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I. INTRODUCTION 

To achieve the highest product quality, Cell-Aware (CA) test 
has become mandatory for semiconductor industry. In this 
methodology, a cell-internal-fault dictionary or CA model, 
describing the detection conditions of each potential defect 
affecting a cell, is used [1-2]. However, the generation of CA 
models for all standard cells is a time- and resource-consuming 
task that limits the deployment of CA test. 

Typical CA model generation flow starts with a SPICE 
netlist representation of a standard cell. This representation is 
used by an electrical simulator to simulate each potential defect 
against an exhaustive set of stimuli. The stimuli detecting 
defects are synthetized into a CA model. As thousands of 
standard cells, with various complexities, are used for a given 
technology, the generation time of CA models for complete 
standard cell libraries may reach up to several months, thus 
drastically increasing the library characterization process cost.  

To improve the generation run time of CA models and ease 
the characterization, this work proposes a methodology to 
predict the behavior of cell-internal defects using Machine 
Learning (ML) [3]. More widely, the goal is to use existing CA 
models from various standard cell libraries developed using 
different technologies to predict CA models for new standard 
cells independently of the technology.  

II. LEARNING-BASED CA DEFECT CHARACTERIZATION 

A. Data representation 

The first challenging task is to describe cell transistor netlist 
as well as corresponding cell-internal defects in a uniform 
(standardized) ML-friendly manner, so that a ML algorithm can 
learn and infer from data irrespective of their incoming library 
and technology. In our work, a matrix representation of cells and 
corresponding defects was chosen to this purpose. Table I shows 
an example of matrix representation for an NAND2 cell. It is 
composed of four types of information: 

• Cell patterns and responses. This gives the values applied on 
input (A, B) as well as the cell response on output Z. It uses a 
four-value logic algebra made of 0, 1, R (rising from 0 to 1) and 
F (falling from 1 to 0).  

• Cell description. This indicates the active or inactive state of 
every cell transistor (referred to as Ni for nmos and Pi for pmos), 
when a given pattern is applied on cell inputs. Each transistor can 
be in the following state: active (1), passive (0), switching to 
active state (R), switching to passive state (F). 

• Defect description. This part lists all transistor terminals as a 
column. To describe an open defect, a value ‘1’ indicates the 
transistor terminal affected by the defect. For a short defect, a 
value ‘1’ on two transistor terminals indicates that a short exists 
between these two terminals.  

• Defect detection. This is the class (label) of the data sample 
(the output of ML classifier). A value ‘1’ (‘0’) means that the 
defect is detected (undetected) by the input pattern. 

TABLE I.  EXAMPLE OF MATRIX REPRESENTATION FOR A NAND2 CELL 

Cell 
inputs & 
responses 

Cell 
description 

Defect 
description 

About defect   Defect 
detection 

A B Z N0 N1 P0 … N1_D N1_G N1_S … name type  fZ 

0 0 1 0 0 1 … 0 0 0 … free free  0 

0 1 1 0 1 1 … 0 0 0 … D7 ope  0 

0 F 1 0 F 1 … 0 0 0 … free free  0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 
0 1 1 0 1 1 … 1 0 1 … D15 short  1 

1 1 0 1 1 0 … 1 0 1 … D15 short  0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 

 

B. Proposed Defect Characterization Methodology 

The proposed learning-based defect characterization 
methodology is used to predict the behavior of a cell affected by 
intra-cell defects, hence avoiding costly electrical defect 
simulations. The proposed flow is sketched in Fig. 1. It is based 
on supervised learning that takes a known set of input data and 
known responses (labeled data) used as training data, trains a 
model to classify those data, and then uses this model to predict 
(infer) the class of new data. In this work, we used a Random 
Forest Classifier. 

Training data are matrices containing the above four types 
of information. They are obtained from existing CA models, 
formerly generated by relying to brute-force electrical defect 
simulations. The ML algorithm is trained to predict the defect 
detection label, using the first three types of information. 

 
Fig. 1: Generic view of the ML-based defect characterization flow 

                  

                 

              

          

         

                        

        

            

           

     

    

                       

     

      



 

 

 

New data represent the cells to be characterized and only 
contains the first three types of information.  The class (label) of 
the new data instance is missing. The ML classifier is used to 
predict that class.  

III. EXPERIMENTAL RESULTS 

We implemented our method in a python program. The ML 
algorithms were taken from the publicly available python 
module called scikit-learn. Our dataset was composed of 1712 
standard cells coming from standard cell libraries developed 
using three technologies (C40 (446 cells), 28SOI (825 cells) and 
C28 (441 cells)). All these cells already had a CA model 
generated by a commercial tool using electrical simulations. The 
method was experimented in two different ways. First, the ML 
model was trained and evaluated using cells belonging to one 
technology. Second, we trained the model on one technology 
and evaluated it on another one. 

A. Predicting defect behavior on the same technology 

We first trained the ML model on cells of 28SOI standard 
cell libraries. For m cells available in a given group, we trained 
the ML model over m-1 cells and evaluate its prediction 
accuracy on the m-th cell. A loop ensured that each cell is used 
as the m-th cell. On average, a group contains 8.6 cells. In this 
work, we considered all possible open and short defects (static 
and dynamic) in each cell. For open defects, the average 
prediction accuracy is 99.9%, with most of the cells at 100% 
accuracy. Results achieved for short defects are similar. 

B. Predicting defect behavior on another technology 

We also conducted experiments on cells belonging to two 
different technologies. Here, the ML model was trained over all 
available cells of a given technology and the evaluation was 
done on one cell of another technology. A loop was used to allow 
all cells of the second technology to be evaluated. First 
experiments consisted in training the ML model on 28SOI cells 
and evaluating on C28 cells. The average prediction accuracies 
are globally lower compared to those of previous part. After 
investigating on this point, we noticed that the behavior of most 
of the cells (68% of cells) is accurately predicted (accuracy > 
97%), while accuracy for few cells is quite low. This 
phenomenon is discussed in section IV. Second experiments 
aimed at verifying the efficiency of our method when different 
transistor sizes are considered. We trained the ML model over 
the 28SOI standard cells and used it to predict the behavior of 
C40 cells. This time, 80% of cells were accurately predicted 
proving that our ML-based characterization methodology could 
be used to generate CA models for a (large) part of cells of a new 
technology. 

IV. DISCUSSION - CONCLUSION 

We analyzed cells for which the defect characterization 
methodology gives excellent prediction accuracy as well as 
those for which the prediction accuracy was quite low. On one 
hand, we noticed that cells with good prediction have a cell with 
a similar schematic in the training group. On the other hand, cells 
leading to poor prediction accuracy may have (i) new logic 
functions that do not appear in the cells of the training dataset, 
or (ii) a transistor configuration which is completely new when 
compared to cells in the training dataset. 

Considering the above analysis, it appears that the ML-based 
CA model generation flow cannot be used for all cells in a 
standard cell library. So, we propose the hybrid flow sketched in 
Fig. 2 to accelerate the CA model generation. When the CA 
model for a new cell is needed, we first check if the ML-based 
generation will lead to high-quality CA models. This is done by 
analyzing the schematic (structure) of the new cell and check 
whether the training dataset contains a similar cell. If the ML 
algorithm is expected to give good results, the new cell is 
prepared (representation in a matrix) and submitted to the trained 
ML algorithm. The output information is then parsed to the 
desired file format. Conversely, if the ML algorithm is expected 
to give poor prediction results, the standard simulation-based 
generation flow is used to obtain the CA model. A feedback loop 
uses this new simulated CA model to supplement the training 
datasets and improve the ML algorithm for further prediction. 

 

Fig. 2: Hybrid flow for CA model generation 

While using 28SOI cells to obtain CA models for 409 cells 
in C40 technology, we found that 205 (50%) of them can go 
through the ML-based CA model generation. It requires 21947 
seconds (~ 6 hours) to complete, using a single CPU core. 
Considering that a simulation-based generation for these 205 
cells would require ~78 days, we can estimate the reduction in 
generation time to 99.7%. For the 204 cells needing a 
simulation-based generation, the generation time was estimated 
to ~172 days (~ 5.7 months) considering a single SPICE license. 
Now, if we consider the C40 group composed of 409 cells, the 
hybrid flow represents a reduction in generation time of about 
38%.  

After investigating results of these experiments, we observed 
that the ML-based CA model generation works well for about 
80% of cells of the C40 group. Surprisingly, the structural 
analysis revealed that only 50% could be evaluated using the 
ML-based generation part of the flow. This shows that there is 
still room for further improvement of the structural analysis in 
our flow, and hence get better performance of the ML-based CA 
model generation process.  

To conclude, experiments in sections III.A and III.B have 
been carried out on a reasonable size (1712) of standard cell 
population. Considering that more than 10000 cells have usually 
to be characterized for a given technology, the hybrid flow in 
Fig. 2 is expected to provide even better results, especially 
owing to the reinforcement training that uses simulation 
generated models for supplementing the training datasets, and 
hence reduce the number of electrical simulations. 
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