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Chapter 5 
Machine Learning Support for Cell-aware 
Diagnosis 

Aymen Ladhar, Arnaud Virazel 

Abstract 

This chapter will provide an overview of the various machine learning approaches 
and techniques proposed to support cell-aware generation, test, and diagnosis. The 
chapter will focus on the generation of the cell-aware models and their usage for 
diagnosis. After some backgrounds on conventional approaches to generate and di-
agnose cell-aware defects, the chapter will present a learning-based solution to gen-
erate cell-aware models. Then, the chapter will present a ML-based cell-aware di-
agnosis technique. Effectiveness of existing techniques will be shown through 
industrial case studies and corresponding diagnosis results in terms of accuracy and 
resolution. The chapter will conclude by a discussion on the future directions in this 
field. 

1 Introduction 

The usage of Cell-Aware (CA) methodology becomes mandatory for semiconduc-
tor industry, especially for designs with the highest product quality. This is because 
fault models like stuck-at, transition, as well as layout-aware fault models are not 
accurate enough to achieve very low Defective Part Per Million (DPPM) rates and 
to resolve the underlying systematic yield detractors for a successful and fast yield 
ramp-up. Previous works on CA defect test and diagnosis can be classified into two 
categories. Techniques in the first category extend the application of logic algo-
rithms to deal with transistor defects [1-2]. The main weakness of these techniques 
is the quality of the logic fault models that do not properly describe the behavior of 
potential transistor defects. These methods are limited to cell-level diagnosis and 
cannot be used during test pattern generation. The second category of cell-internal 
defect test and diagnosis techniques relies on the realistic assumption that the exci-
tation of a defect inside a cell is highly correlated with the logic values at the input 
pins of the cell [3-4]. For this category, a cell-internal-fault dictionary or CA model 
(also referred to as CA fault model or CA test model in the literature), describing 
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the detection conditions of each potential defect affecting a cell, is used [5-6]. These 
techniques are more efficient and can be used to guide the test pattern generation 
and CA diagnosis phases. However, the main limitation of these techniques is the 
generation effort needed to characterize all the standard cells per technology in 
terms of run time, number of SPICE simulator licenses, CPU requirements and disk 
usage. The second limitation of this technique is the usage of simple fault models 
to describe silicon failures, which is not always possible for actual silicon failures. 
In addition, the assumption that the excitation of a defect inside a cell is highly 
correlated with the logic values at the input pins of the cell is not always correct 
mainly for unmodeled cell internal defect. 

With the fast development and vast application of Machine Learning (ML) in 
recent years, ML-based techniques have been shown to be quite valuable for diag-
nosis purpose, especially in the volume diagnosis scenario [5-6]. In this chapter, the 
the usage of machine-learning algorithms is extended to generate the cell-aware 
models in a first step, then to diagnose cell internal defects. 

The remainder of this chapter is organized as follows. Section 2 gives some back-
ground on conventional cell-aware generation, test, and diagnosis. Section 3 ex-
plains the machine learning cell-aware flow. Section 4 summarizes a machine learn-
ing technique to diagnose cell-aware defect. Section 5 presents some industrial case 
studies performed with latest ML-based diagnosis techniques. Section 6 concludes 
the chapter and draws some conclusions. 

2 Background on Conventional Cell-Aware Generation, 
Test and Diagnosis 

To compete in the fast-growing market of automotive ICs as well as 3D transistor 
era, semiconductor industries need to address new challenges across the entire de-
sign flow. In addition, the requirement to be compliant with the highest standards 
like the ISO 26262 goal of zero Defective Parts Per Million (DPPM), has an impact 
on the test and diagnosis phase of nowadays silicon failures [21]. Cell internal de-
fects are one of most critical defects that should be targeted since they are increas-
ingly occurring in latest technology nodes. In addition, this defect type is hard to be 
targeted with conventional ATPG solution and fault models. Test and diagnosis of 
cell internal defects is possible thanks to the realistic assumption that the excitation 
of a defect inside a cell is highly correlated with the logic values at the input pins of 
the cell [3]. To perform CA test and diagnosis, a CA model is needed. It is obtained 
through the characterization of each standard cell library with regards to all possible 
cell-internal defects. These defects can be either transistor defects or inter-transistor 
defects like open and shorts [22-25]. Electrical simulations are performed to gener-
ate CA models for each cell in the library. These models include information about 
the behavior of each defect within the cell with regards to the stimuli applied at the 
cell inputs. 
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One bottleneck of the CA flow deployment in industry is the generation effort in 

terms of run time and flow complexity. Indeed, it requires extensive computational 
efforts to characterize all standard cells of a library [7]. Fig 5.1 represents a typical 
CA model generation flow. It starts with a SPICE netlist representation of a standard 
cell which is usually derived from a layout description, e.g., a GDSII file. The DSPF 
(Detailed Spice Parasitic Format) contains information about potential shorts and 
open defect, as well as their coordinates within the cell. This DSPF cell netlist is 
then used by an electrical simulator to simulate each potential cell internal defect 
against an exhaustive set of stimuli containing static and dynamic patterns. Once 
the simulation process is completed, all cell-internal defects are classified into de-
fect equivalence classes with their detection information (required input values for 
each defect within each cell) and are synthetized into a CA model. Two tables or 
matrix exist in each CA model, the first one targets static defects whereas the second 
one targets dynamic defects. As standard cells may have several inputs, and thou-
sands of cells with different complexities are used for a given technology, the gen-
eration time of CA models for complete standard cell libraries of a given technology 
may reach up to several months, thus drastically increasing the library characteriza-
tion process cost. 

 

 
Fig. 5.1 Conventional cell-aware model generation flow 

 
As mentioned, cell-aware models can be either used for test purpose or for fault 

diagnosis of silicon failures: 
• ATPG usage: the ATPG engine identifies for each cell in the Circuit Under Test 

(CUT) the minimum set of stimuli targeting the entire cell internal defects, then 
it generates test patterns exercising this test stimuli at the input pins of the cell 
under test and ensures the fault propagation to an observation point. 

• Fault diagnosis usage: the diagnostic tool extracts the failing and passing logic 
values at the input pins of the defective cell in the Circuit Under Diagnosis 
(CUD). This information is then matched with the CA model of the defective 
cell to identify the suspect internal defect. 

3 Learning-Based Cell-Aware Model Generation 

The reason behind the ML usage for defective cell characterization is the result of 
several observations made while performing electrical simulation of several cell in-
ternal defects on different standard cell libraries and technology nodes: 

Analog Defect 
Simulation

CA Model 
Generation

CA Models

Defects & Netlist Sim. Results
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• Several cell internal defects are independent of the technology and transistor 

size, and their defective behavior depends mainly on the location of the defect 
and test stimuli applied on the cell under characterization [8-9]. 

• For the same function, cell schematics are usually quite similar whatever is the 
technology node. 

• Detection tables for static and dynamic defects, in the form of binary matrices 
describing the detection patterns for each cell-internal defect, are ML friendly. 

• CA models may change with respect to test conditions and Process Voltage 
Temperature (PVT) corners. In fact, CA model generation for the same cell 
with different test conditions may exhibit slight differences. Few defects can 
be of different types (i.e., static, or dynamic) or may have different detection 
patterns. Since CA models are generated for specific test conditions and can be 
used with different ones, it may lead to inaccurate characterization. This inac-
curacy is usually allowed in industry since it is marginal. This indicates that 
one can also tolerate few error percentages in our ML-based prediction. 

• Very simple CA models are used to emulate short and open defects, for which 
resistance values are often identical for all technologies. 

• A large database of CA models is usually available and can be used to train a 
ML algorithm. 

 

All these above-mentioned reasons intuitively revealed that CA model generation 
through ML could be feasible. However, the first tricky task is to be able to describe 
cell transistor netlist as well as corresponding cell-internal defects in a uniform 
(standardized) manner, so that a ML algorithm can learn and infer from data 
irrespective of their incoming library and technology. Indeed, similar cells (e.g., cells 
with same logic function, same number of inputs and same number of transistors) 
may be described differently in transistor-level (SPICE) netlists of various libraries 
(e.g., a transistor label does not always correspond to the same transistor in two 
similar cells coming from two different libraries), and it is therefore mandatory to 
standardize the description of cells and corresponding defects for the ML-based 
defect characterization methodology. Heuristic solutions developed to this purpose 
are described in Sections 3.1 and 3.2. The second challenging task is to find a solution 
to represent all these information / input data so that they can be ML friendly. A 
matrix description of cells and corresponding defects can be chosen to this purpose. 
Section 3.3 describes how to adapt the ML method to deal with sequential cells. 

3.1 Generation of Training and New Data 

The learning-based defect characterization methodology proposed in [10] is used to 
predict the behavior of a cell affected by cell internal defects, hence avoiding costly 
and heavy electrical defect simulations. The proposed flow is presented in Fig. 5.2. 
It is based on supervised learning that takes a known set of input data and known 
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responses (labeled data) used as training data, trains a model to classify those data, 
and then uses this model to predict (infer) the class of new data. 
 

 

Fig. 5.2 Generic view of the ML-based defect characterization flow 

 
Training data are made of various and numerous CA models formerly generated 

by relying to brute-force electrical defect simulations. For each cell in a library, the 
CA model is transformed into a so-called CA-matrix and filled in with meaningful 
information. 

An overview of the CA-matrix flow is described in Fig. 5.3. It begins by rewriting 
the CA model in a ML friendly description. Then, it categorizes the activation 
conditions of each transistor with respect to input stimuli. Once the activation 
conditions for each transistor have been identified, transistors are renamed in a 
uniform way. This is a critical step in the proposed flow as it allows the usage of the 
training data across different libraries and technologies. Finally, the CA-matrix is 
created with the above information. 

CA Models

CA New 
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CA Matrix Creation New Data Creation
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Fig. 5.3 Generic view of the CA-matrix creation flow 

 
Table 5.1 shows an example of a training dataset for a NAND2 cell. It is 

composed of four types of information: 
• Cell patterns and responses. This information represents an extended represen-

tation of a NAND2 truth table (A, B: inputs, Z: output). As it can be seen, the 
test pattern sequence provides all the possible input stimuli that can be applied 
to the cell. It takes into consideration all the possible transitions that can be 
applied on the inputs of this cell. These stimuli must also be efficient to detect 
sequence-depending defects like stuck-open defects. For this reason, a four-
valued logic algebra made of 0, 1, R and F is used to represent input stimuli in 
the CA-matrix. R (resp. F) represents a Rising (resp. Falling) transition from 0 
to 1 (resp. from 1 to 0). 

• Active / Passive Transistor Identification. This indicates the activation condi-
tions of each transistor in the cell schematic. Each transistor can be in the fol-
lowing state: active, passive, switching to active state, switching to passive 
state. 

• Defect description. This gives information about defect locations in the cell 
transistor schematic. At least one logic value is used to indicates the name and 
the transistor port impacted by the defect. 

• Defect detection. This is the class of the data sample (the output of ML classi-
fier). A value ‘1’ (‘0’) means that the defect is detected (undetected) by the 
input pattern. 

 

CA Models

CA Model Parsing

Active/Passive Transistor 
Identification

Transistor Renaming

Final CA Matrix Creation

CA Matrix
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The first three types of information constitute the inputs of the ML algorithm. 

 

TABLE 5.1: EXAMPLE OF TRAINING DATASET FOR A NAND2 CELL 

Cell inputs & 
responses 

Transistor switching 
activity 

Defect 
description 

About defect   Defect 
detection 

A B Z N0 N1 P0 … N1_D N1_G N1_S … name type  fZ 
0 0 1 0 0 1 … 0 0 0 … free free  0 
0 1 1 0 1 1 … 0 0 0 … free free  0 
0 F 1 0 F 1 … 0 0 0 … free free  0 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 
0 1 1 0 1 1 … 1 0 1 … D15 short  1 
1 1 0 1 1 0 … 1 0 1 … D15 short  0 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ 
 
New data represent the cells to be characterized and are obtained for each 

standard cell from the cell description, corresponding list of defects and cell patterns. 
The format of a new data instance is like that of the training data, except that the 
class (label) of the new data instance is missing. The ML classifier is used to predict 
that class. As for training data, new data are grouped together according to their 
number of cell inputs and transistors, so that inference can be done at the same time 
for cells with the same number of inputs and transistors. 

As highlighted in Fig. 5.2, a Random Forest Classifier is used for predicting the 
class of each new data instance. This choice comes from the results obtained after 
testing several learning algorithms (k-NN, Support Vector Machine, Random Forest, 
Linear, Ridge, etc.) and observing their inference accuracies. So, the first main step 
of our CA diagnosis flow consists in generating a Random Forest model and to train 
it by using the training dataset. A Random Forest Classifier is composed of several 
Decision Tree Classifiers, which are models predicting class of samples by applying 
simple decision rules. During training, a Decision Tree tries to classify data samples 
and its decision rules are modified until it reaches a given quality criterion. Then, the 
Forest averages the responses of all Trees and outputs the class of the data sample. 
The second main step consists in using the Random Forest Classifier to make 
prediction (or inference) when a new data instance must be evaluated. Prediction for 
a new data instance amounts to answer to the question: “Does this stimulus detects 
this defect affecting this cell?”. Answering to this question allows obtaining a new 
CA model for a given standard cell 

3.2 Cell and Defect Representation in the Cell-Aware Matrix 

This section describes the used method to represent a transistor-level (SPICE) netlist 
in a CA-matrix, which is a standardized and ML friendly description. This 
representation must be accurate enough to clearly identify each transistor and each 
net of the cell transistor schematic. Furthermore, this description must also be able 
to correlate each transistor to its sensitization patterns and to report the output 
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response for each pattern. Therefore, the cell description process needs several 
successive operations that are detailed below. Note that this process is applied to all 
cells in a library to be characterized. 

3.2.1 Identification of Active and Passive Transistors 

The first step consists in identifying active and passive transistors in the cell netlist 
with respect to an input stimulus. This information is used to represent the transistor 
netlist in the matrix format. To this end, a single defect-free (golden) electrical 
stimulation of each cell to be characterized is performed to identify active and 
passive transistors for each input stimulus (test pattern) and to measure the cell 
response on the output pin. A NMOS (resp. PMOS) transistor is considered active if 
a logic-1 (resp. logic-0) value is measured on its gate terminal. Similarly, a NMOS 
(resp. PMOS) transistor is considered passive if a logic-0 (resp. logic-1) value 
measured on its gate terminal. With this information, each cell pattern can be 
associated to the list of active transistors in the cell. After this step, the CA-matrix 
contains the columns: 
• Cell inputs & responses columns. They contain all input stimuli (test patterns) 

that can be applied to the cell, and the corresponding responses. 
• Transistor switching activity columns. They contain four possible values indi-

cating if the transistor is active (1), passive (0), switching from an active state 
to a passive one (F) or switching from a passive state to an active one (R). Since 
PMOS and NMOS transistors are activated in opposite way, the '-' character is 
used before the PMOS values. 

 
Fig. 5.4 represents an example of a NAND2 cell with its CA-matrix 

representation. In the partial representation of the CA-matrix of the cell shown in 
Fig. 5.4.b, columns A and B list all the possible input stimuli for this cell. These 
columns also define the length of the CA-matrix, which is equal to 2n + 2n.(2n-1), n 
being the number of cell input pins (2n is the number of static stimuli, 2n.(2n-1) is the 
number of dynamic stimuli). For each stimulus, active and passive information about 
each transistor of the cell is entered in the CA-matrix. For example, AB=00 leads to 
two active PMOS transistors (Px and Py) and two passive NMOS transistors N10 
and N11). 
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Fig. 5.4  Example standard cell NAND2: (a) cell transistor schematic and (b) partial CA-matrix 
representation 

 
This matrix description of the cell netlist is clearly dependent on the transistor 

names and the order they are specified in the SPICE netlist. In fact, two similar cell 
schematics may have different transistor naming and the order of transistors in the 
SPICE netlist may differ from cell to cell and from one technology to another. 
Without an accurate naming convention of each cell transistor in the CA-matrix, any 
ML algorithm will fail to predict the behavior of the cell in presence of a defect. To 
prevent this problem, a second step in the cell description process is needed. This 
step consists in renaming all cell transistors independently of their initial names and 
order in the input SPICE netlist. The algorithm built to this objective is explained in 
the next subsection. 

3.2.2 Renaming of Transistors 

In the CA-matrix, two cells with the same transistor structure will have the same 
transistor names irrespective of their incoming library and technology. A transistor 
structure is a virtual SPICE netlist without specification of the connections between 
transistor gates, i.e., only source and drain connections between transistors are listed. 
The transistor-renaming algorithm consists of the following two steps: 
• Determination of branch equations: Since the transistor gate connections are 

not considered, the transistor structure is composed of one or more branches. 
A branch is a group of transistors connected by their drain and source terminals. 
The entry of each branch is the set of transistor gates, and the exit is the con-
nection net between the NMOS and PMOS transistors. A branch is connected 
to a power and/or a ground net. A branch equation is a Boolean-like equation 
describing how the transistors of the branch are connected, using Boolean-and 
(symbolized by '&') for serial transistors or serial groups of transistors, and 
Boolean-or (symbolized by '|') for parallel transistors or parallel groups of tran-
sistors. 
In Fig. 5.5, the structure is composed of two branches. The two-transistors out-
put-inverter is the simplest branch whose input is net Y and output is net Z. The 
inverter creates two paths between branch output and power nets, so its branch 
equation is (Ninv|Pinv). The equation of the second branch (NMOS branch 

GND

VDD VDD

Z

A B Px Py N10 N11
0 0 -1 -1 0 0
0 1 -1 0 0 1
1 0 0 -1 1 0
... ... ... ... ... ...
R R -F -F R RN11

N10

Px Py
A B

A

B
net0

(a) (b)
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driving net Y) is ((N0&(N1|N2))|N3). To do not rely on any name present in 
the SPICE netlist, the branch equations are anonymized, i.e., a NMOS is de-
scribed by '1n' and a PMOS by '1p'. The anonymized equation of the NMOS 
branch driving net Y in Fig. 5.5 is therefore ((1n&(1n|1n))|1n). 

 

 
Fig. 5.5 Schematic example 

 
• Sorting of branch equations: Once all the branch equations for the considered 

cell have been determined, they are sorted by using deterministic criteria: 
o Level of each branch. It is defined in ascending order with respect to 

the cell output (level-1 branches drive the cell output, level-2 branches 
drive the gates of transistors in level-1 branches, and so on and so 
forth), 

o Number of transistors in each branch - in ascending order, 
o Anonymized branch equation defined in alphabetical order. 

3.2.3 Identification of Parallel Transistors 

Identifying branch equations is not enough to rename all transistors of a given cell. 
The problem comes from parallel transistors. In fact, two or more parallel transistors 
share the same source and drain, which makes their identification quite difficult. For 
example, in Fig. 5.5, transistors N1 and N2 can be either presented as “N1|N2" or as 
"N2|N1". As the order of transistors in each branch will determine how transistors 
will be renamed, such confusing situation cannot by accepted. A solution consists in 
sorting transistors inside their branch according to their activity with respect to the 
input stimuli. The algorithm developed to this purpose proceeds as follows. For each 
transistor, an activity value is computed. For a cell with n inputs, the activity value 
is a 2n-bit integer that represents the accumulative activation state of a transistor for 
all possible stimuli applied to the cell. The input stimuli range from (0,0…,0) to 
(1,1…,1). For each of these stimuli, the transistor is either active (1) or passive (0). 
The activity value is defined as a binary number, whose MSB is the activity of the 
transistor under input stimulus (0,0…,0) and LSB is the activity of the transistor 
under input stimulus (1,1…,1), with a bit significance decreasing for increasing 
binary value of input stimulus. 

To compute the activity value, one need to know whether the transistor is active 
or passive for each input stimulus. This information is already presents in the CA-

GND

PMOS
part

VDD VDD

GND

Z

YYY

N0

N1 N2

N3 Ninv

Pinv
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matrix as described in Section III.A. To illustrate this process, activity values for the 
transistors of the NAND2 cell in Fig. 5.4.a are given in Table 5.2. 

 
TABLE 5.2: ACTIVITY VALUES FOR A NAND2 CELL 

 old names 
A B Comment Px Py N10 N11 
0 0 MSB 1 1 0 0 
0 1  1 0 0 1 
1 0  0 1 1 0 
1 1 LSB 0 0 1 1 
Activity value 12 10 3 5 
 ↓ Renaming ↓ 

P1 P0 N0 N1 
 

Finally, transistors of each branch are sorted by increasing activity value to give 
the final description of the cell in the CA-matrix. For the example in Fig. 5.4, this 
leads to: first NMOS transistor of the first branch is named N0, second NMOS 
transistor of the first branch is named N1, first PMOS transistor of the second branch 
is named P0, and second PMOS transistor of the second branch is named P1. 

3.2.4 Defect representation 

This section details the cell-internal defects representation in the CA-matrix in a 
standardized and ML friendly manner. Cell internal defects are classified into: 
• Intra-transistor defects. These defects affect transistor terminals (source, drain, 

gate and bulk) and can be either an open defect or a short. To describe these 
defects, all transistor terminals are listed as a column in the CA-matrix (cf. Ta-
ble I). For an open defect, a value ‘1’ indicates that this transistor terminal is 
affected by the defect, ‘0’ otherwise. For a short, a value ‘1’ on two transistor 
terminals indicates that a short exists between these two terminals, ‘0’ other-
wise.   

• Inter-transistor defects. These defects affect a connection(s) between at least 
two different transistors. Though these defects are not considered in this work, 
the matrix representation is flexible enough to represent them. For these de-
fects, the same representation mechanism is used as for intra-transistor defects. 

 
Table 5.3 is an example of defect description in the CA-matrix of the NAND2 

cell example presented in Fig. 5.4. Row with red cells describes the intra-transistor 
short defect between drain and source terminals of transistor P1 (formerly Px). Row 
with blue cells describes the inter-transistor short defect between P0-source and 
“net0” (net0 connects N0-source and N1-drain). 
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TABLE 5.3: DEFECT REPRESENTATION FOR A NAND2 CELL 

P0_S P0_D P1_S P1_D  N0_S … N1_D Comment 

0 0 1 1  0 … 0 source-drain short on 
P1 

1 0 0 0  1 … 1 net0 & P0-source 
short 

3.3 Support of Sequential Cells 

This section describes the different modifications that must be considered during 
the creation of the CA matrix in case of a sequential cell: 
• Cell inputs and outputs: For sequential cells it is important to know the stored 

value inside the cell before applying the test stimuli. To this end, a new column 
is included in the CA matrix. It includes the output value of the cell before 
applying the new test stimuli. 

• Identification of Active, Passive, and pulsing transistors: One characteristic of 
sequential cells is the presence of a clock signal, which has an impact on the 
value applied on each transistor. In fact, clock-signal-controlled transistors can 
be pulsing (resp. anti-pulsing), which means a 0-1-0 (resp. 1-0-1) sequence ap-
pears on the transistor gate terminal during application of the test pattern. 

• Determination of branch equations: Sequential cells tend to integrate transmis-
sion gates to separate the latches from each other and from the inputs. A trans-
mission gate is a transistor configuration acting as a relay that can conduct or 
block depending on the control signal. It is composed of one PMOS and one 
NMOS transistors in parallel (i.e., sharing drain and source), and the control 
signal applied to the gate of the NMOS transistor is the opposite (i.e., NOT-ed) 
of the signal applied to the gate of the PMOS transistor. A transmission gate 
directly connects the exit of a branch to the entry of another branch. As such, a 
transmission gate is considered as an autonomous branch of the transistor struc-
ture. The entry of such a branch is the set of transistors gates plus the exit of 
the previous branch, and the exit is the entry of the following branch. Each time 
a transmission gate is identified, the branch equation will be considered as a 
transmission gate and not as a PMOS with a NMOS transistors. The symbol t 
will be used into the branch equation. 
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4 Advanced Cell-Aware Diagnosis Based on Machine 

Learning 

Although conventional diagnosis techniques such as “Cause-Effect” [11] and “Ef-
fect-Cause” [12] can achieve a good resolution, in some cases (e.g., complex cells, 
complex failure mechanisms) the number of candidates may be too high to allow an 
efficient PFA (Physical Failure Analysis). This problem will be exacerbated in the 
future with the advent of very deep submicron (i.e., 5 nm and beyond) technologies. 
Improving diagnosis efficiency at the transistor level (i.e., CA diagnosis) is there-
fore mandatory. 

Previous works on Cell-Aware (CA) fault diagnosis focusing on logic cells can 
be classified into three approaches. The first approach converts a transistor-level 
netlist into an equivalent gate-level netlist by means of complex transformations 
rules [26]. Then, on the equivalent gate-level netlist, any classical fault diagnosis 
approach can be applied. The main drawback of this approach is that the set of 
transformation rules depends on the targeted defect and, thereby, the non-modeled 
defects may not be diagnosed. The second approach is based on the “Cause-Effect” 
paradigm [26-27]. The transistor-level netlist of a cell is exploited, in order to inject 
the targeted defects. Therefore, a defect dictionary is created by transistor-level 
simulations and the defect signatures of all the defects affecting the cells in the library 
are stored in this defect dictionary. Then, during fault diagnosis the defect signature 
of all defects affecting a suspected cell is compared with the observed failures to 
obtain a list of candidates inside the cell. These approaches can be further classified 
depending on the “accuracy” of the injected defects and the simulation “precision”. 
In [27], a large number of defects are simulated at transistor-level using SPICE. For 
a given defect, different resistance values are simulated, in order to be as accurate as 
possible. This approach leads to more precise results but it requires a huge simulation 
time. To reduce the simulation time and the fault dictionary size while keeping a high 
resolution, authors in [26] propose to exploit layout information, in order to consider 
only realistic defects. For example, for each cell, only the realistic, potential net 
bridging defects and via open defects are extracted and then simulated. Then, the 
identified set of realistic defects is simulated at transistor-level. The third intra-cell 
fault diagnosis approach is based on the “Effect-Cause” paradigm [28]. All the 
existing diagnosis techniques depend on the targeted fault models or defects. In [28], 
the main goal is to achieve a resolution close to the transistor-level. However, instead 
of explicitly considering defects at transistor-level, the idea is to exploit the 
knowledge of the faulty behavior induced by the defects. 

Unfortunately, CA fault diagnosis resolution is typically far from the ideal due 
to circuit complexity. A mean to achieve this goal is to use supervised learning al-
gorithms to determine suspected defects. Supervised learning is now used in numer-
ous classification problems where the knowledge on some data can be used to clas-
sify a new instance of such data. This section summarizes the latest developments 
in the field of CA diagnosis based on supervised learning. 
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4.1 Preliminaries and Test Scenarios 

Several learning-guided solutions for CA diagnosis have been proposed recently in 
[13-18]. All solutions are based on a Bayesian classification method for accurately 
identifying defect candidates in combinational standard cells of a customer return. 
Choosing one solution over another depends on the test scenario (test sequence, test 
scheme, test conditions) considered during the diagnosis phase and selected accord-
ing to the types of targeted defects and failure mechanisms. 

The test scenarios in [13-18] are sketched in Table 5.4. In [14-15], two distinct 
processes were developed to diagnose static and dynamic defects separately. In [14], 
a basic scan testing scheme used to apply static CA test sequences is considered, so 
that stuck-at faults plus static intra-cell defects are targeted during diagnosis. In [15], 
a fast sequential testing scheme used to apply dynamic CA test sequences is 
considered, so that transition faults plus dynamic intra-cell defects are targeted 
during diagnosis. Note that [16] is just a combination of [14] and [15], i.e., two 
testing schemes, one static and one dynamic, and two CA diagnosis flows, one static 
and one dynamic, are considered independently. The main limitation of the solutions 
in [14-16] is the required a priori knowledge of the type of targeted defects in the 
CUT. In other words, a test engineer needs to know what type of defects is screening 
before choosing between [14] or [15]. 

To deal concurrently with all types of defects that may occur and without any a 
priori knowledge of the targeted defect type, a new implementation of the CA 
diagnosis flow was proposed in [13-17]. Note that [13] is a fully extended version of 
[17]. Authors assume a test scenario in which two test sequences (static and 
dynamic) are used successively, each one considering a dedicated testing scheme, 
i.e., basic scan and fast sequential. First, a static CA test sequence generated by a 
commercial cell-aware ATPG tool is applied to the CUD. This sequence targets all 
cell-level stuck-at faults plus cell-internal static defects, considering that these 
defects are not covered by a standard stuck-at fault ATPG. A standard (low speed) 
scan-based testing scheme is used to this purpose. Next, another option of the cell-
aware ATPG is used to generate a dynamic CA test sequence that targets cell-level 
transition faults plus intra-cell dynamic defects not covered by a standard transition 
fault ATPG. In this case, an at-speed Launch-On-Capture (LOC) scheme (also called 
fast sequential) is used during test application. 

 
TABLE 5.4: TEST SCENARIOS CONSIDERED IN [13-18] 

 Test Scenarios 

Fault & Defect 
Static 

(Low speed) 
Dynamic 

(At-speed) 
Static + 

Dynamic 

Stuck-at & Static CA [14] [16] [18] [13] [17] 

Transition & Dynamic CA  [15] [16] [18] [13] [17] 
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To construct the comprehensive flow described in [13], a new framework was set 

up in which specific rules were defined to achieve a high level of effectiveness in 
terms of diagnosis accuracy and resolution. The proposed method was based on a 
Gaussian Naive Bayes trained model to predict good defect candidates. This method 
is summarized in the next subsection. 

In [18], a new version of the CA diagnosis flow was proposed, assuming a test 
scenario in which both static and dynamic defects can be diagnosed owing to a single 
dynamic CA test sequence applied at-speed. This scenario may happen when such a 
test sequence has been generated to target transition faults plus cell-internal dynamic 
defects and appears to also cover the required percentage of stuck-at faults plus cell-
internal static defects (or, more generally, satisfies the test coverage specifications). 
In this case, note that only one (dynamic) datalog is generated after test application 
and can further be used for diagnosis purpose. Nevertheless, both static and dynamic 
defects are considered in this scenario. As only dynamic instance tables are 
manipulated, the representation of training and new data is simplified, i.e., a single 
type of feature vector is used, without no loss of information and hence without 
decreasing the quality of the training and inference phases. 

4.2 Learning-Based Cell-Aware Diagnosis Flow 

Figure 5.6 is a generic view of the learning-based CA diagnosis flow utilized in 
[13]. It is based on supervised learning that takes a known set of input data and 
known responses (labeled data) used as training data, trains a model, and then im-
plement a classifier based on this model to make predictions (inferences) for the 
response to new data. 

After investigating several ML algorithms and observing their inference accura-
cies in [14], a Bayesian classification method has been chosen for the learning and 
inference phases in [14-18]. So, the first main step of the CA diagnosis flow consists 
in generating a Naive Bayes (NB) model and to train it by using a training dataset. 
In this step, training data are used to incrementally improve the model’s ability to 
make inference. The training dataset is divided into mutually exclusive and equal 
subsets. For each subset, the model is trained on the union of all other subsets. Some 
manipulations, such as grouping data by considering equivalent defects or removing 
data instances of undetectable defects, are also done during this phase. Once training 
is complete, the performance (accuracy) of the model is evaluated by using a part 
of the dataset initially set aside. More details about performance evaluation as done 
in this framework can be found in [16]. 

The second main step consists in implementing the NB classifier by using a 
Gaussian distribution to model the likelihood probability functions and use this clas-
sifier to make prediction when a new data instance has to be evaluated. The next 
subsections detail the various steps of the CA diagnosis flow, which is able to deal 
with any type of cell-internal defect (i.e., static and dynamic) that may occur. 
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Fig. 5.6 Generic view of the cell-aware diagnosis flow used in [13] 

 

4.2.1 Generation of Training Data  

Training data are generated for each type of standard cell existing in the CUD during 
an off-line characterization process done only once for a given cell library. These 
data are extracted from CA views provided by a commercial CAD tool that contain 
all characterization results for a given cell type. These results are provided in the 
form of a fault dictionary containing, for each defect within a cell, the cell input 
patterns detecting (or not) this defect. An example of training dataset, as used in 
[13-18] and containing six instances for an arbitrary two-input cell, is shown in Fig. 
5.7. Each instance is associated to a static defect (D1, D2, D3) or a dynamic defect 
(D11, D12, D13). A 1 (0) indicates that defect Di is detectable (not detectable) at the 
output of the cell when the cell-level test pattern Pj is applied at the inputs of the 
cell. Cell-level test patterns (called cell-patterns in the sequel) are static (one input 
vector - P1 to P4 in Fig. 5.7) or dynamic (two input vectors - P5 to P16 in Fig. 5.7 in 
which R (F) indicates a rising (falling) transition at the cell input respectively). For 
an n-input cell, there exists 2n static cell-patterns and 2n.(2n–1) dynamic cell-pat-
terns. 

Dynamic defects can be detected not only by dynamic patterns, but also by static 
patterns applied using a basic scan testing scheme, provided that: i) at least one 
transition has been generated at the cell inputs between the next-to-last scan shift 
cycle and the launch cycle, and ii) the delay induced by the defect is large enough 
to be detected (these are the detection conditions of a dynamic defect modeled by a 

New data
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Inference
Bayesian Model

Cell library CUD
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stuck-open or a gross delay fault). For this reason, the value ‘0.5’ is assigned to 
each dynamic defect (D11, D12, D13) for all related static cell-patterns, meaning that 
such a defect is detectable or not depending on whether or not the above conditions 
are satisfied. 

 

 
Fig. 5.7 Example of training dataset for all defect types in a two-input cell as used in [13-17] 

 
As only dynamic test sequences are considered in [18], the representation of 

training data as used in [13-17] could be simplified without losing information and 
decreasing the quality of the training phase. This comes from the observation that a 
static defect is a particular case of dynamic defect (e.g., a full open is a resistive 
open with an infinite value of the resistance), and that all static cell-patterns for a 
given defect are embedded in its whole set of dynamic cell-patterns. Indeed, a dy-
namic defect requires a two-vector test pattern (V1V2) in which the values of V1 and 

V2 have to be properly defined for the defect to be detected. Conversely, only the 
value of V2 is significant for a static defect to be detected by such pattern, irrespec-
tive of the value taken by V1. When looking at Fig. 5.7, one can see that P1={00} is 
embedded in P6={0F}, P11={F0} and P12={FF}, and the same for P2, P3 and P4. Sim-
ilarly, one can see that static defect D2 is detectable by P1 and P4, and hence by P6, 
P8, P10, P11, P12, and P15. So, by “compacting” a training dataset as shown in Fig. 5.8, 
in which only dynamic cell-patterns are considered, one can see that all meaningful 
information is still contained in this set, while redundant (‘0’ and ‘1’ values in the 
first four columns of Fig. 5.7) or insignificant (‘0.5’ values in the same columns for 
dynamic defects) information is removed. More generally, such compact format for 
training data makes so that only one type of feature vector (dynamic) is used for 
both types of defects. 

As the goal with training data is to provide a distinct feature vector for each data 
(defect), it is important to be able to distinguish between static and dynamic defects 
with such a new format of the training dataset. Let us consider two defects D1 and 
D11 where D1 is static and detectable by {00} and D11 is dynamic and detectable by 
{F0} (note that {00} is the second vector of {F0}). As can be seen in Fig. 5.8, these 
two defects can easily be distinguished since their training data instances (or feature 
vectors) are different. The consequence of using such a new format for training data 
(and hence for new data as will be shown later on) is not an improved accuracy or 
resolution, but rather a simplified manipulation of feature vectors. 
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Fig. 5.8 Example of training dataset for all defect types in a two-input cell as used in [18] 

 

4.2.2 Generation of Instance Tables 

An instance table is a failure mapping file generated for each suspected cell by using 
information contained in the tester datalog. It describes the behavior (pass / fail) of 
the cell for each cell-pattern occurring on its inputs during test of the CUD. The 
generation process of instance tables is sketched in Fig. 5.9. First, CA test patterns 
are applied to the CUD. These test patterns are obtained from a commercial CA test 
pattern generation tool that targets intra-cell defects. Next, a datalog containing in-
formation on the failing test patterns and corresponding failing primary outputs is 
obtained. From this datalog and the circuit netlist, a logic diagnosis is carried out 
(still using a commercial tool) and gives the list of suspected cells. From this list 
and the datalog information, one can finally generate an instance table for each sus-
pected cell. Note that in case several test sequences, e.g., one static and one dy-
namic, are used for diagnosis of the CUD, the generation process is repeated so as 
to produce static and dynamic instance tables for all suspected cells. This is the case 
in [13]. 

 

 
Fig. 5.9 Generation flow of instance tables 
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The format of a static instance table is illustrated in Fig. 5.10 for a given two-

input NOR cell and two static cell-patterns. In this example, the first part of the file 
gives information on how the cell is linked to other cells in the circuit, while the 
second part represents, respectively, the pattern number, the pattern status (failing, 
passing), and the cell output Z with the associated fault model for which exercising 
conditions are reported. These conditions shown right below each cell-pattern in 
Fig. 5.10 represent the stimulus arriving at the cell inputs during the shift phase 
(before ‘-’) and applied during the launch cycle (after ‘-’). For example, cell-pattern 
2 consists in applying a 1 on input A and B, and failing in detecting a stuck-at 1 on 
Z. 

 

 
Fig. 5.10 Example of static and dynamic instance tables 

 

4.2.3 Generation of New Data 

New data are generated after post-processing of instance tables. They are composed 
of various instances, each of them being associated to one suspected cell in the CUD 
and represent a feature vector that characterizes the real behavior of the cell during 
test application. From each new data instance, one can extract one or more defect 
candidates that must be classified as good or bad candidate with a corresponding 
probability to be the root cause of failure. This classification is done by comparing 
the new data instance with the training data of the corresponding suspected cell and 
identify those training data instances that match (or not) with the new data instance. 

The formats of a new data instance as used in [13-17] and [18] are illustrated in 
Fig. 5.11 and Fig. 5.12 respectively. This format is quite close to the format of a 
training data instance but has a different meaning. In each instance, the value ‘1’ 

					----------------------------------------------------------------	
																										NOR	Cell	-	NR2NHVTX1	
					----------------------------------------------------------------	
																						Z					Output					L412/C1381A	
																						A					Input								U59/Z	
																						B					Input								U28/Z	
					----------------------------------------------------------------	
														Pattern	1					PASSING					Z:	stuck-at-0	
																						Z					000011111111111	– 1	
																						A					111100000000000	–	0	
																						B					000000000000000	– 0	
														Pattern	2						FAILING						Z:	stuck-at-1	
																						Z					011100000000000	– 0	
																						A					000011111111111	– 1	
																						B					100011111111111	– 1	
				----------------------------------------------------------------	
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(resp. ‘0’) is associated to a failing (resp. passing) cell-pattern Pi for a given defect 
candidate, meaning that the candidate is actually detectable (resp. undetectable) by 
the cell-pattern Pi at the output of the cell during test of the CUD and hence can 
(cannot) be the real defect. In such instance, the value ‘0.5’ is associated to a cell-
pattern for a given defect candidate when this pattern cannot appear at the inputs of 
a suspected cell during real test application with an ATE. The median value ‘0.5’ 
was chosen to avoid missing information in new data instances while not biasing 
the features of these data. 

 

 
Fig. 5.11 Format of a new data instance for a two-input cell as used in [C-H] 

 

 
Fig. 5.12 Format of a new data instance for a two-input cell as used in [G] 

 

4.2.4 Diagnosis of Defects in Sequential Cells 

All the work carried out in [13-18] was about diagnosis of defects occurring in com-
binational standard cells of a customer returns. However, defects in SoCs may also 
occur in sequential standard cells of logic blocks. This section shows how the pre-
vious diagnosis flow can handle sequential cells and related defects by adding new 
information to the training dataset [19]. 

The two main differences between a combinational cell and a sequential cell are 
that i) the latter has a clock input pin and ii) the fact that the previous logic value of 
a sequential cell output can affect the current output value of the cell. To take this 
difference into account, each cell-pattern for a sequential cell is considered as a 
tuple in which the first value represents the input clock signal (pulsing or not), the 
second value is associated to the main input of the cell (e.g., D), and the third value 
is associated to a virtual input pin representing the previous value of the output pin 
of the cell (e.g., Q). Note that in case of sequential cells with multiple real inputs 
(e.g., D flip-flop with a D, Scan-In, Scan-Enable and Clock input signals), the cell-
pattern representation is expanded accordingly. In each tuple, the first value is ei-
ther U (i.e., pUlse) or 0, depending on whether or not there is an active clock signal. 
The second value can be 0, 1, R or F. The third value can only be static (i.e., 0 or 
1). An example of training dataset for all defect types (static and dynamic) that may 
occur in a sequential cell is shown in Fig. 5.13. Note that the CA views used during 
the generation of training data do not contain information about cell-patterns with 
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non-pulsing clock signals (i.e., none of the cell internal defects can be detected at 
the cell output without clock pulse). Consequently, the training data do not include 
such cell-patterns as can be observed in the example of Fig. 5.13. Note also that 
instance tables of sequential cells may contain cell-patterns with no transition on 
the main inputs of the cell. To allow the ML algorithm understanding this infor-
mation, the solution consists in including static cell-patterns (e.g., P1 to P4 in Fig. 
5.13) in the training data of sequential cells. 

 

 
Fig. 5.13 Example of training dataset for all defect types (static and dynamic) in a sequential cell. The 
pin order is clock-data-previous output. 

 
With the above representation of training data for sequential cells, one can see 

that the diagnosis flow in Fig. 5.6 can be used in a straightforward manner without 
any change. The two main steps (model training by using a training dataset, imple-
mentation of the NB classifier to make inference) remain the same irrespective of 
the type of manipulated standard cells. 

 

5 Applications on Industrial Cases 

This section shows the experimental results of ML usage for CA model generation 
as well as CA diagnosis. 

5.1 CA Model Generation Results 

The CA model generation is performed with a python program. The ML algorithms 
were taken from the publicly available python module called scikit-learn [20]. The 
dataset was composed of 1712 standard cells coming from standard cell libraries 
developed using three technologies (C40 (446 cells), 28SOI (825 cells) and C28 
(441 cells)). All these cells already had a CA model generated by a commercial tool. 
The CA-matrix is generated for each cell. The method was experimented in two 
different ways. First, the ML model was trained and evaluated using cells belonging 
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to one technology. Second, the model was trained on one technology and evaluated 
it on another one. 

5.1.1 Predicting defect behavior on the same technology 

The ML model is first trained on cells of 28SOI standard cell libraries. As mentioned 
earlier, cells were grouped according to their number of transistors and inputs. For m 
cells available in each group, the ML model is trained over m-1 cells and evaluate its 
prediction accuracy on the m-th cell. A loop ensured that each cell is used as the m-
th cell. On average, a group contains 8.6 cells. In the following, all possible open and 
short defects (static and dynamic) in each cell are considered. Results presented 
below report the prediction for open defects. Results achieved for short defects are 
similar. 

 
TABLE 5.5: PREDICTION ACCURACY FOR CELLS IN THE SAME TECHNOLOGY 

Prediction 

accuracy (%) 

Number of inputs 

2 3 4 5 6 

N
um

be
r o

f t
ra

ns
is

to
rs

 

6 99.98 99.99    

8 99.91 99.96 99.91   

9  100.0    

10 99.98 99.81 99.96   

12 99.72 99.73 100.0 99.91 99.93 

14 99.70 99.56 99.83 99.92 99.96 

16 99.99 100.0 99.94  99.98 

18 99.99 99.94    

20 100.0 99.98 100.0 99.73  

22  99.84 99.98 99.62  

24 100.0 99.84 99.97  99.85 

26 100.0 99.70 100.0  99.89 

28 99.49 99.98 100.0 99.88 99.81 

30 99.75 100.0 100.0   

32 100.0 100.0   99.98 

42  100.0    

44  100.0    

46  99.81    

47  99.98 99.95   

 
Table 5.5 presents the prediction accuracy achieved for open defects. Non-empty 

boxes report the average prediction accuracy obtained for a group of cells. Empty 
boxes mean that there is zero or one cell available and that the group cannot be 
evaluated. A grey background indicates that the maximum prediction accuracy in 
this group is 100%, i.e., the ML model can perfectly predict the defective behavior 
of at least one cell. In contrast, white background indicates that no cell was perfectly 
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predicted in that group (all prediction accuracies are less than 100%). For example, 
let us consider the bold value in Table 5.5. One has 24 cells having 4 inputs and 24 
transistors: i) 15 cells are perfectly predicted (100% accuracy), which leads to a green 
background, ii) the prediction accuracy for the 9 remaining cells ranges from 99.82% 
to 99.99% and iii) the average prediction accuracy over all 24 cells is 99.97%. 

These results show that the ML model can accurately predict the behavior of a 
cell affected by a given defect and that our method could be used to generate CA 
models. The goal of the next subsection is to leverage on existing CA models to 
generate CA models for a new technology. 

5.1.2 Predicting defect behavior on another technology 

Experiments are also conducted on cells belonging to two different technologies. 
Evaluation was slightly different compared to the previous one. Here, the ML model 
was trained over all available cells of a given technology and the evaluation was done 
on one cell of another technology. A loop was used to allow all cells of the second 
technology to be evaluated. Cells were grouped according to their number of inputs 
and transistors. 

 
TABLE 5.6: AVERAGE PREDICTION ACCURACY FOR CELLS IN DIFFERENT TECHNOLOGIES 

Prediction 

accuracy (%) 

Number of inputs 

2 3 4 5 6 

N
um

be
r o

f t
ra

ns
is

to
rs

 

6 98.21 99.47    

8 94.56 96.86 99.00   

9      

10 94.69 96.01 99.27   

12 87.73 98.05 99.10  99.76 

14 85.69 97.35 98.75   

16 91.74  99.20   

18 88.18 96.28    

20 90.29 94.37    

22 78.73  98.37   

24 87.91 96.88 99.37  99.79 

26 87.24 98.92    

28 88.18 98.68    

30   97.52   

32 88.73 95.6    

42      

44      

46      

47      
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Table 5.6 shows the prediction accuracy achieved on open defects of the C28 

cells after training on the 28SOI cells. Results are averaged over all cells in each 
group (same number of inputs and number of transistors). The average prediction 
accuracies are globally lower compared to those of Table 1. After investigating on 
this point, one can noticed that the behavior of most of the cells (68% of cells) is 
accurately predicted (accuracy > 97%), while accuracy for few cells is quite low. 
This phenomenon is discussed later in this section. 

To verify the efficiency of the method when different transistor sizes are 
considered, the ML model was trained over the 28SOI standard cells and used  to 
predict the behavior of C40 cells. Table 5.7 shows the prediction accuracy achieved 
on open defects of the C40 cells after training on the 28SOI cells. Results are 
averaged over all cells in each group (same number of inputs and transistors). This 
time, 80% of cells are accurately predicted (accuracy > 97%), proving that our ML-
based characterization methodology could be used to generate CA models for a 
(large) part of cells of a new technology. 

 
TABLE 5.7: AVERAGE PREDICTION ACCURACY FOR CELLS WITH DIFFERENT TRANSISTOR SIZE 

Prediction 

accuracy (%) 

Number of inputs 

2 3 4 5 6 

N
um

be
r o

f t
ra

ns
is

to
rs

 

6 100.0 99.80    

8 87.39 99.14 99.03   

9  97.19    

10 92.07 95.49 99.32 98.46  

12 91.71 98.07 99.24 98.47 99.46 

14 90.1 95.84 98.63 98.79 99.52 

16 91.17 93.59 99.23  99.59 

18 88.5 97.15 97.14 97.74  

20 83.87 97.73 97.15 98.94  

22 87.26  98.98 98.44  

24 93.96 99.34 98.58 98.84 99.63 

26 87.52 97.55 99.04 99.02 99.92 

28 98.19  98.79 99.31 99.44 

30   99.13 99.37 99.58 

32 92.91   98.92 99.78 

42      

44 92.03 98.82    

46  99.23    

47  98.29 99.76   
 
 
 



25 

 
5.1.3 Analysis and Discussion 

The cells for which the defect characterization methodology gives excellent 
prediction accuracy as well as those for which the prediction accuracy was quite low 
are firstly analyzed. Then, the limitation of the detailed method for CA model 
generation is investigated. After running several experiments on different 
configurations using one fault model at a time, one noticed the following behaviors: 
• Accuracy for most of the cells is excellent, i.e., more than 97% prediction ac-

curacy for 70% of cells. In this case, the CA model generated by ML fit the 
real behavior achieved with electrical simulation. 

• Accuracy for few cells (30%) is quite low and the ML prediction is not accu-
rate. 
 
For the first cell category with good prediction score, cells have been analyzed 

manually to identify why they led to good results. The analysis showed that all these 
cells had at least one cell in the training dataset with the same transistor structure or 
a similar one. 

For the second cell category – cells leading to poor prediction accuracy – the 
manual analysis showed that they have: i) new logic functions that do not appear in 
the cells of the training dataset, or ii) a transistor configuration which is completely 
new when compared to cells in the training dataset. 

5.1.4 Hybrid flow for CA model generation 

Considering the above analysis, it appears that the ML-based CA model generation 
flow cannot be used for all cells in a standard cell library to be characterized. A mixed 
solution, which consists in combining ML-based CA model generation and 
conventional (simulation-based) CA model generation, should be preferably used. 
This is illustrated in the following. 

The flow sketched in Fig. 5.14 is proposed for accelerating the CA model 
generation. Typically, when the CA model for a new cell is needed, one first check 
if the ML-based generation will lead to high-quality CA models. This is done by 
analyzing the structure of the new cell and check whether the training dataset 
contains a cell with identical or similar structure (as presented in V.B). If the ML 
algorithm is expected to give good results, the new cell is prepared (representation 
in a CA-matrix) and submitted to the trained ML algorithm. 

The output information is then parsed to the desired file format. Conversely, if 
the ML algorithm is expected to give poor prediction results, the standard generation 
flow presented in Fig. 5.14 is used to obtain the CA model. A feedback loop uses 
this new simulated CA model to supplement the training datasets and improve the 
ML algorithm for further prediction. 
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Fig. 5.14 Hybrid flow for CA model generation. 

 
To estimate the improvement in CA model generation time achieved with the 

flow in Fig. 5.2, the following experiments are performed. The Random Forest model 
is trained on 28SOI standard cells and generated CA models for a subgroup of the 
C40 standard cell libraries. A subgroup is composed of cells representing all the cell 
functions available in C40 libraries. In our experiments, this subgroup contained 409 
cells: 118 (29%) have a cell with an identical structure in the training dataset, 87 
(21%) have a cell with an equivalent structure (as explained in Section V.B) in the 
training dataset, and 204 (50%) have no identical or equivalent structure in the 
training dataset (a simulation-based generation is thus needed). For these 204 cells, 
the generation time was calculated and found to be equal to ~172 days (~ 5.7 months) 
considering a single SPICE license. Using the ML-based CA model generation for 
the 118 + 87 = 205 (50%) remaining cells requires 21947 seconds (~ 6 hours), again 
considering a single SPICE license. Considering that a simulation-based generation 
for these 205 cells would require ~78 days, one can estimate the reduction in 
generation time to 99.7%. Now, if one considers the whole C40 subgroup composed 
of 409 cells, the hybrid generation flow would require ~172 days + ~6 hours, to be 
compared with ~172 days + ~78 days = ~250 days by using only the simulation-
based generation. This represents a reduction in generation time of about 38%. After 
investigating results of these experiments, one can observed that the ML-based CA 
model generation works well for about 80% of cells of the C40 subgroup. 
Surprisingly, the structural analysis revealed that only 50% (205 cells) could be 
evaluated using the ML-based generation part of the flow. This shows that there is 
still room for further improvement of the structural analysis in this flow, and hence 
get better performance of the ML-based CA model generation process. 
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To conclude, experiments have been carried out on a reasonable size (1712) of 

standard cell population. Considering that more than 10000 cells have usually to be 
characterized for a given technology, the hybrid flow in Fig. 5.14 is expected to 
provide even better results, especially owing to the reinforcement training that uses 
simulation generated models for supplementing the training datasets, and hence 
reduce the number of electrical simulations. 

5.2 CA diagnosis results 

The CA diagnosis flow described in Section 4.2 and targeting defects in both 
combinational and sequential cells of CUD has been implemented in a Python 
program. For validation purpose, authors in [13-19] have experimented the proposed 
flow in three different ways: 
• First, they conducted experiments on ITC’99 benchmark circuits with defect 

injection campaigns targeting combinational cells in each circuit. Various re-
sults are reported in [13-19] to show the superiority of the framework when 
compared to commercial diagnosis solutions. 

• Next, they considered a test chip developed by STMicroelectronics and de-
signed using a 28 nm FDSOI technology, and they conducted two defect injec-
tion campaigns targeting sequential cells [19]. Results are reported in subsec-
tion 5.2.1 and demonstrate the effectiveness of the diagnosis framework. 

• Finally, they considered a customer return from STMicroelectronics and per-
formed a silicon case study with a real defect subsequently analyzed and iden-
tified during PFA. Results are reported in subsection 5.2.2. 

 

5.2.1 Simulated Test Case Studies 

Authors in [19] conducted experiments on a silicon test chip developed by 
STMicroelectronics and designed with a 28 nm FDSOI technology. The test chip is 
only composed of digital and memory blocks, and one PLL. The digital blocks are 
made of 3.8 million cells. Other features (number of primary inputs, primary out-
puts, and scan flip-flops) are given in Table 5.8. 

A first simulated case study was done with a static defect injection campaign. 
All possible static defects were successively injected into three scan flip-flops (SFF) 
of a single full-scan digital block. This block was tested with a static CA test se-
quence achieving a stuck-at + static CA fault coverage of 100%. The average num-
bers of passing and failing test patterns are given in Table 5.9. Results obtained after 
executing the CA diagnosis flow and averaged over all defect injections have shown 
an accuracy of 100% (the injected defect was always reported in the list of suspects) 
and a resolution of 1.25. The resolution ranges between 1 and 3, and Fig. 5.15 shows 
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the distribution of this resolution with respect to the total number of simulated cases. 
As can be seen, in most of the cases, the number of suspects is equal to 1 (perfect 
resolution). 

 
TABLE 5.8: MAIN FEATURES OF THE SILICON TEST CHIP 

#cells #PIs #POs #SFF 

3.8M 97 32 17.5k 

 

TABLE 5.9 AVERAGE PATTERN COUNT IN INSTANCE TABLES OF THE FIRST SIMULATED CASE STUDY 

#passing 
patterns 

#unique 
passing patterns 

#failing 
patterns 

#unique 
failing patterns 

43.4 24.0 15.5 8.6 

 

 
Fig. 5.15 Distribution of the resolution with respect to the simulated cases 

 

A second simulated case study with another defect injection campaign was 
performed on the same test chip. All possible dynamic defects were successively 
injected into three scan flip-flops of a single full-scan digital block. This time, a 
dynamic CA test sequence was applied and achieved a transition + dynamic CA fault 
coverage of 89.8%. The average number of failing test patterns was 7.9. Again, the 
results obtained after executing the CA diagnosis flow and averaged over all defect 
injections have shown an accuracy of 100%. The average resolution obtained for 
dynamic defect injection experiments was 1.37. Again, the resolution ranged 
between 1 and 3, and in most of the case, the number of suspects was equal to 1. 

5.2.2 Silicon Test Case Studies 

Next, a silicon case study was performed on a customer return designed with a 28 
nm FDSOI technology from STMicroelectronics [19]. The test conditions used to 
run the experiments were as follows: a nominal supply voltage of 0.83 V, a scan test 
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frequency of 10 MHz, a launch-to-capture clock speed (for the dynamic CA test 
sequence application) adjusted with respect to the nominal clock frequency of the 
circuit, and a temperature of 25°C. The process was considered as typical. The CA 
diagnosis flow was experimented and the following results were obtained. Initially, 
the circuit failed on the tester after application of the static CA test sequence when 
applied at the nominal voltage. This information was stored in a “static” datalog. 
Then, a logic diagnosis gave a short list of suspected cells among which a six-input 
SFF cell made of 56 transistors and having a Reset, an Enable, a Test-Input and 
Test-Enable input pins. The cell contains 758 potential short or open defects. A 
static instance table was then generated for this suspected cell and contained 5 
failing and 75 passing cell-level test patterns. From the new data generated after 
post-processing of this instance table, the NB classifier identified four suspected 
defects among which defect D62 (a short between the gate and source of NMOS 
19). 

 
Fig. 5.16 Layout view of the suspected cell and the incriminated transistor. Yellow circles indicate 
defect candidates and red mark indicates actual observed defect 

 

The above diagnosis results were provided to the Failure Analysis team of 
STMicroelectronics, who made a PFA in the past on this customer return based on 
the results found by their in-house intra-cell diagnosis tool. The result obtained with 
the CA diagnosis flow was validated as defect D62 was found to be the real defect. 
This was done after performing a polysilicon level inspection on the layout of the 
cell (c.f. Fig. 5.16) and observing the failure analysis cross-sectional view. 

6 Conclusion and Discussion 

This chapter has provided an overview of the various machine learning approaches 
and techniques proposed to support cell-aware generation, test, and diagnosis from 
leading-edge research in this domain. In a comprehensive form, it proposes a com-
pendium of solutions existing in this field. More in detail, the chapter has presented, 
after some backgrounds on conventional approaches to generate and diagnose cell-
aware defects, learning-based solutions to generate CA models and CA diagnosis. 
Experiments on silicon test cases have been done to validate those solutions and 
demonstrate their efficacy in terms of accuracy and resolution. 
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Results of this chapter prove the appropriateness of learning-based methods to 

solve the problem of CA models generation and CA diagnosis. The learning-based 
solutions to generate CA models was evaluated using two scenarios: i) the model 
was trained and evaluated using cells belonging to one technology, and ii) the model 
was trained on one technology and evaluated it on another one. Those evaluations 
have shown that the ML-based CA model generation flow cannot be used for all 
cells in a standard cell library to be characterized. A mixed solution, Hybrid flow 
for CA model generation, which consists in combining ML-based CA model gen-
eration and conventional (simulation-based) CA model generation, should be pref-
erably used. The learning-based solution to generate CA diagnosis has been exper-
imented in three different ways: i) on ITC’99 benchmark circuits with defect 
injection campaigns targeting combinational cells, ii) using a test chip developed by 
STMicroelectronics and designed using a 28 nm FDSOI technology with defect in-
jection campaigns targeting sequential cells, and iii) using a customer return from 
STMicroelectronics with a real defect subsequently analyzed and identified during 
PFA. In all cases, the learning-based solution to generate CA diagnosis succeeds in 
identifying the good defect candidate compared to commercial diagnosis solutions. 
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