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M. Bennehar, A. Chemori, F. Pierrot and S. Krut
Control of Redundantly Actuated PKMs for
Closed-Shape Trajectories Tracking with
Real-Time Experiments

Abstract: This paper deals with closed-shape geometric reference trajectories genera-
tion and dynamic control of redundantly actuated parallel kinematic manipulators.
Geometric trajectories if generated by means of trigonometric functions may show
inherent discontinuities regarding velocities and/or accelerations which may cause
problems for the drives. In order to overcome this issue and to generate C2 continuous
refernce trajectories,wepropose anovel technique consisting ofmodifying themotion
profilewhile preserving the overall geometric shapeof the trajectory in the operational
space. Regarding the control strategy and to deal with the actuation redundancy, an
extended version of the PD controller with computed feedforward is proposed. The
computed control inputs, before being applied to the actuators, are first projected
using a regularization matrix based on the manipulator’s kinematics in order to
remove the antagonistic internal forces. The overall proposed strategy including
the trajectory generator as well as the controller are experimentally validated on
the Dual-V robot, a three-degree-of-freedom redundantly actuated parallel kinematic
manipulator developed in our laboratory.

Keywords: Parallel manipulators, trajectory generation, dynamics, control.

1 Introduction
Parallel Kinematic Manipulators (PKMs) are mostly known for their superior dynamic
performance compared to their serial counterparts [1]. Indeed, in contrast with
serial manipulators in which the actuators are located on the moving links, the
actuators in the case of PKMs are located on the fixed base resulting in a much
lighter moving parts. Consequently, PKMs can achieve extremely high velocities and
accelerations [2]. Furthermore, the closed kinematic chains structure of PKMs yields
more stiffness, better accuracy and a higher load/weight ratio [1]. Nevertheless, PKMs
exhibit somedrawbacks thatmaymoderate their expansion in industrial applications.
The abundance of singularities and the relatively small workspace are the most
noteworthy limitations. While the latter is a matter of mechanical design, the former
can be solved through actuation redundancy. For this reason, Redundantly Actuated
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PKMs (RA-PKMs) have increasingly attracted the interest of researchers over the last
two decades. Actuation redundancy significantly improves the performance of PKMs
by homogenizing the dynamic properties throughout the workspace, allowing the
manipulator to achieve very high accelerations in all configurations. However, despite
the aforementioned qualities, PKMs potential is not yet completely explored and
is still an open research area. From one hand, mechanical design, identification
and optimization can be further investigated to achieve more efficient prototypes for
industrial community. From the other hand, the constraints involved by the closed
kinematic chains and the high nonlinear dynamics give rise to more challenging
problems in terms of trajectory generation and control that earn to be studied.

Thanks to their extremely high dynamic capabilities, PKMs are typically used for
high-speed industrial applications such as pick-and-place in food industry [3] and
the assembly of electronic components [4]. Consequently, the most used solutions
in terms of trajectory generation are based on traditional Point-to-Point (PtP) tra-
jectories. In [5], an online smooth jerk-bounded trajectory generator using fifth order
polynomials was proposed. The jerk boundedness yields an improved path tracking
and a reduced wear on the robot. The problem of time optimality of PtP trajectories
was addressed in [6]. An algorithm to derive the optimal trajectory was proposed
and experimentally implemented on a 2-degree-of-freedom PKM. In [7], a variety of
pick-and-place trajectory planners were evaluatedwith the aim of reducing vibrations
of an elastic five-bar mechanism. Though the trend in this research area is towards
PtP and pick-and-place trajectories, the inherent superior qualities of PKMs award
them to be used in more complex modern industrial tasks such as laser cutting [8],
machining [9] or evenmedical applications [10]. In this case, Geometric Closed Shape
(GCS) trajectories draw more attention than traditional PtP ones [11]. This class of
trajectories however, has not been sufficiently investigated in the literature. Indeed,
in order to be better tracked by the robot’s end effector (a traveling plate in the case of
PKMs), the generated trajectories have to satisfy continuity constraint and respect the
dynamic capabilities of the manipulator.

In order to track the reference trajectories with the best tracking performance,
an efficient control scheme should take into account the nonlinear dynamics of the
robot manipulator. Even if PKMs have different kinematics than serial manipulators,
they actually share many dynamic similarities. Consequently, most of the developed
control schemes for serial manipulators have been straightforwardly implemented on
fully actuated PKMs [12–14]. However, in the case of RA-PKMs, a particular property
characterizing this class of manipulators needs a special attention. Indeed, the
non-uniqueness of the inverse dynamics solution yields antagonistic control forces
that have no effect on themotion of themechanical structure [15]. These control forces
produce undesired internal pre-stress in the kinematic chains which may damage
the manipulator, cause a loss of energy and generate mechanical vibrations. Con-
sequently, a good control scheme should take into consideration such a phenomenon.
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In this work, we address the two aforementioned issues namely, the continuous
GCS trajectories generation and the internal forces free control of RA-PKMs. We pro-
pose herein a trajectory generator that takes into consideration continuity constraints
in velocities and accelerations, both in task and joint spaces. Regarding the control
solution, a joint space PD controller with computed feedforward [16] is proposed.
This control scheme has the advantage of being low computationally efficient while
compensating for some of the nonlinearities in the dynamics. In order to deal with
the internal forces issue, the proposed controller is enhanced by a projection of
the generated control torques with the seek of regularization. The proposed control
scheme is then validated through real-time experiments on a 3-dof RA-PKM named
Dual-V.

The rest of the paper is organized as follows. In section 2, the dynamic model
of the Dual-V robot is presented. Section 3 is devoted to the proposed trajectory
generator. The proposed control solution is detailed in Section 4. Experimental results
are presented in Section 5. Finally, conclusions and perspectives are addressed in
Section 6.

2 Description and Dynamic Modeling of the
Dual-V Manipulator

Dual-V robot is a 3-dof planar RA-PKMbelonging to the 4-RRR family. The arrangement
of its four closed kinematic chains allows three independent movements for its
traveling plate: two translations throughout the plane and one rotation about the
z-axis. Hence, the Cartesian coordinates of the traveling plate can be described by the
vector X = [x, y, θ]T ∈ℝ3. Regarding the dynamicmodeling of the robot, the approach
developed in [2] has been extended to take into account the rotational inertia of the
forearms.

The input torque vector required to move the robot’s mechanical structure Γ ∈ ℝ4

is decomposed into three main sub-torques namely: 𝛾1, 𝛾2, 𝛾3 ∈ ℝ4. Each sub-torque
is responsible for moving specific parts of the mechanical structure of the robot as
follows: the torque 𝛾1 is the required torque to move the traveling plate and a part of
the couplers, it can be calculated using the equations of power of the actuators, it is
given by: 𝛾1 = JT∗m MI Ẍ (1)

whereMI ∈ℝ3×3 is themassmatrix of the traveling plate and a part of the cranks being
expressed in Cartesian space, JTm

∗
(q) ∈ ℝ4×3 is the pseudo-inverse of the transpose

of the inverse Jacobian matrix Jm and Ẍ ∈ ℝ3 is the Cartesian acceleration vector of
the traveling plate. The sub-torque 𝛾2 is the required torque to move the cranks, the
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counter-masses and the remaining part of the couplers, it can be expressed as:𝛾2 =MII q̈ =MII( ̇JmẊ + JmẌ) (2)

whereMII ∈ℝ4×4 is themassmatrix including the dynamic parameters of the involved
moving parts of the mechanical structure being expressed in joint space, Ẋ ∈ℝ4 is the
traveling plate velocity vector and ̇Jm(q, q̇) is the timederivative of the inverse Jacobian
matrix.

Up to now, only the inertia of the equivalent two-mass model [17] of each coupler
is considered. In fact, the mass of each coupler is split up into two point-wise
masses located at both ends of the considered link. Then, the rotational inertia of the
two-massmodel is considered instead of the real inertia of the couplers. Though this is
a righteous assumptionwhen lightmaterials are used, it fails when the links aremade
with relatively heavy materials. This is the case of Dual-V parallel manipulator robot
and hence, an additional term should be added. The sub-torque 𝛾3 is the additional
torque component which accounts for the difference between real inertia and the
one of the equivalent mass model of the couplers. Due to limitation on the number
of pages, the details of this additional term are omitted and the interested reader is
referred to [17] for a full description of the Dual-V robot dynamic modeling. It is worth
noting though that 𝛾3 = f(X, Ẋ, Ẍ) is a highly nonlinear function with respect to its
arguments.

Finally, the full dynamic model of the Dual-V is obtained by summing the three
sub-torques as follows:

Γ = JT∗m MI Ẍ +MII( ̇JmẊ + JmẌ)+𝛾3 (3)
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Fig. 1. CAD view of Dual-V parallel manipulator and its parameters definition.
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Tab. 1. Dual-V geometric and dynamic parameters.

Length [m] Mass [Kg] Inertia [Kgm2]

Crank 0.2800 1.169 0.012967
Coupler 0.2800 0.606 0.006417
Traveling plate 0.22 0.899 0.008168

The CAD model of the Dual-V with its parameters’ definition is illustrated in Fig. 1;
its geometric and dynamic parameters are summarized in Tab. 1. Further details
regarding the Dual-V parallel manipulator can be found in [18] and [19].

3 C2 Reference Trajectories Generation
Geometric Closed Shape trajectories are more complex than traditional PtP ones
[5, 6] (e.g pick-and-place trajectories) and, in most cases, are generated by means
of trigonometric functions parametrized by the time variable t ∈ ℝ+. Generating
trajectories with C2 continuity constraints (i.e. on velocities and accelerations) may
not be possible using standard analytical equations. Continuity of trajectories is
a crucial constraint for the robot drives and actuators and is required in most
robotic applications. Indeed, discontinuities in the trajectories may generate dis-
continuous control inputs and consequently, lead to undesired behavior of the
mechanical structure such as mechanical vibrations, poor tracking performance and
instabilities.

In this paper we are interested in the class of trajectories described by a sum of
weighted sine and cosine functions. This class of trajectories has been chosen because
it covers a large amount of geometric shapes from basic to themost complex ones (e.g.
circles, ellipses, deltoids, . . . ).

The general analytical form of the trajectories in question is then expressed by:

x(t) = n∑
i=1ai cos

αi (2π n1iT t)+ bi sinβi (2π n2iT t) (4)

where T ∈ ℝ+ is the trajectory duration and ai , αi , bi , βi , nji ∈ ℝ; i = 1, . . . , n; j = 1,2
are scalars defining the overall shape of the trajectory.

In the sequel, we will first give an illustrative example of direct application of
(4). Then, its major drawback is highlighted and a solution to overcome this issue is
proposed.
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3.1 Trajectories using Standard Geometric Functions

Let xd(t) be a reference Cartesian position defined by (4) to be tracked by the traveling
plate of the robot. It is assumed throughout this brief that the reference trajectories are
inside theworkspace of the robot andhence are away from singularities. The reference
velocity vd(t) and acceleration ad(t) for this motion are obtained by differentiating
xd(t) with respect to time, giving thus:

vd(t) = −2πT n∑
i=1aiαin1i sin

αi−1 (2π n1iT t)− biβin2i cosβi−1 (2π n2iT t) (5)

ad(t) = −(2πT )2 n∑
i=1aiαi(αi −1)n21i cosαi−2 (2π n1iT t)

+biβi(βi −1)n22i sinβi−2 (2π n2iT t) (6)

Without loss of generality, assume that the manipulator starts and finishes its
movement with zero velocity and acceleration (i.e. v(0)= v(T)= 0 and a(0)= a(T)= 0).
However, using the original analytical functions (5) and (6) may lead to non-zero
initial velocity and/or acceleration and thus, discontinuities in the generated motion.
Indeed, if we replace t = 0 or t = T in (5) and (6) we will obtain values dependent on
initial and final conditions and thus, do not necessarily equal to zero. For instance,
the obtained initial conditions for (5) and (6) are given by:

vd(0) = −2πT n∑
i=1biβin2i = f1(bi , βi , n2i) (7)

and

ad(0) = −(2πT )2 n∑
i=1aiαi(αi −1)n21i = f2(ai , αi , n1i) (8)

therefore, the resulting trajectories can be discontinuous in velocity and/or acceler-
ation leading to discontinuous control torques and therefore big tracking errors and
even problem of vibrations.

To further illustrate this inconvenience let’s consider a simple circular trajectory
with radius r ∈ ℝ+ and a center whose coordinates are (xc , yc) = (0,0). The resulting
trajectory needs to be C2 continuous (in velocities and accelerations) both in opera-
tional and joint spaces in order to be appropriately tracked by the proposed controller.
The analytical equations of positions, velocities and accelerations are given by:

{ xd(t) = r cos( 2πT (t − t0))
yd(t) = r sin( 2πT (t − t0)) (9)

{ ẋd(t) = −r 2πT sin( 2πT (t − t0))
ẏd(t) = r 2πT cos(2πT (t − t0)) (10)
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{ ẍd(t) = −r( 2πT )2 cos(2πT (t − t0))
ÿd(t) = −r( 2πT )2 sin( 2πT (t − t0)) (11)

These trajectories satisfy equations (4), (5) and (6) being only shifted in time by t0.
Figure 2 illustrates the plots of the obtained trajectories using (9), (10) and (11) for the
parameters t0 = 0.5s, T = 1s. It can be clearly noticed the presence of discontinuities
on both velocity and acceleration profiles that have to be removed. In what follows,
we propose a novel method to overcome this drawback and generate C2 continuous
reference trajectories.
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Fig. 2. View of the generated Cartesian trajectories using standard geometric functions. xd (solid)
and yd (dashed).

3.2 Proposed C2 Continuous Reference Trajectories

In order to overcome the discontinuity problem in the velocity and acceleration
trajectories, we propose to revisit the analytical form of the desired operational
trajectories. Consider again the previous illustrative example of the circular trajectory.
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If we check the previous equations of the trajectory, it can be seen that they can be
rewritten as follows:

{ xd(t) = r cos(λ(t))
yd(t) = r sin(λ(t))

(12)

with λ(t)= 2π
T (t− t0)which is a simple affine function of time t andwhen implemented,

does not satisfy any continuity constraints on the velocities and accelerations. The
corresponding velocities andaccelerations canbe obtainedbydifferentiating (12)with
respect to time, which gives:

{ ẋd(t) = −r λ̇(t) sin(λ(t))
ẏd(t) = r λ̇(t) cos(λ(t))

(13)

{ ẍd(t) = −r [λ̈(t)sin(λ(t))+ λ̇2(t)cos(λ(t))]
ÿd(t) = r [λ̈(t)cos(λ(t))− λ̇2(t)sin(λ(t))] (14)

From (13) and (14) one can notice that if λ(t) is chosen such that it satisfies the
following boundary constraints:

{ λ(t0) = 0, λ̇(t0) = 0, λ̈(t0) = 0
λ(t0 + T) = 2π, λ̇(t0 + T) = 0, λ̈(t0 + T) = 0 (15)

one can ensure the continuity on the velocity and acceleration trajectories. One
possible solution would then be to choose λ(t) with a trapezoidal velocity profile.
Indeed, this choice allows to specify boundary conditions and hence, the constraints
(15) can be satisfied. A comparison between trapezoidal and linear velocity profile for
λ(t) is depicted in Fig. 3. The analytical equations of λ(t) are now expressed as:{{{{{{{{{

λ(t) = λf−λ0
2τ3(T−τ) [−t4 +2τt3]+ λ0, t0 ≤ t < τ

λ(t) = λf−λ0
(T−τ) [t − τ

2 ]+ λ0, τ ≤ t < T − τ
λ(t) = λf−λ0

2τ3(T−τ) [(t − T)4 +2τ(t − T)3]+ λf , otherwise

(16)

where τ is the duration of initial acceleration and final deceleration phases that has
to be chosen according to the robot dynamic capabilities (choosing small values for τ
may lead to unachievable high accelerations). λ0 and λf are the initial and final values
respectively for λ(t)whichdependon the type of the geometric trajectory. For instance,
in the case of the previous circular trajectory example, λ0 = 0 and λf = 2π.

The obtained trajectories using the proposed technique as depicted in Fig. 4 are
now continuous in velocity and acceleration and result in the same circular trajectory
in operational space as the original one. Therefore, they are more safe in the control
scheme for the actuators of the robot manipulator.
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Fig. 4. Obtained C2 continuous operational trajectories. xd (solid) and yd (dashed).
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4 Proposed Control Solution
It is conventional that PKMs share many similarities with their serial counterparts
regarding dynamic properties [14]. Consequently, the vast wide control literature
developed for serial manipulators can be successfully applied to PKMs. However, in
the particular case of RA-PKMs, the use of decentralized single axis controllers leads
to antagonistic control efforts. Indeed, these efforts do not produce any motion of
the manipulator. Thus, using conventional single axis strategies in the control loop
will certainly involve internal forces (incompatible with the robot’s kinematics) [15]
creating internal pre-stress in the mechanism. The antagonistic forces can cause a
multitude of undesirable phenomena such as loss of energy, instability and even
mechanical vibrations. Consequently, the control architecture when designed has to
take this issue in consideration. In this work we propose to enhance the well known
PD controller with computed forward by projecting the computed inputs in order to
reduce the effect of antagonistic forces. Figure 5 shows an overview of the different
components of the proposed control scheme.

Computed
Feedforward

Trajectory
Generator

Decentralized
PD Controller Projection+ ++

– Manipulator

Fig. 5. Overview of the proposed control architecture.

4.1 Decentralized Joint Space PD Controller

Consider a RA-PKM with m degrees of freedom and n actuators and let the joints
position vector be denoted by q ∈ ℝn. The PD control in joint space is a decentralized
uncoordinated control strategy relying on the measured errors between the desired
and the actual positions. Let e(t) = qd(t) − q(t) be the vector of joints errors, where
qd(t) denotes the desired joint trajectory. Then, the PD control action is expressed by:

ΓPD = Kpe(t)+Kdė(t) (17)

whereKp andKd arepositive feedbackgainsusually chosenasdiagonalmatrices. If all
the actuators are identical,which is usually the case for PKMs, then the same feedback
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gains could be used for all axes, namely; Kp = kpIn×n and Kd = kdIn×n, where In×n
denotes the identity matrix and kp , kd ∈ ℝ are positive scalars denoting the feedback
gains that should be carefully tuned to achieve satisfactory tracking performance. A
good accuracy is usually required in parallel robots; however, a PD controller is not
able to assure that. Consequently, a computed feedforward is proposed to improve the
tracking performance of the PD controller.

4.2 Tracking Accuracy Improvement through
a Computed Feedforward

If the inverse dynamic model of the robot is known and its parameters are accurate
enough, it would be interesting to exploit this knowledge in the control scheme
to further improve the tracking performance. Indeed, the tracking errors can be
significantly reduced by compensating the inherent nonlinear dynamics of the robot.
One possible way would be the addition of a feedforward term. This strategy enables
partial compensation of the nonlinear dynamics, i.e. only desired values of positions,
velocities and accelerations are fed to themodel-based term of controller. For the case
of the Dual-V robot, the inverse dynamics are given by (3), hence, the feedforward
control term can be expressed as:

Γff = JT∗m (qd)MIẌd +MII( ̇Jm(qd , q̇d)Ẋd + Jm(qd)Ẍd)+𝛾3d (18)

where the subscript d refers to the desired quantities and 𝛾3d = f(Xd , Ẋd , Ẍd).
4.3 Projection Method to Reduce Internal Forces

For RA-PKMs, the control inputs resulting from single axis controllers (i.e. PD portion)
may contain antagonistic forces. These control inputs do not create any motion as
they are in the null-space of JTm. However, they create uncontrolled internal pre-stress
that may damage the manipulator. This issue has to be considered in the control
architecture. One way to reduce the internal forces is by projecting the computed
inputs onto the range of JTm by the following projector: [15]

RJTm = I −NJTm (19)

where NJTm = I − JT∗m JTm is the projector to the null-space of JTm. Hence, the internal
antagonistic forces are eliminated by projecting the control torques onto the range
space of JTm. This can be achieved using the projection matrix RJTm as:

Γ∗ = RJTm (ΓPD + Γff ) (20)
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The overall block diagram of the proposed control scheme is illustrated in Fig. 6.

Xd, Xd  Xd

Xd qd e ΓPD Γ Γ* q

ID

IK Kp

d
dt Kd

Jm
*T Jm

T RA − PKM
+

− +

+

+

+

Γff

¨˙

Fig. 6. Block diagram of the proposed control scheme; IK denotes the inverse kinematic model and
ID the inverse dynamic model.

5 Real-Time Experimental Validation

5.1 Experimental Setup

All the links of the Dual-V are made of Aluminum. The cranks are mounted on four
direct drive actuators manufactured by ETEL Motion Technology. The actuators are
fixed on an Aluminum base and they can supply torques up to 127 N.m. Matlab
software and Real-Time Workshop (both from Mathworks Inc.) have been used to
implement and execute in real-time the proposed control scheme. The generated
C code is then uploaded to the target PC (an industrial computer cadenced at 10
kHz and running xPC Target in real-time). The experimental setup is displayed
in Fig. 7.

5.2 Obtained Experimental Results

The proposed trajectory generator and controller presented in the previous section
were implemented on the Dual-V experimental testbed. For comparison purpose, we
also implement the classical trajectories generator. In order to further investigate the
benefits of the proposed approach, four different geometric shapes are included in
the reference trajectories generator as illustrated in Fig. 8. The resulting reference
trajectories include a circle, an ellipse, a tear-like and a deltoid geometric shapes. The
traveling plate of the manipulator has to track each geometric trajectory in T = 0.5 s.
Between the end point of one closed-shape and the starting point of the next one,
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Fig. 7. View of the experimental setup of Dual-V PKM; (1) the mechanical structure of the robot, (2)
the host PC, (3) the target PC, (4) emergency stop, (5) host monitor, (6) xPC target monitor.
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Fig. 8. Reference Cartesian trajectory used in experiments.
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the end-effector has to perform a pick-and-place PtP trajectory defined by a 5th order
polynomial function.
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Fig. 9. Reference Cartesian trajectory used in experiments.

The feedback gains of the controller have been experimentally tuned using the
trial-and-error technique. Usually, manipulators are not equipped with velocity
sensors, therefore, velocities have to be numerically estimated from positions meas-
urements. In our case, a carefully designed lead-lag filter is used to estimate the
velocities.

Figure 9 displays the Cartesian tracking performance of the traveling plate on
both x and y axes. It can be clearly seen that in the case of original trajectories, the
discontinuities involve a poor tracking performance. This is more noticeable at the
beginning and the end of the circle and the ellipse closed shapes which may lead to
high frequency vibrations. However, if we check the obtained performance with the
proposed approach, we can clearly observe the improvements in terms of tracking
errors at the end and starting points. The proposed trajectories are accurately tracked
thanks to the removed discontinuities. The improvements are more observable on the
starting and end points of the circle and ellipse trajectories (t = 5, 5.5, 7.5 and 8s).
These results were expected since the main purpose of this paper was to propose a
technique to remove these discontinuities from the trajectories generated by means
of classical analytical functions. These discontinuities are a major source of tracking
errors.

The generated control inputs when using the proposed method as well as those
generated by the classical one are shown in Figs. 11 and 10 respectively. As expected,
the controller generates very high torques when the reference trajectories contain
discontinuities, because the drives need to generate high torques in order step from
zero to a certain velocity in a very short time, which is in practice very delicate.
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Fig. 10. Control inputs when using discontinuous trajectories.
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Fig. 11. Control inputs when using the proposed C2 trajectories.
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6 Conclusions and Future Work
Throughout this paper, we investigated the generation of continuous geometric
closed-shape reference trajectories. Moreover, to accurately track these trajectories,
a novel model-based controller in joint space has been proposed. The proposed con-
troller enables the reduction of antagonistic internal forces caused by the unavoidable
use of decentralized strategies in the control scheme. The geometric trajectories in
question are defined using analytical functions that show inherent discontinuities
regarding velocities and accelerations which may be a source of poor tracking.
For this reason, we proposed in this work an approach to overcome this issue by
modifying the motion profile without changing the overall geometric shape of the
trajectory in operational space. Furthermore, to overcome thephenomenonof internal
forces, a novel extended PD controller with computed feedforward was proposed.
The computed control inputs were regularized using a projection matrix based on
the manipulator’s Jacobian matrix to reduce the antagonistic control inputs. This
projection enables to significantly reduce the antagonistic internal forces that may
damage the mechanical structure. This strategy allows to significantly reduce the
energy consumption and to cancel the mechanical vibrations of the mechanical
structure. To validate the proposed approaches, real-time experiments have been
conducted on a 3-dof planar RA-PKM developed in our laboratory. The proposed
trajectory generator demonstrated its superiority over the original one that utilizes
discontinuous analytical equations.
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