N

N

Self-Test Libraries Analysis for Pipelined Processors
Transition Fault Coverage Improvement
Riccardo Cantoro, Patrick Girard, Riccardo Masante, Sandro Sartoni, Matteo

Sonza Reorda, Arnaud Virazel

» To cite this version:

Riccardo Cantoro, Patrick Girard, Riccardo Masante, Sandro Sartoni, Matteo Sonza Reorda, et al..
Self-Test Libraries Analysis for Pipelined Processors Transition Fault Coverage Improvement. PESW
2021 - 9th Prague Embedded Systems Workshop, Jul 2021, Horoméfice, Czech Republic. lirmm-
03988459

HAL Id: lirmm-03988459
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03988459
Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03988459
https://hal.archives-ouvertes.fr

Self-Test Libraries Analysis for Pipelined Processors
Transition Fault Coverage Improvement

Riccardo Cantoro!, Patrick Girard?, Riccardo Masante!,
Sandro Sartoni!, Matteo Sonza Reorda!, Arnaud Virazel?
2LIRMM
University of Montpellier / CNRS
Montpellier, France

Ipolitecnico di Torino
Turin, Italy

Keywords. software-based self-test, software test libraries, on-line test, transition
delay test, safety, functional test

Abstract

Testing digital integrated circuits is generally done using Design-for-Testability (DfT) solutions.
Such solutions, however, introduce non-negligible area and timing overheads that can be overcome
by adopting functional solutions. In particular, functional test of integrated circuits plays a key
role when guaranteeing the device’s safety is required during the operative lifetime (in-field test),
as required by standards like ISO26262. This can be achieved via the execution of a Self-Test
Library (STL) by the device under test (DUT). Nevertheless, developing such test programs
requires a significant manual effort, and can be non-trivial when dealing with complex modules.
This paper moves the first step in defining a generic and systematic methodology to improve
transition delay faults’ observability of existing STLs. To do so, we analyze previously devised
STLs in order to highlight specific points within test programs to be improved, leading to an
increase in the final fault coverage.

IOPs
Extraction Observability Study

Fault Fault

Simulation |——»{ Dictionary
’—‘ SAF/TDF Analysis

Test Program
Enhancement

Test Program

Logic Simulation Trace

L’ Logic Execution
>

Simulation Trace Analysis

Figure 1: Proposed test flow

1.1 Proposed Approach

Fig. 1 shows the proposed methodology, which can be divided into two different processes:

1. Observability study: this process aims to give some insights on not observed (NO)
faults: devising test strategies for such faults depends on where their effects propagated
and stopped. For this reason, we define two groups of internal observation points (IOPs),
namely User Accessible Registers (UARs), registers directly accessible by the user through
available instructions, and Hidden Registers (HRs), hidden within sub-modules or glue logic
and not directly accessible. In this process, we generate a fault dictionary, which includes
timing information on fault detection. Moreover, we analyze and correlate SAF and TDF
coverages, based on the implications existing between the two fault models, as testing a
TDF implies testing the relative SAF.

2. Logic Simulation Trace: this process allows to map the execution time to the instruc-
tions currently executed by the processor core. Combining data from the fault dictionary
and the execution trace, the proposed test flow allows to easily identify what portion of the
code must be improved to cover NO faults. Which and how many instructions to use in
general depends on the IOP reached by the fault and is not the main focus of the current
work.

1.2 Experimental results

The approach presented in this work has been validated on the open-source SoC PULPino [1],
which has been synthesized using a 45nm library and resulted in a total number 159, 326 transi-
tion delay faults. As for the test programs, we used three STLs based on different algorithms to
test stuck-at faults. Data on these STLs, together with the experimental results, are reported in
Table 1.

Table 1: STLs general information
Test #Clock Memory SAF Initial TDF Potential TDF Potential gain

Program cycles size [kB] coverage % coverage % coverage % [percentile units/
STL1 17,308 27.32 81.42 61.73 70.88 9.15
STL2 31,158 27.86 81.86 44.19 93.15 8.96
STL3 80,455 16.68 82.18 62.54 80.39 17.85

Results show that, assuming the test engineer can deploy strategies to recover all NO faults,
a total number of 14,580, 14,275, and 28,433 transition delay fault can be recovered for STLI,
STL2, and STL3 respectively, leading to the potential gain increment reported in the results
table.

Future works will focus on the development of strategies to observe effects of NO faults at
the DUT’s primary outputs.

Paper origin
This paper has been accepted and presented at the conference IEEE International Symposium
on On-Line Testing and Robust System Design (IOLTS) 2021.

References

[1] ETH Zurich and Universita di Bologna: PULPino microcontroller system, 2020, available
online: https://github.com/pulp-platform/pulpino

