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Chapter 1  
Cell-Aware Model Generation by Using 
Machine Learning 

Pierre d’Hondt, Aymen Ladhar, Patrick Girard, Arnaud Virazel 

Abstract 

Characterizing cell-internal defects of standard cell libraries is an essential step to 
ensure high test and diagnosis quality. However, such a characterization process, 
called cell-aware model generation, usually resorts to extensive electrical defect 
simulations that are costly in terms of run time and utilization of SPICE simulator 
licenses. Typically, the generation time of cell-aware models for few hundreds of 
cells may reach up to several months considering a single SPICE license. This chap-
ter presents a methodology that does not use any electrical defect simulation to pre-
dict the response of a cell-internal defect once it is injected in a standard cell. More 
widely, this methodology uses existing cell-aware models (generated from electrical 
simulations) from various standard cell libraries and technologies to predict cell-
aware models (learning-based) for new standard cells independently of the technol-
ogy. Experiments done on several industrial cell libraries using different technolo-
gies demonstrate the accuracy and performance of the prediction method. 

1 Introduction 

Digital Integrated Circuits (ICs) are commonly synthesized with pre-defined librar-
ies of standard cells of various nature and complexity. As the semiconductor indus-
try moves to increasingly smaller geometries, new types of manufacturing defects 
appear and need to be targeted by industrial test flows. Conventional fault models 
like stuck-at, transition, as well as layout-aware (e.g. bridging) fault models are be-
coming less effective for ensuring desired test and diagnosis quality levels. Indeed, 
these fault models only consider faults at the boundary of library cells. However, an 
increasing number of defects in circuits fabricated with the most recent manufac-
turing technologies occur within the logic cell structures. They are called intra-cell 
or cell-internal defects [1-3]. These defects are only covered fortuitously with con-
ventional fault models, and hence not surprisingly, these defects are found to be the 
root cause of a significant fraction of test escape [4]. 
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Cell-Aware (CA) test and diagnosis have been proposed recently to target those 
subtle defects in ICs requiring highest product quality [5-9]. The realistic assump-
tion under this concept is that the excitation of a defect inside a cell is highly corre-
lated with the logic values at the input pins of the cell [10-11]. A preliminary step 
when performing CA test and diagnosis is to characterize each standard cell of a 
given library with respect to all possible cell-internal defects. Analog (SPICE) sim-
ulations are performed to identify which cell-internal defects are detected by which 
cell patterns. The simulation results are encoded in a cell-internal-fault dictionary 
or CA model (also referred to as CA fault model or CA test model in the literature) 
[12-13]. 

One bottleneck of CA model generation is that it requires extensive computa-
tional efforts to characterize all standard cells of a library [14-15]. Typically, the 
generation time of cell-aware models for few hundreds of cells may reach up to 
several months considering a single SPICE license. Reducing the generation run 
time of CA models and easing the characterization process is therefore mandatory 
to faster deploy the CA methodology on industrial ICs and make it a standard in the 
qualification process of silicon products [16]. To this end, Machine Learning (ML) 
can be used to drastically accelerate the CA model generation flow. 

This chapter presents a comprehensive flow experimented on industrial cell li-
braries and preliminary introduced in [17]. The flow is based on a learning method 
that uses existing CA models of various standard cells developed using different 
technologies to predict CA models for new standard cells independently of the tech-
nology. This is the first work to address this problem since previous works on ML 
focused on cell library characterization without defect injection [18-20]. Experi-
ments performed on a standard cell population of reasonable size (about two thou-
sands of cells from different technology nodes and transistor sizes) show that the 
generation time of CA models can be reduced by more than 99% (a few hours in-
stead of almost 3 months when CA models are generated using a single SPICE li-
cense). Part of these results are extracted from [17] in which the proposed flow has 
been experimented on combinational cells of industrial libraries. 

The remainder of this chapter is organized as follows. Section 2 gives some back-
ground on standard cell characterization, first for design purpose, and then for test 
and diagnosis purpose. The last part of the section explains why using ML for cell 
characterization can help reducing the generation time of CA models. Section 3 
presents the ML-based CA model generation flow and details the two main steps of 
the flow, namely the generation of training data and the generation of new data. 
Section 4 shows how cell transistor netlists and cell-internal defects are represented 
and manipulated by the proposed methodology. Section 5 presents experimental re-
sults gathered on industrial cell libraries and proposes a performance comparison 
with a simulation-based approach. Section 6 presents the hybrid CA model genera-
tion flow developed for an industrial usage of the ML-based methodology. Section 
7 summarizes the contribution and concludes the chapter. 
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2 Background on Standard Cell Characterization 

2.1 Standard Cell Characterization for Design Purpose 

Digital circuit designers use pre-defined standard cells to synthesize circuits with 
various sizes and complexities [21-27]. As the simulation of a full circuit design can 
take a huge amount of time, designers rely on standard cell characterization, a pro-
cess that produces simple models of functionality, timing, and power consumption 
at the cell level. The (simplified) design and characterization flow for a standard 
cell is summarized in Fig. X.0. It starts with the functional specification, which de-
scribes the logical function of the cell (AND, flip-flop, etc.) by using a Hardware 
Description Language (HDL). The next step defines the cell’s transistors and their 
connections in a SPICE netlist. This netlist is known as the cell’s schematic or struc-
ture. The layout describes the physical implementation of the cell on silicon, using 
several layers and materials (metal, polysilicon, …) [28], and is designed from the 
SPICE netlist. A parasitic extraction is then performed on the obtained layout, in 
order to specify the parasitic resistors and capacitors introduced in the physical im-
plementation. The parasitic components are appended to the SPICE transistors 
netlist in the Detailed Standard Parasitic Format (DSPF). 

Cell characterization for design purpose uses the generated cell descriptions (also 
called cell views) to perform electrical simulations of standard cells and extract the 
power and delay information, as well as the identification of timing constraints 
(setup and hold times). Typically, cell characterization requires the definition of 
global parameters such as Process, Voltage, and Temperature, known as PVT cor-
ners, and global constraints such as wire loads and time limits for transitions. The 
cell schematic and layout are iteratively modified until quality and constraint re-
quirements are met in terms of functionality, timing, and power consumption.  

Once done, data describing every aspect (transition time, internal power, capac-
itance, sequential cells constraints, etc.) of the cell are written to dedicated files, 
known as cell models. By using electrical simulations considering different values 
of the global parameters, cell models are created to determine the behavior of stand-
ard cells in every condition that may occur during the lifetime of the circuit.   
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Fig. X.0 Schematized process of standard cell creation and characterization 

2.2 Cell Internal Defect Universe 

The first step of a standard cell characterization process for test and diagnosis pur-
pose (i.e., CA model generation) is to extract all potential and realistic defects 
within each cell to be able to simulate their effect in a defective cell [29-33]. 

Figure X.1 gives an example of internal defects that may occur at the cell level. 
These defects can be classified according to two main categories:   

• Transistor defects, which are defects occurring at the transistor ports (source, 
drain, gate and bulk). These defects can be modeled as short or open defects at 
the transistor ports. As illustrated in Fig X.1.a, for a CMOS transistor, six shorts 
(gate-drain, source-drain, gate-source, and each port to bulk) and three open 
defects (gate, source and drain) can be identified. These nine defects are added 
to the potential defects list for every transistor in the standard cell. 

• Inter-transistor defects, which are defects occurring at the interconnexion be-
tween two different transistors. These defects can also be modeled as short or 
open defects between two internal nodes. Their existence is bound to the actual 
layout of the cell (e.g., two close polygons may be defectively shorted), so in-
ter-transistors defects require layout extraction to be identified. 

Functional 
Specifications

Layout 
Design

HDL 
Representation

Cell Layout
GDS II

Schematic 
Design

Spice 
Netlist

Parasitic 
Extraction

DSPF

Cell Analysis

Timing Power Functionality

Standard 
Cell Models

Meet 
requirements 

?

Model Generation

no

yes



5 

 
Figure X.1: (a) Illustration of the six short defects and three open defects that can affect a CMOS 

transistor’s ports (b) Example of cell-internal defects in a simple structure made of various transistors 

Figure X.2 gives an example of inter-transistor defects and their locations on the 
cell layout. There are two possible solutions to extract inter-transistor defects. The 
first one consists in reading the layout database of each standard cell and creating a 
SPICE transistor netlist in the DSPF format including parasitic elements like resis-
tors and capacitors. These elements represent the list of inter-transistor defects to be 
considered during the characterization. A parasitic capacitor exists between two 
polygons that are supposed not to be connected. Consequently, the location of a 
potential short defect and a defective resistor can become an open defect. Even if 
this method is easy to apply, its main drawbacks are the huge number of parasitic 
elements listed by the DSPF netlist (on average, 61 times the number of transistors 
in the cell) and the fact that some of these parasitic elements cannot be considered 
as realistic defect locations (e.g., the distance between two nets may be large enough 
to ensure non-defective manufacturing but still described by a small value parasitic 
capacitor, some layers are not sensitive to open defects but still described with their 
own resistors, etc.). In addition, several parasitic elements are equivalent, and there 
is no solution to recognize them without characterization (e.g., a single physical net 
is described by several serial resistors and any defect on one of these resistors is 
equivalent to a defect on the whole net). 

To address these limitations, a second method based on Design Rule Checking 
(DRC) can be used. This solution allows the localization of neighbored internal nets 
as well as the localization of potential open defects that can be identified for the cell 
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characterization. The DRC-based method limits the number of potential defect lo-
cations to 4.3 times the number of transistors in the cell, on average.  

 
Fig. X.1: Example of inter-transistor defects 

2.3 Standard Cell Characterization for Test and Diagnosis 
Purpose 

A typical CA model generation flow, as shown in Fig. X.3, has as input a SPICE 
netlist representation of a standard cell which is usually derived from a layout de-
scription, e.g., a GDSII file. This DSPF cell netlist is then used by an electrical 
simulator to simulate each potential defect against an exhaustive set of stimuli. 
Those stimuli include static (one vector) and dynamic (two vectors) input patterns 
of the cell (called cell-patterns in the sequel). Once the simulation is completed, all 
cell-internal defects are classified into defect equivalence classes with their detec-
tion information (required input values for each defect within each cell) and are 
synthetized into a CA model. As standard cells may have more than ten inputs, and 
thousands of cells with different complexities are usually used for a given technol-
ogy, the generation time of CA models for complete standard cell libraries of a given 
technology may reach up to several months, thus drastically increasing the library 
characterization process cost. 

 
Figure X.2 Conventional cell-aware model generation flow 
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Once the CA model of a given standard cell is generated, it can be used either 
for Automatic Test Pattern Generation (ATPG) or for fault diagnosis:  

• ATPG usage. Using the CA models, which is a dictionary mapping cell-patterns 
to the cell-internal faults they detect, an ATPG tool identifies for each cell in 
the CUT the minimum set of stimuli detecting all cell-internal defects. Then, it 
generates test patterns exercising this test stimuli at the input pins of the cell 
under test and ensures the fault propagation to an observation point. 

• Fault diagnosis. A diagnostic tool extracts the failing and passing logic values 
at the input pins of the defective cell. This information is then matched with the 
CA model of the defective cell in order to identify the suspect internal defect.  

2.4 Cell-Aware Model Generation: A Machine-Learning 
Friendly Process 

Machine learning can be used to significantly accelerate the CA model generation 
process. The motivation behind the use of ML is the result of several observations 
made while performing comparisons between several CA models coming from dif-
ferent standard cell libraries and technologies: 

• Several cell-internal defects, such as stuck-open defects, are independent of the 
technology and transistor size [34-35]. 

• For the same function, two cell-internal structures are usually quite similar for 
two different technologies. 

• Detection tables for static and dynamic defects, in the form of binary matrices 
describing the detection patterns for each cell-internal defect, are ML friendly. 

• CA models may change with respect to test conditions and PVT corners. In 
fact, CA model generation for the same cell with different test conditions may 
exhibit slight differences. Few defects can be of different types (i.e., static or 
dynamic) or may have different detection patterns. Since CA models are gen-
erated for specific test conditions and can be used with different ones, it may 
lead to inaccurate characterization. This inaccuracy is usually allowed in indus-
try since it is marginal. This indicates that we can also tolerate few error per-
centages in the ML-based prediction.    

• Very simple CA models are used to emulate short and open defects, for which 
resistance values are often identical for all technologies. 

• A large database of CA models is usually available and can be used to train a 
ML algorithm. 

All these observations intuitively indicate that CA model generation through ML 
is possible. However, the first challenging task is to be able to describe cell transis-
tor netlist as well as corresponding cell-internal defects in a uniform (standardized) 
manner, so that a ML algorithm can learn and infer from data irrespective of their 
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incoming library and technology. Indeed, similar cells (e.g., cells with same logic 
function, same number of inputs and same number of transistors) may be described 
differently in transistor-level (SPICE) netlists of various libraries (e.g., a transistor 
label does not always correspond to the same transistor in two similar cells coming 
from two different libraries). It is therefore mandatory to standardize the description 
of cells and corresponding defects for the ML-based defect characterization meth-
odology. Heuristic solutions developed to this purpose are described in Section 4. 
The second challenging task is to find a way to represent all these information / 
input data so that they can be ML friendly. A matrix description of cells and corre-
sponding defects is used to this purpose. 

3 Learning-Based Cell-Aware Model Generation Flow 

The learning-based CA model generation flow initially introduced in [17] is used to 
predict the behavior of a cell (combinational or sequential) when affected by intra-
cell defects. The flow is sketched in Fig. X.4. It is based on supervised learning that 
takes a set of input data and known responses (labeled data) used as training data, 
trains a model to classify those data, and then uses this model to predict (infer) the 
class of new data. 

 
Fig. X.4: Generic view of the ML-based CA model generation flow 

Figure X.4 depicts the two main steps of the supervised learning process used for 
ML-based CA model generation. A Random Forest Classifier is used for predicting 
the class of each new data instance. This choice comes from the results obtained 
after experimenting several learning algorithms (k-NN, Support Vector Machine, 
Random Forest, Linear, Ridge, etc.) and observing their inference accuracies. 
The first main step of the CA model generation flow consists in generating a Ran-
dom Forest model and to train it by using the training dataset. A Random Forest 
Classifier is composed of several Decision Tree Classifiers, which are models pre-
dicting class of samples by applying simple decision rules. During training, a Deci-
sion Tree tries to classify data samples and its decision rules are modified until it 
reaches a given quality criterion. Then, the Forest averages the responses of all 
Trees and outputs the class of the data sample. 
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The second main step consists in using the Random Forest Classifier to make pre-
diction (or inference) when a new data instance has to be evaluated. Prediction for 
a new data instance amounts to answer the question: “Does this stimulus detects this 
defect affecting this cell?”. Answering this question allows obtaining a new CA 
model for a given standard cell. 

3.1 Generation of Training Data 

Training data are made of various and numerous CA models formerly generated 
by relying to brute-force electrical defect simulations. For each cell (combinational 
or sequential) in a library, the CA model is transformed into a so-called CA-matrix 
and filled in with meaningful information. Cells with the same number of inputs 
and having the same number of transistors are grouped together to form the Training 
dataset.  

The CA-matrix creation flow is depicted in Fig. X.5. The flow starts by rewriting 
the CA model so that it can be ML friendly. To this end, the CA model file is parsed 
and its content is organized into a matrix which contains numbers and categories of 
certain values (more details are given later on). Then, it identifies the activation 
conditions of each transistor inside the cell with respect to input stimuli. Once the 
activation conditions for each transistor have been identified, transistor renaming is 
done. This is a critical step in this flow since it allows the usage of the training data 
across different libraries and technologies. Finally, the CA-matrix is created with 
the above information. 

 
Fig. X.5: CA-matrix creation flow 

Table I shows an example of a training dataset for a combinational NAND2 cell. It 
is composed of four types of information: 

• Cell patterns and responses. This gives the values applied on inputs (A, B) of 
the cell as well as the cell response on output Z. As can be seen, the test pattern 
sequence provides all the possible input stimuli that can be applied to the cell. 
These stimuli must also be efficient to detect sequence depending defects like 
stuck-open defects. For this reason, a four-valued logic algebra made of 0, 1, R 
and F is used to represent input stimuli in the CA-matrix. R (resp. F) represents 
a Rising (resp. Falling) transition from 0 to 1 (resp. from 1 to 0).  

• Transistor Switching Activity. This indicates the activation conditions of each 
transistor in the cell schematic. Each transistor can be in the following state: 
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active (1), passive (0), switching to active state (R), switching to passive state 
(F). 

• Defect description. This gives information about defect locations inside the cell 
transistor schematic. This part contains a column for each transistors’ ports. In 
Table I, ‘N1_D’ stands for the drain port of the NMOS transistor named N1, 
and ‘N1_S’ for its source port. In these columns, a ‘1’ (resp. ‘0’) indicates that 
the port is concerned (resp. non-concerned) by the described defect. For exam-
ple, D15 is a short between the drain and the source of transistor N1, so columns 
‘N1_D’ and ‘N1_S’ contains a one, while other columns are filled with zeros. 
The name and type of each defect are also given in this description. The matrix 
also includes rows describing the cell with no defects (‘free’). This is presented 
in more detail in Section 4.4. 

• Defect detection. This is the class of the data sample (the output of the ML 
classifier). A value ‘1’ (‘0’) means that the defect is detected (undetected) by 
the cell pattern. 

The first three types of information constitute the inputs of the ML algorithm. 

TABLE I.  EXAMPLE OF TRAINING DATASET FOR A NAND2 CELL 
Cell inputs & 

responses 
Transistor switching 

activity 
Defect 

description 
About 
defect 

  Defect 
detection 

A B Z N0 N1 P0 … N1_D N1_G N1_S … name type  fZ 
0 0 1 0 0 1 … 0 0 0 … free free  0 
0 1 1 0 1 1 … 0 0 0 … free free  0 
0 F 1 0 F 1 … 0 0 0 … free free  0 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 
0 1 1 0 1 1 … 1 0 1 … D15 short  1 
1 1 0 1 1 0 … 1 0 1 … D15 short  0 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 

 
Fig. X.6: Block-level representation of a scan flip-flop example 

In order to illustrate the various steps of the CA-matrix creation flow in the case of 
sequential cells, let us consider the block-level representation of a scan flip-flop as 
depicted in Fig. X.6. It consists of three main blocks (MUX, MASTER latch and 
SLAVE latch) plus two transmission gates. It has four inputs (D, TI, TE, CLK), one 
virtual input (Q-), and one output (Q). The virtual input represents the value loaded 
in the flip-flop before applying the test stimulus.  
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TABLE II.  EXAMPLE OF TRAINING DATASET FOR A SCAN FLIP-FLOP WITH A NON-INVERTING 
OUTPUT. THE CELL HAS FOUR PHYSICAL INPUT PINS: DATA (D), CLOCK (CLK), TEST ENABLE (TE), 
TEST INPUT (TI), AND A VIRTUAL INPUT (Q-) WHICH CORRESPOND TO THE PREVIOUS STATE OF THE 
OUTPUT PIN (Q) 

Cell inputs & 
outputs 

Transistor 
switching activity Defect description About 

defect 
  Defect 

detection 
D CLK TE TI Q- Q N0 N1 … P0 P1 … N1_D N1_G N1_S … P3_D P3_G P3_S name type  fZ 
0 P 0 0 0 0 P 0 … P 1 … 0 0 0 … 0 0 0 free free  0 
R P 0 1 0 R P R … P F … 0 0 0 … 0 0 0 free free  0 
0 P 0 F 1 0 P 0 … P 1 … 0 0 0 … 0 0 0 free free  0 
⋮ ⋮	 ⋮	 ⋮ ⋮	 ⋮ ⋮ ⋮	 ⋮ ⋮	 ⋮	 ⋮ ⋮ ⋮ ⋮ ⋮	 ⋮	 ⋮	 ⋮ ⋮ ⋮  ⋮ 
0 P 0 1 0 0 P 0 … P 1 … 1 0 1 … 0 0 0 D15 short  1 
F P 0 1 1 F P F … P R … 0 0 0 … 0 0 1 D47 open  1 
⋮ ⋮	 ⋮	 ⋮ ⋮	 ⋮ ⋮ ⋮	 ⋮ ⋮	 ⋮	 ⋮ ⋮ ⋮ ⋮ ⋮	 ⋮	 ⋮	 ⋮ ⋮ ⋮  ⋮ 

Table II shows an example of a training dataset for the scan flip-flop shown in Fig. 
X.6. It is composed of four types of information: 

• Cell inputs and outputs. This gives the values applied on inputs (D, CLK, TE, 
TI, Q-) of the cell as well as the cell response on output Q. The test pattern 
sequence provides all the possible input stimuli that can be applied to the cell. 
For the sake of readability, they are represented partially in Table II. These 
stimuli must also be efficient to detect sequence depending defects like stuck-
open defects. For this reason, a six-valued logic algebra made of 0, 1, R, F, P 
and A is used to represent input stimuli in the CA-matrix. R (resp. F) represents 
a Rising (resp. Falling) transition from 0 to 1 (resp. from 1 to 0). P (resp. A) 
represents a Pulse 010 (resp. Anti-pulse 101) and is used for the input clock 
signal of the cell. 

• Transistor Switching Activity. This indicates the activation conditions of each 
transistor (e.g., N0, N1, etc. for NMOS transistors, and P0, P1, etc. for PMOS 
transistors) in the cell schematic. Each transistor can be in one of the following 
states: active (1), passive (0), switching to active state (R), switching to passive 
state (F), pulsing (P), anti-pulsing (A). 

• Defect description. This gives information about all defect locations in the cell 
transistor schematic. In Table II, “N1_D” stands for “defect on the drain of 
transistor N1”, “N1_G” stands for “defect on the gate of transistor N1”, and so 
on. The name and type of each defect are also given in this description. 

• Defect detection. This is the class of the data sample (the output of the ML 
classifier). A value ‘1’ (‘0’) means that the defect is detected (undetected) by 
the input pattern at the corresponding output of the cell. 

As for combinational cells, the first three types of information are used as inputs for 
the ML algorithm. 
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3.2 Generation of New Data 

New data represent the cells to be characterized and are obtained for each stand-
ard cell from the cell description, the corresponding list of defects and the cell pat-
terns. The format of a new data instance is similar to that of the training data, except 
that the class (label) of the new data instance is missing. The ML classifier is used 
to predict that class. As for training data, new data are grouped together according 
to their number of cell inputs and transistors, so that inference can be done at the 
same time for cells with the same number of inputs and transistors. 

4 Cell and Defect Representation in the Cell-Aware 
Matrix 

This section details the various steps required to represent a standard cell in a 
CA-matrix. The starting point of this process is a transistor-level (SPICE) netlist of 
the standard cell. The CA-matrix must be accurate enough to clearly identify each 
transistor and each net of the cell transistor schematic. This description also associ-
ates each transistor to its sensitization patterns and reports the output response for 
each cell-pattern. For this reason, the cell description process requires several suc-
cessive operations that are detailed below. Note that this process is applied to all 
cells in a library to be characterized. 

4.1 Identification of Active, Passive and Pulsing Transistors 

The first step consists in identifying active and passive transistors in the cell netlist 
with respect to an input stimulus. To this purpose, a single golden (defect-free) elec-
trical simulation of the cell to be characterized is first performed. By monitoring the 
voltage of cell’s transistors gates, active and passive transistors are identified for 
each input stimulus (cell-pattern). An active NMOS (resp. PMOS) transistor is a 
transistor with a logic-1 (resp. logic-0) value measured on its gate port. A passive 
NMOS (resp. PMOS) transistor is a transistor with a logic-0 (resp. logic-1) value 
measured on its gate port. Note that for sequential cells, an active NMOS (resp. 
PMOS) transistor is a transistor with a logic-1 (resp. logic-0) value appearing on its 
gate port during application of the test pattern whose duration is one clock cycle. A 
passive NMOS (resp. PMOS) transistor is a transistor with a logic-0 (resp. logic-1) 
value appearing on its gate port during application of the test pattern. Clock-signal-
controlled transistors can be pulsing (resp. anti-pulsing), which means a 0-1-0 (resp. 
1-0-1) sequence appears on the transistor gate port during application of the test 
pattern. Note also that a Verilog simulation, with a CDL (Circuit Description 
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Language) netlist that should be written using NMOS and PMOS primitives, can 
replace the single defect-free electrical simulation. This simulation also provides 
the cell output value. With this information, each cell pattern can be associated to 
the list of active transistors in the cell. After this step, the CA-matrix contains the 
following columns: 

• Cell inputs & responses columns. They contain all input stimuli (cell patterns) 
that can be applied to the cell, and the corresponding responses.  

• Transistor switching activity columns. They contain six possible values in-
dicating if the transistor is active (1), passive (0), switching from an active state 
to a passive one (F), switching from a passive state to an active one (R), pulsing 
(P) and anti-pulsing (A). Note that ‘P’ and ‘A’ are only used for sequential 
cells. Since PMOS and NMOS transistors are activated in opposite way, the '-' 
character is used before the PMOS values. 

Figure X.7 shows (a) the transistor schematic of a 6-transistor AND2 cell and (b) a 
partial representation of the CA-matrix of the cell. Columns A and B list all the 
possible input stimuli for this cell. For each stimulus, active and passive information 
about each transistor of the cell is entered in the CA-matrix. For example, AB=00 
leads to two active PMOS transistors and two passive NMOS transistors in the 
NAND2 block and one passive PMOS transistor and one active NMOS transistor 
in the output inverter.  
 

 
Fig. X.7: Example of a AND2 cell: (a) cell transistor schematic and (b) partial CA-matrix representation 

 

A B Px Py Pinv N10 N11 Ninv
0 0 -1 -1 0 0 0 1
0 1 -1 0 0 0 1 1
1 0 0 -1 0 1 0 1
1 1 0 0 -1 1 1 0

A B

A

Z

VDD VDD

Px Py

N10

N11

Pinv

Ninv

B
(a) (b)

net0
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Fig. X.8: Example of a LATCH structure: (a) cell transistor schematic and (b) partial CA-matrix repre-
sentation 

Figure X.8.a represents the transistor schematic of a LATCH such as the ones used 
inside the scan flip-flop depicted in Fig. X.6. In the partial representation of the CA-
matrix of the latch (Fig. X.8.b), columns D and CLK list all the possible input stimuli 
for this structure. 

4.2 Renaming of Transistors 

In the CA model generation flow, the goal is to train a ML algorithm using this 
representation of standard cells coming from different libraries and technologies. 
However, this matrix representation is dependent on the transistor names and the 
order they are defined in the SPICE netlist. Two standard cells having the same 
schematic may have different transistor naming and the order of transistors in the 
SPICE netlist may differ as well. This is because standard cell libraries are created 
several months or years apart, by different teams, with sometimes new guidelines 
in terms of best practices. Without an accurate naming convention of each cell tran-
sistor in the CA-matrix, any ML algorithm will fail to predict the behavior of the 
cell in presence of a defect. To mitigate this issue, a second step consisting in re-
naming all cell transistors independently of their initial names and order in the input 
SPICE netlist is required. The algorithm developed to this purpose is detailed in the 
following. 

 
In order to ensure that the CA-matrix is unique for a given cell and that the CA-

matrices of two cells having the same structure have identical transistor switching 
activity columns (i.e. they have the same transistor names irrespective of their in-
coming library and technology), a transistor renaming procedure is required. The 
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… … … … … … … …
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first step consists in sorting the transistors of a standard cell in an algorithmic way 
that only depends on the cell’s transistors structure. A transistors structure is a vir-
tual SPICE netlist without specification of the connections between transistor gates, 
i.e., only source and drain connections between transistors are listed. Once the tran-
sistors are sorted, they are consistently and unambiguously renamed. The transistor-
renaming algorithm consists of the following two steps: determination of branch 
equations and sorting of branch equations. 

 
4.2.1 Determination of Branch Equations 

The transistors structure of a standard cell is composed of one or more branches. 
A branch is a group of transistors connected by their drain and source ports. The 
entry (or gate) of each branch is the set of transistor gates and its exit (or drain) is 
the connection net between the NMOS and PMOS transistors, which drives the gate 
of the next branch. A branch’s source is connected to a power and/or a ground net. 
A branch equation is a Boolean-like equation describing how the transistors of the 
branch are connected, using Boolean-and (symbolized by '&') for serial transistors 
or serial groups of transistors, and Boolean-or (symbolized by '|') for parallel tran-
sistors or parallel groups of transistors.  

Sequential cells and complex combinational cells tend to integrate transmission 
gates in their structures. A transmission gate is a transistor configuration acting as 
a relay that can conduct or block depending on the control signal. It is composed of 
one PMOS and one NMOS transistors in parallel (i.e., sharing drain and source), 
and the control signal applied to the gate of the NMOS transistor is the opposite 
(i.e., NOT-ed) of the signal applied to the gate of the PMOS transistor. A transmis-
sion gate directly connects the exit of a branch to the entry of another branch. As 
such, a transmission gate is considered as an autonomous branch of the transistors 
structure. The entry of such a branch is the set of transistor gates plus the exit of the 
previous branch, and the exit is the entry of the following branch. 

 
Fig. X.9: Example schematic 

Figure X.9 shows an example of transistors structure. It is composed of three 
branches, named as α, β and γ. The two-transistors output-inverter is the simplest 
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branch whose input is net Y and output is net Z (branch γ). The inverter creates two 
paths between the branch output and the power nets, so its branch equation is 
(Ninv!Pinv). The equation of the left-most branch α (PMOS branch driving net X) is 
(P4|(P1&(P2|P3))). In order not to rely on any name present in the SPICE netlist, 
the branch equations are anonymized, i.e., a NMOS is described by '1n' and a PMOS 
by '1p'. The anonymized equation of the PMOS branch driving net X in Fig. X.9 is 
therefore (1p|(1p&(1p|1p))). These two branches are separated by the β branch, i.e., 
a transmission gate composed of N5 and P5, which is anonymized as '1t'. 

4.2.2 Sorting of Branch Equations  
Once all the branch equations for the considered cell have been determined, they 

are sorted by using the following deterministic criteria: 

• Level of each branch. It is defined in ascending order with respect to the cell 
output (level-1 branches drive the cell output, level-2 branches drive the gates 
of transistors in level-1 branches, and so on and so forth), 

• Number of transistors in each branch - in ascending order, 
• Anonymized branch equation - in alphabetical order.  

Table III reports all the branch equations of the schematic in Fig. X.9 sorted accord-
ing to the above criteria. 

TABLE III.  BRANCH EQUATIONS FOR THE SCHEMATIC OF FIG.X.9 

Level Number of transistors Anonymized equation Comment 
1 2 (1n|1p) Branch α Inverter 

2 2 1t Branch β Transmission gate 

3 4 (1p|(1p&(1p|1p))) Branch γ PMOS structure 

4.3 Identification of Parallel Transistors 

Because of parallel transistors, the identification of branch equations is not 
enough to unambiguously rename all transistors. Specifically, two or more parallel 
transistors in a branch share the same drain and source, making their identification 
quite difficult. For example, transistors P2 and P3 in Fig. X.9 can be either repre-
sented as “P2|P3” or as “P3|P2”, thus leading to a confusing situation. A solution to 
solve this problem consists in sorting transistors inside their branch according to 
their activity with respect to the input stimuli. The algorithm developed to this pur-
pose proceeds as follows. For each transistor, an activity value is computed. This 
value summarizes the states of the transistor (active, passive, pulsing) for all possi-
ble stimuli applied to the cell. The input stimuli range from (0…,0) to (1…,1) for 
combinational cells and from (P,0…,0) to (P,1…,1) for sequential cells. For each of 
these stimuli, the transistor is either active (1), passive (0), pulsing (P) or anti-
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pulsing (A). The activity value is defined as a word made of 0, 1, P and A, in which 
the first symbol corresponds to the state of the transistor when the first stimulus is 
applied, second symbol for second stimulus, and so on for the whole stimuli range. 

To compute the activity values, one needs to know whether the transistor is ac-
tive or passive for each input stimulus. This information is already available in the 
CA-matrix as described in Section 3. To illustrate this process, activity values for 
the transistors of the AND2 cell given in Fig. X.7 are listed in Table IV. 

TABLE IV.  ACTIVITY VALUES FOR THE AND2 CELL IN FIG.X.7 

 

 Old names 

A B Comments Px Py N10 N11 Pinv Ninv 

0 0 First stimulus 1 1 0 0 0 1 

0 1  1 0 0 1 0 1 

1 0  0 1 1 0 0 1 

1 1 Last stimulus 0 0 1 1 1 0 

Activity value 1100 1010 0011 0101 0001 1110 

 
↓ Renaming ↓ 

P2 P1 N0 N1 P0 N2 

 

Finally, transistors of each branch are sorted by their activity values (alphabetical 
order) to give the final description of the cell in the CA-matrix. For the AND2 cell 
in Fig. X.7, the renaming process is illustrated in Table IV. 

The whole transistors renaming process for the transistors of the LATCH structure 
presented in Fig. X.8 is summarized in Table V, starting with the structure branches 
extraction and sorting, the computation of activity values, then the renaming process 
itself.   

TABLE V.  ACTIVITY VALUES FOR THE LATCH STRUCTURE IN FIG.X.8 

 

Branches 
Extraction 
and sorting 

(left to right) 

Level 1 2 
Number of 
transistors 2 4 

Anonymized 
equation (1n|1p) (1n&1n|1p&1p) 

CLK D N3 P3 N4 N5 P4 P5 

Commenté [AV3]: Utilises le même style pour les tableau. 
Le précédant a un contour en trait épais. 
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Activity 
Value within 

branches 

P 0 0 1 P 1 P 0 

P 1 1 0 P 0 P 1 

Activity value 01 10 PP 01 PP 01 

Renaming of 
transistors 

 ↓ Renaming ↓ 

N1 P1 N3 N2 P3 P2 

4.4 Defect Representation in the Cell-Aware Matrix 

To describe cell-internal defects in a standardized and ML friendly manner, the 
CA-matrix contains a set of categorical columns representing the cell’s transistors’ 
ports. Cell internal defects are classified into: 

• Intra-transistor defects. These defects affect transistor ports (source, drain, gate 
and bulk) and can be either an open defect or a short. In order to describe these 
defects, all transistor ports are listed as a column in the CA-matrix (cf. Table 
I). For an open defect, a value ‘1’ indicates that this transistor port is affected 
by the defect, ‘0’ otherwise. For a short, a value ‘1’ on two transistor ports 
indicates that a short exists between these two ports, ‘0’ otherwise.   

• Inter-transistor defects. These defects affect a connection(s) between at least 
two different transistors. Though these defects are not considered in this work, 
the matrix representation is flexible enough to represent them. For these de-
fects, the same representation mechanism as for intra-transistor defects is used. 

TABLE VI.  Example of defect columns for the AND2 presented in Fig. X.7 

Py_S Py_D Px_S Px_D … N10_S N10_D N11_S N11_D Comment 
0 0 0 0 … 1 1 0 0 source-drain short on N10 
1 0 1 0 … 1 0 0 1 net0 & VDD short 

Table VI is an example of defect description in the CA-matrix of the AND2 cell 
in Fig. X.7. The row with red cells describes the intra-transistor short defect between 
drain and source ports of transistor N10 (newly N0). The row with purple cells de-
scribes the inter-transistor short defect between VDD at PMOS sources and “net0” 
(net0 connects N10-source and N11-drain). 

5 Validation on Industrial Cell Libraries 

The ML-based CA model generation flow has been implemented in a python 
program. The ML algorithms were taken from the publicly available python module 
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called scikit-learn [35]. A dataset composed of 1712 combinational standard cells 
coming from standard cell libraries developed using three technologies – C40 (446 
cells), 28SOI (825 cells) and C28 (441 cells) – was assembled. Another dataset 
composed of 219 sequential cells coming from the same libraries and technologies 
– C40 (27 cells), 28SOI (108 cells) and C28 (84 cells) – was also used for validation. 
All these cells already had a CA model generated by a commercial tool. The CA-
matrix was generated for each cell. The flow was experimented in two different 
ways. First, the ML model was trained and evaluated using cells belonging to the 
same technology. Second, the model was trained on one technology and evaluated 
on another one. Combinational and sequential cells were considered separately. Part 
of these results are extracted from [17]. 

5.1 Predicting Defect Behavior on the Same Technology 

5.1.1 Combinational Standard Cells 
 
The ML model was first trained on cells of the 28SOI standard cell library. Cells 

were grouped according to their number of transistors and inputs. For m cells avail-
able in a given group, the ML model was trained over m-1 cells and its prediction 
accuracy was evaluated on the m-th cell. A loop ensured that each cell is used as 
the m-th cell. On average, a group contains 8.6 cells. All possible open and short 
defects (static and dynamic) were considered for each cell. Results presented in Ta-
bles VII report the prediction accuracy for open defects. Results achieved for short 
defects are similar. 

 
TABLE VII.  Average Prediction Accuracy for combinational cells in the same technology 

  
Table VII presents the prediction accuracy achieved for open defects. For the sake 
of conciseness, only results for cells with less than 7 inputs and 48 transistors are 

Predicion Number of inputs
accuracy (%) 2 3 4 5 6

N
um
be
r
of
tr
an
sis
to
rs

6 99.98 99.99
8 99.91 99.96 99.91
9 100.0
10 99.98 99.81 99.96
12 99.72 99.73 100.0 99.91 99.93
14 99.7 99.56 99.83 99.92 99.96
16 99.99 100.0 99.94 99.98
18 99.99 99.94
20 100.0 99.98 100.0 99.73
22 99.84 99.98 99.62
24 100.0 99.84 99.97 99.85
26 100.0 99.7 100.0 99.89
28 99.49 99.98 100.0 99.88 99.81
30 99.75 100.0 100.0
32 100.0 100.0 99.98
42 100.0
44 100.0
46 99.81
47 99.98 99.95

Commenté [AV4]: Ajouter une reference. 
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reported, although experiments have been done on cells with up to 8 inputs and 112 
transistors. Non-empty boxes report the average prediction accuracy obtained for 
a group of cells. Empty boxes mean that there is zero or one cell available and that 
the group cannot be evaluated. A green background indicates that the maximum 
prediction accuracy in this group is 100%, i.e. the ML model can perfectly predict 
the defective behavior of at least one cell. In contrast, white background indicates 
that no cell was perfectly predicted in that group (all prediction accuracies are less 
than 100%). For example, let us consider the circled box in Table VII, that corre-
sponds to 24 cells having 4 inputs and 24 transistors: (i) 15 cells are perfectly pre-
dicted (100% accuracy), which leads to a green background, (ii) the prediction ac-
curacy for the 9 remaining cells ranges from 99.82% to 99.99%, (iii) the average 
prediction accuracy over all 24 cells is 99.97%. 

5.1.2 Sequential Standard Cells 

For these experiments, the ML model was trained on a group of sequential stand-
ard cells coming from C40 standard cell libraries. Cells were grouped according to 
their number of transistors and inputs. As for combinational cells, for m cells avail-
able in a given group, the ML model was trained over m-1 cells and the prediction 
accuracy was evaluated on the m-th cell. A loop ensured that each cell is used as 
the m-th cell. On average, a group contains 4.5 cells. All possible open and short 
defects (static and dynamic) in each cell were considered. Results in Table VIII 
report the prediction accuracy for short defects. Results achieved for open defects 
are similar. 

TABLE VIII.  Average Prediction Accuracy for sequential cells in the same technology 

Prediction accuracy (%) Number of inputs 
4 5 6 7 

N
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s  

 

32 100    
34     
36     
38     
40   100  
42   100  
44   100  
46   100  
48   100 100 
50    100 
52    100 

 
Results are reported according to the number of transistors and number of inputs of 
each cell. Non-empty boxes report the average prediction accuracy obtained for a 
group of sequential cells. Empty boxes mean that there is zero or one cell available 
and that the group cannot be evaluated. As can be seen in Table VIII, the maximum 
prediction accuracy (100%) was always obtained for each group, i.e., the ML model 
can perfectly predict the defective behavior of all cells in each group. This means 
that the CA model generated by ML fit the real behavior achieved with electri-
cal simulations.  
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The above cell category with good prediction score has been analyzed manually 
to identify why it led to good results. The analysis showed that all these cells have 
at least one cell in the training dataset with the same transistors structure or a very 
similar one. 

These results show that the ML model can accurately predict the behavior of a 
sequential cell affected by a given defect. The goal of the next subsection is to lev-
erage on existing CA models to generate CA models for a new technology. 

5.2 Predicting Defect Behavior on Another Technology 

5.2.1 Combinational Standard Cells 

Another set of experiments was conducted on combinational standard cells be-
longing to two different technologies. Evaluation was slightly different compared 
to the previous one. Here, the ML model was trained over all available cells of a 
given technology and the evaluation was done on one cell of another technology. A 
loop was used to allow all cells of the second technology to be evaluated. Cells were 
grouped according to their number of inputs and transistors. Table IX shows the 
prediction accuracy achieved on open defects of the C28 cells after training on the 
28SOI cells. Results are averaged over all cells in each group (same number of in-
puts and number of transistors). The average prediction accuracies are globally 
lower compared to those of Table VII. After investigation, it appears that the be-
havior of most of the cells (68% of cells) is accurately predicted (accuracy > 97%), 
while accuracy for few cells is quite low. This phenomenon is discussed in Section 
5.2.2. 

To verify the efficiency of the ML-based CA model generation method when 
different transistor sizes are considered, the ML model was trained over the 28SOI 
standard cells and used to predict the behavior of C40 cells. Table X shows the 
prediction accuracy achieved on open defects of the C40 cells after training on the 
28SOI cells. Results are averaged over all cells in each group (same number of in-
puts and transistors). This time, 80% of cells are accurately predicted (accuracy > 
97%), proving that the ML-based characterization methodology could be used to 
generate CA models for a (large) part of combinational cells of a new technology. 
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TABLE IX.  Average Prediction Accuracy for combinational cells in different technologies 

 
TABLE X.  Average Prediction Accuracy for combinational cells using different transistor sizes 

 
 
 

5.2.2 Analysis and Discussion 

A first analysis was done on cells for which the defect characterization method-
ology gives excellent prediction accuracy as well as those for which the prediction 
accuracy was quite low. Then, the limitations of the CA model generation method 
were investigated. After running several experiments on different configurations 
using one fault model at a time, the following behaviors were noticed: 

Predicion Number of inputs
accuracy (%) 2 3 4 5 6

N
um
be
r
of
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rs

6 98.21 99.47
8 94.56 96.86 99
9
10 94.69 96.01 99.27
12 87.73 98.05 99.1 99.76
14 85.69 97.35 98.75
16 91.74 99.2
18 88.18 96.28
20 90.29 94.37
22 78.73 98.37
24 87.91 96.88 99.37 99.79
26 87.24 98.92
28 88.18 98.68
30 97.52
32 88.73 95.6
42
44
46
47

Predicion Number of inputs
accuracy (%) 2 3 4 5 6

N
um
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r
of
tr
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rs

6 100.0 99.8
8 87.39 99.14 99.03
9 97.19
10 92.07 95.49 99.32 98.46
12 91.71 98.07 99.24 98.47 99.46
14 90.1 95.84 98.63 98.79 99.52
16 91.17 93.59 99.23 99.59
18 88.5 97.15 97.14 97.74
20 83.87 97.73 97.15 98.94
22 87.26 98.98 98.44
24 93.96 99.34 99.58 98.84 99.63
26 87.52 97.55 99.04 99.02 99.92
28 98.19 98.79 99.31 99.44
30 99.13 99.37 99.58
32 92.91 98.92 99.78
42
44 92.03 98.82
46 99.23
47 98.29 99.76
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• Accuracy for most of the cells is excellent, i.e. more than 97% prediction accu-
racy for 70% of cells. In this case, the CA model generated by ML fit the 
real behavior achieved with electrical simulations.  

• Accuracy for few cells (30%) is quite low and the ML prediction is not accu-
rate. 

For the first cell category with good prediction score, cells have been analyzed 
manually to identify why they led to good results. The analysis showed that all these 
cells had at least one cell in the training dataset with the same transistors structure 
or a very similar one. The difference between very similar cells is always the same 
and is represented in Fig. X.10. More precisely, cells giving good results are always 
composed of one of the configurations presented in Fig. X.10 and at least one cell 
of the training dataset contains the other configuration. The difference between 
these two transistor configurations is the presence or absence of the red net. The 
logic function of these configurations is the same. These configurations are mostly 
found in high-drive cells. 

 

Fig. X.10: Typical transistor configurations leading to good prediction 

For the second cell category – cells leading to poor prediction accuracy – the manual 
analysis showed that they have (i) new logic functions that do not appear in the cells 
of the training dataset, or (ii) a transistor configuration which is completely new 
when compared to cells in the training dataset. 

5.2.3 Sequential Standard Cells 

We also conducted experiments on sequential cells belonging to two different 
technologies. As for combinational cells, the ML model was trained over all avail-
able sequential standard cells of a given technology and the evaluation was done on 
one cell of another technology. Cells were grouped according to their number of 
inputs and transistors. Table XI shows the prediction accuracy achieved on short 
defects of the 28SOI cells after training on the C28 cells. Results are averaged over 
all cells in each group.  

Similarly, we conducted experiments to analyze the efficiency of our method 
when different transistor sizes are considered. This time, we trained the ML model 
over the C40 standard cells and used it to predict the behavior of more technologi-
cally advanced 28SOI cells. Table XII shows the prediction accuracy achieved on 
short defects.  
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In the above two scenarios, the average prediction accuracies are globally very 
low (around 50%), indicating that our method needs good training dataset 
representative of every type of standard cells and transistors structures. Indeed, 
investigations showed that in most cases, functionally-equivalent sequential cells in 
libraries from different technologies were designed differently and hence do not have 
neither the same transistors structure nor a very similar one (as discussed in 5.2.2). 
A manual analysis showed that they have (i) new logic functions that do not appear 
in the cells of the training dataset, or (ii) a transistor configuration which is 
completely new when compared to cells in the training dataset. Considering the main 
property of our learning method for CA model generation, which is based on the 
recognition and use of identical structures, it is not surprising to get such low-quality 
results. Adding more cells and thus more known structures to the training database 
should help to increase the prediction accuracy. 

TABLE XI.  Average Prediction Accuracy for sequential cells different technologies 

Prediction accuracy (%) Number of inputs 
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32  53   
34  50   
36  50 54  
38  50 51  
40   50  
42   50  
44     
46     
48     
50     
52     

 

TABLE XII.  Average Prediction Accuracy for sequential cells with different transistor sizes 

Prediction accuracy (%) Number of inputs 
4 5 6 7 
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32     
34     
36     
38  50   
40   50  
42  48 50  
44   50  
46   48  
48   48 57 
50     
52    58 

 

5.2.4 Controlled Experiments 

In an attempt to check the above hypothesis, “controlled experiments” were per-
formed by considering three scan flip-flops (SDFPQ cells) coming from three dif-
ferent technologies (C40, 28SOI, C28). The SPICE description of each cell was 
manually modified so as to get the same schematic for all of them. This was done 
by removing some buffers and duplicate transistors, which were initially inserted in 
the cell descriptions for driving strength purpose. After modification, each flip-flop 
contained 5 inputs, was made of 32 transistors and can be affected by the same intra-
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transistor defects. The physical layouts of the modified cells have not been made 
identical and carefully modified to the minimum in an attend to keep the technolog-
ical specificities of each cell. Therefore, the list of potential inter-transistor defect 
locations is different for each cell.  A CA model has been generated for each mod-
ified flip-flop, using the simulation-based flow implemented by a commercial tool. 

Three types of experiments were performed. First, the ML model was trained by 
considering all short defects of the C28 SDPFQ cell, and its prediction accuracy 
was successively evaluated over all short defects (576) of the C40 SDPFQ cell and 
over all short defects (928) of the 28SOI SDPFQ cell. The same procedure was done 
for open defects (the C40 SDPFQ cell and the 28SOI SDPFQ cell each contain 387 
open defects). Next, the ML model was trained by considering all short defects of 
the 28SOI SDPFQ cell, and its prediction accuracy was successively evaluated over 
all short defects of the C40 SDPFQ cell and over all short defects (1016) of the C28 
SDPFQ cell. Again, the same procedure was done for open defects (the C28 SDPFQ 
cell contains 394 open defects). Finally, the ML model was trained by considering 
all short defects of the C40 SDPFQ cell, and its prediction accuracy was succes-
sively evaluated over all short defects of the 28SOI SDPFQ cell and over all short 
defects of the C28 SDPFQ cell. The same procedure was done for open defects. 

To visualize the efficiency of the ML-based characterization method, a confusion 
matrix was generated in which each row of the matrix represents the instances in a 
predicted class (defects that are predicted by the ML algorithm to be detected / not 
detected by a given cell pattern) while each column represents the instances in an 
actual class (defects that are actually detected / not detected by a given input pattern). 
By this way, the confusion matrix reports the number of true positives, false 
positives, false negatives, and true negatives. 

TABLE XIII.  RESULTS OF THE CONTROLLED EXPERIMENTS  

Train Predict Defect type True P False P False N True N Accuracy 

C28 
C40 

short 248 40 52 236 84% 
open 215 8 2 162 97% 

28SOI 
short 442 23 40 423 93% 
open 215 2 2 168 98% 

28SOI 
C40 

short 252 36 59 229 83% 
open 215 8 2 162 97% 

C28 
short 483 27 77 429 89% 
open 221 2 3 168 98% 

C40 
28SOI 

short 416 49 153 310 78% 
open 215 2 8 162 97% 

C28 
short 446 64 182 324 75% 
open 221 2 9 162 97% 

Results are reported in Table XIII for the three types of experiments. The 
confusion matrix can be found at the center of the table (green and red headed 
columns), this time represented using only a horizontal axis. For example, let us 
consider the first experiment, when the ML model is trained by considering all 
defects of the C28 SDPFQ cell, and the prediction accuracy is evaluated over all 
defects of the 28SOI SDPFQ cell (third row in Table XIII). The number of true 
positives, false positives, false negatives, and true negatives is 442, 23, 40 and 423 

Commenté [AV5]: Juste avant tu dis que les 3 Scan FF sont 
rendues identiques. Comment se fait-il que le nb de défaut 
soit différent !!! 

Commenté [PDH6R5]: Les layout ne sont pas identiques. 
Phrases ajoutées dans le paragraphe précédent. 
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respectively, thus leading to a prediction accuracy of 93%. From the overall results 
reported in Table XIII, this time it appears that the prediction accuracy achieved with 
the ML-based method ranges from 75 to 98%, thus clearly demonstrating its 
efficiency. As for combinational cells, one or more structural patterns have been 
identified in functionally-equivalent cells from various libraries, so that the ML 
algorithm can exploit them efficiently for training and inference purpose. 

6 Hybrid Flow for CA Model Generation 

Considering the above analysis, it appears that the ML-based CA model generation 
flow cannot be used for all cells in a standard cell library to be characterized. A 
mixed solution, which consists in combining ML-based CA model generation and 
conventional (simulation-based) CA model generation, should be preferably used. 
This is illustrated in the following. 

The hybrid flow for accelerating the CA model generation is sketched in Fig. 
X.11. Typically, when the CA model for a new cell is needed, the first step consists 
in checking whether the ML-based generation will lead to high-quality CA models. 
This is done by analyzing the structure of the new cell and check whether the train-
ing dataset contains a cell with identical or similar structure (as discussed in Section 
5.2.2). If the ML algorithm is expected to give good results, the new cell is prepared 
(representation in a CA-matrix) and submitted to the trained ML algorithm. The 
output information is then parsed to the desired file format. Conversely, if the ML 
algorithm is expected to give poor prediction results, the standard generation flow 
presented in Fig. X.3 is used to obtain the CA model. A feedback loop uses this new 
simulated CA model to supplement the training datasets and improve the ML algo-
rithm for further prediction. 

 
Fig. X.11: Hybrid flow for CA model generation 

The experiments performed to estimate the improvement in CA model genera-
tion time achieved with the hybrid flow in Fig. X.11 are described in the following. 
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6.1 Runtime Saving for Combinational Cells 

For these experiments, the Random Forest model was first trained on 28SOI 
combinational standard cells and CA models were then generated for a subgroup of 
the C40 combinational standard cell libraries. A subgroup is composed of cells rep-
resenting all the cell functions available in C40 libraries. In these experiments, this 
subgroup contained 409 cells: 118 (29%) have a cell with an identical structure in 
the training dataset, 87 (21%) have a cell with an equivalent structure (as explained 
in Section 5.2.2) in the training dataset, and 204 (50%) have no identical or equiv-
alent structure in the training dataset (a simulation-based generation is thus needed). 
For these 204 cells, the generation time was calculated and found to be equal to 
~172 days (~ 5.7 months) considering a single SPICE license. Using the ML-based 
CA model generation for the 118 + 87 = 205 (50%) remaining cells requires 21947 
seconds (~ 6 hours), again considering a single SPICE license. Considering that a 
simulation-based generation for these 205 cells would require ~78 days, we can 
estimate the reduction in generation time to 99.7%. Now, when considering the 
whole C40 subgroup composed of 409 cells, the hybrid generation flow would re-
quire ~172 days + ~6 hours, to be compared with ~172 days + ~78 days = ~250 
days by using only the simulation-based generation. This represents a reduction in 
generation time of about 38%. After investigating results of these experiments, it 
appears that the ML-based CA model generation works well for about 80% of cells 
of the C40 subgroup. Surprisingly, the structural analysis revealed that only 50% 
(205 cells) could be evaluated using the ML-based generation part of the flow. This 
shows that there is still room for further improvement of the structural analysis in 
the flow, and hence get better performance of the ML-based CA model generation 
process. 

6.2 Runtime Saving for Sequential Cells 

In these experiments, the goal was to (re-)generate CA models for the 27 C40 
sequential standard cells in an efficient manner. To achieve this goal, the number of 
CA models obtained by the simulation-based flow had to be minimized. The lowest 
achievable number of simulation-based CA models is given by: one cell per training 
group (same number of inputs and transistors), plus the number of cells that are alone 
in their training group (and thus cannot go through the ML-based flow). In these 
experiments, 13 cells had to go through the simulation-based flow (9 groups + 4 
individual cells). The simulation-based generation flow for those 13 cells took ~4.1 
hours. The ML-based generation flow for the remaining 14 cells took ~35s. By 
comparison, the simulation-based model generation for these 14 cells would take 
~4.2 hours. The ML-based flow thus provides a run-time reduction of 99.8% for the 
cells it can handle. Now, if we consider the whole C40 group composed of 27 cells, 
the hybrid generation flow would require ~4.1 hours + ~35s, to be compared with 
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~4.1 hours + ~4.2 hours = 8.3 hours by using only the simulation-based generation 
flow. This represents a reduction in generation time of about 51%. 

It is worth mentioning that most of the run-time in the hybrid-flow is taken by 
the simulation-based flow. Therefore, as long as new CA models generated by 
simulation are added to the database, the ML-based flow can use them and then 
handle more and more cells, further reducing the generation run-time. 

7 Discussion and Conclusion 

A novel approach based on machine learning was presented in this chapter to gen-
erate CA models. The main goal is to speed up the characterization process of stand-
ard cell libraries for test and diagnosis purpose, which usually resort to SPICE sim-
ulations and hence is very time-consuming. The methodology is based on the 
recognition of identical structural patterns between cells already characterized by 
simulation and those to be characterized by using machine learning. 

Experiments done on both combinational and sequential cell from industrial li-
braries demonstrate the accuracy and performance of the method when predicting 
defect behavior has to be done on the same technology. In this case, the generation 
run-time of CA models can be significantly reduced for experimented cells having 
other cells with similar structure in the training dataset. 

In order to deal with functionally-equivalent cells having different internal struc-
tures, a hybrid flow combining learning-based and simulation-based CA model gen-
eration can be used. Experiments carried out on a subset of cells from an industrial 
library have shown that the generation time of CA models can be reduced by more 
than 50%. 

Experiments reported in this chapter have been carried out on a small size of 
standard cell population. Considering that more than 10000 cells have usually to be 
characterized for a given technology, the hybrid flow described in this chapter is 
expected to provide even better results, especially owing to the reinforcement train-
ing that uses simulation generated models for supplementing the training datasets, 
and hence reduce the number of electrical simulations. 
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