 2 3 4 5 6

N
um
be
r
of
tr
an
sis
to
rs

6 98.21 99.47
8 94.56 96.86 99
9
10 94.69 96.01 99.27
12 87.73 98.05 99.1 99.76
14 85.69 97.35 98.75
16 91.74 99.2
18 88.18 96.28
20 90.29 94.37
22 78.73 98.37
24 87.91 96.88 99.37 99.79
26 87.24 98.92
28 88.18 98.68
30 97.52
32 88.73 95.6
42
44
46
47

Predicion Number of inputs
accuracy (%) 2 3 4 5 6

N
um
be
r
of
tr
an
sis
to
rs

6 100.0 99.8
8 87.39 99.14 99.03
9 97.19
10 92.07 95.49 99.32 98.46
12 91.71 98.07 99.24 98.47 99.46
14 90.1 95.84 98.63 98.79 99.52
16 91.17 93.59 99.23 99.59
18 88.5 97.15 97.14 97.74
20 83.87 97.73 97.15 98.94
22 87.26 98.98 98.44
24 93.96 99.34 99.58 98.84 99.63
26 87.52 97.55 99.04 99.02 99.92
28 98.19 98.79 99.31 99.44
30 99.13 99.37 99.58
32 92.91 98.92 99.78
42
44 92.03 98.82
46 99.23
47 98.29 99.76

23

• Accuracy for most of the cells is excellent, i.e. more than 97% prediction accu-
racy for 70% of cells. In this case, the CA model generated by ML fit the
real behavior achieved with electrical simulations.

• Accuracy for few cells (30%) is quite low and the ML prediction is not accu-
rate.

For the first cell category with good prediction score, cells have been analyzed
manually to identify why they led to good results. The analysis showed that all these
cells had at least one cell in the training dataset with the same transistors structure
or a very similar one. The difference between very similar cells is always the same
and is represented in Fig. X.10. More precisely, cells giving good results are always
composed of one of the configurations presented in Fig. X.10 and at least one cell
of the training dataset contains the other configuration. The difference between
these two transistor configurations is the presence or absence of the red net. The
logic function of these configurations is the same. These configurations are mostly
found in high-drive cells.

Fig. X.10: Typical transistor configurations leading to good prediction

For the second cell category – cells leading to poor prediction accuracy – the manual
analysis showed that they have (i) new logic functions that do not appear in the cells
of the training dataset, or (ii) a transistor configuration which is completely new
when compared to cells in the training dataset.

5.2.3 Sequential Standard Cells

We also conducted experiments on sequential cells belonging to two different
technologies. As for combinational cells, the ML model was trained over all avail-
able sequential standard cells of a given technology and the evaluation was done on
one cell of another technology. Cells were grouped according to their number of
inputs and transistors. Table XI shows the prediction accuracy achieved on short
defects of the 28SOI cells after training on the C28 cells. Results are averaged over
all cells in each group.

Similarly, we conducted experiments to analyze the efficiency of our method
when different transistor sizes are considered. This time, we trained the ML model
over the C40 standard cells and used it to predict the behavior of more technologi-
cally advanced 28SOI cells. Table XII shows the prediction accuracy achieved on
short defects.

24

In the above two scenarios, the average prediction accuracies are globally very
low (around 50%), indicating that our method needs good training dataset
representative of every type of standard cells and transistors structures. Indeed,
investigations showed that in most cases, functionally-equivalent sequential cells in
libraries from different technologies were designed differently and hence do not have
neither the same transistors structure nor a very similar one (as discussed in 5.2.2).
A manual analysis showed that they have (i) new logic functions that do not appear
in the cells of the training dataset, or (ii) a transistor configuration which is
completely new when compared to cells in the training dataset. Considering the main
property of our learning method for CA model generation, which is based on the
recognition and use of identical structures, it is not surprising to get such low-quality
results. Adding more cells and thus more known structures to the training database
should help to increase the prediction accuracy.

TABLE XI. Average Prediction Accuracy for sequential cells different technologies

Prediction accuracy (%) Number of inputs
4 5 6 7

N
um

be
r o

f t
ra

ns
ist

or
s

32 53
34 50
36 50 54
38 50 51
40 50
42 50
44
46
48
50
52

TABLE XII. Average Prediction Accuracy for sequential cells with different transistor sizes

Prediction accuracy (%) Number of inputs
4 5 6 7

N
um

be
r o

f t
ra

ns
ist

or
s

32
34
36
38 50
40 50
42 48 50
44 50
46 48
48 48 57
50
52 58

5.2.4 Controlled Experiments

In an attempt to check the above hypothesis, “controlled experiments” were per-
formed by considering three scan flip-flops (SDFPQ cells) coming from three dif-
ferent technologies (C40, 28SOI, C28). The SPICE description of each cell was
manually modified so as to get the same schematic for all of them. This was done
by removing some buffers and duplicate transistors, which were initially inserted in
the cell descriptions for driving strength purpose. After modification, each flip-flop
contained 5 inputs, was made of 32 transistors and can be affected by the same intra-

25

transistor defects. The physical layouts of the modified cells have not been made
identical and carefully modified to the minimum in an attend to keep the technolog-
ical specificities of each cell. Therefore, the list of potential inter-transistor defect
locations is different for each cell. A CA model has been generated for each mod-
ified flip-flop, using the simulation-based flow implemented by a commercial tool.

Three types of experiments were performed. First, the ML model was trained by
considering all short defects of the C28 SDPFQ cell, and its prediction accuracy
was successively evaluated over all short defects (576) of the C40 SDPFQ cell and
over all short defects (928) of the 28SOI SDPFQ cell. The same procedure was done
for open defects (the C40 SDPFQ cell and the 28SOI SDPFQ cell each contain 387
open defects). Next, the ML model was trained by considering all short defects of
the 28SOI SDPFQ cell, and its prediction accuracy was successively evaluated over
all short defects of the C40 SDPFQ cell and over all short defects (1016) of the C28
SDPFQ cell. Again, the same procedure was done for open defects (the C28 SDPFQ
cell contains 394 open defects). Finally, the ML model was trained by considering
all short defects of the C40 SDPFQ cell, and its prediction accuracy was succes-
sively evaluated over all short defects of the 28SOI SDPFQ cell and over all short
defects of the C28 SDPFQ cell. The same procedure was done for open defects.

To visualize the efficiency of the ML-based characterization method, a confusion
matrix was generated in which each row of the matrix represents the instances in a
predicted class (defects that are predicted by the ML algorithm to be detected / not
detected by a given cell pattern) while each column represents the instances in an
actual class (defects that are actually detected / not detected by a given input pattern).
By this way, the confusion matrix reports the number of true positives, false
positives, false negatives, and true negatives.

TABLE XIII. RESULTS OF THE CONTROLLED EXPERIMENTS

Train Predict Defect type True P False P False N True N Accuracy

C28
C40

short 248 40 52 236 84%
open 215 8 2 162 97%

28SOI
short 442 23 40 423 93%
open 215 2 2 168 98%

28SOI
C40

short 252 36 59 229 83%
open 215 8 2 162 97%

C28
short 483 27 77 429 89%
open 221 2 3 168 98%

C40
28SOI

short 416 49 153 310 78%
open 215 2 8 162 97%

C28
short 446 64 182 324 75%
open 221 2 9 162 97%

Results are reported in Table XIII for the three types of experiments. The
confusion matrix can be found at the center of the table (green and red headed
columns), this time represented using only a horizontal axis. For example, let us
consider the first experiment, when the ML model is trained by considering all
defects of the C28 SDPFQ cell, and the prediction accuracy is evaluated over all
defects of the 28SOI SDPFQ cell (third row in Table XIII). The number of true
positives, false positives, false negatives, and true negatives is 442, 23, 40 and 423

Commenté [AV5]: Juste avant tu dis que les 3 Scan FF sont
rendues identiques. Comment se fait-il que le nb de défaut
soit différent !!!

Commenté [PDH6R5]: Les layout ne sont pas identiques.
Phrases ajoutées dans le paragraphe précédent.

26

respectively, thus leading to a prediction accuracy of 93%. From the overall results
reported in Table XIII, this time it appears that the prediction accuracy achieved with
the ML-based method ranges from 75 to 98%, thus clearly demonstrating its
efficiency. As for combinational cells, one or more structural patterns have been
identified in functionally-equivalent cells from various libraries, so that the ML
algorithm can exploit them efficiently for training and inference purpose.

6 Hybrid Flow for CA Model Generation

Considering the above analysis, it appears that the ML-based CA model generation
flow cannot be used for all cells in a standard cell library to be characterized. A
mixed solution, which consists in combining ML-based CA model generation and
conventional (simulation-based) CA model generation, should be preferably used.
This is illustrated in the following.

The hybrid flow for accelerating the CA model generation is sketched in Fig.
X.11. Typically, when the CA model for a new cell is needed, the first step consists
in checking whether the ML-based generation will lead to high-quality CA models.
This is done by analyzing the structure of the new cell and check whether the train-
ing dataset contains a cell with identical or similar structure (as discussed in Section
5.2.2). If the ML algorithm is expected to give good results, the new cell is prepared
(representation in a CA-matrix) and submitted to the trained ML algorithm. The
output information is then parsed to the desired file format. Conversely, if the ML
algorithm is expected to give poor prediction results, the standard generation flow
presented in Fig. X.3 is used to obtain the CA model. A feedback loop uses this new
simulated CA model to supplement the training datasets and improve the ML algo-
rithm for further prediction.

Fig. X.11: Hybrid flow for CA model generation

The experiments performed to estimate the improvement in CA model genera-
tion time achieved with the hybrid flow in Fig. X.11 are described in the following.

Structural Analysis

Simulation-based CA
Model Generation

New
Cell

Reinforcement training
(for simulation-based CA)

ML-based CA Model
Generation

Known
Structure

CA Model

ML models DB

yes

no

27

6.1 Runtime Saving for Combinational Cells

For these experiments, the Random Forest model was first trained on 28SOI
combinational standard cells and CA models were then generated for a subgroup of
the C40 combinational standard cell libraries. A subgroup is composed of cells rep-
resenting all the cell functions available in C40 libraries. In these experiments, this
subgroup contained 409 cells: 118 (29%) have a cell with an identical structure in
the training dataset, 87 (21%) have a cell with an equivalent structure (as explained
in Section 5.2.2) in the training dataset, and 204 (50%) have no identical or equiv-
alent structure in the training dataset (a simulation-based generation is thus needed).
For these 204 cells, the generation time was calculated and found to be equal to
~172 days (~ 5.7 months) considering a single SPICE license. Using the ML-based
CA model generation for the 118 + 87 = 205 (50%) remaining cells requires 21947
seconds (~ 6 hours), again considering a single SPICE license. Considering that a
simulation-based generation for these 205 cells would require ~78 days, we can
estimate the reduction in generation time to 99.7%. Now, when considering the
whole C40 subgroup composed of 409 cells, the hybrid generation flow would re-
quire ~172 days + ~6 hours, to be compared with ~172 days + ~78 days = ~250
days by using only the simulation-based generation. This represents a reduction in
generation time of about 38%. After investigating results of these experiments, it
appears that the ML-based CA model generation works well for about 80% of cells
of the C40 subgroup. Surprisingly, the structural analysis revealed that only 50%
(205 cells) could be evaluated using the ML-based generation part of the flow. This
shows that there is still room for further improvement of the structural analysis in
the flow, and hence get better performance of the ML-based CA model generation
process.

6.2 Runtime Saving for Sequential Cells

In these experiments, the goal was to (re-)generate CA models for the 27 C40
sequential standard cells in an efficient manner. To achieve this goal, the number of
CA models obtained by the simulation-based flow had to be minimized. The lowest
achievable number of simulation-based CA models is given by: one cell per training
group (same number of inputs and transistors), plus the number of cells that are alone
in their training group (and thus cannot go through the ML-based flow). In these
experiments, 13 cells had to go through the simulation-based flow (9 groups + 4
individual cells). The simulation-based generation flow for those 13 cells took ~4.1
hours. The ML-based generation flow for the remaining 14 cells took ~35s. By
comparison, the simulation-based model generation for these 14 cells would take
~4.2 hours. The ML-based flow thus provides a run-time reduction of 99.8% for the
cells it can handle. Now, if we consider the whole C40 group composed of 27 cells,
the hybrid generation flow would require ~4.1 hours + ~35s, to be compared with

28

~4.1 hours + ~4.2 hours = 8.3 hours by using only the simulation-based generation
flow. This represents a reduction in generation time of about 51%.

It is worth mentioning that most of the run-time in the hybrid-flow is taken by
the simulation-based flow. Therefore, as long as new CA models generated by
simulation are added to the database, the ML-based flow can use them and then
handle more and more cells, further reducing the generation run-time.

7 Discussion and Conclusion

A novel approach based on machine learning was presented in this chapter to gen-
erate CA models. The main goal is to speed up the characterization process of stand-
ard cell libraries for test and diagnosis purpose, which usually resort to SPICE sim-
ulations and hence is very time-consuming. The methodology is based on the
recognition of identical structural patterns between cells already characterized by
simulation and those to be characterized by using machine learning.

Experiments done on both combinational and sequential cell from industrial li-
braries demonstrate the accuracy and performance of the method when predicting
defect behavior has to be done on the same technology. In this case, the generation
run-time of CA models can be significantly reduced for experimented cells having
other cells with similar structure in the training dataset.

In order to deal with functionally-equivalent cells having different internal struc-
tures, a hybrid flow combining learning-based and simulation-based CA model gen-
eration can be used. Experiments carried out on a subset of cells from an industrial
library have shown that the generation time of CA models can be reduced by more
than 50%.

Experiments reported in this chapter have been carried out on a small size of
standard cell population. Considering that more than 10000 cells have usually to be
characterized for a given technology, the hybrid flow described in this chapter is
expected to provide even better results, especially owing to the reinforcement train-
ing that uses simulation generated models for supplementing the training datasets,
and hence reduce the number of electrical simulations.

29

Acknowledgements

References

1. A. Ladhar, M. Masmoudi, and L. Bouzaida, “Efficient and Accurate Method for Intra-Gate
Defect Diagnoses in Nanometer Technology,” in Proc. IEEE/ACM Design Automation and
Test in Europe, 2009.

2. Z. Sun, A. Bosio, L. Dilillo, P. Girard, A. Virazel, and E. Auvray, “Effect-Cause Intra-cell
Diagnosis at Transistor Level,” in Proc. IEEE International Symp. on Quality Electronic
Design, 2013.

3. F. Hapke, M. Reese, J. Rivers, A. Over, et al“, "Cell-Aware Production Test Results from a
32-nm Notebook Processor", in Proc. International Test Conference, Nov. 2012.

4. Z. Gao, M-C Hu, J. Swenton, S. Magali, J. Huisken, K. Goosens, and E.J. Marinissen,
“Optimization of Cell-Aware ATPG Results by Manipulating Library Cells’ Defect
Detection Matrices,” in Proc. IEEE International Test Conference in Asia (ITC-Asia), 2019.

5. E. Amyeen, D. Nayak, and S. Venkataraman, “Improving Precision Using Mixed-level Fault
Diagnosis,” in Proc. International Test Conference, Oct. 2006.

6. H. Tang, A. Jain, and S.K. Pillai, “Using Cell Aware Diagnostic Patterns to Improve
Diagnosis Resolution for Cell Internal Defects,” in Proc. Asian Test Symposium, pp. 231-
236, Nov. 2017.

7. X. Fan, M. Sharma, W.-T. Cheng, and S.M. Reddy, “Diagnosis of Cell Internal Defects with
Multi-Cycle Test Patterns”, in Proc. Asian Test Symposium, Nov. 2012

8. B. Archer, C. Schuermyer, “Cell-Aware Test for Lower DPPM and Faster Silicon Diagnosis,”
in Proc. Synopsys User Group (SNUG), March 2017.

9. N. Feldman, “Accelerating Silicon Diagnosis Using a Cell-Aware Flow,” in Proc. Synopsys
User Group (SNUG), March 2017

10. F. Hapke, et al., “Cell-Aware Test,” IEEE Transactions on Computer-Aided Design, vol. 33,
no. 9, pp. 13–6 - 1409, 2014.

11. P. Maxwell, F. Hapke, and H. Tang, “Cell-Aware Diagnosis: Defective Inmates Exposed in
their Cells,” in IEEE European Test Symp., 2016.

12. F. Hapke, R. Krenz-Baath, A. Glowatz, J. Schloeffel, P. Weseloh, M. Wittke, M. Kassab, and
C. W Schuermyer, “Cell-Aware Fault Model Creation and Pattern Generation,” US Patent
12/718,799, 2010.

13. S. Mhamdi, P. Girard, A. Virazel, A. Bosio and A. Ladhar, “A Learning-Based Cell-Aware
Diagnosis Flow for Industrial Customer Returns,” in Proc. IEEE International Test Conf.,
2020.

14. F. Lorenzelli, Z. Gao, J. Swenton, S. Magali, and E.J. Marinissen, “Speeding up Cell-Aware
Library Characterization by Preceding Simulation with Structural Analysis,” in Proc. IEEE
European Test Symp., 2021.

15. Z. Gao, S. Malagi, M. Chun Hu, J. Swenton, R. Baert, J. Huisken, B. Chehab, K. Goossens,
and E.J. Marinissen, “Application of Cell-Aware Test on an Advanced 3nm CMOS
Technology Library,” in Proc. IEEE International Test Conf., 2019.

16. R. Guo, B. Archer, K. Chau, and X. Cai, “Efficient Cell-Aware Defect Characterization for
Multi-bit Cells”, in Proc. IEEE International Test Conf. in Asia, 2018.

17. P. d’Hondt, A. Ladhar, P. Girard, and A. Virazel, “A Learning-Based Methodology for
Accelerating Cell-Aware Model Generation,” in Proc. IEEE/ACM Design Automation and
Test in Europe, 2021.

18. “Nanometer Library Characterization: Challenges and Solutions”, Webinar, Silvaco, March
2019.

30

19. “Improving Library Characterization with Machine Learning”, White Paper, Mentor, A
Siemens Business, 2018.

20. “Unified Library Characterization Tool Leverages Machine Learning in the Cloud”, White
Paper, Cadence, 2018.

21. H.S. Poornima and K.S Chethana, “Standard Cell Library Design and Characterization
using 45nm technology”, IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)
Vol. 4, pp. 29-33, Jan. 2014.

22. J. Rabaey et al., “Digital integrated circuit – A Design Perspective”, Second Edition,
Prentice Hall, 2003.

23. Ashral bin Bahari Tambek, Ahmad Raif bin Mohd Noor Beg, Mohd Rais Ahmad,
“Standard Cell Library development”, in Proceedings of the 11th International
Conference on Microelectronics, 1999, pp.22-24.

24. Neil H.E. Weste, David Harris, Ayan Banerjee, “CMOS VLSI Design: A Circuits and
Systems Perspective” Wesley, 1993.

25. Masakazu Shoji, “CMOS Digital Circuit Technology”, Prentice Hall, 1988. ISBN 978-
0131388505

26. M. Naga Lavanya and M. Pradeep, “Design and Characterization of an ASIC Standard
Cell Library Industry–Academia Chip Collaborative Project,” Microelectronics,
Electromagnetics and Telecommunications, 2018.

27. H. Tang et al., “Diagnosing Cell Internal Defects Using Analog Simulation-based Fault
Models”, Proc. Asian Test Symposium, pp. 318-323, 2014.

28. Dan Clein, “CMOS IC LAYOUT Concepts, Methodologies, and Tools”, ISBN 978-
0750671941

29. F. Hapke, R. Krenz-Baath, A. Glowatz, J. Schloeffel, H. Hashempour, S. Eichenberger,
et al“, "Defect-Oriented Cell-Aware ATPG and Fault Simulation for Industrial Cell
Libraries and Desi”ns", Proc. IEEE International Test Conference, Nov. 2009.

30. F.M. Goncalves, I.C. Teixeira, and J.P. Teixeira, “Integrated Approach for Circuit and
Fault Extraction of VLSI Circuits,” Proc. of IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, Nov. 1996.

31. F.M. Goncalves, I.C. Teixeira, and J.P. Teixeira, “Realistic Fault Extraction for High-
Quality Design and Test of VLSI Systems,” in Proc. IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, Oct. 1997.

32. Z. Stanojevic, and D.M. Walker, “Fed–x - A Fast Bridging Fault Extractor,” Proc. of
IEEE International Test Conference, Nov. 2001.

33. S. Venkataraman and S.D. Drummonds, “A Technique for Logic Fault Diagnosis of
Interconnect Open Defect”, in Proc. IEEE VLSI Test Symp, 2000.

34. C.-M. Li and E.J. McCluskey, “Diagnosis of Resistive-Open and Struck-Open Defects in
Digital CMOs ICs”, IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 24,
no 11, pp. 1748 – 1759, 2005.

35. F. Pedregosa et al, “Scikit-learn: Machine learning in Python,” Journal of machine learning
research, 12(Oct), pp.2825–2830. 2011.

