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Chapter 1 
Defect Diagnosis Techniques for Silicon 
Customer Returns 

Patrick Girard, Alberto Bosio, Aymen Ladhar, Arnaud Virazel 

Abstract 

This chapter provides an overview of the various approaches and techniques pro-
posed so far for defect diagnosis in silicon customer returns. It focuses on diagnosis 
of defects in logic blocks of SoCs. After some backgrounds on test and fault diag-
nosis, the chapter presents the various test scenarios used in practice during cus-
tomer return diagnosis. A discussion on the quality required by the test sequences 
used during customer return is also proposed. Then, the chapter reviews the state-
of-the-art techniques existing to identify defects at the cell level (called intra-cell or 
cell-aware diagnosis). A summary of conventional approaches is first proposed. 
Then, the latest Machine Learning (ML) -based cell-aware diagnosis techniques are 
reviewed. Effectiveness of existing ML techniques is shown through industrial case 
studies and corresponding diagnosis results in terms of accuracy and resolution. The 
chapter ends with a discussion on the future directions in this field. 

1 Introduction 

Modern electronic systems are composed of complex Systems on a Chip (SoCs) 
which are made of heterogeneous blocks that comprise memories, digital, analog 
and mixed-signal parts, etc. These SoCs demand a huge amount of knowledge and 
expertise to be designed, fabricated and embedded on the final support with the 
required levels of functionality and reliability. To guarantee their correct behaviour 
and hence fit a given quality level required by the application standard (e.g., auto-
motive, avionic, etc.), SoCs pass through a comprehensive test flow (functional, 
structural, parametric, etc.) at the end of the manufacturing process. SoCs that pass 
the test flow are further used in the field by the target application. 

Despite the high-quality level of the test flow used during manufacturing test, 
SoCs may still fail in the field. Thus, in an attempt to identify the source of failures 
and avoid their re-occurrence in next generation of products, each defective SoC 
(referred to as “customer return”) is always sent back to the manufacturer who is in 
charge of analyzing the device to determine the root cause of failures. This is 
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particularly true for safety-critical applications. A customer return is a circuit that 
passed the entire manufacturing test flow but failed on the customer’s side [1]. The 
two main causes of a customer return are test escape during manufacturing test or 
latent defect mechanisms during lifetime [2]. Latent defects cause two types of fail-
ures: i) early-life failures that are not exposed during manufacturing tests, but that 
are degraded due to electrical and thermal stress during in-field use, and ii) failures 
caused by various wear-out mechanisms. Wear-out or aging manifesting as progres-
sive performance degradation is induced by various mechanisms such as Negative-
Bias Temperature Instability or Hot-Carrier Injection. All these failures that occur 
in the field are the most critical as they may result in catastrophic consequences. 

When a customer return is identified, it is important to reproduce the failure 
mechanism in the failure analysis lab of the manufacturer with the appropriate test 
conditions (temperature and voltage) and the original test flow. In case of test es-
cape, efforts must be spent on finding new test patterns that will exhibit the failure 
in the same test conditions. In case of latent defect, the task will often succeed and 
a diagnosis program made of several routines is used to identify, step by step, the 
failing part and, finally, the suspected defect(s). Each routine coincides with the 
application of a diagnosis algorithm at a given hierarchy level (system, core and cell 
levels) [3]. 

Diagnosis is a software-based method that analyses the applied test sequences, 
the tester responses, and the circuit structure (possibly with layout information) to 
produce a list of candidates that represent the possible locations and types of defects 
within the defective circuit. The quality of a diagnosis outcome is usually evaluated 
owing to two metrics: accuracy and resolution. A diagnosis is accurate if the actual 
defect is included in the reported list of candidates. Resolution refers to the total 
number of candidates reported by the diagnosis. An accurate diagnosis with perfect 
resolution (i.e., one candidate which is the real defect) is the ideal case.  

Diagnosis is usually followed by Physical Failure Analysis (PFA), a time-con-
suming process for exposing the defect physically (owing to special techniques and 
tools such as acoustic microscopy, x-ray imaging, transmission electron micros-
copy, photon emission microscopy, laser-induced voltage alteration, thermal imag-
ing, etc.) in order to characterize the failure mechanism. Due to the high cost and 
destructive nature of PFA, diagnosis accuracy and resolution are of critical im-
portance. In practice, it is very uncommon to perform PFA on any defect with more 
than five candidates [4]. This ensures that the likelihood for uncovering the root-
cause of failure is maximized when performing PFA.  

With more defects inside standard cells at leading-edge technology nodes [5], 
cell-aware (CA) test, which deterministically targets defect locations inside stand-
ard cells, and CA diagnosis, which can identify the location and type of cell-internal 
defects at the transistor level, are quality assessment solutions widely adopted today 
in industry [6-7]. CA diagnosis is valuable in the context of large, complex cells 
such as adders, multipliers, and multi-bit sequential elements. Even when a defect 
is known to be within a cell, finding defects in such a complex cell during PFA can 
be challenging and time-consuming, especially if the defect is exhibited for a spe-
cific test condition and undetected for some others. CA diagnosis shortens the 
lengthy investigation process by pinpointing a small subsection of the suspected 
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cell. It improves results for diagnosis scenarios such as customer return analysis as 
well as volume diagnosis applications like yield analysis [7]. 

Unfortunately, today’s diagnosis resolution is typically far from ideal due to SoC 
complexity. Especially with the advent of very deep submicron technologies (i.e., 7 
nm), a high resolution (very few or one candidate) is not always reachable by exist-
ing CA logic diagnosis tools based on conventional methods [8]. For this reason, 
considerable efforts have been spent on improving resolution by using machine 
learning techniques, mainly through the extraction of features that allow correct 
candidates (those that correctly represent defect locations) to be distinguished from 
incorrect ones [2,4,9,10,11]. 

Even though they are efficient, these techniques address volume diagnosis for 
yield ramp-up, which is a different problem than defect diagnosis of customer re-
turns. Indeed, during volume diagnosis for yield improvement, a lot of data col-
lected during manufacturing test and subsequent diagnosis phases are available, 
such as, e.g., hundreds of similar failed chips with candidates correctly labeled 
(good, bad). It is therefore possible to use these data for failure diagnosis of a new 
failed chip. Conversely, during fault diagnosis of a customer return, only one failed 
chip is investigated, with no information about the defective behavior of any other 
similar chips used in the same conditions (application, environment, workload). For 
this reason, approaches existing for volume diagnosis cannot be used in a straight-
forward manner for customer returns. 

Historically, conventional approaches based on critical path tracing or fault sim-
ulation were used in industry for defect diagnosis of customer returns. However, 
with the fast development and vast application of Machine Learning (ML) in recent 
years, ML-based techniques have been shown to be quite valuable for diagnosis. 
Most of these techniques are based on supervised learning, because it naturally 
aligns with the common practice of training with labeled historical data and usually 
performs well in industrial diagnosis tasks [12]. 

This chapter reviews the latest developments in the field of customer return di-
agnosis based on ML. It is organized as follows. Section 2 gives some background 
on test and diagnosis in the context of customer return analysis. Section 3 first ex-
plains how customer returns are usually (re-)tested for diagnosis purpose and what 
are the limitations. Next, a proposal of best practices for customer return test pattern 
generation is done and discussed. Section 4 summarizes the state-of-the-art in the 
field of defect diagnosis for customer returns. Both conventional approaches and 
ML-based techniques are discussed. Section 5 presents some industrial case studies 
performed with one of the latest ML-based diagnosis techniques. Section 6 con-
cludes the chapter and draws some conclusions. 

2 Background on Test and Fault Diagnosis 

During the manufacturing process of Integrated Circuits (ICs), defects can occur in 
the physical structure of the IC, subsequently leading to erroneous behaviors. The 
role of testing is to detect ICs affected by defects and discard them from the set of 
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ICs sent to the customers. Moreover, testing is also important to collect as much 
information as possible to be further exploited during fault diagnosis, aiming at un-
derstanding the root causes of the observed failures. This section provides some 
backgrounds on defects, test and fault diagnosis. 

2.1 From Defects to Failures 

Physical defects like shorts and opens may occur during any single step of the fab-
rication process. These defects can be randomly caused by contaminations or due 
to systematic process-design interactions [13]. In modern deep submicron technol-
ogies, defects appear not only in the cell interconnection (inter-cell defect), but also 
inside the cell itself (intra-cell defect) [14-15]. This is caused by the reduced circuit 
sizes, the use of new complex process technologies, new materials and the increas-
ing number of vias and contacts. For example, Fig. 1.1 depicts a short defect affect-
ing a four-input AOI cell made of 48 transistors in a 32 nm STMicroelectronics 
design [16]. 

 
Fig. 1.1 Short defect affecting a logic gate 

The representation of a defect is a fault model, an anomalous physical condition that 
may lead to an error. An error is the exhibition of a fault in a system that might or 
might not be propagated and, in this last case, give rise to failure [17].  

 
Fig. 1.2 Fault, Error, Failure example 

Figure 1.2 summarizes the above concepts through a simple example. The IC is a 
combinational circuit composed of three gates (G1, G2 and G3), two primary inputs 
(PI1 and PI2) and one primary output (PO). The circuit is affected by a defect 
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represented by a Stuck-at-0 fault model (S@0) located at the input a of G3 (i.e., the 
behavior of the defect can be modeled as a logic value always set to ‘0’ at input a 
of G3). The circuit is stimulated by the logical values applied to PIs (“00”). The 
applied values lead to have ‘1’ at input a of G3. However, because of the S@0, the 
value is actually set at ‘0’. This situation is represented as ‘1/0’, where ‘1’ is the 
expected value and ‘0’ is the wrong valued induced by the fault. Since the expected 
value is different from the wrong one, the fault is said to be sensitized and the wrong 
value is the error induced by the fault. In the example, the error is propagated 
through G3 and reaches the PO. At this point, the error becomes observable and 
leads to a failure. The set of applied logic values is called test vector since it can 
detect the presence of the S@0 affecting input a of G3. Several fault models exist 
and are used in industry. Among them, the most popular are the following: 

• Stuck-at Fault Model [17]: the logic value of a given net appears to be stuck at 
a constant logic value (‘0’ or ‘1’), referred to as stuck-at-0 or stuck-at-1; 

• Transition Fault Model [17]: the transition from a given logic value V to the 
opposite logic value V’ at the output of a gate is delayed. In this case, the delay 
of the gate is changed, and is assumed to be large enough to prevent a passing 
transition from reaching any output of the circuit within the clock period. Two 
types of transition fault are defined: slow-to-rise (slow transition from logic ‘0’ 
to logic ‘1’) and slow-to-fall (slow transition from logic ‘1’ to logic ‘0’); 

• Bridging Fault Model [17]: usually modeled at the gate or transistor level, it 
represents a short between a group of signals. The logic value of the shorted 
net can be modeled as a 1-dominant (OR bridge), 0-dominant (AND bridge), 
or indeterminate, depending upon the technology in which the circuit is imple-
mented. 

• Cell-Aware Fault Model [15]: it represents a defect inside a given logic cell. 
The faulty behavior depends on the logic cell transistor-level structure. This 
fault model has to be defined every time a new technology library is imple-
mented. 

2.2 Testing 

IC Testing consists in applying a set of test vectors (forming a so-called test se-
quence) in order to detect the highest number of faults as possible. The test sequence 
quality is measured owing to the following metrics: 

• Fault Coverage (FC): this is the ratio between the number of detected faults 
and the total number of faults. Ideally, the FC has to be equal to 1; 

• Defect Coverage (DC): similar to the FC, it gives the ration between the num-
ber of detected defects and the total number of defects. It is important to men-
tion that a high FC does not automatically implies a high DC. For example, it 
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is shown in [14-15] that intra-cell defects cannot be detected by using test ap-
proaches based on classical fault models such as stuck-at or transition faults; 

• Test Coverage (TC): this is the ratio between the number of detected faults and 
the total number of detectable faults. Redundant faults are omitted by this met-
ric. This is the main metric used in industry to qualify a test sequence. 

• Test Length (TL): is the number of test vectors composing the test sequence. 
The higher the length, the higher the cost of test in terms of test time and test 
data volume. 

The test sequence is generated by using a commercial EDA tool, known as Auto-
matic Test Pattern Generator (ATPG). In short, an ATPG aims at generating a test 
sequence that maximizes the FC while minimizing the TL. The description of ATPG 
architectures and algorithms is out the scope of this chapter. The reader can refer to 
[17] for detailed information.  

IC testing is always executed after the manufacturing process. It allows to quan-
tify the quality of the manufacturing process itself through the Yield defined as:  

𝑌𝑖𝑒𝑙𝑑 =
#𝐺𝑜𝑜𝑑
#𝑇𝑜𝑡𝑎𝑙 

where #Good is the number of fault-free devices over the total number of manufac-
tured devices. Every time a new technology node and its manufacturing process is 
used, the yield loss can be very high (yield < 40%). The process of identifying yield 
losses, quantifying and improving them is referred to as yield learning. Testing and 
Fault Diagnosis play a crucial role for yield learning. 

Even when the manufactured IC passes the testing phase and thus is used in-the 
field, testing may be still needed. This is the case of safety-critical applications, like 
automotive or avionic, where all the hardware components have to be continuously 
tested to ensure the correct behavior. Any IC that fails in the field can be considered 
as a customer return. 

2.3 Fault Diagnosis 

Fault diagnosis is the process applied to a failing IC to shedding light into the actual 
defect and then apply corrective actions to prevent failure re-occurrence in next 
generation products. We can identify two main types of fault diagnosis depending 
on the scope: 

• High-Volume Fault Diagnosis: it is applied for yield learning. Indeed, diagnos-
ing the sources of failures assists the designers in collecting valuable infor-
mation regarding the underlying failure mechanisms, in order to enhance yield 
through improvement of the manufacturing process and development of new 
design techniques that minimize the failure rate [2]. 

• Customer Return Fault Diagnosis: it is applied on a given IC to determine the 
root cause of failures that have occurred in the field. In this scenario, failures 
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are not easy to reproduce in the manufacturer’s lab as the real mission condi-
tions and executed workload are unknown and cannot be exhaustively modeled. 

In the rest of this chapter, we mainly refer to fault diagnosis of customer returns. 
Fault diagnosis can be applied at different levels depending on the complexity of 
the IC. Todays’ ICs are complex devices that typically consist of independent and 
heterogeneous blocks, and each block may comprise memory, digital circuits, An-
alog and Mixed-Signal (AMS) circuits, etc. (see Fig. 1.3). 

 
Fig. 1.3 Heterogeneous System-on-Chip (courtesy of Synopsis) 

The first level of fault diagnosis is thus the system level that aims at determining 
the failing block. The second level of fault diagnosis is the block level. Depending 
on the nature of the failing block, i.e., analog, digital, memory, etc., different fault 
diagnosis techniques (as well as test sequences) have to be applied. This chapter 
focuses on digital circuit blocks only. Memory and Analog & Mixed-Signal (AMS) 
fault diagnosis is out of the scope of this chapter but the reader can refer to [18,19] 
for more details. The third level of fault diagnosis is the cell level, called cell-aware 
fault diagnosis. It consists in identifying defects within a logic cell. 

The key metrics characterizing fault diagnosis performance are: 

• Resolution: 𝑅 = #"
##

 defined as the ratio of identified candidates (#C) over the 
total number of possible suspects (#S). The smaller the R the better the fault 
diagnosis. Ideally, fault diagnosis should provide a single suspect. The defini-
tion of suspects and candidates depends on the fault diagnosis level. At system-
level, a candidate is a block, while at digital circuit level a candidate can be a 
gate, a net or even a transistor in the case of cell-aware faults; 

• Accuracy: the fault diagnosis is accurate if the physical defect responsible for 
the observed failure is indeed in the list of identified candidates. Accuracy 𝐴 =
	 #"$%%&'(
#)*+,-$.*.

 can be defined as the number of correct diagnosis (#Correct) over a 
given set of experiments (#Diagnosis). 
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2.3.1 System-Level Fault Diagnosis 

Existing effective system-level fault diagnosis techniques either apply only for 
boards [20] or, if they apply for SoCs, then they target the digital part of the SoC 
[21]. In particular, the individual blocks can be accessed and tested in isolation so 
as to identify the faulty block. The problem is exacerbated when the failure occurs 
during the mission mode. In this case, the SoC operates in functional mode, so there 
is no information that is logged at block level (i.e., the functional stimuli applied to 
each block may be unknown). A promising solution is to use machine learning. In 
the literature, machine learning techniques have been already exploited for system-
level diagnosis, but only for boards [22]. 

2.3.2 Digital Block-Level Fault Diagnosis  

Regarding digital blocks, there exist commercial tools offered by EDA vendors, 
such as Synopsys and Siemens (formerly Mentor Graphics), and many research 
works. All existing approaches are based on the “Cause-Effect” [23] or the “Effect-
Cause” [24] paradigms. The “Cause-Effect” paradigm requires a pre-computed fault 
dictionary, which can be obtained by simulating targeted faults in a specific design 
with a given set of test vectors. During diagnosis, a search on the fault dictionary is 
performed to determine a set of candidates that explain the observed errors. On the 
other hand, the “Effect-Cause” diagnosis approach determines the set of candidates 
by using a back-tracing algorithm [24]. The algorithm is executed starting from each 
failing primary output and traces back through circuit nets to reach primary inputs. 
Each traced net is classified as a candidate. Compared to “Cause-Effect” diagnosis, 
the “Effect-Cause” approach does not require any pre-computed fault dictionary, 
thus it is independent of a targeted fault model. However, “Effect-Cause” diagnosis 
may require a very high computational time, which is proportional to the circuit 
complexity (e.g., number of gates and test vectors). Hence, the “Effect-Cause” ap-
proach may not be appropriate for large designs. 

Irrespective of the adopted paradigm (i.e., Cause-Effect or Effect-Cause), the re-
sult is a list of nets (e.g., connections between logic cells or Flip-Flops) that are 
declared as candidates. Even if only one candidate is included in the list, it is often 
not accurate enough to isolate the defect causing the error. For example, one cell 
typically contains many transistors (usually more than 100), and one net could be 
extended to several metal layers. Without more accurate information of the defect 
location inside a cell, PFA may fail, that is, the root cause may not be discovered. 
Hence, it is very important to identify which components within a cell are more 
likely to be the defective ones so as to successfully perform PFA. This shift in the 
diagnosis accuracy level is obtained by applying transistor-level diagnosis inside a 
cell, referred to as Cell-Aware fault diagnosis. 

2.3.3 Cell-Aware Fault Diagnosis  
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Previous works on Cell-Aware (CA) fault diagnosis focusing on logic cells can be 
classified into three approaches. The first approach converts a transistor-level netlist 
into an equivalent gate-level netlist by means of complex transformations rules [25]. 
Then, on the equivalent gate-level netlist, any classical fault diagnosis approach can 
be applied. The main drawback of this approach is that the set of transformation 
rules depends on the targeted defect and, thereby, the non-modeled defects may not 
be diagnosed. The second approach is based on the “Cause-Effect” paradigm [25-
26]. The transistor-level netlist of a cell is exploited, in order to inject the targeted 
defects. Therefore, a defect dictionary is created by transistor-level simulations and 
the defect signatures of all the defects affecting the cells in the library are stored in 
this defect dictionary. Then, during fault diagnosis the defect signature of all defects 
affecting a suspected cell is compared with the observed failures to obtain a list of 
candidates inside the cell. These approaches can be further classified depending on 
the “accuracy” of the injected defects and the simulation “precision”. In [26], a large 
number of defects are simulated at transistor-level using SPICE. For a given defect, 
different resistance values are simulated, in order to be as accurate as possible. This 
approach leads to more precise results but it requires a huge simulation time. To 
reduce the simulation time and the fault dictionary size while keeping a high reso-
lution, authors in [25] propose to exploit layout information, in order to consider 
only realistic defects. For example, for each cell, only the realistic, potential net 
bridging defects and via open defects are extracted and then simulated. Then, the 
identified set of realistic defects is simulated at transistor-level. The third intra-cell 
fault diagnosis approach is based on the “Effect-Cause” paradigm [27]. All the ex-
isting diagnosis techniques depend on the targeted fault models or defects. In [27], 
the main goal is to achieve a resolution close to the transistor-level. However, in-
stead of explicitly considering defects at transistor-level, the idea is to exploit the 
knowledge of the faulty behavior induced by the defects. 

Unfortunately, Cell-Aware fault diagnosis resolution is typically far from the 
ideal due to circuit complexity. For this reason, considerable effort has been spent 
to improve resolution by using machine learning techniques, initially through the 
extraction of features that allow correct candidates (those that correctly represent 
defect locations) to be distinguished from incorrect ones [2,11]. Even though they 
are efficient, these techniques address volume diagnosis for yield improvement, 
which is a different problem than fault diagnosis of customer returns (as already 
mentioned and explained in Section 1). For this reason, these techniques cannot be 
reused for fault diagnosis of customer returns. 

3 Test of Customer Returns for Diagnosis Purpose 

The ultimate objective of an IC test engineer in charge of a given IC product is to 
reach a zero Defective Parts Per Million (DPPM) with a reasonable test cost (test 
time and test data volume). To this purpose, several test sequences made of test 
patterns are generated during test preparation to target all types of defects (static, 
dynamic) by using different (i.e., slow or fast) test clock schemes. Note that a test 



10  

pattern can be composed of only one vector to deal with static faults, e.g., stuck-at 
faults, or of two vectors (two-vectors test pattern) to deal with dynamic faults, e.g., 
transition faults. These test patterns are usually generated in an incremental manner 
to avoid multiple detection of the same defects and hence reduce test costs. In this 
section, we first give an example of a typical test scenario used in production (man-
ufacturing) industrial test. Next, we discuss some limitations of this type of scenar-
ios in terms of diagnosis accuracy and resolution. Finally, we suggest some of the 
best test practices to be applied for custom return diagnosis. 

3.1 Typical Test Scenario 

When a custom return occurs and is sent back to the manufacturer, the first step is 
to reproduce the failure mechanism by reusing the initial manufacturing test pro-
gram and collect the failure files to be diagnosed. Therefore, before proceeding with 
fault diagnosis, it is important to understand the ATPG process as well as its imple-
mentation into the test program. This knowledge is valuable and helps to enhance 
the diagnosis process and accelerate the time needed to retrieve the silicon failure. 
 

 
Fig. 1.4 Example of an Industrial Multi-Run ATPG flow 

Figure 1.4 gives an example of a multi-run ATPG flow used in industry for screen-
ing defects in logic parts of a SoC. It can be seen that several ATPG runs are 
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implemented at various speeds (low-speed or at-speed) to get different test se-
quences targeting different types of defects (static and dynamic) with different fault 
models (stuck-at, transition, bridging and cell-aware). Static defects are defects that 
require one-vector test patterns, called static test patterns, to be detected. Dynamic 
defects are defects that require two-vector test patterns, called dynamic test patterns, 
to be detected. Dynamic defects do not modify the functional behaviour of the IC 
but rather induce some delays that prevent the IC to operate at the desired clock 
frequency. With the advent of nanometer technologies, the occurrence of dynamic 
defects is constantly increasing, not only during the manufacturing process of ICs, 
but also during the lifetime of the circuit where latent or wear-out defects may ap-
pear due to various stress conditions (operational, functional, environmental, etc.).  

The flow sketched in Fig. 1.4 shows four ATPG runs implemented to generate 
three types of test patterns (at-speed, low-speed dynamic, and static test patterns). 
The first step in this ATPG flow is to generate at-speed test patterns for dynamic 
defect detection. These patterns target the detection of delay defects either at the 
interconnect wires or inside cells of the logic part of the SoC. At-speed test is made 
so that the PLL clock is used instead of the tester clock during the capture phase. 
This is usually performed owing to an On-chip Clock Controller (OCC). An OCC 
is the logic inserted into the SoC for controlling clocks during silicon testing on an 
ATE (Automatic test Equipment). Since at-speed testing requires two clock pulses 
in capture mode with a frequency equal to the functional clock frequency, these at-
speed pulses would need to be provided through I/O pads without OCC. However, 
these pads are limited in terms of supported maximum frequency. Conversely, an 
OCC uses an internal PLL for generating test clock pulses and hence allows appli-
cation of at-speed tests. During static testing, the OCC ensures that only one clock 
pulse is generated during the capture phase. 

Once the dynamic patterns are generated, the undetected dynamic defects are 
targeted with a second ATPG run (see Fig. 1.4). In fact, it has been proven that even 
at low frequency some dynamic defects can be still detected. Typically, a stuck-
open or a source/drain open defect results from a complete break between circuit 
nodes that should be connected [28, 29] and has a sequential behavior that requires 
two-vector test patterns to be detected. It has been shown in [30] that changing the 
test speed, voltage, and temperature, does not improve the test effectiveness when 
such type of dynamic defects is targeted. This explains why this type of ATPG runs 
(low speed setup) is used in industrial test flows to generate low speed dynamic test 
patterns. 

The third ATPG run is a preprocessing step for the fourth one. In fact, the fourth 
run requires as input a list of all static defects not detected by the dynamic tests. 
This information can be identified only through fault simulation. To this end, the 
static faults are fault simulated with the dynamic patterns to determine the set of 
undetected faults. 

At the end of the ATPG flow, three test sequences are generated and then applied 
sequentially to the Circuit Under Test (CUT) to achieve a targeted test coverage. 
During diagnosis of a customer return, the same test sequences can be reused to 
exhibit the failure observed during mission mode. 
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3.2 Limitation of Manufacturing Test for Customer Returns 

The goal of an ATPG as used for manufacturing test is to detect the maximum num-
ber of faults with the minimum number of test patterns. Unfortunately, this may not 
be adequate for fault diagnosis for the following main reasons:  

• Distinguishing between defect candidates during fault diagnosis is achievable 
only when test sequences are made of patterns that each sensitizes a limited 
number of faults. Conversely, test patterns generated by conventional ATPG 
sensitize as many faults as possible to avoid long test time. These two conflict-
ing objectives between test pattern generation for testing purpose and test pat-
tern generation for diagnosis purpose generally leads to poor diagnosability of 
test sequences generated by an ATPG. Table 1 shows an example where the 
generation of a test pattern is needed to detect two defects internal D1 and D2 
in a NOR2 gate with A and B as inputs and Z as output. As can be seen, any 
ATPG tool would only generate P1 as it can detect both defects on output Z 
(ZD1 and ZD2 both have a value different than the fault-free value on Z). How-
ever, these patterns are unable to distinguish between the two defects and hence 
any diagnostic tool would report D1 and D2 as fault candidates. As can be ob-
served, P2 can detect only D2, and hence is able to distinguish between D1 and 
D2. The same is true for P3 which is able to distinguish between D1 and D2. 
Therefore, an ideal test sequence for diagnosis purpose would be made of (P2, 
P3), 

 
Table 1.1: Example of distinguishing patterns between defect candidates 

Pattern AB Z ZD1 ZD2 
P1 00 0 1 1 
P2 01 0 0 1 
P3 10 0 1 0 
P4 11 1 1 1 

 
• Generally, there is no full picture on how an actual defect behaves with regards 

to passing patterns (patterns declared as “pass” during test application). In fact, 
the purpose of a test pattern is to create a failing excitation of the defect and 
ensure its propagation to an observable point. This means that the behavior of 
the defect is known only for the failing patterns and most of the time no infor-
mation is collected for the passing patterns. Let us consider again the example 
in Table 1.1. An ATPG tool will generate P1 and eventually P2 to detect and 
distinguish between D1 and D2. Consequently, P3 and P4 will not be generated 
However, the knowledge of this information would be important to improve 
the diagnosis accuracy since it would provide additional indications on how the 
defect behaves with a complete set of test stimulus. 
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• Scan chain diagnosis of ICs with an embedded test compression mechanism 
usually leads to low diagnostic capabilities [31]. This is the case of most ICs 
nowadays. In fact, compressed test patterns and compacted test responses are 
widely used in industry to reduce test data volume and scan input/output re-
quirements. The use of test response compaction negatively impacts fault diag-
nosis since errors in responses due to defects which are captured in scan cells 
are not directly observed. This means that using typical chain test patterns is 
not enough to distinguish between failing scan chains, and thus generating ad-
ditionally distinguishing patterns is needed to improve the resolution. 

• Test truncation is a widely used technique in production test. Indeed, not all the 
test responses of a failing CUT are collected, and this is limited to a predefined 
number of failing patterns. Indeed, recording the failing patterns and their ob-
servation points is a time-consuming step especially when the collected failures 
is huge. Proceeding with test truncation can reduce the test time since not all 
failing patterns are recorded. However, this procedure has a negative impact on 
the diagnostic quality as exploiting only a subset of the failing patterns to re-
trieve the fault candidates limits the diagnostic tool capabilities.  

The above-mentioned limitations of manufacturing test can prevent the successful 
failure analysis of a customer return. In the following subsection, we first explain 
how to adapt such a test flow for a customer return. Then, we present different tech-
niques to generate diagnostic patterns (also referred to as distinguishing patterns). 

3.3 Best Practices for Customer Return Test Pattern 
Generation 

Two approaches exist to improve diagnosis quality. The first one is to improve the 
efficiency of diagnostic algorithms, which is usually done by CAD vendors. The 
second one is to improve the test sequence quality in such a way that more valuable 
information can be collected during test [32]. In both cases, the goal is to make so 
that diagnostic tools can easily retrieve the defect location with a minimum set of 
candidates. In the rest of the section, we suggest some of the best practices to be 
used during test to this purpose, as well as advice on how to generate new diagnostic 
test patterns for silicon costumer returns.  

Before testing a customer returns for diagnosis purpose, two modifications on 
the test program must be performed. The first one is to include all test patterns gen-
erated by the ATPG into the test program and make so that the test will not be 
stopped at the first failing pattern. The second one is to remove or to increase the 
truncation value. Once these two modifications have been done, the test program 
can be started, followed by the first run of fault diagnosis. Depending on the diag-
nostic results, i.e., in case of low diagnostic resolution, a diagnostic pattern genera-
tion process can be launched. In the following, some scenarios that require the gen-
eration of new diagnostic patterns are detailed. 
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• Diagnostic ATPG for cell internal defects. In case of a suspected cell internal 
defect, information provided by the application of the entire failing and passing 
test patterns applied at the inputs of the defective cell is crucial to efficiently 
find out the cell internal defect. The best way to get this information is to gen-
erate a so-called cell exhaustive test. This test applies all the possible combina-
tions at the cell inputs. These combinations can be static or dynamic. Static 
combinations include logic values ‘0’ and ‘1’, whereas dynamic combinations 
include rising and falling transitions. By applying such type of test, all non-
equivalent cell internal defects can be distinguished. It is recommended to ap-
ply the dynamic part of the test with different frequencies (low speed, at-speed) 
to get information about the failure mechanism with respect to the clock fre-
quency. 

• Diagnostic ATPG for interconnect open defects. In case of a suspected inter-
connect open defect, it is important to generate test patterns targeting each seg-
ment composing this interconnection and ensure a different fault propagation 
through different primary outputs. Figure 1.5 shows a net with two metal layers 
(M2 and M3) and five segments (s1 to s5). An open defect located on segment 
s2 disconnects two cells (C2 and C3). To help the diagnostic tool to report the 
defective location, it must be forced to select all possible fault propagation 
paths during test pattern generation (C2 only, C3 only, C4 only, C2 and C3, C2 
and C4, C3 and C4, all fanout cells: C2 and C3 and C4). With this additional 
information, the diagnostic tool will be able to locate the failing segment more 
accurately. In this example, only an open defect on s2 can propagate through 
C2 and C3, and not through C4. 

 
Fig. 1.5 Example of interconnect open defect 

• Diagnostic ATPG for bridging defects. In case of a suspected bridging de-
fect, it is important to have the list of bridging pairs, extracted from the lay-
out database, to generate additional diagnostic patterns. The goal in this case 
is to test an opposite value on each bridging pair separately (‘0’ on one net 
and ‘1’ on the other one, or vice-versa) and avoid testing several bridging 
pairs at the same time. In Fig 1.6, let us assume that two possible bridges 
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(net1-net3 and net2-net4) are reported by the diagnostic tool. A new diag-
nostic pattern must be generated to distinguish between these two defects. 
Any ATPG tool would try to target net1-net3 and net2-net4 with the same 
test pattern, which is not appropriate for fault diagnosis. A diagnostic test 
pattern generation will try to test net1-net2 by delivering an opposite value 
on these two nets and ensure that net2 and net4 have the same logic value. 
With this additional information, a diagnostic tool will be able to differenti-
ate these two potential bridging defects and identify the actual failing one. 

 
Fig. 1.6 Example of bridging defects 

• Diagnostic ATPG for chain defects. In case of a scan chain failure in a design 
using test compression, it is crucial to generate additional patterns that can dis-
tinguish between two or more faults. These patterns are called chain diagnostic 
patterns. These patterns are not used during production (manufacturing) test 
but can be generated and applied for diagnostic purpose, especially in the case 
of a customer return. Figure 1.7 shows an example of a test program in which 
additional chain diagnostic patterns are inserted. For a faulty-free CUT, the 
flow starts by testing the chain integrity followed by the ATPG test. In case of 
a failure, additional chain diagnostic patterns are used. The main drawback of 
using chain diagnostic patterns, however, is the increased test time. 
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Fig. 1.7 Example of a manufacturing test program 

4 Defect Diagnosis Techniques for Customer Returns 

A conventional diagnosis flow of ICs is shown in Fig. 1.8. The circuit is first de-
signed according to specifications and supported by a large set of design and veri-
fication tools. When the circuit design is completed and verified, the circuit can be 
manufactured. After manufacturing, all parts of the circuit (logic, memory, analog, 
etc.) must be tested by different methods. This step is mandatory for any manufac-
turer to ensure a high quality of products before delivery to the customer. If the test 
reveals an abnormal behavior (i.e., test fail), information from the ATE are subse-
quently exploited during the diagnosis step to identify the source of failure and take 
necessary actions to correct the design or modify the manufacturing process. The 
final objective of this step is to improve the yield ramp-up. Conversely, if the test is 
passed, the IC is sold and embedded in a system.  

During the lifetime of the IC (e.g., in field), and especially during mission mode, 
the IC may fail by providing incorrect and unexpected responses to functional stim-
uli (cf. Fig. 1.8). In case such erroneous behavior is observed, the IC is sent back to 
the manufacturer and is considered as a customer return. It is then tested with the 
test sequences initially used after manufacturing process in order to reproduce the 
failure occurrence. In case this test phase does not reveal any error, then a test pat-
tern enhancement step is launched to produce new test patterns able to exhibit the 
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erroneous behavior. Obtained test data log are then analyzed during the diagnosis 
step to finally identify the source of failure. 

 
Fig. 1.8 Diagnosis flow of integrated circuits 

Fault diagnosis must be able to identify the fault location and the fault type. This 
information is further used to guide the failure analysis process in pinpointing the 
defect on silicon and identifying the root cause of failure. For example, the root 
cause may be a problem in the physical implementation process or a misalignment 
in the production masks. The results of these investigations during PFA can be fur-
ther used to optimize the design and manufacturing processes, and avoid reoccur-
rence of the failure in next generation products. 

The next sub-sections give details on conventional diagnosis approaches and ad-
vanced methods based on Machine Learning. 

4.1 Conventional Approaches 

Conventional diagnosis approaches aim at identifying the list of suspected nets and 
gates (or cells) in a digital circuit. Two main paradigms can be distinguished: cause-
effect and effect-cause. The “Cause-Effect” paradigm needs a pre-computed fault 
dictionary, which can be obtained by simulating the targeted faults in a specific 
design with a set of test patterns [23]. From this fault dictionary and the set of failing 
and passing test patterns obtained after test application, a diagnosis tool is able to 
identify a list of suspects (i.e., fault or defect candidates). Compared to “Cause-
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Effect” diagnosis, the “Effect-Cause” approach does not require any pre-computed 
fault dictionary [33]. It is based on Critical Path Tracing (CPT) and proceeds by 
back tracing sensitive paths in the circuit from every failing output identified after 
test application to identify the suspected faults. 

For each conventional diagnosis approach, there are two levels of diagnosis: in-
ter-cell and intra-cell. In the case of inter-cell diagnosis, each candidate is a circuit 
net (i.e., a connection between cells) or a cell. On the other hand, for intra-cell di-
agnosis, each candidate is a net inside one cell. Figure 1.9 gives an example of di-
agnosis report obtained from an inter-cell diagnosis (left part of Fig. 1.9) and an 
intra-cell diagnosis (right part of Fig. 1.9). 

 
Fig. 1.9 Inter-cell (left) v.s. intra-cell (right) diagnosis results 

The next sub-sections give details on “Cause-Effect” and “Cause-Effect” diag-
nosis state-of-the-art approaches. 

4.1.1 Diagnosis Using Fault Simulation 

Inter-cell diagnosis 

A typical cause-effect diagnosis method is shown in Fig. 1.10. 
To build a fault dictionary, a specific fault model, such as the stuck-at fault model 

or the transition fault model, is first assumed. A dictionary which records the re-
sponses of all test patterns for all possible faults is generated by intensively per-
forming fault simulation. This dictionary is referred to as the fault dictionary. Once 
the fault dictionary is built, the failure syndrome of the failing device is examined 
using the fault dictionary. The fault(s) whose test response matches the observed 
failure during test application will be considered as fault candidate(s). 

The time for constructing the fault dictionary is equal to the time for fault simu-
lating all test patterns for all faults considered for the circuit under diagnosis, which 
is acceptable as it is done only once. During diagnosis, analyzing the fault dictionary 
to derive fault candidates is usually quite fast. However, for practical applications, 
the cause-effect diagnosis approach can be limited by some problems. 

The first problem is the size of the fault dictionary since it requires a large amount 
of storage for recording all test responses for all faults against all test patterns. With 
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the increasing size of today’s design, this method thus becomes sometimes unprac-
tical. Some methods have been proposed to reduce the size of the fault dictionary. 
The pass-fail dictionary is the simple way to reduce the dictionary size by using a 
single pass/fail bit to replace the output response of the test vector [34]. However, 
this solution may negatively impact the diagnosis resolution as some faults become 
undistinguishable by using only pass-fail bits. Another method was proposed in [35] 
to build small fault dictionaries by recording only the test responses of the failing 
patterns instead of recording test responses of all test patterns for all faults. This can 
reduce the memory requirement without sacrificing resolution. Researchers in [36] 
proposed a technique to compress the fault dictionary by using a multiple input sig-
nature register to generate compressed fault signatures. One problem of this method 
is that two different test responses may be compressed and lead to the same failing 
signature. 

 
Fig. 1.10 Cause-effect diagnosis flow 

Another issue that may occur when using the cause-effect diagnosis approach is 
the lack of accuracy (i.e., the real defect is not in the list of suspects). In fact, if the 
defect is not modeled by the fault models used to compute the dictionary, it cannot 
be identified by the diagnosis process. To solve this problem, diagnosis must be 
performed using several dictionaries, one for each fault model [37]. 
 
Intra-cell diagnosis 
There are many research works focusing on intra-cell diagnosis. They can be clas-
sified into two categories. 

The first category proposes a conversion from transistor level netlist into an 
equivalent gate level netlist, based on complex transformations rules [38-40]. Figure 
1.11 gives some examples of these rules. Then, any classical inter-cell diagnosis 
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solution can be applied on the equivalent gate-level netlist. The main drawback of 
this approach is that the set of transformation rules depends on the targeted defects 
and non-modeled defects may not be diagnosed. 

 

  
Fig. 1.11 Examples of transistor transformation to gate net-list 

The second category of intra-cell diagnosis techniques is based on the “Cause-
Effect” paradigm. The transistor-level netlist of a cell is exploited in order to inject 
the targeted defects. Therefore, a defect dictionary is created using results from tran-
sistor level simulations. The defect signature of all defects affecting a library cell is 
stored in this defect dictionary. Then, during the diagnosis process, the defect sig-
nature of all defects affecting a suspected cell is compared to the observed failures 
to obtain a list of candidates internal to the cell. 

These approaches can be further classified depending on the accuracy of the in-
jected defects and the simulation precision. In [41] targeted defects are simulated 
by using a switch-level simulator, thus leading to a less precise defect injection but 
this solution saves simulation time. In [6,42] a large number of defects is simulated 
at transistor level (i.e., by using SPICE simulations). For a given defect, different 
sizes of resistance are simulated to be as accurate as possible. This approach leads 
to more precise diagnosis results but it requires a huge simulation time. Moreover, 
the size of the defect dictionary is usually very high. 

In order to reduce the simulation time and the dictionary size while keeping a 
high precision, authors in [43-45] propose to exploit layout information in order to 
consider only realistic defects. For example, for each cell, only the realistic potential 
bridging defects and via open defects are extracted and then simulated. By this way, 
only the identified set of realistic defects is simulated at transistor-level. 

4.1.2 Diagnosis Using Critical Path Tracing 
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Inter-cell diagnosis 

Unlike the cause-effect paradigm, effect-cause diagnosis approaches directly derive 
the fault candidates by using a CPT algorithm as illustrated in Fig. 1.12, without 
pre-constructing any fault dictionary. 
 

 
Fig. 1.12 Critical Path Tracing principle 

 
A generic effect-cause diagnosis algorithm that makes the single fault assump-

tion (only one fault at a time can occur in the circuit) is summarized as follows: 
• Step 1 - Initial faulty candidates identification: In [46-47] the CPT technique 

is applied for logic diagnosis. In both cases, a specific fault model is considered, 
the stuck-at fault model for [46] and the delay fault model for [47]. The process 
of critical path tracing consists in starting from each faulty output and back 
tracing sensitive paths up to the primary inputs of the circuit. By this way, a 
number of critical paths containing logic gates and nets is obtained. If a single 
fault is assumed, then the intersection of all the critical paths traced from all 
failing outputs is considered as the final candidate set (that contains suspect 
gates and nets). Otherwise, in the case of a multiple fault assumption, the union 
will be the final candidate set. 

• Step 2 - Passing pattern validation: The initial suspect set can be reduced by 
using passing test patterns. To this purpose, the same critical path tracing pro-
cess is done from each fault-free output of the circuit. By definition, the real 
defect cannot produce any faulty behavior when applying passing patterns. 
Therefore, a candidate (suspected gate or net) will be removed from the initial 
suspect set if it is contained in the set of critical paths traced from the fault-free 
primary outputs. 

 
Intra-cell diagnosis 

In [48], the authors proposed an intra-cell diagnosis method based on the “Effect-
Cause” paradigm aiming at locating the root cause of the observed failures inside a 
logic cell. It is based on the CPT here applied at transistor level. The main 
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characteristic of this approach is that it exploits the analysis of the faulty behavior 
induced by the actual defect. In other word, a defect is located by analyzing the 
effect it induces in the circuit. Moreover, since the complexity of a single cell in 
terms of transistor number is low, the proposed intra-cell diagnosis approach re-
quires a negligible computation time. 

Figure 1.13 sketches the overall diagnosis flow proposed in [48]. First, test pat-
terns are applied to the CUT to distinguish between the correct circuit behavior and 
the faulty circuit behavior caused by defects. These defects induce failing output 
responses for one or more input test patterns. Input test patterns leading to observed 
faulty behavior (i.e., failing test patterns) are stored into a file called datalog. 
 

 
Fig. 1.13 Overall intra-cell diagnosis flow 

Then, an inter-cell fault diagnosis (i.e., logic diagnosis) algorithm exploits data-
log information to determine a list of suspected logic cells. Any available commer-
cial diagnosis tool can be adopted. Then, CUT simulation aims at determining the 
local set of failing/passing patterns for each suspected logic cell reported by the 
logic diagnosis tool. Finally, the intra-cell diagnosis is executed for each suspected 
gate and the set of pre-determined local failing/passing test patterns. The diagnosis 
result is a list of candidates at transistor level. For each suspect, a set of fault models 
able to explain the observed failures is associated. 

Compare with the cause-effect methodology, effect-cause approaches have sev-
eral advantages. They require less memory storage since no fault/defect dictionary 
has to be constructed a priori. And they do not assume any fault model. Thus, they 
can be used for diagnosing more realistic faults. 
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4.2 Advanced Methods based on Machine Learning 

Although conventional diagnosis techniques discussed in the previous section can 
achieve a good resolution, in some cases (e.g., complex cells, complex failure mech-
anisms) the number of candidates may be too high to allow an efficient PFA. This 
problem will be exacerbated in the future with the advent of very deep submicron 
(i.e., 7 nm and beyond) technologies. Improving diagnosis efficiency at the transis-
tor level (i.e., CA diagnosis) is therefore mandatory. A mean to achieve this goal is 
to use supervised learning algorithms to determine suspected defects. Supervised 
learning is now used in several classification problems where the knowledge on 
some data can be used to classify a new instance of such data. In this section, we 
summarize the latest developments in the field of CA diagnosis based on supervised 
learning. 

4.2.1 Preliminaries 

Several learning-guided solutions for CA diagnosis of mission mode failures in cus-
tomer returns have been proposed recently in [16, 49-53]. All solutions are based 
on a Bayesian classification method for accurately identifying defect candidates in 
combinational standard cells of a customer return. Choosing one solution over an-
other depends on the test scenario (test sequence, test scheme, test conditions) con-
sidered during the diagnosis phase and selected according to the types of targeted 
defects and failure mechanisms. 

The test scenarios in [16, 49-53] are sketched in Fig. 1.14. In [49-50], two dis-
tinct processes were developed to diagnose static and dynamic defects separately. 
In [49], a basic scan testing scheme used to apply static CA test sequences is con-
sidered, so that stuck-at faults plus static intra-cell defects are targeted during diag-
nosis. In [50], a fast sequential testing scheme used to apply dynamic CA test se-
quences is considered, so that transition faults plus dynamic intra-cell defects are 
targeted during diagnosis. Note that [51] is just a combination of [49] and [50], i.e., 
two testing schemes, one static and one dynamic, and two CA diagnosis flows, one 
static and one dynamic, are considered independently. The main limitation of the 
solutions in [49-51] is the required a priori knowledge of the type of targeted defects 
in the customer return. In other words, a test engineer needs to know what type of 
defects is screening before choosing between [49] or [50]. 
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Fig. 1.14 Test scenarios considered in [16, 49-53] 

In an attempt to deal concurrently with all types of defects that may occur in 
customer returns, without any a priori knowledge of the targeted defect type, a new 
implementation of the CA diagnosis flow was proposed in [16-52]. Note that [16] 
is a fully extended version of [52]. Authors assume a test scenario in which two test 
sequences (static and dynamic) are used successively, each one considering a dedi-
cated testing scheme, i.e., basic scan and fast sequential. First, a static CA test se-
quence generated by a commercial cell-aware ATPG tool is applied to the CUD. 
This sequence targets all cell-level stuck-at faults plus cell-internal static defects, 
considering that these defects are not covered by a standard stuck-at fault ATPG. A 
standard (low speed) scan-based testing scheme is used to this purpose. Next, an-
other option of the cell-aware ATPG is used to generate a dynamic CA test sequence 
that targets cell-level transition faults plus intra-cell dynamic defects not covered 
by a standard transition fault ATPG. In this case, an at-speed Launch-On-Capture 
(LOC) scheme (also called fast sequential) is used during test application. 

To construct the comprehensive flow described in [16], a new framework was 
set up in which specific rules were defined to achieve a high level of effectiveness 
in terms of diagnosis accuracy and resolution. The proposed method was based on 
a Gaussian Naive Bayes trained model to predict good defect candidates. This 
method is summarized in the next subsection (4.2.2). 

In [53], a new version of the CA diagnosis flow was proposed, assuming a test 
scenario in which both static and dynamic defects can be diagnosed owing to a 
single dynamic CA test sequence applied at-speed. According to the test flow de-
picted in Fig. 1.4, this scenario may happen when such a test sequence has been 
generated to target transition faults plus cell-internal dynamic defects, and appears 
to also cover the required percentage of stuck-at faults plus cell-internal static de-
fects (or, more generally, satisfies the test coverage specifications). In this case, note 
that only one (dynamic) datalog is generated after test application and can further 
be used for diagnosis purpose. Nevertheless, both static and dynamic defects are 
taken into account in this scenario. As only dynamic instance tables are manipu-
lated, the representation of training and new data is simplified, i.e., a single type of 
feature vector is used, without no loss of information and hence without decreasing 
the quality of the training and inference phases. 
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4.2.2 Learning-Based Cell-Aware Diagnosis Flow  

Figure 1.15 is a generic view of the learning-based CA diagnosis flow utilized in 
[16]. It is based on supervised learning that takes a known set of input data and 
known responses (labeled data) used as training data, trains a model, and then im-
plement a classifier based on this model to make predictions (inferences) for the 
response to new data. 

 
Fig. 1.15 Generic view of the cell-aware diagnosis flow used in [16] 

After investigating several ML algorithms and observing their inference accura-
cies in [49], a Bayesian classification method has been chosen for the learning and 
inference phases in [16, 49-53]. So, the first main step of the CA diagnosis flow 
consists in generating a Naive Bayes (NB) model and to train it by using a training 
dataset. In this step, training data are used to incrementally improve the model’s 
ability to make inference. The training dataset is divided into mutually exclusive 
and equal subsets. For each subset, the model is trained on the union of all other 
subsets. Some manipulations, such as grouping data by considering equivalent de-
fects or removing data instances of undetectable defects, are also done during this 
phase. Once training is complete, the performance (accuracy) of the model is eval-
uated by using a part of the dataset initially set aside. More details about perfor-
mance evaluation as done in this framework can be found in [51]. The second main 
step consists in implementing the NB classifier by using a Gaussian distribution to 
model the likelihood probability functions, and use this classifier to make prediction 
when a new data instance has to be evaluated. The next subsections detail the vari-
ous steps of the CA diagnosis flow, which is able to deal with any type of cell-
internal defect (i.e., static and dynamic) that may occur in customer returns.  
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4.2.2.1 Generation of Training Data 

Training data are generated for each type of standard cell existing in the CUD during 
an off-line characterization process done only once for a given cell library. These 
data are extracted from CA views provided by a commercial CAD tool that contain 
all characterization results for a given cell type. These results are provided in the 
form of a fault dictionary containing, for each defect within a cell, the cell input 
patterns detecting (or not) this defect. An example of training dataset, as used in 
[16, 49-52] and containing six instances for an arbitrary two-input cell, is shown in 
Fig. 1.16. Each instance is associated to a static defect (D1, D2, D3) or a dynamic 
defect (D11, D12, D13). A 1 (0) indicates that defect Di is detectable (not detectable) 
at the output of the cell when the cell-level test pattern Pj is applied at the inputs of 
the cell. Cell-level test patterns (called cell-patterns in the sequel) are static (one 
input vector - P1 to P4 in Fig. 1.16) or dynamic (two input vectors - P5 to P16 in Fig.1. 
16 in which R (F) indicates a rising (falling) transition at the cell input). For an n-
input cell, there exists 2n static cell-patterns and 2n.(2n–1) dynamic cell-patterns. 

 
Fig. 1.16 Example of training dataset for all defect types in a two-input cell as used in [16, 49-52] 

Dynamic defects can be detected not only by dynamic patterns, but also by static 
patterns applied using a basic scan testing scheme, provided that i) at least one tran-
sition has been generated at the cell inputs between the next-to-last scan shift cycle 
and the launch cycle, and ii) the delay induced by the defect is large enough to be 
detected (these are the detection conditions of a dynamic defect modeled by a stuck-
open or a gross delay fault). For this reason, the value ‘0.5’ is assigned to each 
dynamic defect (D11, D12, D13) for all related static cell-patterns, meaning that such 
a defect is detectable or not depending on whether or not the above conditions are 
satisfied. 

As only dynamic test sequences are considered in [53], the representation of 
training data as used in [16, 49-52] could be simplified without losing information 
and decreasing the quality of the training phase. This comes from the observation 
that a static defect is a particular case of dynamic defect (e.g., a full open is a resis-
tive open with an infinite value of the resistance), and that all static cell-patterns for 
a given defect are embedded in its whole set of dynamic cell-patterns. Indeed, a 
dynamic defect requires a two-vector test pattern (V1V2) in which the values of V1 

and V2 have to be properly defined for the defect to be detected. Conversely, only 
the value of V2 is significant for a static defect to be detected by such pattern, 
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irrespective of the value taken by V1. When looking at Fig. 1.16, one can see that 
P1={00} is embedded in P6={0F}, P11={F0} and P12={FF}, and the same for P2, P3 
and P4. Similarly, we can see that static defect D2 is detectable by P1 and P4, and 
hence by P6, P8, P10, P11, P12, and P15. So, by “compacting” a training dataset as 
shown in Fig. 1.17, in which only dynamic cell-patterns are considered, one can see 
that all meaningful information is still contained in this set, while redundant (‘0’ 
and ‘1’ values in the first four columns of Fig. 1.16) or insignificant (‘0.5’ values in 
the same columns for dynamic defects) information is removed. More generally, 
such compact format for training data makes so that only one type of feature vector 
(dynamic) is used for both types of defects. 

 
Fig. 1.17 Example of training dataset for all defect types in a two-input cell as used in [53] 

As the goal with training data is to provide a distinct feature vector for each data 
(defect), it is important to be able to distinguish between static and dynamic defects 
with such a new format of the training dataset. Let us consider two defects D1 and 
D11 where D1 is static and detectable by {00} and D11 is dynamic and detectable by 
{F0} (note that {00} is the second vector of {F0}). As can be seen in Fig. 1.17, 
these two defects can easily be distinguished since their training data instances (or 
feature vectors) are different. The consequence of using such a new format for train-
ing data (and hence for new data as will be shown later on) is not an improved 
accuracy or resolution, but rather a simplified manipulation of feature vectors. 

4.2.2.2 Generation of Instance Tables 

An instance table is a failure mapping file generated for each suspected cell by using 
information contained in the tester datalog. It describes the behavior (pass / fail) of 
the cell for each cell-pattern occurring on its inputs during test of the CUD. The 
generation process of instance tables is sketched in Fig. 1.18. First, CA test patterns 
are applied to the CUD. These test patterns are obtained from a commercial CA test 
pattern generation tool that targets intra-cell defects. Next, a datalog containing in-
formation on the failing test patterns and corresponding failing primary outputs is 
obtained. From this datalog and the circuit netlist, a logic diagnosis is carried out 
(still using a commercial tool) and gives the list of suspected cells. From this list 
and the datalog information, one can finally generate an instance table for each 
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suspected cell. Note that in case several test sequences, e.g., one static and one dy-
namic, are used for diagnosis of the CUD, the generation process is repeated so as 
to produce static and dynamic instance tables for all suspected cells as in the case 
reported in [16]. 

 
Fig. 1.18 Generation flow of instance tables 

The format of a static instance table is illustrated in Fig. 1.19 for a given two-input 
NOR cell and two static cell-patterns. In this example, the first part of the file gives 
information on how the cell is linked to other cells in the circuit, while the second 
part represents, respectively, the pattern number, the pattern status (failing, pass-
ing), and the cell output Z with the associated fault model for which exercising con-
ditions are reported. These conditions shown right below each cell-pattern in Fig. 
1.19 represent the stimulus arriving at the cell inputs during the shift phase (before 
‘-’) and applied during the launch cycle (after ‘-’). For example, cell-pattern 2 con-
sists in applying a ‘1’ on input A and B, and failing in detecting a stuck-at 1 on Z. 

 
Fig. 1.19 Example of static and dynamic instance tables 

					----------------------------------------------------------------	
																										NOR	Cell	-	NR2NHVTX1	
					----------------------------------------------------------------	
																						Z					Output					L412/C1381A	
																						A					Input								U59/Z	
																						B					Input								U28/Z	
					----------------------------------------------------------------	
														Pattern	1					PASSING					Z:	stuck-at-0	
																						Z					000011111111111	– 1	
																						A					111100000000000	–	0	
																						B					000000000000000	– 0	
														Pattern	2						FAILING						Z:	stuck-at-1	
																						Z					011100000000000	– 0	
																						A					000011111111111	– 1	
																						B					100011111111111	– 1	
				----------------------------------------------------------------	
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4.2.2.3 Generation of New Data 

New data are generated after post-processing of instance tables. They are composed 
of various instances, each of them being associated to one suspected cell in the 
CUD, and represent a feature vector that characterizes the real behavior of the cell 
during test application. From each new data instance, one can extract one or more 
defect candidates that have to be classified as good or bad candidate with a corre-
sponding probability to be the root cause of failure. This classification is done by 
comparing the new data instance with the training data of the corresponding sus-
pected cell, and identify those training data instances that match (or not) with the 
new data instance. 

 
Fig. 1.20 Format of a new data instance for a two-input cell 

 
Fig. 1.21 Format of a new data instance as used in [53] 

The formats of a new data instance as used in [16, 49-52] and [53] are illustrated in 
Fig. 1.20 and Fig. 1.21 respectively. This format is quite close to the format of a 
training data instance, but has a different meaning. In each instance, the value ‘1’ 
(resp. ‘0’) is associated to a failing (resp. passing) cell-pattern Pi for a given defect 
candidate, meaning that the candidate is actually detectable (resp. undetectable) by 
the cell-pattern Pi at the output of the cell during test of the CUD, and hence can 
(cannot) be the real defect. In such instance, the value ‘0.5’ is associated to a cell-
pattern for a given defect candidate when this pattern cannot appear at the inputs of 
a suspected cell during real test application with an ATE. The median value ‘0.5’ 
was chosen to avoid missing information in new data instances while not biasing 
the features of these data. 

4.2.2.4 Diagnosis of Defects in Sequential Cells 

All the work carried out in [16, 49-53] was about diagnosis of defects occurring in 
combinational standard cells of a customer returns. However, defects in SoCs may 
also occur in sequential standard cells of logic blocks. In this section, we show how 
the previous diagnosis flow can handle sequential cells and related defects by add-
ing new information to the training dataset [54]. 

The two main differences between a combinational cell and a sequential cell are 
that i) the latter has a clock input pin and ii) the fact that the previous logic value of 
a sequential cell output can affect the current output value of the cell. To take this 
difference into account, each cell-pattern for a sequential cell is considered as a 
tuple in which the first value represents the input clock signal (pulsing or not), the 
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second value is associated to the main input of the cell (e.g., D), and the third value 
is associated to a virtual input pin representing the previous value of the output pin 
of the cell (e.g., Q). Note that in case of sequential cells with multiple real inputs 
(e.g., D flip-flop with a D, Scan-In, Scan-Enable and Clock input signals), the cell-
pattern representation is expanded accordingly. In each tuple, the first value is either 
U (i.e., pUlse) or 0, depending on whether or not there is an active clock signal. The 
second value can be 0, 1, R or F. The third value can only be static (i.e., 0 or 1). An 
example of training dataset for all defect types (static and dynamic) that may occur 
in a sequential cell is shown in Fig. 1.22. Note that the CA views used during the 
generation of training data do not contain information about cell-patterns with non-
pulsing clock signals (i.e., none of the cell internal defects can be detected at the 
cell output without clock pulse). Consequently, the training data do not include such 
cell-patterns as can be observed in the example of Fig. 1.22. Note also that instance 
tables of sequential cells may contain cell-patterns with no transition on the main 
inputs of the cell. To allow the ML algorithm understanding this information, the 
solution consists in including static cell-patterns (e.g., P1 to P4 in Fig. 1.22) in the 
training data of sequential cells. 

 
Fig. 1.22 Example of training dataset for all defect types (static and dynamic) in a sequential cell. The 
pin order is clock-data-previous output. 

With the above representation of training data for sequential cells, one can see that 
the diagnosis flow in Fig. 1.15 can be used in a straightforward manner without any 
change. The two main steps (model training by using a training dataset, implemen-
tation of the NB classifier to make inference) remain the same irrespective of the 
type of manipulated standard cells. 

5 Industrial Case Studies 

The CA diagnosis flow described in Section 4.2.2 and targeting defects in both 
combinational and sequential cells of customer returns has been implemented in a 
Python program. For validation purpose, authors in [16, 49-54] have experimented 
the proposed flow in three different ways: 
• First, they conducted experiments on ITC’99 benchmark circuits with defect 

injection campaigns targeting combinational cells in each circuit. Various 
results are reported in [16, 49-53] to show the superiority of the framework when 
compared to commercial diagnosis solutions. 
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• Next, they considered a test chip developed by STMicroelectronics and designed 
using a 28 nm FDSOI technology, and they conducted two defect injection 
campaigns targeting sequential cells [54]. Results are reported in subsection 5.1 
and also demonstrate the effectiveness of the diagnosis framework. 

• Finally, they considered a customer return from STMicroelectronics and 
performed a silicon case study with a real defect subsequently analyzed and 
identified during PFA. Results are reported in subsection 5.2. 

5.1 Simulated Test Case Studies 

Authors in [54] conducted experiments on a silicon test chip developed by 
STMicroelectronics and designed with a 28 nm FDSOI technology. The test chip is 
only composed of digital and memory blocks, and one PLL. The digital blocks are 
made of 3.8 million cells. Other features (number of primary inputs, primary outputs 
and scan flip-flops) are given in Table 1.2. 

A first simulated case study was done with a static defect injection campaign. 
All possible static defects were successively injected into three scan flip-flops (SFF) 
of a single full-scan digital block. This block was tested with a static CA test se-
quence achieving a stuck-at + static CA fault coverage of 100%. The average num-
bers of passing and failing test patterns are given in Table 1.3. Results obtained after 
executing the CA diagnosis flow and averaged over all defect injections have shown 
an accuracy of 100% (the injected defect was always reported in the list of suspects) 
and a resolution of 1.25. The resolution ranges between 1 and 3, and Fig. 1.23 shows 
the distribution of this resolution with respect to the total number of simulated cases. 
As can be seen, in most of the cases, the number of suspects is equal to 1 (perfect 
resolution).  

TABLE 1.2 MAIN FEATURES OF THE SILICON TEST CHIP 

#cells #PIs #POs #SFF 

3.8M 97 32 17.5k 

TABLE 1.3 AVERAGE PATTERN COUNT IN INSTANCE TABLES OF THE FIRST SIMULATED CASE STUDY 

#passing 
patterns 

#unique 
passing patterns 

#failing 
patterns 

#unique 
failing patterns 

43.4 24.0 15.5 8.6 

 
A second simulated case study with another defect injection campaign was per-
formed on the same test chip. All possible dynamic defects were successively in-
jected into three scan flip-flops of a single full-scan digital block. This time, a dy-
namic CA test sequence was applied and achieved a transition + dynamic CA fault 
coverage of 89.8%. The average number of failing test patterns was 7.9. Again, the 



32  

results obtained after executing the CA diagnosis flow and averaged over all defect 
injections have shown an accuracy of 100%. The average resolution obtained for 
dynamic defect injection experiments was 1.37. Again, the resolution ranged be-
tween 1 and 3, and in most of the case, the number of suspects was equal to 1. 

 
Fig. 1.23 Distribution of the resolution with respect to the simulated cases 

5.2 Silicon Test Case Study 

Next, a silicon case study was performed on a customer return designed with a 28 
nm FDSOI technology from STMicroelectronics [54]. The test conditions used to 
run the experiments were as follows: a nominal supply voltage of 0.83 V, a scan 
test frequency of 10 MHz, a launch-to-capture clock speed (for the dynamic CA test 
sequence application) adjusted with respect to the nominal clock frequency of the 
circuit, and a temperature of 25°C. The process was considered as typical. The CA 
diagnosis flow was experimented and the following results were obtained. Initially, 
the circuit failed on the tester after application of the static CA test sequence when 
applied at the nominal voltage. This information was stored in a “static” datalog. 
Then, a logic diagnosis gave a short list of suspected cells among which a six-input 
SFF cell made of 56 transistors and having a Reset, an Enable, a Test-Input and 
Test-Enable input pins. The cell contains 758 potential short or open defects. A 
static instance table was then generated for this suspected cell, and contained 5 fail-
ing and 75 passing cell-level test patterns. From the new data generated after post-
processing of this instance table, the NB classifier identified four suspected defects 
among which defect D62 (a short between the gate and source of NMOS 19). 

The above diagnosis results were provided to the Failure Analysis team of 
STMicroelectronics, who made a PFA in the past on this customer return based on 
the results found by their in-house intra-cell diagnosis tool. The result obtained with 
the CA diagnosis flow was validated as defect D62 was found to be the real defect. 
This was done after performing a polysilicon level inspection on the layout of the 
cell (cf. Fig. 1.24) and observing the failure analysis cross-sectional view. 
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Fig. 1.24 Layout view of the suspected cell and the incriminated transistor. Yellow circles indicate 
defect candidates and red mark indicates actual observed defect 

6 Discussion and Conclusion 

This chapter has identified the key challenges in cell-aware diagnosis of silicon cus-
tomer returns and has presented the solutions and corresponding results that have 
emerged from leading-edge research in this domain. In a comprehensive form, it 
proposed a compendium of solutions existing in this field. More in detail, the chap-
ter has presented a framework for cell-aware diagnosis of customer returns based 
on supervised learning. The flow indistinctly deals with static and dynamic defects 
that may occur in combinational cells or sequential cells of real circuits. A Naive 
Bayes classifier is used to precisely identify defect candidates. Experiments on sil-
icon test cases have been done to validate the flow and demonstrate its efficacy in 
terms of accuracy and resolution. 

Results of these experiments proved the appropriateness of a learning-based 
method to solve the problem of customer return diagnosis, despite the small size of 
the training dataset used (only one sample for one defect class). If multiple defect 
sizes and test conditions are used, this becomes even truer. Indeed, multiple samples 
(one for each defect size or defect size range, one for each PVT test condition) can 
be associated to a given defect class, simply because the behavior of the defect dif-
fers when applying the same set of test patterns. In terms of timing and complexity, 
this will just slightly impact the method, since training dataset is extracted from 
characterized cell libraries that are generated anyway for test and diagnosis purpose. 
So, even with large cell libraries with a huge number of defects to be simulated 
(e.g., 631 cells in a library, each with 4 to 6 inputs, 951 shorts and 749 opens on 
average – typical example of an ST library), the diagnosis framework will still be 
easily and time-efficiently applicable. 
It is worth noting that among other factors, the effectiveness of the framework can 
be explained by the fact that Naïve Bayes algorithm usually offers good classifica-
tion performance [55]. The NB classifier requires a small amount of training data 
to estimate its parameters [56], which is the case in the proposed method, as only 
one instance per class (i.e., CA defect) is available. On the other hand, other popular 
ML classification algorithms, such as K-Nearest Neighbors (KNN) classifier or 
classifiers based on a Support Vector Machine (SVM), which estimate the class of 
a new sample by analyzing the classes of similar training samples, cannot properly 
work when only one sample per class is available.  
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