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M. Taktak-Meziou, A. Chemori, J. Ghommam and N. Derbel
RISE Feedback with NN Feedforward Control of
a Servo-Positioning System for Track Following
in HDD

Abstract: This paper addresses design challenges associated with a servo system of a
Hard Disc Drive (HDD). The recently developed Robust Integral of Sign Error (RISE)
approach is proposed to control the Read/Write (R/W) head tip of the HDD. Such a
technique, combined with a feedforward Neural Network (NN) control term, is not
only able to meet the different imposed constraints on the system, but also guaranty
the asymptotic stability of the overall closed-loop system. To the best knowledge of
the authors, the proposed controller, applied at the low frequency region of a HDD,
has never been conducted before on such a system. A comparative study between
the RISE-NN controller and the classical Proportional Integral Derivative (PID) is
performed under various operating conditions ranging from nominal case without
external disturbances to more complex cases with disturbances and parametric
uncertainties. The main objective of this study is to highlight the effectiveness of
RISE-NN control approach in solving the track following problem in HDD.

Keywords: RISE feedback control, nonlinear systems, hard-disc-drives, asymptotic
stability, robust control, neural networks.

1 Introduction
Since its appearance in 1956, the Hard-Disc-Drive (HDD) technology has continued to
progress over the years. This accelerated evolution has primarily affected the storage
capacity growing from few Megabytes to several Terabytes. In addition, many other
characteristics have undergone perceptible changes [1]. These include the size factor
which has been reduced from 24-inch diameter in a 50 disks prototype to one disk
of 3.5-inch diameter, the spindle speed which has steadily increased to reach 15000
rpm in the latest versions of HDDs,etc. The main objective of such a development is to
improve the system operating performance in terms of access speed, precision of the
positioning, data access, and reliability.
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From a technical standpoint, it can clearly be seen that a HDD is a mechatronic
system. Indeed, the system is constructed through the synergistic integration of
mechanical engineering, electronics, control engineering, and computer technology.
Figure 1 shows a view of the main components of a typical HDD servo-system.

Spindle motor Platters

Base plate

VCM actuator

Pivot

IDE connector
Read/Write head

Fig. 1. View of the main components of a typical HDD.

A HDD is composed of a spindle motor devoted to drive the rotating platters, where
digital data are stored in concentric tracks. In order to treat these data, whether to read
from or write on the disc, the system is equipped with several magnetic Read/Write
(R/W) heads. These heads are connected to a second motor, called Voice-Coil-Motor
(VCM), which is designed to manage their movement on the disk surface and achieve
access to the desired track.

A good HDD is evaluated according to its ability to move the R/W head tip rapidly
from its current position to a desired target track and to maintain it as close as
possible to its center while treating data. Therefore, the Position Error Signal (PES),
defined as the deviation of the R/W head from the desired track center, should be as
minimal as possible in order to guarantee a reliable data reading or writing. Such a
regulation is tighter with the modern HDD servo-systems becoming more and more
small in size. In addition to the reduced size factor, many sources of errors can be
noticed in the system. These factors contribute significantly to the degradation of
the overall system’s performance in terms of precision and access to the information.
Theymainly include nonlinear frictions caused by the pivot bearing and the flex cable
and inaccuracies caused by the movement of the head form one track to another.
Generally, a HDD is often subject to various disturbances which can be classified into
three categories: The input disturbances caused by mechanical perturbations such
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as resonances, friction and vibrations The output disturbances which are due to the
rotation of the spindle motor rotation and its effects. The measurement noise caused
by the position-measurement techniques and/or sensors.

All the above-listed errors’ sources threaten the performances of the HDD
servo-system and may degrade the system reliability. Consequently, it would be
necessary to deal with them rigorously and compensate their effects as much as
possible.

To do that, several research efforts have been devoted to design efficient robust
controllers. Their common objective was not only to overcome the different HDD
problems cited above, but also to ensure a tighter PESwhile positioning the R/Whead
even in the presence of eventual disturbances, nonlinearities, and inaccuracies on the
system’s dynamics.

Among these control solutions, we can distinguish classical approaches such as
PID controllers [2], lead-lag compensator [3] and classical filters [4] which can no
longer meet the demand for HDDs higher performances. Accordingly, to deal with
these difficulties, several control attempts have been recently developed including (i)
advanced control approaches such as optimal controllers [5, 6], Composite Nonlinear
Feedback technique (CNF) [7] and Robust Perfect Tracking (RPT) [8] and (ii) several
robust control solutions such as adaptive control [9, 10], sliding mode control [11, 12],
robust control [13, 14] and lately predictive control approaches [15, 16]. Some of these
methods have been experimentally tested to show their strengths and weaknesses on
a real system.

This paper is dedicated to the application of the recently developed control
method based on Robust Integral Sign of the Error (RISE) [17] to the case of HDDs.
This control technique is chosen based on its advantages in addressing the problem
of trajectory tracking of a class of uncertain and high order nonlinear systems [17, 18].
Since RISE is a high gain feedback method, the idea proposed in [19] was to develop
an improved version of this technique which involves the combination of a Neural
Network based feedforward control term with the feedback controller. In this paper,
this control solution is proposed to address the track following problem in a HDD
servo-system and to ensure both robust performance and asymptotic stability of the
overall closed-loop servo-system.

The reminder of this paper is organized as follows. In section 2, the HDD
low-frequencies dynamic modeling is introduced. Then, in section 3, the HDD
servo-positioning control problem is formulated. In section 4, the RISE feedback
basedNN controller is developed. Section 5 is devoted to a comparative study between
the proposed RISE-NN and a classical PID controllers, where numerical simulations
in different operating conditions are presented and discussed. Finally, in section 6,
some concluding remarks are drawn.



222 | M. Taktak-Meziou et al.

2 HDD Low Frequencies Dynamic Modeling
In a HDD servo-system, one of the important limitations for high track density is the
nonlinear effects arising from frictions. Suchnonlinear frictions aremainly inducedby
the pivot bearing and data flex cable in the VCM actuator (see Fig. 1). Their presence
leads to the generation of large residual errors and oscillations which degrade the
overall system performances and reduce its reliability.

Certainly, a deeply understanding of the nonlinear friction behavior would be
helpful to find an efficient control solution that mitigate their degrading effects.
Therefore, for the aim of developing a representative friction model in a HDD
servo-system, many researchers have provide considerable efforts in the literature
[20, 21]. The best representation that encompasses all static and dynamic features
turned out to be that of LuGre friction model [22]. For a complete review of the friction
modeling, the reader is referred to [23].

In order to enhance the track following performances in a HDD servo-positioning
system, it would be necessary to compensate the overall nonlinear frictions. A
survey of the literature showed that many control approaches dealing with the above
compensation have been proposed. Some of them include an accuratemodeling of the
friction behavior [24, 25] and others are non-model-based friction estimation [26, 27].
In spite of all the proposed solutions, the study of the nonlinear friction behavior and
the search for a good compensation control solution are still open problems in HDD
technology.

Based on recent works of [28], the low-frequency mathematical model of the VCM
actuator can be expressed as follows:

M(q)q̈ + F(q, q̇) = u (1)
y = q +wout

where M(q) denotes the system inertia verifying M(q) > 0. q, q̇ and q̈ denote the
actual position, velocity and acceleration of the VCM-actuator head tip respectively.
u represents the control input, y is the measured position of the VCM-actuator in
presence of the eventual output disturbance wout representing external vibrations
and chocks caused by the flexibility of the material. F(q, q̇) is a nonlinear function
representing the pivot bearing hysteresis friction whose behavior can be described by
the LuGre friction model [22]. This last one is expressed as follows:

F(q, q̇) = σ0z + σ1 ż + σ2q̇ (2)
ż = q̇ − α(q̇) | q̇ | z (3)

α(q̇) = σ0

fc + (fs − fc) exp(−[ q̇̇qs ])2 (4)
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where z is an internal state of the friction model assumed to be immeasurable. σ0,
σ1, and σ2 are themodel parameters reflecting the small displacements which are the
stiffness, the micro damping, and viscous coefficient respectively. fs corresponds to
the stiction force, fc is the Coulomb friction force, and the parameter qs is the Stribeck
velocity [29].

3 Control Problem Formulation
Themain goal of a HDD servo-system control is to read/write data from/on concentric
track circumscribed onto the disc surface. Therefore, by controlling the current in
the VCM, the head is able to move in both directions to follow the desired target
track. Consequently, in order to reach its target, two main functioning modes can
be distinguished [1]: The first one, being the track seeking mode, deals with moving
the R/W head from one desired track to another, at a distance of about a micro-inch
between two adjacent tracks. The displacement of the head is required to be as quick
as possible with a limited control effort. The second mode, being the track following
mode, consists ofmaintaining the head as close as possible to the center of the desired
data track to guarantee an accurate positioning, crucial for reading/writing digital
data. Therefore, the drive initiates its functioning by a track seeking control with a
saturated control law. Then, when the head is positioned onto the target track, the
drive switches into the track following mode. A schematic illustration of the above
mode functions is shown in Fig. 2.

Read/Write head
Actual position

Track seeking mode
Target position

Track following mode

Rotational direction
of the disc

Fig. 2. Illustration of the main operating functions of a HDD servo-system.
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Let qd be the desired track position. In order to evaluate the tracking performance, the
position error e1 is introduced. It is defined as the deviation of the HDD head tip from
the center of the desired position:

e1 = qd − q (5)

The main control objective consists of moving the head onto the surface of the disc
so that it follows a predefined target track. Then, the head is required to be as close
as possible to this desired position while reading/writing data, in order to ensure
superior HDD performances. The setting equation of the control objective can be
reformulated as follows:

lim
t→∞ |e1(t)| = lim

t→∞ |qd(t)− q(t)| = 0 (6)

In the present paper we aim to design an efficient control solution for the
track-following mode.

4 Proposed Control Solution
The recent developed feedback control strategy RISE [17] is proposed in this paper
to deal with the track following problem of the HDD servo-system. Such a control
technique, blend with a NN-based feedforward, is able to deal with the non-explicit
knowledge of the friction model F(q, q̇) introduced in the dynamic model (1)-(4).
Before going further, to give an overview of the control strategy, an illustrative block
diagram of such controller is shown in Fig. 3.

Neural Network

f̂

RISE Control
+

+e1qd q

ωin ωout

μ u+

–

Feedforward Controller

Feedback Controller
+

+ +
+

Fig. 3. Overview of the control scheme including a RISE feedback with a NN feedforward.
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Starting from a desired target track qd, the global control input u, which is the sum
of a feedforward NN control term ̂f and a RISE feedback term μ, is calculated at each
sample time to move the head tip to the desired position. In the following section, a
background onNN-based Feedforward then RISE Feedback controllers are introduced
illustrating how they can be combined together to achieve an asymptotic stability of
the overall closed-loop system.

4.1 Background on NN Feedforward Control

Dynamic neural networks present an effective tool for estimation and control of
nonlinear and complex systems [30]. The universal approximation remains the key
feature of the NN-based controllers [31]. Consider 𝕊, a compact set and f(x) a smooth
function defined as f : 𝕊 → ℝn. There exists always three-layer NN able to represent
f(x) [19] such that f(x) =W⊤σ(V⊤x)+ ε(x) for given inputs x(t) ∈ ℝa+1. V ∈ ℝ(a+1)×L is
a bounded constant weight matrix for the first-to-second layer andW ∈ ℝ(L+1)×1 is the
ideal weight matrix for the second-to-third layer. a is the number of inputs and L is
the number of neurons in the hidden layer. σ(.) ∈ ℝL+1 is the activation function and
ε(x) ∈ ℝn is the functional error approximation, satisfying ‖ ε(x) ‖≤ εN , with εN is a
known constant bound. Figure 4 shows an illustrative description of a three-layer NN
principle.

VT WT
1

2

inputs hidden layer output

f̂
3

σ ( . )

σ ( . )

σ ( . )

σ ( . )
L

xn

x2

x 1

∙
∙
∙

∙
∙
∙

Fig. 4. Schematic view of a three-layer NN.



226 | M. Taktak-Meziou et al.

Remark 1: The activation function σ(.) can take different forms such as sigmoid,
hyperbolic tangent or a radial basis function. In this paper, the considered σ(.) is a
radial basis function described by the following equation:

σ(xi) = exp(− ‖xi − ci‖2σ2i
) , ∀i ∈ℕ

where ci is the center of the basis function and σi is its width; they are chosen a priori
and kept fixed throughout this work for reason of simplicity.

For subsequent developed calculations of the control input, some assumptions
and properties have to be exploited which are the following:

Assumption The desired position qd, as well as its first and second time derivatives
exist and are all bounded, i. e., qd, q̇d, and q̈d ∈L∞.
Property The NN quantities are bounded such as ‖ W ‖≤ Wm, ‖ σ ‖≤ σm, where Wm
and σm are known positive constants [32].

4.2 Background on RISE Feedback Control

In this work, the main control objective is to maintain the R/W head as close as
possible to a predefined desired position in order to perform an accurate track
following task. Therefore, a RISE feedback control approach with NN feedforward
estimation is therefore proposed as a control solution (i) to deal with the unknown
nonlinear dynamics and (ii) to guarantee the asymptotic stability of the controlled
HDD model (1)-(4). The control strategy is detailed in this section, introducing the
open-loop and closed-loop tracking errors. Based on assumption 1, the position
tracking error e1(t), the filtered tracking errors denoted by e2(t) and r(t), are defined
as follow

e1 = qd − q (7)
e2 = ė1 + α1e1 (8)
r = ė2 + α2e2 (9)

where α1 and α2 are positive tuning gains.

Remark 2: Thefiltered tracking error r(t) is an immeasurable quantity since it depends
on q̈(t) which is not measurable in a HDD.
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4.2.1 Open-loop tracking error system

To develop the open-loop tracking error system, a multiplication of (9) by M(q) is
made. Then, based on the expressions (1), (7), and (8), the resulting system can be
expressed as follow:

M(q)r = Fd + S − u (10)

where Fd is an auxiliary function defined by:

Fd =M(q)q̈d + F(qd , q̇d) (11)

and S is a second auxiliary function defined by:

S =M(q)(α1 ė1 + α2 ė2)+ F(q, q̇)− F(qd , q̇d) (12)

Based on the NN approximation, Fd can be expressed as follows:

Ḟd =W⊤σ(V⊤xd)+ ε(xd) (13)

where xd = [1 qd q̇d q̈d]⊤ and ε(xd) is the bounded NN approximation error.
According to assumption 1, the following inequalities hold:

‖ ε(xd) ‖ ≤ εN (14)
‖ ε̇(xd , ẋd) ‖ ≤ ε󸀠N (15)

where εN and ε󸀠N are known positive bounded constants.

4.2.2 Closed-loop tracking error system

Using the previous open-loop tracking error system (10), the control input can be
expressed as the sum of the feedforward NN estimation term and the RISE feedback
term. As detailed in [33], the RISE control term μ(t) is given by:

μ(t) = (ks +1)e2(t)− (ks +1)e2(0)+ t∫
0

{(ks +1)α2e2(s)+ β1 sign [e2(s)]}ds (16)

where ks , β1 ∈ ℝ+ are positive feedback gains. The time derivative of (16) leads to:

μ̇(t) = (ks +1)r(t)+ β1 sign [e2(t)] (17)

Since the nonlinearities in the system’s dynamics are supposed to be unknown, a new
control term, denoted F̂d, and generated by the NN feedforward estimation is added
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cancel out the effects of the uncertainties. F̂d is then expressed by:̇F̂d = Ŵ⊤σ(V⊤xd) (18)

where V ∈ ℝ(a+1)×L is a bounded constant weight matrix, and Ŵ ∈ ℝ(L+1)×1, is the
matrix of the estimates of the NN weights, generated on-line by:̇Ŵ = K[σ(V⊤xd)e⊤2 − κŴ] (19)

where κ is a positive design constant parameter. K = K⊤ > 0 is a constant positive
definit control gain matrix. According to property 1, the upper bound of ̇Ŵ can be
formulated as follows:

‖
̇Ŵ ‖≤ FNσm ‖ e2 ‖ (20)

where FN is a known bound constant. The overall control input is then given by:

u = F̂d + μ (21)

By evaluating the time derivative of (21) and substituting the expressions of μ̇ and ̇F̂d
given by (18) and (17) respectively, we get:

u̇ = ̇F̂d + μ̇ = Ŵ⊤σ(V⊤xd)+ (ks +1)r(t)+ β1 sign [e2(t)] (22)

Thereby, the closed-loop tracking error system dynamics are formulated by consider-
ing the first time derivative of (10)

M(q) ̇r = −Ṁ(q)r + Ḟd + Ṡ − u̇= −Ṁ(q)r + Ḟd + Ṡ − Ŵ⊤σ(V⊤xd)− (ks +1)r(t)−β1 sign [e2(t)]= −12 Ṁ(q)r + W̃⊤σ(V⊤xd)+ ε(xd)− (ks +1)r(t)+(−12 Ṁ(q)r + Ṡ + e2)− β1 sign [e2(t)]− e2 (23)

where W̃⊤ = W⊤ − Ŵ⊤ is the estimation error. Equation (23) can then be rewritten as
follows:

M(q) ̇r = −12 Ṁ(q)r + Ñ +NB1 +NB2 − e2 − (ks +1)r(t)− β1 sign [e2(t)] (24)

with

Ñ = −12 Ṁ(q)r + Ṡ + e2 (25)

NB1 = ε(xd) (26)
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NB2 = W̃⊤σ(V⊤xd) (27)

As detailed in [33], thanks to theMeanValue Theorem, Ñ is upper bounded as follows:

‖ Ñ ‖=‖ −12 Ṁ(q)r + Ṡ + e2 ‖≤ ρ(‖ z1 ‖) ‖ z1 ‖ (28)

where z1(t) ∈ ℝ3 is given by:

z1(t) = [e⊤1 e⊤2 r⊤]⊤ (29)

and ρ(‖ z1 ‖) is a positive non decreasing bounding function. In order to facilitate
the stability analysis, some important inequalities are considered according to the
following lemma.

Lemma 1
Consider NB1 and NB2 as expressed respectively by (26) and (27). The following
inequalities hold.

‖ NB1 ‖ ≤ εN (30)
‖ ṄB1 ‖ ≤ ε󸀠N (31)
‖ NB2 ‖ ≤ (W̃⊤m + FNσm ‖ e2 ‖)σm ≡ ξB2 (32)
‖ ṄB2 ‖ ≤ ξ1 ‖ e2 ‖ +ξ2 (33)

where ξB2 , ξ1, and ξ2 are positive known constants.

Proof:
Inequalities (30) and (31) can be directly determined according to equations (14), (15),
and (26). Based on Property 1 and equation (20) dealing with the upper bound of
the NN weights, the inequality (32) can be easily justified. Then, by considering the
derivative relation σ̇m = σm(1−σm) together with the time derivative of NB2 expressed
as ṄB2 = ̇W̃σm + W̃σ̇m, inequality (33) is concluded.

For a complete review of the stability analysis of the RISE-NN control approach,
the reader is referred to [19].

5 Numerical Simulations
In this section, numerical simulations are conducted in the framework of Mat-
lab/Simulink software. The 3.5”HDD (Seagate Barracuda 7200.10) dynamicmodel [34]
is chosen as a demonstrator in simulation to test the effectiveness of the proposed
control schemes. The full mathematical description of this prototype is given by
equations (1)-(4) with a sample time fixed to Te = 0.05ms. The normalized dynamic
model parameters are given by: M(q) = 1, σ0 = 105, σ1 = √105, σ2 = 0.4, fs = 1.5,
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fc = 1, and q̇s = 10−3. The NNweights are manually tuned off-line for the best possible
controller performance. A physical restriction is imposed on the VCM actuator leading
to the saturation of the control input u, that is | u |≤ 3v corresponding to a practical
range in real HDD servo-systems. All initial conditions are chosen to be at the origin.
Three different simulation scenarios have been considered.

The first scenario deals with tracking of both sinusoidal and step desired tra-
jectory qd without external disturbances [34]. The sinusoidal reference is chosen as
qd = A sin(πft)where A = 2μm and f = 200Hz, whereas the constant desired trajectory
is chosen to be aunit step qd =1μm and a zeromean valueGaussianwhite noisewnoise
with a variance σ2 = 9×10−9(m)2 has been considered for this scenario as well as for
the other scenarios.

In the second scenario, only the step response is investigated for a robustness
test of the proposed controller towards external perturbations. Both input win and
output wout disturbances have been considered in this scenario, as schematically
illustrated in Fig. 3. wout is assumed to be an impulse disturbance with an amplitude
of 0.3μm applied to the system at the time instance t = 4ms, while win is an unknown
persistent bounded disturbance such that win = −3mv. In the third and last scenario,
uncertainties on the system’s inertia mass M(q) are considered which can be caused
by the movement of the R/W head tip onto the disc surface. Therefore, an efficient
controller is required to ensure the convergence of the head to the target position, and
to be robust enough against parametric uncertainties.

For all the proposed simulations scenarios described above, and in order to
highlight the performance of the proposed control solution, the RISE-NN closed-loop
responses are compared to those of a classical Proportional Derivative controller (PD).
The PD control gains are manually tuned to get the best performance. However,
automatic optimization tools can also be used to determine these parameters based
on a suitable objective function.

For the purpose of performance comparison, an energy function E is introduced,
it is expressed by:

E = Nsim∑
i=1 |ui|, (34)

where Nsim is the sample number for the whole simulation duration.
Table 1 summarizes the parameters of the proposed controllers, while Tab. 2 gives

a summary of the overall closed-loop system’s performance with the different control
solutions.
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Tab. 1. Summary of the controllers’ parameters.

Reference (μm) RISE-NN PD

qd α1 α2 Ks β1 Kp Kd
2sin(200π t) 3000 2900 1850 1 2×107 103
1 1500 1500 1850 1 2×107 103

Tab. 2. Controllers performances comparison.

Without disturbances (Sinusoidal Reference)

PD RISE-NN

Settling time 2.85 ms 1.62 ms
Maximum overshoot 40% 25%
Control input | u | 3 v 3 v
Energy function (E) 3.11×102v 5.38×102v

Without disturbances (Step response)

PD RISE-NN

Settling time 5.55ms 2.33 ms
Maximum overshoot 50% 1.5%
Control input | u | 3 v 1.07 v
Energy function (E) 3.03×102v 43.44v

Disturbances Rejection

PD RISE-NN

Recovery time 3.2 ms 2.7 ms
Maximum overshoot 9.5% 15%
Control input | u | 3v 1.5v
Energy function (E) 3.84×102v 1.2×102v

Parameters uncertainties (80% of error)

PD RISE-NN

Settling time 9.8 ms 5.6 ms
Maximum overshoot 62% 15%
Control input | u | 3 v 1.5 v
Energy function (E) 4.83×102 v 77.66 v

5.1 Scenario 1: Tracking Problem in Nominal Case

Comparison between the performance of RISE-NN and PD controllers is illustrated in
Figs. 5–9.
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Fig. 5. Step response in non disturbed case with PD controller: (a) Output displacement and (b)
Control input.
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Fig. 6. Step response in non disturbed case with RISE-NN controller: (a) Output displacement and (b)
Control input.
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Fig. 7. Tracking of a sinusoidal reference trajectory in non disturbed case with PD controller: (a)
Output displacement and (b) Control input.

First, in the case of the time varying reference signal (cf. Figs. 7–8), it can be
observed that the proposed control solution RISE-NN achieves a better track following
performance. Indeed, the head tip converges faster to the target position such that the
tracking error is reduced around zero and little overshoots are generated.
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Fig. 8. Tracking of a sinusoidal reference trajectory in non disturbed case with RISE-NN controller: (a)
Output displacement and (b) Control input.
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Fig. 9. Time history of the neural network weights in nominal case: (a) step response and (b)
sinusoidal reference.

Second, the investigated step response (cf. Figs. 5–6) shows that RISE-NN tracking
performances are much better than the PD controller. This is perceptible through the
decreased overshoots which are negligible compared to those of the PD controller. In
term of speed and precision, the RISE-NN settling time is substantially reduced, i.e.
the R/W head tip reached the target and remains around such that the positioning
accuracy is ensured.

In addition, the RISE-NN control energy consumption is very low in the case of
step response, that is the control input is kept within the admissible limits.

The time history of the NN weights is displayed in Fig. 9 and shows that in both
cases, sinusoidal and constant reference trajectories, the boundedness of the NN
weight is ensured.
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5.2 Scenario 2: External Disturbances Rejection

The main objective of this scenario is to test the effect of external disturbances
on the closed-loop system and how the proposed control solutions deal with. The
resulting disturbance rejection simulations with both PD and RISE-NN controllers are
illustrated in Figs. 10, 11 respectively.
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Fig. 10. Tracking under external disturbances with PD controller: (a) Output displacement and (b)
Control input.
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Fig. 11. Tracking under external disturbances with RISE-NN controller: (a) Output displacement, (b)
Control input, and (c) Time history of the neural network weights.
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For a persistent external disturbance ωin and a punctual output disturbance ωout
applied at the time instant t = 40ms, both controllers successfully performed the
rejection and the head tip is returned to its target track. However, with RISE-NN, the
displacement of the head, as shown in Fig. 11(a), is faster with a reduced 5% settling
time which results in a quick return of the position error signal to around zero, but the
overshoot remains relatively significant.

Moreover, the RISE-NN control input evaluation satisfies the physical constraints
and is kept within the interval [−3v, 3v] without reaching the saturation limits. This
results in a reduced control effort reflected by the energy function E. It is worth noting
that thenormof theNNweights canbe easily upper boundedby a constant as depicted
in Fig. 11(c).

5.3 Scenario 3: Robustness Towards Parametric Uncertainties

For a complete comparative study between both proposed controllers, let us consider
uncertainties on the system inertia of the HDD servo-system. The obtained simulation
results for this case are shown in Figs. 12 and 13.
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Fig. 12. Robustness towards parameters’ uncertainties with PD controller: (a) Output displacement
and (b) Control input.
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displacement and (b) Control input.
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For an uncertainty amount up to 80%, with respect to the nominal value, the
closed-loop system behavior with a PD controller is so degraded. Therefore, as
illustrated in Fig. 12, significant overshoots can be observed and the 5% settling time
is too long.

However, with a RISE-NN controller, the system shows a good robustness against
these uncertainties and the head tip achieves a quick convergence to the target
position with a relatively smaller overshoots.

Consequently, according to these results, it can be concluded that against para-
metric uncertainties, the RISE-NN control solution is able to ensure better tracking
performances.

6 Conclusion and Future Work
In this paper, a RISE based NN controller was proposed as a solution to solve a
Hard-Disc-Drive head track following problem. The main objective was to guarantee
that the tracking error is minimized as much as possible and converges to a neighbor-
hood of zero.

Numerical simulations for different operating conditions are provided to show the
effectiveness of the proposed controller. Thereby, through a comparative study with a
PD controller, it was clearly shown that, with the RISE-NN approach, the convergence
of the head tip to the target track can be ensured with superior performance in terms
of speed, accuracy and robustness against external disturbances and parametric
uncertainties.

Our future work will be focused on the optimization tools for an extended version
of the RISE-NN controller as well as real-time experiments.
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