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D. Galdeano, A. Chemori, S. Krut and P. Fraisse
Optimal Pattern Generator for Dynamic
Walking in humanoid Robotics

Abstract: This paper deals with an optimal Zero Moment Point (ZMP) based pattern
generator for stable dynamic walking in humanoid robotics. The proposed method
is based on a Three-Mass Linear Inverted Pendulum Model (3MLIPM), used as a
simplified model of the biped robot. The 3MLIPM considers the biped robot as a
three point masses and two-link system. A ZMP based performance index is then
used in an optimization problem whose solution gives the best values of the model’s
parameters w.r.t. dynamic walking stability. Numerical simulations are presented to
show the effectiveness of the proposed optimal pattern generator for the case of the
biped walking robot SHERPA.

Keywords: Biped walking robot, Pattern generation, Three-mass linear inverted
pendulum model, Optimization.

1 Introduction
A humanoid robot is a robot with an appearance based on that of the human body.
Humanoids walking is a very challenging field of research due to the complexity of
synthesizing stable gaits for these systems. Indeed, within this field, humanoid robot
control needs sophisticated control schemes to deal with their complexity including:
– the high-order nonlinear dynamics,
– the variable structuremodel according to thedifferent phases of thewalking cycle,
– the contact constraints with the ground that should be managed,
– the hybrid character of the dynamics due to rigid impacts between the robot’s foot

and the ground,
– the stability during walking that should be ensured.

Most of the proposed control schemes in the literature are based on the use of
some reference trajectories that should be tracked in real-time. This fact shows the
importance of a pattern generator in humanoid walking control. Several types of
pattern generators have then been proposed in the literature. However, those who
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guarantee an a-priori walking stability are often based on one of the following
stabilization criteria:
– The Center Of Mass (COM)
– The Zero Moment Point (ZMP)
– The Foot Rotation Indicator (FRI)

The COM [1] is the mean location of all masses of the robot links. It is usually used as
a static stability criterion. The ZMP [2, 3] is the point of junction between the center
of the vertical reaction forces and the ground. It is the most used dynamic stability
criterion. The FRI [4] is a point on the foot/ground-contact surface where the net
ground-reaction force would have to act to keep the foot stationary. It is an indication
of postural stability and, in case of instability, indicates how the robot will fall. It is
used as a dynamic stability criterion.

2 Related works
In the literature several methods have been proposed for generating walking trajecto-
ries in humanoid robotics.

A method based on amotion capture of human walking has been proposed in [5].
This method can gives human-like motions, however its main drawback lies in the
captured data that can be hard to adapt to the humanoid robot.

Another method of trajectory generation for stable dynamic walking is proposed
in [6]. It consists in using a 3rd order spline function to generate feet and hip
trajectories. The foot trajectories can be adapted to the ground variations to generate
a stable dynamic walking on a rough terrain.

In [7] another pattern generation method has been proposed. It consists in using
Fourier series to generate stable walking, with an iterative procedure to guarantee the
stability. The main drawback of such a method lies in the computation time that does
not enable a real-time implementation.

Another interesting method is the so called Inverted Pendulum Model (IPM)
[8, 9] that considers the robot as a single point mass and massless legs. This method
simplifies the dynamics of the robot to an inverted pendulumwith a pointmass linked
by a telescopic leg to a spherical ground/leg joint.

The Linear Inverted Pendulum Model (LIPM) [10, 11] is an extension of the IPM
where the height of the torso is considered to be constant leading to a more natural
movement.

The IPM ignores the dynamics of the legs since it considers the stance leg as
an inverted pendulum with a point mass. This fact can involve a loss of walking
stability since the considered model is considerably simplified and consequently not
sufficiently accurate. For instance, this is the case when the robot has heavy legs or
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has no torso (case of our robot SHERPA). In order to approximate the robotwith amore
accurate model, it would be necessary to consider the whole-body dynamics by using
a preview control to correct the error between the IPM and the real robot as in [12] or
to use a multiple point mass model instead of considering a one point mass model.

For instance, a Two-Mass Inverted Pendulum Model (TMIPM) and Multiple Mass
Inverted Pendulum Model (MMIPM) extending the IPM were proposed in [13]. In the
MMIPM, the consideredmodel is composed bymore than onemass. Thesemasses are
located at the hip and along the swinging leg in the case of a two-mass model.

The Gravity-Compensated Inverted Pendulum Model (GCIPM) [14] uses also one
mass to represent the body of the robot and an additional mass to represent the
swing leg.

A three-mass model using the concept of ZMP has been studied in [15]; however,
it doesn’t use any LIPM to generate trajectories and the torso of the biped robot moves
up and down.

A generation of walking trajectories using a three point mass model to calculates
center of mass trajectories from footstep locations has been proposed in [16]. This
approach use offline optimization of some free geometrical parameters like the trunk
angular motion w.r.t. the speed of the robot. These parameters are then used in
a real-time fast planning to compute the reference torque patterns to apply on
the robot.

Another three-mass model using the inverted pendulum concept is proposed in
[17]. However, it has one important drawback related to the geometrical parameters,
such as the position and the location of masses, which have been chosen arbitrarily.
One good idea would then be to tune these parameters at their best values in order to
enhance the walking stability of the robot, and this is the scope of the present paper.

The proposed solution is an extension of the method proposed in [17] to deal
with dynamic stability of walking in the generated trajectories, as well as changes
in direction during walking. As in [17], the robot’s dynamics will be approximated by
a Three-Mass Linear Inverted Pendulum. The hip and feet trajectories are generated
by the movement of masses. The walking movement of the robot is generated in
the sagittal and frontal planes separately. The joint trajectories are computed using
inverse kinematics of the biped robot. In order to ensure a stable dynamicwalking, the
parameters of the model must be well tuned. The best way to perform such a tuning
is through an optimization of the generated joints’ trajectories to minimize the ZMP
excursion within the footprint which will increase the stability margins. The second
contribution of this work is to propose online change of walking direction, where new
optimal trajectories are generated to ensure a-priori stability during walking while
turning.

This paper is organized as follows: in the next section, the prototype of our
demonstrator SHERPA is introduced. Section 4 introduces the simplified model that
will be used in the generation of the reference trajectories and how it was used in
the pattern generator proposed in [17]. In section 5, the proposed extension of this
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method is presented, where our contributions are highlighted. Numerical simulations
are presented and discussed in section 6, where the effectiveness of the proposed
method is shown and compared with the original one for the case of SHERPA robot.
The paper ends with some concluding remarks.

3 Description of SHERPA prototype
The SHERPAwalking robot (cf. Fig. 3) is a French biped robot developed at the LIRMM
laboratory [18] within the framework of the national project ANR-06-BLAN-0244
SHERPA. The name of this robot comes from the so-called Sherpa, who are members
of a people of Tibetan stock living in the Nepalese Himalayas, and who often serve as
porters on mountain-climbing expeditions. Indeed, this robot is built to carry loads
while walking in a human environment [19].

q1 q7

q2

q3 q9

Knee
q10q4

q6 q12
Anckle

q5 q11

q8
Hip

Fig. 1. SHERPA
kinematics model.

Fig. 2. CAD model of
SHERPA.

Fig. 3. The SHERPA
robot.

SHERPA is composed of a hip linking two legs together. Each leg has six degrees
of freedom (dof), and the robot is equiped with 12 actuators, which is enough to
reproduce a human gait.

These dofs are distributed on the different articulations of the robot as follows:
three dofs at the hip, one dof at the knee and two dofs at the ankle as it is illustrated
on Fig. 1. The geometric parameters of the robot are summarized in Tab. 1.
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Tab. 1. Geometric parameters of SHERPA biped robot.

Description Parameter Value

Length of thigh Lthigh 0.5033 m
Width of the hip Ls 0.31 m
Total weight of the robot mass 47.1 kg

This robot differs basically from the other walking robots by its actuation system,
which is transparent (backdrivable, with low inertia), and organized in modules (as
illustrated in Figs. 4–5).

Each actuation module includes two actuators acting in parallel on two dofs
simultaneously. The mechanical transmission of these modules is such that when the
two actuators work together on the joint, they cause the movement of the first dof;
and when they act in opposite directions they cause the movement of the second dof.
These modules are equipped with custom-made electric motors.

The transmission of movement is based on the use of a ball screw transforming
the rotation of the hollow shaft electrical actuator in a translational movement. This
last one is then transmitted to pulleys using cables to produce the desired rotational
movement. This basic principle of motion transmission is illustrated in Fig. 6.

2 DOF
Joint

Path Change
Module

X2 Actuator
Module Frame

Secondary
Rotation Axis

Main
Rotation Axis

Ball Bearing
Screw

Cable Return
Module

Fig. 4. CAD view of an actuator module.

This technology gives the robot’s actuators remarkable characteristics such as no
backlash, low friction, reversibility of the chain of transmission and low inertia.

The kinematic model of SHERPA robot is created through the link representation
proposed in [20]. This model uses the twelve joints’ values as well as the position and
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orientation of the hip to generate the Cartesian position of each articulation in the
operational space.

Fig. 5. View of a real manufactured module.

Stroke

R

TΘ1=140°

Θ2=60°

TB

F

Fig. 6. Cable/Pulley transmission system used in actuation module of SHERPA.

The forward kinematics model writes:

X = f (q) (1)

where X ∈ R39×1 includes Cartesian positions of articulations and the hip’s center
position, q ∈ R18×1 includes a 12 × 1 vector of joints positions, and a 6 × 1 vector of
the position and orientation of the hip.
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The inverse kinematic model is obtained by solving an analytical equation to find
the articular positions expressed in terms of operational space positions of the hip and
feet. The inverse kinematic model can then be written as:

q = g(Xr) (2)

where Xr ∈ R9×1 represents the operational space position of the hip (3 × 1) and the
feet (6 × 1). The orientation of the hip and the feet are kept constant and equal to
zero.

The computation of the ZMP and CoM of the robot is based on the formalism
presented in [20], in which the ZMP evaluation uses the angular momentum with the
overall dynamic model of the robot.

4 Three-mass linear inverted pendulum model
The three-mass Linear Inverted Pendulum Model (3MLIPM) as introduced in [17]
simplifies the biped robot to a three-link system (as shown in Fig. 7) with a point mass
on each link. The three masses represent the torso and the two legs, unlike the single
massmodel (as in IPM or LIPM) where a uniquemass is located at the hip of the robot.
The three links are connected together at the hip.

This model is more accurate than the single mass model, especially for biped
robots without torso, where the position of the CoM can be very different from the
hip position.

From Fig. 7, the equations of moment applied on the supporting ankle can be
formulated as follows:

τx =
3∑
i=1
mi(g + z̈i)yi −

3∑
i=1
miÿizi (3)

τy =
3∑
i=1
miẍizi −

3∑
i=1
mi(g + z̈i)xi (4)

where τx and τy are the torques applied on the ankle, mi represents the value of the
ith point mass, (xi , yi , zi) are the Cartesian positions of the ith point mass (i = 1,2 or 3
represent respectively the stance leg, the torso and the swing leg), (ẍi , ÿi , z̈i) are their
corresponding accelerations.

For simplification, the height of the masses is assumed to be constant and
the torque applied on the supporting ankle is assumed to be zero [17]. With these
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assumptions, (3) and (4) can be simplified into:

3∑
i=1
miÿizi =

3∑
i=1
migyi and

3∑
i=1
miẍizi =

3∑
i=1
migxi (5)

These equations are decoupled, so the movement can be generated in sagittal and
lateral planes separately.

X
Y

Z

m1

m2

m3

Fig. 7. Graphical representation of the Three-Mass Linear Inverted Pendulum Model.

4.1 Assumptions and notations

The following assumptions are considered to simplify the calculations [17]:
– The ground is flat and horizontal.
– The height variation of each mass can be neglected.
– The double support phase is considered instantaneous.
– There is no energy loss during impact.
– The standing foot has no overturn when touching and leaving the ground.
– The swing foot is parallel to the ground.
– The torso is upright.

Besides, the following notations are used:
– 2T: The whole stepping cycle.
– 2Ds: The steeping length.
– Ls: The width of a step.

4.2 Motion study in the sagittal plane

The movement in the sagittal plane and the associated notations are illustrated in
Fig. 8.
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With the above assumptions, heights and masses can be normalized as follows:

z2 = γz1 , z3 = z1 , x2 = λx1 , m2 = km1 , m3 =m1 (6)

where γ, λ and k are the parameters extracted from the robot’smodel. Considering (6),
equation (5) can be simplified into:

bẍ1 + dẍ3 = ax1 + x3 (7)

a = kλ +1, b = z1g (1+ kγλ), d = z1g (8)

m2

m3 m3

Ds Ds0 X

m1 Z1

m2X2
Z2

Z
γZ1

λZ1

λX1

Hip

Knee

X3
Z3

X1
Z1

Fig. 8. Illustration of movement in the sagittal plane.

In order to generate walking gaits, a trajectory for the swing foot (mass m3) is
necessary. If the trajectory of this last one is known, then those of the two othermasses
can be computed. According to [17], a sinusoidal function is chosen to represent the
trajectory of the mass m3, as follows:

x3 = Acos(ωt +ϕ) (9)

where parameters ϕ and A are given in the sequel by equation (13). Here, ω is not
the step frequency, it is a parameter that must be chosen to keep the foot position
and velocity positive in order to ensure a forward movement of the foot during the
step.
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Using (7) and (9), x1 can be expressed by:

x1 = C1 cos(ωt +ϕ) + C2e
√ a

b t + C3e−
√ a

b t (10)

With the above assumptions given in section 4.1, initial conditions can be fixed as:

x1(0) = −
Ds
2λ , x3(0) = −

Ds
2λ (2λ −1) (11)

x1
(
T
2

)
= 0, x3

(
T
2

)
= 0 (12)

The equations’ coefficients can then be identified using initial conditions:

ϕ = −π2 − T2ω, A = −Ds(2λ −1)2λcosϕ (13)

C1 = −
A(1+ dω2)
a + bω2 C3 = −e

√ a
b tC2 (14)

C2 =
1

1− e
√ a

b t

(
−Ds2λ − C1 cosϕ

)
(15)

With all trajectories of point masses computed, the trajectories of the hip and ankles
can then be determined using geometrical constraints from Fig. 8.

xst(t) = 0 for 0 ≤ t ≤ T, xh(t) = λx1(t) for 0 ≤ t ≤ T
zst(t) = 0 for 0 ≤ t ≤ T, zh(t) = λz1 for 0 ≤ t ≤ T (16)

where xst, zst represent Cartesian positions of the stance foot along x and z axis
respectively. xh, zh are the Cartesian positions of the hip along x and z axis
respectively.

During the step, the vertical position of the swing foot needs to be higher than
the floor. A sinusoidal shape can then be an appropriate function for the swing foot
trajectory along the z axis. However, due to the previous assumptions, the influence
of this change of height is neglected in computations.

xsw(t) =
λx3(t) − λxh(t)

λ −1 for 0 ≤ t ≤ T

zsw(t) =
√
2Hs
2

√
1+ sin

(
2π
T t −

π
2

)
for 0 ≤ t ≤ T (17)

where xsw, zsw are the positions of the swing foot along the x and z axis respectively,
and Hs is the maximal height of the swing foot during walking.
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4.3 Motion study in frontal plane

The movement in the frontal plane and the associated notations are illustrated in
Fig. 9.

The 3MLIPM equations are now derived in the frontal plane.

uÿ1 − vy1 = w (18)

Where the coefficients u, v and w are given by:

u = (2+ kλγ) z1g , v = (2+ kλ), w =
(
Ls + k

Ls
2

)
(19)

These equations are solved considering the following initial conditions:

y1(0) = 0, ẏ1
(
T
2

)
= 0, y1(T) = 0 (20)

The trajectory of the mass m1 along the y axis is then computed and expressed by:

y1(t) = C1e
√ v

u t + C2e−
√ v

u t − wv (21)

where:

C1 =
w
v
1− e

√ v
u T

1− e2
√ v

u T
, C2 = e

√ v
u tC1 (22)

m2

m3

0

Z

Ls

m1

Y

Hip

Knee

Fig. 9. Illustration of movement in the frontal plane.
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Once the trajectory of the mass m1 is computed, those of m2 and m3 can be easily
determined using geometrical constraints illustrated on Fig. 9. From these trajectories
and the inverse kinematics of the robot, the trajectories of all the joints of the robot
can then be computed.

4.4 Adaptation of the general model for SHERPA robot

The SHERPA robot is a biped robot without a torso (cf. Fig. 3). In order to simplify the
model, the torso point mass is set on the hip. This modification results in γ = λ.

It is worth to note that the basic principle of the proposed method in [17] and
summarized above uses some geometrical parameters of the robot (such as m1, m2,
m3 and z1, z2, z3) but doesn’t give a method to calculate them. In order to take into
account the dynamic stability of the resulting walking trajectories, we propose to tune
these parameters using optimization to enhance the walking performance. The idea
of such contribution is detailed in the following section.

5 Reference trajectories optimization
The proposed pattern generator in [17] computes joint reference trajectories using
arbitrary defined parameters. This can be improved by choosing the best values of
some of them (namely m1 and z1) to ensure walking stability. Since we are interested
in dynamic walking, the position of the Zero Moment Point (ZMP) [2] is then used as
an indicator of stability.

5.1 Dynamic stability margins

The stability margins are defined by the distance to the limit of stability (i.e. the
boundary of the footprint), they are illustrated in Fig. 10.

Footprint ZMP trajectory

My1

Mx2Mx1β

α

My2

y

x

Fig. 10. ZMP displacement inside the footprint and stability margins.
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The dashed interior rectangle explicits the boundaries of the ZMP displacements.
Based on Fig. 10, the stability margins can be mathematically expressed as follows:

Mx1 =
α
2 +min(dZMPx(t)), Mx2=

α
2 −max(dZMPx(t))

My1=
β
2+min(dZMPy(t)), My2=

β
2−max(dZMPy(t))

∀ t ∈ [tsi , tsf ]

Mx =min(Mx1,Mx2), My =min(My1,My2) (23)

were dZMPx(t) and dZMPy(t) are the deviations of the ZMP trajectory with respect to
the center of the stance foot along x axis and y axis respectively, tsi and tsf are the
time instants of landing and lift-off of the stance foot respectively. The duration of the
step is T = tsf − tsi.

5.2 Optimization w.r.t. dynamic walking stability

The first main contribution of this paper is to improve the pattern generator proposed
in [17] by considering an optimization criterion in order to find the best values of z1
and m1 to enhance the dynamic walking stability.

In order to do that, the ZMP corresponding to the generated joint trajectories
should be computed with the overall dynamics of the robot and compared with the
desired ZMP, set to the center of the stance foot. This chosen ZMP desired position
corresponds to a maximum stability margins.

The following objective function is then proposed to be optimized w.r.t. the
parameters z1 and m1:[

ẑ1
m̂1

]
= arg min⎡

⎣ z1
m1

⎤
⎦
max

(√
1
α (xzmp − xdzmp)

2 + 1
β (yzmp − ydzmp)

2
)

(24)

where xzmp and yzmp are the positions of the computed ZMP, xdzmp and ydzmp are those
of the desired one. z1 and m1 are the optimization parameters, α and β are the length
and the width of the foot (i.e. along x axis and y axis respectively, cf. Fig. 10).

By minimizing the maximum normalized deviation of the ZMP trajectory as cost
function, the objective function computes the mass distribution to ensure the largest
stability margins.
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5.3 Change of direction and stability optimization

Onekey feature of a pattern generator is to allow the biped robot to change thewalking
direction using the kinematic model like in [21], or the dynamic model as in [22] with
a two point mass system model.

As proposed in [17], the original 3MLIPM pattern generator is designed to make
the robot walking only in a straight line. Our second contribution is then to modify
it to allow a change of direction while walking. The change of direction is obtained
through the application of a rotation at the hip of the stance leg, as follows:

Ω = −R2 cos πtT (25)

with Ω is the angle of rotation and R is its amplitude.
The change of direction alters the stability of the biped robot. Therefore, the

proposed optimization criterion (24) is used again to improve dynamic walking
stability. The solution of this optimization problem gives the best values for z1 and
m1 which allow a better dynamic stability of the robot walking and turning.

6 Simulation results
A simulator for SHERPA biped robot was developed using the Graphical User Interface
of Matlab™software. Its graphical interface is shown in Fig. 11.

This interface enables the tuning of some parameters of the robot as well as those
of the optimization criterion. A graphical animation of the robot or the three mass
model can also be displayed in the simulator to show the obtained movements.

The parameters z1 and m1 are computed by optimization, the other parameters
are constant and summarized in Tab. 2.

Fig. 11. View of the Graphical User Interface of SHERPA biped robot simulator.
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Tab. 2. Parameters of the 3 MLIPM pattern generator.

Description Parameter Value

Weight of one leg m1 Optimized
Weight of the torso m2 mass− 2m1

Height of the mass m1 z1 Optimized
Height of the hip z2 0.95(Lshin + Lthigh)
Step time T 0.7 s
Step length Ds 0.4 m
Calculus variable ω π/(5T )
Calculus variable λ = γ z2/z1

Using the developed simulator, four simulation scenarios are proposed to validate the
proposed optimal pattern generator, namely:
– Simulation 1: optimal trajectories generation for straight walking,
– Simulation 2: trajectories generation for walking with change of direction without

optimisation,
– Simulation 3: trajectories generation for walking with a change of direction and

optimization.
– Simulation 4: Effects of walking parameters

These simulations will be detailed and commented in the following.

6.1 Simulation 1: straight walking

The optimization criterion given in (24) is used to find the best values for z1 and m1
using the fminsearch algorithm proposed within Matlab software. The optimization
algorithm uses a simplex search method described in [23]. The obtained optimization
results are coherent with their physical meanings: the masses are found to be positive
and the positions of the three masses are inside the convex envelope of the robot.
The obtained optimal solution is summarized in Tab. 3, and the simulation results are
illustrated, for six walking steps, through curves of Figs. 12–18.

Tab. 3. Resulting optimized parameters.

Parameter Without optimization With optimization

z1 0.6 m 0.2598 m
m1 6 kg 0.4442 kg



130 | D. Galdeano et al.

Figures 12 and 13 represent respectively the evolution of the joints’ positions and
velocities, where it can clearly be seen that the obtained trajectories are peri-
odic. Furthermore the trajectories of one leg are symmetrical w.r.t. those of the
other one.

0.1
position: q1 [rad] and q7 [rad] Right leg

Left leg

position: q2 [rad] and q8 [rad]

position: q3 [rad] and q9 [rad]

position: q4 [rad] and q10 [rad]

position: q5 [rad] and q11 [rad]

position: q6 [rad] and q12 [rad]

time[s]

0
–0.1

1
0

–1

1
0

–1

2
1
0

0
–0.5

–0.1
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0.1
0

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 12. Joints’ positions generated by the proposed optimal pattern generator.

0.5
velocity: 1 [rad/s] and 7 [rad/s]

velocity: 2 [rad/s] and 8 [rad/s]

velocity: 3 [rad/s] and 9 [rad/s]

velocity: 4 [rad/s] and 10 [rad/s]

velocity: 5 [rad/s] and 11 [rad/s]

velocity: 6 [rad/s] and 12 [rad/s]

Right leg
Left leg

time[s]

0
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5
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–1

5
0

–5
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0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 13. Joints’ velocities generated by the proposed optimal pattern generator.
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Figures 14, 15 and 16 represent the evolution of the ZMP and the CoM positions with
respect to the footprints of the biped robot on the ground generated respectively by
the linear inverted pendulum model (LIPM), the original (3MLIPM) pattern generator
proposed in [17] and the optimal one proposed in this paper.

0.2

CoM

ZMP

0.1
0

Y 
[m

]

X [m]

–0.1
–0.2

–0.5 0 0.5 1 1.5 2 2.5

Fig. 14. Evolution of ZMP and CoM trajectories with the LIPM.
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X [m]
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Fig. 15. Evolution of ZMP and CoM trajectories with the original 3MLIPM.
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Fig. 16. Evolution of ZMP and CoM trajectories with the proposed optimal 3MLIPM.

The ZMP position calculation is issued from an angular momentum evaluation based
onKajita’s formulation [20]. This computation is not base on the simplified three-mass
model; indeed, it uses the dynamicmodel of the biped robot to produce a realistic ZMP
evaluation.

For the LIPM as well as the original 3MLIPM, the ZMP moves inside the footprint
with a big variation, however when the optimal parameters are used, the ZMP is
more concentrated in the center of the footprint and the stability margins are better.
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Therefore, the walking dynamic stability is clearly improved with the proposed
optimal 3MLIPM pattern generator due to the increase of the stability margins.
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Fig. 17. CoM evolution versus time with optimization.

Figure 17 displays the evolution of the position of the CoM along the x and y axes
during walking. The obtained trajectories are cyclic along the y axis with a reduced
amplitude thanks to the optimal parameters. Figure 18 shows the trajectories of
movement of the swing foot for one step.

6.2 Simulation 2: walking with a change of direction

The objective of this simulation is to evaluate the stability margins of the pattern
generator proposed in [17] in case of a change of direction during walking. The
obtained result is depicted in Fig. 19 where it is worth to note that the change
of direction during walking has not been yet considered in the original 3MLIPM,
therefore a simple simulation shows a loss of stability during walking while turning.

Indeed, when the robot changes the walking direction, the position of the ZMP is
moving within footprints, being sometimes outside of the stance footprint, therefore
the robot becomes unstable. Consequently, a computation of optimal parameters in
this scenario will be necessary to improve the dynamic walking stability. This is the
objective of the next simulation scenario.
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6.3 Simulation 3: change of direction with optimization

In theproposedoptimal pattern generator, the optimizationprocess computes thebest
values of the parameters z1 and m1 and uses them to generate the joints’ trajectories.

Figures 20 and 21 represent respectively the evolution of the new joints’ positions
and velocities for this scenario. Theses trajectories allow a rotation of the biped robot
during walking.

Figure 22 represents the evolution of the ZMP and the CoM positions as well as
the footprints of the biped robot on the ground level when turning with an angle of 20
degrees at each walking step.

With the proposed optimization, as illustrated in Fig. 22, the robot remains stable
during walking while turning since it keeps the ZMP always inside the footprint of the
supporting leg.

According to the obtained results, from simulation 1 and 3, it is clearly shown
that the proposed optimal pattern generator has significantly improved the dynamic
stability of the biped robot for both scenarios: straight walking and change of
direction.

0.1
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Fig. 20. Joints’ positions with change of direction generated by the proposed optimal pattern
generator.
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6.4 Simulation 4: effects of walking parameters

The optimal values summarized in Tab. 3 are used to compute stability margins Mx
andMy for straight walking with different step lengths and the objective is to analyze
the sensitivity of the model w.r.t. step length variation.

The optimal values ofmass distribution have been calculatedwith a step length of
0.4 m. These values are then used with different step lengths Ds. The corresponding
stability margins are summarized in Tab. 4. It is worth to note that the modification
of the step length don’t induce a loose of stability during walking. The optimal
mass distribution make the proposed pattern generator less sensitive to step length
variations.
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Fig. 21. Joints’ velocities with change of direction generated by the proposed optimal pattern
generator.
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Fig. 22. Evolution of ZMP and CoM trajectories in case of change of direction generated by the
proposed optimal pattern generator.
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Tab. 4. Step length influence on stability margins

Ds 0.1 0.2 0.3 0.4 0.5

Stability stable stable stable stable stable
Mx 0.105 0.108 0.110 0.112 0.115
My 0.028 0.029 0.030 0.030 0.029
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Fig. 23. Evolution of ZMP and CoM trajectories with Ds = 0.4.
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Fig. 24. Evolution of ZMP and CoM trajectories with Ds = 0.2.

7 Conclusions and future work
The objective of this work was to generate stable dynamic walking for SHERPA biped
robot. To deal with this problem, the original pattern generator proposed in [17]
based on a Three-Mass Linear Inverted Pendulum Model has been extended with
a ZMP-based optimization to improve dynamic walking stability. The optimization
use a ZMP based performance index in an optimization problem whose solution
gives the best values of the model’s parameters w.r.t. dynamic walking stability
computed using a whole body model. The case of change of direction during walking
has also been studied and stability in this case has been enhanced thanks to the
optimization.
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Several numerical simulations have been presented to show the effectiveness
of the proposed optimal pattern generator for the case of the biped walking robot
SHERPA.

Future works can include real-time implementation of the proposed method on
the prototype of SHERPA biped robot and the creation of a motion database to be able
to change the walking speed of the robot in real-time.
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