
HAL Id: lirmm-03991247
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03991247

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing lop-Kernels: A Framework for Kernelization
Lower Bounds

Júlio Araújo, Marin Bougeret, Victor Campos, Ignasi Sau

To cite this version:
Júlio Araújo, Marin Bougeret, Victor Campos, Ignasi Sau. Introducing lop-Kernels: A Framework for
Kernelization Lower Bounds. Algorithmica, 2022, 84 (11), pp.3365-3406. �10.1007/s00453-022-00979-
z�. �lirmm-03991247�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03991247
https://hal.archives-ouvertes.fr


Introducing lop-kernels: a framework for
kernelization lower bounds
Júlio Araújo
Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil
julio@mat.ufc.br

Marin Bougeret
LIRMM, Université de Montpellier, CNRS, Montpellier, France
marin.bougeret@lirmm.fr

Victor Campos
Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil
victoitor@ufc.br

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France
ignasi.sau@lirmm.fr

Abstract
In the Maximum Minimal Vertex Cover (MMVC) problem, we are given a graph G and a
positive integer k, and the objective is to decide whether G contains a minimal vertex cover of size
at least k. Motivated by the kernelization of MMVC with parameter k, our main contribution is
to introduce a simple general framework to obtain kernelization lower bounds for a certain type
of kernels for optimization problems, which we call lop-kernels. Informally, this type of kernels is
required to preserve large optimal solutions in the reduced instance, and captures the vast majority
of existing kernels in the literature.

As a consequence of this framework, we show that the trivial quadratic kernel for MMVC is
essentially optimal, answering a question of Boria et al. [Discret. Appl. Math. 2015], and that the
known cubic kernel for Maximum Minimal Feedback Vertex Set is also essentially optimal.
We present further applications for Tree Deletion Set and for Maximum Independent Set on
Kt-free graphs.

Back to the MMVC problem, given the (plausible) non-existence of subquadratic kernels for
MMVC on general graphs, we provide subquadratic kernels on H-free graphs for several graphs
H, such as the bull, the paw, or the complete graphs, by making use of the Erdős-Hajnal property.
Finally, we prove that MMVC does not admit polynomial kernels parameterized by the size of a
minimum vertex cover of the input graph, even on bipartite graphs, unless NP ⊆ coNP/poly.
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1 Introduction

A vertex cover in a graph G is a subset of vertices containing at least one endpoint of
every edge. In the associated optimization problem, called Minimum Vertex Cover, the
objective is to find, given an input graph G, a vertex cover in G of minimum size. This
problem has been one of the leitmotifs of the area of parameterized complexity [25,30], serving
as a test bed for many of the most fundamental techniques. An instance of a parameterized
problem is of the form (x, k), where x is the total input (typically, a graph) and k is a positive
integer called the parameter. The crucial notion is that of fixed-parameter tractable algorithm,
FPT for short, which is an algorithm deciding whether (x, k) is a positive instance in time
f(k) · |x|O(1), where f is a computable function depending only on k. In the parameterized
Vertex Cover problem, we are given a graph G and an integer parameter k, and the
objective is to decide whether G contains a vertex cover of size at most k. One of the main
fields within parameterized complexity is kernelization [35], where the objective is to decide
whether an instance (x, k) of a parameterized problem can be transformed in polynomial
time into an equivalent instance (x′, k′) whose total size is bounded by a function of k; the
reduced instance is called a kernel, and finding kernels of small size, typically polynomial or
even linear in k in the best case, is one of the most active areas of parameterized complexity.

Considering the “max-min” version of minimization problems, that is, maximizing the
size of a minimal solution of the corresponding problem, is a natural approach that has been
applied to several problems such as Dominating Set [7, 32] (whose “max-min” version is
called Upper Domination), Feedback Vertex Set [31], or Hitting Set [5, 26]. The
initial motivation of this article is the “max-min” version of Minimum Vertex Cover,
called Maximum Minimal Vertex Cover, or just MMVC for short.

Previous work. In his habilitation, Fernau [34] presented FPT algorithms for MMVC as
well as some results about its kernelization parameterized by the solution size k. It is easy
to note, as observed in [34], that the problem admits a kernel with at most k2 vertices: if
some vertex has degree at least k, we can safely answer “yes” (cf. Lemma 2 for a proof);
otherwise, the maximum degree is at most k − 1, and it follows that every instance without
isolated vertices (which may be safely removed) that has at least k2 vertices is a yes-instance,
hence we have a trivial kernel with at most k2 vertices. Fernau [34] presented a kernel with
at most 4k vertices for MMVC restricted to planar instances using the algorithmic version
of the Four Color Theorem [53], and claimed in [34, Corollary 4.25] a kernel with at most
2k vertices on general graphs using spanning trees. Unfortunately, this latter kernelization
algorithm is incorrect, as we discuss in Section 6.

Boria et al. [18] initiated a study of the complexity of MMVC and presented a number of
results, in particular a polynomial-time approximation algorithm with ratio n1/2 on n-vertex
graphs, and showed that, unless P = NP, no polynomial-time approximation algorithm with
ratio n1/2−ε exists for any ε > 0. They also presented FPT algorithms for MMVC for several
choices of the parameters such as the treewidth, the size of a maximum matching, or the size
of a minimum vertex cover of the input graph. The authors asked explicitly whether kernels
of size o(k2) exist for MMVC parameterized by k.

Zehavi [57] presented tight FPT algorithms, under the Strong Exponential Time Hy-
pothesis, for MMVC and its weighted version parameterized by the size of a minimum
vertex cover. Recently, Bonnet and Paschos [16] and Bonnet et al. [15] considered the
inapproximability of MMVC in subexponential time.

Note that the MMVC problem is the dual of the well-studied Minimum Independent
Dominating Set problem (to see this, note that the complement of any minimal vertex
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cover is an independent dominating set), which has applications in wireless and ad-hoc
networks [46]. We refer to the survey of Goddard and Henning [39].

Our results and techniques. The starting motivation of this article is the kernelization
of the MMVC problem, which has been almost unexplored so far in the literature. This
initial motivation has resulted in a general framework that can be applied to a broad class of
optimization problems in order to derive kernelization lower bounds.

Namely, motivated by the question of Boria et al. [18] about the existence of subquadratic
kernels for MMVC, we introduce a generic framework to obtain kernelization lower bounds
for a “certain type” of kernels for parameterized maximization or minimization problems
(in particular, for MMVC), based on a hypothesis that guarantees an inapproximability
result, typically P 6= NP. Informally, by “certain type” we mean kernelization algorithms
that, in polynomial time, either decide the instance (by answering “yes” or “no”) or produce
an equivalent instance of the considered problem in which the value of an optimal solution
is “preserved”, in the sense that it may drop only by the drop suffered by the parameter;
see Subsection 3.1 for the formal details for the case of maximization problems. We call
such kernels large optimal preserving kernels, or lop-kernels for short. Even if this type of
kernels may seem restrictive, in particular we are not aware of any “non-artificial” kernel for
a maximization problem, such as those that have become nowadays standard [35], which
is not a lop-kernel. (We do have such an example for a minimization problem, as discussed
later.) The core idea of our approach is to show that a lop-kernel yields a polynomial-time
approximation algorithm whose ratio depends on the size (and most importantly, on the
degree) of the kernel, and to use known inapproximability results to obtain the desired lower
bound.

We present our framework of lop-kernels separately for maximization (Section 3) and
minimization (Section 4) problems. Even if both versions are similar, they are not totally
symmetric, and a number of technical differences pop up; we discuss them in detail as
they appear in Section 4. Our general result is stated in Theorem 13 and Theorem 24
for maximization and minimization problems, respectively. In order be able to apply our
framework to an optimization problem, we need it to be “well-behaved”, a mild condition
defined in Section 3 and Section 4 that, for instance, for vertex-optimization problems is
weaker than their decision version being in NP. Also, our results distinguish the existence of
constructive or non-constructive approximation algorithms. Since our framework seems to
particularly fit vertex-optimization problems, we present the particular cases of Theorem 13
and Theorem 24 for vertex-maximization and vertex-minimization problems in Theorem 10
and Theorem 21, respectively. In order to ease the application of our results to concrete
problems, we provide in Corollary 11 and Corollary 22 the “contrapositive” versions of
Theorem 10 and Theorem 21, respectively.

Applications of our framework. Combining Corollary 11 with the O(n 1
2−ε)-inapproximability

result for MMVC by Boria et al. [18] immediately rules out (cf. Corollary 26) the existence
of a lop-kernel for MMVC with O(k2−ε) vertices for any ε > 0, unless P = NP. Thus, while
Corollary 26 does not completely rule out the existence of subquadratic kernels for MMVC,
it tells that, if such a kernel exists, it should consist of “non-standard” reduction rules.

Interestingly, our framework has consequences beyond the MMVC problem. One of
them concerns the Maximum Minimal Feedback Vertex Set (MMFVS) problem,
defined in the natural way. Dublois et al. [31] recently provided a cubic kernel for MMFVS
parameterized by the solution size, and proved that the problem does not admit an O(n 2

3−ε)-
approximation algorithm for any ε > 0, unless P = NP. By applying Corollary 11 we directly
obtain (Corollary 27) that the cubic kernel of Dublois et al. [31] is “essentially” optimal.
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Another application of our results deals with the Tree Deletion Set problem. In this
case, the fact that this problem does not admit a polynomial-time O(n1−ε)-approximation for
any ε > 0 unless P 6= NP [56] implies, together with Corollary 22, that Tree Deletion Set
parameterized by the solution size does not admit a polynomial lop-kernel, unless P = NP
(Corollary 28). However, Tree Deletion Set does admit a polynomial kernel with O(k4)
vertices [38]. Therefore, this polynomial kernel cannot be a lop-kernel, and so far it constitutes
the only non-artificial example of non-lop-kernel that we are aware of.

Our last application concerns the Maximum Independent Set problem restricted to
Kt-free graphs. In particular, we show (Corollary 30) that a lop-kernel with O(kt−1−ε)
vertices for Maximum Independent Set on Kt-free graphs would improve the best known
approximation ratio n

t−2
t−1 that follows from Ramsey’s theorem [52]. Finally, generalizing a

conjecture of Bonnet et al. [17], we conjecture that for every fixed graph H, the Maximum
Independent Set problem restricted to H-free graphs admits a polynomial lop-kernel.

Comparison with other frameworks. Compared to existing frameworks to obtain lower bounds
on kernelization, such as cross-compositions [10,12], weak compositions [27,28,44], polynomial
parameter transformations [8,13], or techniques to obtain lower bounds on the coefficients
of linear kernels [21], or that relate approximation and kernelization [1, 9, 41, 48, 50], our
approach has the advantages that it is quite simple, straightforward to apply, and relies on the
same hypothesis on which the corresponding inapproximability result is based, typically the
standard hypothesis that P 6= NP. On the negative side, it has the following two drawbacks.
The first one is that, in order to obtain a non-trivial lower bound on the kernel size, it can
only be applied to problems which are quite hard to approximate, for example within a factor
O(nr−ε) for some constant r > 0, as it is the case of MMVC and MMFVS. The second,
and probably most important, drawback of our techniques is that they are able to rule out
the existence of what we call lop-kernels of certain sizes, but smaller non-standard kernels
that do not preserve the value of large optimal solutions might, a priori, still exist (as it is
the case for Tree Deletion Set, as discussed above). Hence, since our framework seems
to be orthogonal to existing ones, we think that it adds to the above list of techniques to
obtain kernelization lower bounds.

Other results on the kernelization of MMVC. Coming back to the MMVC problem paramet-
erized by the solution size, given the above negative result on general graphs, we identify
graph classes where MMVC is still NP-hard and admits a subquadratic kernel. In particular,
we deal with graph classes defined by excluding an induced subgraph H that satisfies the
Erdős-Hajnal property [33], that is, for which there exists a constant δ > 0 such that every
H-free graph on n vertices contains either a clique or an independent set of size nδ. In
particular, we present a kernel for MMVC with O(k7/4) vertices on the well-studied class of
bull-free graphs (Theorem 32), with O(k

2t−3
t−1 ) vertices on Kt-free graphs graphs for every

t ≥ 3 (Theorem 34), and with O(k5/3) vertices on paw-free graphs (Theorem 37). To the
best of our knowledge, this is the first time that the Erdős-Hajnal property is used to obtain
polynomial kernels (we would like to note that it was used by Kratsch et al. [49] to obtain
kernelization lower bounds).

Our strategy to obtain these subquadratic kernels on H-free graphs is as follows. By
the high-degree rule mentioned above, given an instance (G, k), we may assume that the
maximum degree of G is at most k − 1. We find greedily a minimal vertex cover X of G.
If |X| ≥ k we are done, so we may assume that |X| ≤ k − 1, hence the goal is to bound
the size of S := V (G) \ X. Using that G[X] is also H-free, the Erdős-Hajnal property
implies (Lemma 31) that X can be partitioned in polynomial time into a sublinear (in k)
number of independent sets and cliques. Since S is an independent set and we may assume
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that G has no isolated vertices, in order to bound |S| by a subquadratic function of k, it is
enough to show that, for each of the sublinearly many cliques or independent sets Y that
partition X, its neighborhood in S has size O(k). This is easy if Y is an independent set: if
|NS(Y )| ≥ k we can conclude that (G, k) is a yes-instance (Lemma 2), so we may assume
that |NS(Y )| ≤ k − 1. The case where Y is a clique is more interesting, and we need ad-hoc
arguments depending on each particular excluded induced subgraph H.

We also present several positive results for MMVC restricted to other particular graph
classes, such as K1,t-free graphs (Lemma 38), graph classes with bounded chromatic number
(Lemma 39), or graph classes with bounded cliquewidth (Observation 40).

Finally, we show (Theorem 42) that MMVC, parameterized by the size of a minimum
vertex cover (or of a maximum matching) of the input graph, does not admit a polynomial
kernel unless NP ⊆ coNP/poly, even restricted to bipartite graphs. This result complements
the FPT algorithms for MMVC under these parameterizations given by Boria et al. [18]
and Zehavi [57], and shows that, in what concerns the existence of polynomial kernels for
MMVC, the most natural structural parameters smaller than the solution size are not large
enough to yield polynomial kernels (note that the treewidth of any graph is at most one
more than its vertex cover number, hence our result rules out the existence of polynomial
kernels for MMVC parameterized by treewidth as well). The proof consists of a polynomial
parameter transformation from Monotone Sat parameterized by the number of variables.
In particular, our reduction yields also the NP-hardness of MMVC on bipartite graphs,
which provides an alternative proof to the one of Boliac and Lozin [14] via the NP-hardness
of Minimum Independent Dominating Set on bipartite graphs.

Organization. In Section 2 we provide some basic preliminaries about graphs, the MMVC
problem, parameterized complexity, and approximation algorithms. In Section 3 (resp.
Section 4) we present our framework to obtain kernelization lower bounds for maximization
(minimization) problems. In both sections, the contents are split into three subsections:
we start with the general definitions, then we focus on the particular and relevant case
of vertex-optimization problems, and then we present the general results for what we call
“well-behaved” optimization problems. In Section 5 we present several applications of the
framework of lop-kernels for concrete problems, and in Section 6 we discuss the flaw in the
linear kernel for MMVC claimed by Fernau [34]. Section 7 is devoted to the subquadratic
kernels for MMVC on particular graph classes, as well as to other positive results for MMVC.
Our reduction to rule out the existence of polynomial kernels for MMVC parameterized by
the size of a minimum vertex cover (or a maximum matching) is presented in Section 8. We
conclude the article in Section 9 with a discussion and some directions for further research.

2 Preliminaries

Graphs and functions. We use standard graph-theoretic notation, and we refer the reader
to [29] for any undefined notation. For an integer p ≥ 1, we let [p] be the set containing all
integers i with 1 ≤ i ≤ p. We use ] to denote the disjoint union. We will only consider finite
undirected graphs without loops nor multiple edges, and we denote an edge between two
vertices u and v by {u, v}. A subgraph H of a graph G is induced if H can be obtained from
G by deleting a set of vertices D = V (G) \ S, and we denote H = G[S]. Given a graph H, a
graph G is H-free if it does not contain any induced subgraph isomorphic to H. If H is a
collection of graphs, a graph G is H-free if it is H-free for every H ∈ H. For a graph G and
a set S ⊆ V (G), we use the notation G \ S = G[V (G) \ S], and for a vertex v ∈ V (G), we
abbreviate G \ {v} as G \ v. A vertex v is complete to a set S ⊆ V (G) if v is adjacent to
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every vertex in S.
The open (resp. closed) neighborhood of a vertex v in a graph G is denoted by N(v) (resp.

N [v]), whenever the graph G is clear from the context. For vertex sets X,Y ⊆ V (G), we
define N [X] =

⋃
v∈X N [v], N(X) = N [X]\X, NY [X] = N [X]∩Y , and NY (X) = NY [X]\X.

The degree of a vertex v in a graph G is defined as |N(v)|, and we denote it by degG(v), or
just deg(v) of the graph is clear from the context. For an integer t ≥ 1, we denote by Pt
(resp. It, Kt) the path (resp. edgeless graph, complete graph) on t vertices. For two integers
a, b ≥ 1, we denote by Ka,b the bipartite graph with parts of sizes a and b.

A clique (resp. independent set) in a graph G is a set of vertices that are pairwise adjacent
(resp. not adjacent). A graph property is hereditary if whenever it holds for a graph G, it
holds for all its induced subgraphs as well. Note that the properties of being an edgeless
graph, a complete graph, or an independent set are hereditary. We denote by ∆(G) (resp.
ω(G) the maximum vertex degree (resp. clique size) of a graph G.

A vertex cover of a graph G is a set of vertices containing at least one endpoint of every
edge, and it is minimal if no proper subset of it is a vertex cover. One of the concrete
problems that we study in this paper is formally stated as follows. We state it as a decision
problem, since most of our results consider its parameterization by the solution size k.

Maximum Minimal Vertex Cover (MMVC)
Input: A graph G and a positive integer k.
Question: Does G contain a minimal vertex cover of size at least k?

For a graph G, we denote by mmvc(G) the maximum size of a minimal vertex cover of G.
The following observation has been already used in previous work [18,57].

I Observation 1. Let G be a graph. A set X ⊆ V (G) is a minimal vertex cover of G if and
only if X is a vertex cover of G and, for every vertex v ∈ X, N(v) * X.

The next lemma provides a useful way to conclude that we are dealing with a yes-instance
in the kernelization algorithms presented in Section 7.

I Lemma 2. Let G be a graph and let S ⊆ V (G) be an independent set. There exists a
minimal vertex cover of G containing N(S).

Proof. Note that, since S is an independent set, V (G)\S is a vertex cover of G. Hence, there
exists a minimal vertex cover X of G such that X ⊆ V (G) \ S. We claim that N(S) ⊆ X.
Suppose for the sake of contradiction that there exists a vertex v ∈ N(S) such that v /∈ X.
Since v has a neighbor u in S and S∩X = ∅, the edge {u, v} would not be covered by X. J

Note that, in particular, Lemma 2 implies that if (G, k) is an instance of the Maximum
Minimal Vertex Cover problem and v ∈ V (G) is a vertex of degree at least k, then we
can conclude that (G, k) is a yes-instance. This will allow us to assume, in our kernelization
algorithms, that ∆(G) ≤ k − 1.

Parameterized complexity. We refer the reader to [25, 30] for basic background on
parameterized complexity, and we recall here only some basic definitions used in this article.
A parameterized problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, k
is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f , and a constant c such that given an instance I = (x, k), A
(called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.
For instance, the Vertex Cover problem parameterized by the size of the solution is FPT.
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For an instance (x, k) of a parameterized problem Q, a kernelization algorithm is an
algorithm A that, in polynomial time, generates from (x, k) an equivalent instance (x′, k′) of
Q such that |x′|+ k′ ≤ f(k), for some computable function f : N→ N, where |x′| denotes
the size of x′. If f(k) is bounded from above by a polynomial of the parameter, we say that
Q admits a polynomial kernel. In particular, if f(k) is bounded by a linear (resp. quadratic)
function, then we say that Q admits a linear (resp. quadratic) kernel.

A polynomial parameter transformation, abbreviated as PPT, is an algorithm that, given
an instance (x, k) of a parameterized problem A, runs in time polynomial in |x| and outputs
an instance (x′, k′) of a parameterized problem B such that k′ is bounded from above by a
polynomial on k and (x, k) is positive if and only if (x′, k′) is positive. If a parameterized
problem A does not admit a polynomial kernel unless NP ⊆ coNP/poly and there exists a
PPT from A to a parameterized problem B, then B does not admit a polynomial kernel
unless NP ⊆ coNP/poly either [25].

Approximation algorithms. We refer the reader to [55] for background on approximation
algorithms, and we define here only some non-standard notions used in this article.

As, when dealing with graph problems, one typically measures the size of kernels in terms
of the number of vertices or edges (and not in the classical bit-size of the instance), we
introduce an arbitrary notion of size as follows. Given a optimization problem Π, we say
that a non-negative integer-valued function | · | is a size function if, given an instance I of Π,
|I| can be computed in polynomial time in the classical bit-size, and |I| is upper-bounded by
a polynomial in the classical bit-size.

For an optimization problem Π, an instance I of Π, and a feasible solution s of Π in I, we
denote by valΠ(I, s) the value of the objective function of Π for s. We restrict ourselves to
optimization problems Π whose objective functions for feasible solutions take non-negative
integer values. For a maximization (resp. minimization) problem Π and an instance I of Π,
we denote by optΠ(I) the maximum (resp. minimum) of valΠ(I, s) over all feasible solutions
s of Π in I.

A maximization (resp. minimization) problem Π is a vertex-maximization (resp. vertex-
minimization) problem if their instances consist of a graph G, and the objective is to find
a vertex set S ⊆ V (G) of maximum (resp. minimum) size satisfying some conditions. For
instance, Maximum Independent Set and Minimum Vertex Cover are typical examples
of vertex-maximization and vertex-minimization problems, respectively.

For kernelization purposes, we need to consider the decision version of optimization
problems. For a maximization (resp. minimization) problem Π whose instances are of the
form I, we denote by Πdec the decision problem whose instances are of the form (I, k), where
k is a non-negative integer, and where (I, k) is a yes-instance of Πdec if optΠ(I) ≥ k (resp.
optΠ(I) ≤ k), and a no-instance otherwise.

Since we aim at establishing a link between the existence of certain kernels and approx-
imation algorithms, we need to take care of constructibility issues. The standard definition
of a kernelization algorithm [35] does not involve constructing a solution of the considered
problem. On the other hand, the standard definition of an approximation algorithm [55] does
take into account the construction of the corresponding solution. Hence, in order to establish
such a connection, we need to consider slightly “non-standard” definitions of these objects.

Namely, we distinguish between constructive and non-constructive approximation al-
gorithms, so that the kernelization lower bounds that we present are able to rule out
constructive or non-constructive kernels (cf. the second paragraph of Section 3). To this
end, we say that an algorithm for a maximization (resp. minimization) decision problem
Πdec constructively decides an instance (I, k) if, whenever it holds that optΠ(I) ≥ k (resp.
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optΠ(I) ≤ k), the algorithm outputs a feasible solution s such that valΠ(I, s) ≥ k (resp.
valΠ(I, s) ≤ k).

When using the term “approximation algorithm” with ratio ρ ≥ 1 for a maximization
(resp. minimization) problem Π, we assume, unless stated otherwise, that it is constructive,
that is, that the algorithm, given an instance I of Π, outputs a feasible solution s of Π in I
such that optΠ(I)/valΠ(I, s) ≤ ρ (resp. valΠ(I, s)/optΠ(I) ≤ ρ). Note that the approximation
ratio ρ is, in general, a non-negative integer-valued function that depends on I.

We define a value-approximation algorithm with ratio ρ ≥ 1 for a maximization (resp.
minimization) problem Π as an algorithm that, given an instance I of Π, returns a non-
negative integer k such that 1 ≤ optΠ(I)/k ≤ ρ (resp. 1 ≤ k/optΠ(I) ≤ ρ). Again, here
ρ is, in general, a non-negative integer-valued function that depends on I. Note that a
value-approximation algorithm is not only not required to construct a feasible solution with
value k, but also not required to guarantee that such a solution exists.

3 A framework for ruling out certain polynomial kernels: the case of
maximization problems

In this section we introduce our generic framework to obtain lower bounds on the size of a
certain type of polynomial kernels, which we call lop-kernels (see Definition 5), for a broad
class of maximization problems that we proceed to introduce. Informally, the framework is
based on simple and self-contained arguments proving that a “small” lop-kernel implies the
existence of a “good” approximation algorithm. Then, the contrapositive of this statement
implies that inapproximability results can be turned into lop-kernel lower bounds.

It worth mentioning here that most of the inapproximability results in the literature
hold for the value-approximation algorithms as defined at the end of Section 2, that is, for
algorithms that are not required to construct in polynomial time an appropriate solution of
the corresponding problem, but only to report a value within the appropriate range. In order
to guarantee that it is also possible to use our framework when only the non-existence of
constructive approximation algorithms is known, we introduce a variant of lop-kernels, called
constructive lop-kernels, such that their existence implies the existence of a constructive
approximation algorithm. However, in a first reading, we recommend to skip all technical
details concerning constructibility.

We say that a maximization problem Π is well-behaved if it comes equipped with a size
function (as defined in Section 2) and it satisfies the following condition, which we denote by
Cmax:

There exists an algorithm that, given as input a real number c and an instance I of Π
such that optΠ(I) ≤ c, runs in polynomial time for every fixed c and either decides
that optΠ(I) = 0 and provides a feasible solution s with valΠ(I, s) = 0, or provides a
feasible solution s with valΠ(I, s) > 0.

Observe that most of the classical maximization problems are well-behaved, and in
particular any vertex-maximization problem whose decision version belongs to NP is well-
behaved, as we can enumerate all subsets of vertices of size at most c, and for each of them
verify in polynomial time if it is a feasible solution. Given a well-behaved maximization
problem Π, we say that a function u : N → N is an upper bound function for Π if for any
instance I of Π, it holds that optΠ(I) ≤ u(|I|), where | · | is the size function of Π. Throughout
the paper, we assume that the notions of size used in both the size of kernels and the upper
bound function are the same.
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The reminder of this section is organized as follows. In Subsection 3.1 we present the
definition of lop-rules and lop-kernels for well-behaved maximization problems, and we prove
a general technical result, namely Lemma 8. In Subsection 3.2 we present the connection
between lop-kernels and approximation algorithms for vertex-maximization problems, and in
Subsection 3.3 we generalize it to arbitrary well-behaved maximization problems.

3.1 Definition of lop-rules and lop-kernels
I Definition 3. A large optimal preserving reduction rule, or lop-rule for short, for a well-
behaved maximization problem Π, is a polynomial-time algorithm R that, given an instance
(I, k) of Πdec, computes another instance (I ′, k′) of Πdec with 0 ≤ k′ ≤ k and such that
1. if (I, k) is a no-instance of Πdec, then (I ′, k′) is a no-instance of Πdec, and
2. if (I, k) is a yes-instance of Πdec, then optΠ(G′) ≥ optΠ(G) − (k − k′), implying that

(I ′, k′) is a yes-instance of Πdec.
A lop-rule R is constructive if, given I and any solution s′ of I ′ of such that valΠ(I ′, s′) ≥ k′,
it constructs (in polynomial time) a solution s of I such that valΠ(I, s) ≥ k.

Note that Property 2 in Definition 3 is stronger than the implication “if (I, k) is a
yes-instance of Πdec, then (I ′, k′) is a yes-instance of Πdec”, which would yield the definition
of a classical kernelization algorithm [25, 30]. Indeed, when we consider how this latter
implication is generally proved in safeness proofs of classical kernels, one of the following
scenarios often occurs:
(a) For every solution s of I there exists a solution s′ of I ′ with valΠ(I ′, s′) ≥ valΠ(I, s)−

(k − k′).
(b) For every solution s of I with valΠ(I, s) ≥ k, there exists a solution s′ of I ′ with

valΠ(I ′, s′) ≥ valΠ(I, s)− (k − k′).
(c) If there exists a solution s of I with valΠ(I, s) ≥ k, then there exists a solution s′ of I ′

with valΠ(I ′, s′) ≥ k′.

In Case (a), the rule preserves all optimal values, as it implies that optΠ(G′) ≥ optΠ(G)−
(k − k′). In Case (b), the rule preserves only large optimal values, as it implies that if
optΠ(G) ≥ k, then optΠ(G′) ≥ optΠ(G) − (k − k′), implying Property 2 above. Note that
if optΠ(G) < k, then optΠ(G′) and optΠ(G) are not necessarily related. This justifies our
choice for “large optimal preserving” rules. Case (c) corresponds to the weaker and classical
implication “if (I, k) is a yes-instance of Πdec, then (I ′, k′) is a yes-instance of Πdec”.

The following observation is an immediate consequence of the definition of a lop-rule.

I Observation 4. lop-rules can be composed. Formally, consider two lop-rules R1 and R2.
Then, the rule R that, given a instance (I, k) of Πdec, returns R2(R1(I, k)), is also a lop-rule.
Moreover, if R2 and R1 are constructive, then R is also constructive.

A typical example of a lop-rule for a vertex-maximization problem is when we can identify
a “dominant” set of vertices that can be safely included into a solution. More precisely,
consider a rule that, given a graph G, finds a subset T ⊆ V (G) and a graph G′ such that
there exists an optimal solution S? in G such that S? = T ∪ S′, where S′ is a solution in
G′, and for every solution S′ in G′, S′ ∪ T is a solution in G. Such a rule is a (constructive)
lop-rule, as we even fall into Case (a) described above.

Even if we are not aware of known reduction rules for vertex-maximization problems that
are not lop-rules, we can artificially devise such an example. For instance, for the MMVC
problem, given an instance (G, k), if there is a vertex that has more than k neighbors of
degree one, we can safely delete all but any k of them to obtain a reduced graph G′, and
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leave k unchanged. Note that this rule falls into Case (c) above, since by Lemma 2 both G
and G′ are yes-instances of MMVC, but it does not satisfy Property 2 in Definition 3, since
mmvc(G) may be arbitrarily larger than mmvc(G′).

If we defined a lop-kernel as an algorithm consisting only of lop-rules, we would exclude
from being a lop-kernel, for instance, a rule that detects a yes-instance as in the above
paragraph. This justifies the next definition, where we also allow lop-kernels to decide
instances.

I Definition 5. Let Π be a well-behaved maximization problem and let s : N → N be a
computable function. A lop-kernel of size s for Π parameterized by the solution size is a
polynomial-time algorithm that takes as input an instance (I, k) of Πdec, and either

decides that (I, k) is a yes-instance or a no-instance, or
outputs a reduced instance (I ′, k′) by applying a sequence of lop-rules to (I, k), with
|I ′| ≤ s(k).

A lop-kernel is constructive if, in the first case, it constructively decides (I, k) (but in the
second case it may not use constructive rules).

As it is common in kernels to exhaustively apply reduction rules, and then to either decide
the reduced instance or to output it, let us introduce and discuss the following definition1.

I Definition 6. Let Π be a well-behaved maximization problem and let s : N → N be a
computable function. A lop-kernel? of size s for Π parameterized by the solution size is a
polynomial-time algorithm that takes as input an instance (I, k) of Πdec, computes an instance
(I ′, k′) by applying a (possibly empty) sequence of lop-rules to (I, k), and either

decides that (I ′, k′) is a yes-instance or a no-instance, or
outputs (I ′, k′), with |I ′| ≤ s(k).

A lop-kernel? is constructive if, in the first case, it constructively decides (I ′, k′) and, in the
second case, it only uses constructive lop-rules.

Firstly, observe that a lop-kernel? (resp. constructive lop-kernel?) is a lop-kernel (resp.
constructive lop-kernel). Indeed, if a lop-kernel? decides (I ′, k′), then, as the definition of
lop-rules implies that the reduced instance (I ′, k′) is equivalent to (I, k), it also decides
(I, k). Moreover, if a lop-kernel? is constructive and decides that (I ′, k′) is a yes-instance by
providing a solution s′ with valΠ(I ′, s′) ≥ k′, then, as the rules are constructive, and according
to Observation 4, we can build in polynomial time a solution s with valΠ(I, s) ≥ k, and thus
constructively decide (I, k). Secondly, observe that a lop-kernel is a lop-kernel?, but that a
constructive lop-kernel is not necessarily a constructive lop-kernel?. The conclusion of this
discussion is that for the non-constructive versions, both definitions are equivalent, and for the
constructive versions, lop-kernels are slightly more general. As many inapproximability results
even hold for the non-constructive version of approximation, we suggest the reader to stick
to the non-constructive version, and thus to chose any of the two definitions. The only case
where it could make a difference would be for a problem Π for which inapproximability results
are only known for ruling out constructive approximation algorithms. Then, Corollary 11
will turn this inapproximability into a kernel lower bound even for constructive lop-kernels,
and not only for constructive lop-kernels?. This justifies why we consider henceforth only
lop-kernels.

1 This definition was used in the conference version of this paper [4].
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Our next objective is to prove that a lop-kernel yields an approximation algorithm. For
this, we need the following definition, which is inspired by a similar notion introduced by
Hochbaum and Shmoys [45], and referred to as f -relaxed decision procedure in [55].

I Definition 7. Let Π be a well-behaved maximization problem and let f : N → N be a
function. An f -dual-approximation algorithm for Π is a polynomial-time algorithm that,
given an instance (I, k) of Πdec, concludes one of the following:

optΠ(I) ≥ k.
optΠ(I) < f(k).

An f -dual approximation algorithm is constructive if, whenever it concludes that optΠ(I) ≥ k,
it provides a solution s with valΠ(I, s) ≥ k.

In the next lemma we prove that a lop-kernel of size s yields an f -dual-approximation
algorithm (where f depends on s), which in turn yields a classical approximation algorithm
whose ratio depends on s. To provide some insight on the statement of the next lemma, keep
in mind that for vertex-maximization problems, the upper bound function u is typically the
identity function.

I Lemma 8. Let Π be a well-behaved maximization problem with a non-decreasing upper
bound function u and let s : N→ N be a computable function. If Π admits a lop-kernel of
size s, then Π admits an f-dual-approximation algorithm where f(k) := u(s(k)) + k + 1.
Moreover, if the lop-kernel is constructive, then the f-dual-approximation algorithm is also
constructive.

Proof. Let k ∈ N, (I, k) be an instance of Πdec, and R be a lop-kernel of size s for Π.
We describe an f -dual approximation algorithm A which takes as input I and k, starts
by running R with input (I, k), and continues based on its possible output. If R decides
that (I, k) is a yes-instance, then optΠ(I) ≥ k, and A returns optΠ(I) ≥ k as well. Notice
that if R is constructive, then it provides a solution s of I such that valΠ(I, s) ≥ k,
and A returns this solution as well. Otherwise, we claim that it is safe for A to return
optΠ(I) ≤ f(k). Indeed, if R decides that (I, k) is a no-instance, then optΠ(I) < k, implying
optΠ(I) < u(s(k)) + k = f(k). Finally, suppose that R outputs an equivalent instance (I ′, k′)
obtained from (I, k) using only lop-rules and such that |I ′| ≤ s(k). By using Observation 4
we can assume that (I ′, k′) is obtained from (I, k) by a single lop-rule, and Property 2 in
Definition 3 implies that optΠ(I) ≤ optΠ(I ′) + (k − k′) ≤ u(|I ′|) + k ≤ u(s(k)) + k < f(k),
where we have used the fact that u is non-decreasing. J

Let us now turn to our main results relating the size of lop-kernels to the existence of
approximation algorithms. To keep statements as simple as possible, we first provide in
Subsection 3.2 results that correspond to the specialized versions for vertex-maximization
problems of the general results presented in Subsection 3.3.

3.2 Connection between lop-kernels and approximation algorithms for
vertex-maximization problems

In this subsection we deal with vertex-maximization problems. The following lemma is a
folklore result [55], but as it is generally tuned for a particular function f appearing in the
considered context, we need to restate it in a general form.

I Lemma 9. Let Π be a vertex-maximization problem whose decision version is in NP, and
f : N→ N be a computable function.
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1. For every real number c > 1, if Π admits an f-dual-approximation algorithm with
f(k) = O(kc), then Π admits a polynomial-time value-approximation algorithm with ratio
O(n c−1

c ) on n-vertex graphs.
2. For every real number β ≥ 1, if Π admits an f-dual-approximation algorithm with

f(k) = βk+ 1, then Π admits a polynomial-time value-approximation algorithm with ratio
β + ε for every real number ε > 0.

Moreover, if the f -dual-approximation is constructive, then the corresponding approximation
algorithm is also constructive.

Proof. Let A be an f -dual-approximation algorithm for Π. We proceed to construct a
polynomial-time approximation algorithm for Π with the claimed ratio. We consider the two
statements of the lemma separately.

Case 1: f(k) = O(kc).

Given an n-vertex graph G as instance of Π, we find k0 ∈ {0, . . . , n} defined as the largest
positive integer k such that algorithm A returns that optΠ(G) ≥ k. Note that k0 can be
found in polynomial time by performing at most n+ 1 calls to algorithm A. If there is no
such k0, or if k0 = 0, then optΠ(G) < max(f(0), f(1)) = O(1), and since the decision version
of Π is in NP, we can find an optimal solution in polynomial time by verifying all vertex
subsets of size at most max(f(0), f(1)). Otherwise, that is, if k0 ≥ 1, our approximation
algorithm returns k0, or if is constructive it returns a solution S0 (a subset of vertices here)
such that |S0| ≥ k0. Let us prove that it provides the claimed approximation ratio. We
distinguish two subcases depending on the value of k0. Suppose first that k0 ≥ n1/c. Since
optΠ(G) ≤ n, in this case we get that

optΠ(G)
k0

≤ n

n1/c = n
c−1
c .

Otherwise, it holds that k0 < n1/c. By the definition of k0 we have optΠ(G) < f(k0 +1) =
O((k0 + 1)c) = O((k0)c). Thus, in this case we get that

optΠ(G)
k0

= O((k0)c)
k0

= O
(
(k0)c−1) = O

(
n
c−1
c

)
.

Since in both cases we have a ratio of O(n c−1
c ), the lemma follows in Case 1.

Case 2: f(k) = βk + 1.

Let ε > 0 be a arbitrary real number, let ε′ = ε
β , and let us provide a polynomial-time

approximation algorithm with ratio β(1 + ε′) = β + ε. As in Case 1, we start by finding k0,
defined as the largest positive integer k such that algorithm A returns that optΠ(G) ≥ k. By
definition of k0 we have optΠ(G) < f(k0 + 1) = β(k0 + 1) + 1 ≤ β(k0 + 2). If k0 <

2
ε′ , then

optΠ(G) is constant, and again by enumerating all subsets of size at most β( 2
ε′ + 2) we find

an optimal solution. Otherwise, we return k0, or if is constructive it returns a solution S0 (a
subset of vertices here) such that |S0| ≥ k0. We have optΠ(G) ≤ β(k0 + 2) ≤ β(1 + ε′)k0,
concluding Case 2 of the proof. J

As a vertex-maximization problem whose decision version is in NP is a well-behaved
problem, the hypothesis of Lemma 8 is satisfied (taking the identity function as upper bound
function), and thus the following theorem is immediate by pipelining Lemma 8 and Lemma 9.
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I Theorem 10. Let Π be a vertex-maximization problem whose decision version is in NP.
1. For every real number c > 1, if Π admits a lop-kernel with O(kc) vertices, then it admits

a polynomial-time value-approximation algorithm with ratio O(n c−1
c ) on n-vertex graphs.

2. For every real number β ≥ 1, if Π admits a lop-kernel with βk vertices, then for any
real number ε > 0, it admits a polynomial-time value-approximation algorithm with ratio
(β + 1 + ε).

Moreover, if the lop-kernel is constructive, then the corresponding approximation algorithm
is also constructive.

As the framework of lop-kernels is mainly defined as a tool to get lop-kernel lower bounds
from inapproximability, let us explicitly formulate the contrapositive of Theorem 10. Note
that, when applying it to a concrete problem Π, the inapproximability of Π will rely on some
complexity assumption, typically P 6= NP.

I Corollary 11. Let Π be a vertex-maximization problem whose decision version is in NP.
1. For every real number r ∈ (0, 1), if Π does not admit a polynomial-time value-approximation

algorithm with ratio O(nr) on n-vertex graphs, then Π parameterized by the solution size
does not admit a lop-kernel with O(k

1
1−r ) vertices.

2. For every real number β > 1, if Π does not admit a polynomial-time value-approximation
algorithm with ratio β, then Π parameterized by the solution size does not admit a
lop-kernel with (β − 1− ε)k vertices for any real number ε > 0.

Moreover, if the non-existence of approximation algorithms only holds for constructive
approximation algorithms, then the lower bound only holds for constructive lop-kernels.

3.3 Connection between lop-kernels and approximation algorithms for
well-behaved maximization problems

The following lemma and theorem are the versions of Lemma 9 and Theorem 10, respectively,
in the more general setting of arbitrary well-behaved maximization problems.

I Lemma 12. Let Π be a well-behaved maximization problem, a ∈ R+, u : N → N, and
f : N → N be functions such that u(n) = O(na), u is polynomial-time computable, and
f is computable. Suppose that Π has u as upper bound function and that it admits an
f -dual-approximation.
1. If f(k) = O(kd) for some real number d > 1, then Π admits a polynomial-time value-

approximation algorithm with ratio O(n
a(d−1)
d ), where n is the size of the input.

2. If f(k) = λkd + k + 1 for some real numbers d ≤ 1 and λ > 0, then Π admits a
polynomial-time value-approximation algorithm with ratio λ2d + 3.

Moreover, if the f-dual-approximation algorithm is constructive, then the corresponding
approximation algorithm is also constructive.

Proof. Let A be an f -dual-approximation algorithm for Π. For both cases in the statement
in the lemma, we proceed to construct a polynomial-time approximation algorithm for Π
with the claimed ratio.

Given an instance I of Π, we find k0 ∈ {0, . . . , u(n)} (recall that n = |I|) defined
as the largest positive integer k such that algorithm A returns that optΠ(G) ≥ k. Note
that k0 can be found in polynomial time as |I| is polynomial-time computable and its
value n is polynomially upper-bounded in the classical bit-size of the instance, and that
u(n) can be computed in polynomial time as well. If there is no such k0, or if k0 = 0,
then optΠ(G) < max(f(0), f(1)) = O(1), and since Π is well-behaved, we can, given
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max(f(0), f(1)), decide in polynomial time if either optΠ(I) = 0 and provide a solution s
with valΠ(I, s) = 0, or provide a solution s with valΠ(I, s) > 0. In both cases we even have
a constructive constant-factor approximation, and as optΠ(I) < f(1) = λ + 2, we get the
claimed ratio in both cases. Otherwise, that is, when k0 ≥ 1, our approximation algorithm
returns k0, or if is constructive it returns a solution s0 such that valΠ(I, s0) ≥ k0. Let us
prove that it provides the claimed approximation ratio. We now distinguish the two cases
claimed in the statement of the lemma.

Case 1: f(k) = O(kd).

Suppose first that k0 ≥ na/d. In this case we have

optΠ(I)
k0

≤ u(n)
k0

= O(na)
na/d

= O
(
n
a(d−1)
d

)
.

Otherwise, it holds that k0 < na/d. By the definition of k0 we have optΠ(G) < f(k0 + 1) =
O((k0 + 1)d) = O((k0)d). Thus, in this case we get that

optΠ(I)
k0

= O((k0)d)
k0

= O
(
(k0)d−1) = O

(
n
a(d−1)
d

)
.

Since in both cases we have a ratio of O(n
a(d−1)
d ), the lemma follows in Case 1.

Case 2: f(k) = λkd + k + 1.

We have

optΠ(I)
k0

≤ f(k0 + 1)
k0

≤ λ(k0 + 1)d + k0 + 2
k0

Let

h(x) = λ(x+ 1)d + x+ 2
x

and note that the approximation ratio is at most h(k0).
To bound h(k0), we proceed to show that h(x) is decreasing in x when x > 0 and obtain

the desired approximation ratio of h(k0) ≤ h(1) = λ2d + 3. To show that h(x) is indeed
decreasing in x when x > 0, note that

∂h(x)
∂x

= λ(x+ 1)d

x2 ·
(
d

x

x+ 1 − 1
)
− 1
x2 ,

which is negative when d ≤ 1 and x > 0. J

The next theorem follows immediately by pipelining Lemma 8 and Lemma 12. Namely,
starting with the hypothesis of Theorem 13, we first apply Lemma 8 and then Lemma 12
with d = ac and λ = αβa.

I Theorem 13. Let Π be a well-behaved maximization problem, a, c ∈ R+, u : N→ N, and
s : N→ N be functions such that u(n) = O(na), s(k) = O(kc), u is non-decreasing, and s
and u are polynomial-time computable. Suppose that Π has u as upper bound function and
that it admits a lop-kernel of size s, according to the same size function | · | associated with Π.
1. If ac > 1, then Π admits a polynomial-time value-approximation algorithm with ratio
O(n ac−1

c ), where n is the size of the instance.
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2. If ac ≤ 1 and α, β ∈ R+ are such that u(n) ≤ αna and s(k) ≤ βkc, then Π admits a
polynomial-time value-approximation algorithm with ratio αβa2ac + 3.

Moreover, if the lop-kernel is constructive, then the corresponding approximation algorithm
is also constructive.

To provide some insight on the formulas used in the statement of Theorem 13, and
especially on the role of the upper bound function u(n) = O(na), one can typically think of
a graph problem where the output is a subset of edges, and where the size of an instance is
the number of vertices of input graph. In that case, we have a = 2, and thus a lop-kernel of
size (in terms of number of vertices) O(kc) would only imply an O(n 2c−1

c )-approximation
algorithm, which is worse than the ratio O(n c−1

c ) obtained in Theorem 10, where a = 1.
On the other hand, the ratio can also sometimes be slightly better, as there may exist
problems with upper bound function u(n) = O(na) for some a < 1. Moreover, observe that
for problems where a ≤ 1, the second item covers the case of linear kernels, which corresponds
to c = 1.

By taking the contrapositive of Theorem 13, we obtain the following more general version
of Corollary 11.

I Corollary 14. Let Π be a well-behaved maximization problem with a non-decreasing and
polynomial-time computable upper bound function u(n) = O(na) for a ∈ R+. In what follows,
the size of the instance, denoted by n, and the size of the kernel are defined according to the
same size function | · | associated with Π.
1. For every real number r ∈ (0, 1), if Π does not admit a polynomial-time value-approximation

algorithm with ratio O(nr), then Π parameterized by the solution size does not admit a
lop-kernel of size O(k

1
a−r ).

2. Suppose that u(n) ≤ αna for some α ∈ R+. For every real number β > 1, if Π does not
admit a polynomial-time value-approximation algorithm with ratio β, then Π parameterized
by the solution size does not admit a lop-kernel of size β′kc′ for any real numbers β′, c′
such that ac′ ≤ 1 and αβ′a2ac′ + 3 ≤ β.

Moreover, if the non-existence of approximation algorithms only holds for constructive
approximation algorithms, then the lower bound only holds for constructive lop-kernels.

4 A framework for ruling out certain polynomial kernels: the case of
minimization problems

In this section we adapt the framework of lop-kernels introduced in Section 3 to minimization
problems. The definitions and results for minimization problems are very close to those for
maximization problems, but there are a number of subtle differences that we will discuss as
they appear.

We say that a minimization problem Π is well-behaved if it comes equipped with a size
function (as defined in Section 2) and it satisfies the following condition, which we denote by
Cmin:

There exists a polynomial-time algorithm that, given as input an instance I of Π,
decides if optΠ(I) = 0, and in this case provides a solution s where valΠ(I, s) = 0, or
otherwise provides any solution s.

Note that condition Cmin above is not the symmetric version of condition Cmax defined
at the beginning of Section 3.
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Given a well-behaved minimization problem Π, we say that a function u : N → N is
an upper bound function for Π if for any instance I of Π and any solution s of I, we have
valΠ(I, s) ≤ u(|I|), where | · | is the size function of Π. Note that this notion of upper bound
function differs from the one given for maximization problems. Again, throughout the paper,
we assume that the notions of size used in both the size of kernels and the upper bound
function are the same.

The reminder of this section is organized similarly to Section 3. Namely, in Subsection 4.1
we present the definition of lop-rules and lop-kernels for well-behaved minimization problems,
and we prove a general technical result, namely Lemma 19. In Subsection 4.2 we present
the connection between lop-kernels and approximation algorithms for vertex-minimization
problems, and in Subsection 4.3 we generalize it to arbitrary well-behaved minimization
problems.

4.1 Definition of lop-rules and lop-kernels
The following definition should be compared to Definition 3.

I Definition 15. A large optimal preserving reduction rule, or lop-rule for short, for a well-
behaved minimization problem Π, is a polynomial-time algorithm R that, given an instance
(I, k) of Πdec, computes another instance (I ′, k′) of Πdec with 0 ≤ k′ ≤ k and such that
1. if (I, k) is a yes-instance of Πdec, then (I ′, k′) is a yes-instance of Πdec, and
2. if (I, k) is a no-instance of Πdec, then optΠ(G′) ≥ optΠ(G)− (k−k′), implying that (I ′, k′)

is a no-instance of Πdec.
A lop-rule R is constructive if, for any solution s′ of I ′, it constructs (in polynomial time) a
solution s of I such that valΠ(I, s) ≤ valΠ(I ′, s′) + (k − k′).

Note that Property 2 in Definition 15 is stronger than the implication “if (I, k) is a
no-instance of Πdec, then (I ′, k′) is a no-instance of Πdec”, which would yield the definition of
a classical kernelization algorithm. Observe also that the constructibility condition implies
Property 2, unlike in the maximization case. Indeed, when we consider how this latter
implication is generally proved in safeness proofs of classical kernels, we generally prove its
contrapositive, and one of the following scenarios often occur:
(a) For every solution s′ of I ′ there exists a solution s of I with valΠ(I, s) ≤ valΠ(I ′, s′) +

(k − k′).
(b) For every solution s′ of I ′ with valΠ(I ′, s′) ≤ k′, there exists a solution s of I with

valΠ(I, s) ≤ valΠ(I ′, s′) + (k − k′).
(c) If there exists a solution s′ of I ′ with valΠ(I ′, s′) ≤ k′, then there exists a solution s of I

with valΠ(I, s) ≤ k.

In Case (a), the rule preserves all optimal values, as it implies that optΠ(G′) ≥ optΠ(G)−
(k− k′), and note that it implies Property 2 in Definition 15. Compared to the maximization
case, Case (c) still implies only the classical implication “if (I, k) is a no-instance of Πdec,
then (I ′, k′) is a no-instance of Πdec”, but note that Case (b) no longer implies Property 2.
This is one of reasons why, in our opinion, the framework of lop-kernels seems to be more
natural when applied to maximization problems.

The following observation is again an immediate consequence of the definition of a lop-rule.

I Observation 16. lop-rules can be composed. Formally, consider two lop-rules R1 and R2.
Then, the rule R that, given a instance (I, k) of Πdec, returns R2(R1(I, k)), is also a lop-rule.
Moreover, if R2 and R1 are constructive, then R is also constructive.
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A typical example of a lop-rule for a vertex-minimization problem is when, for some
problem Π, we can identify a “dominant” set of vertices that can be safely included into a
solution. More precisely, consider a rule that, given a graph G, finds a subset T ⊆ V (G) and
a graph G′ such that there exists an optimal solution S? in G such that S? = T ∪ S′, where
S′ is a solution in G′, and for every solution S′ in G′, S′ ∪ T is a solution in G. Such a rule
is indeed a (constructive) lop-rule.

Even if almost all classical known reduction rules for minimization problems are lop-
rules [25, 35], here is a simple example a non-lop-rule. Consider the Vertex Cover
problem, and suppose that, given an instance (G, k), we find in G a matching M of size
k + 1. The rule just outputs (G′, k′) = (M,k), hence preserving the fact that (G, k) is a
no-instance. However, this rule does not satisfy Property 2 in Definition 15, since the size of
a minimum vertex cover of G may be arbitrarily large compared to k, hence the inequality
optΠ(G′) ≥ optΠ(G) may not hold. In Section 5 we discuss a (much more involved) reduction
rule for a vertex-minimization problem, namely Tree Deletion Set, which is not a lop-rule
either.

As in the maximization case, if we defined a lop-kernel as an algorithm consisting only of
lop-rules, we would exclude from being a lop-kernel, for instance, the algorithm consisting
of the rule that detects a no-instance of Vertex Cover as in the above paragraph. This
justifies the next definition, where we also allow lop-kernels to decide instances, and that
should be compared to Definition 5.

I Definition 17. Let Π be a well-behaved minimization problem and let s : N → N be a
computable function. A lop-kernel of size s for Π parameterized by the solution size is a
polynomial-time algorithm that takes as input an instance (I, k) of Πdec, and either

decides that (I, k) is a yes-instance or a no-instance, or
outputs a reduced instance (I ′, k′) by applying a sequence of lop-rules to (I, k), with
|I ′| ≤ s(k).

A lop-kernel is constructive if, in the first case, it constructively decides (I, k), and, in the
second case, it only uses constructive lop-rules.

Note that the constructibility condition in Definition 17 differs from that in Definition 5
for maximization problems. We need this stronger property in the proof of Lemma 19.

Our next objective is to prove that a lop-kernel yields the existence of a polynomial-time
approximation algorithm. For this, we need the following definition, which is the version of
Definition 7 for minimization problem.

I Definition 18. Let Π be a well-behaved minimization problem and let f : N → N. An
f -dual-approximation algorithm for Π is a polynomial-time algorithm that, given an instance
(I, k) of Πdec, concludes one of the following:

optΠ(I) ≤ f(k).
optΠ(I) > k.

An f -dual-approximation algorithm is constructive if, whenever it concludes that optΠ(I) ≤
f(k), it provides a solution s with valΠ(I, s) ≤ f(k).

In the next lemma we prove that a lop-kernel of size s yields an f -dual-approximation
algorithm (where f depends on s), which in turn yields a classical approximation algorithm
whose ratio depends on s. As in the maximization case, to provide some insight on the
statement of the next lemma, keep in mind that for vertex-minimization problems, the upper
bound function u is typically the identity function. Note that in the next lemma, the derived
function f(k) differs slightly from that of Lemma 8; this is due to technical reasons motivated
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by the fact that there the maximization and minimization versions of our framework are not
totally symmetric.

I Lemma 19. Let Π be a well-behaved minimization problem with a non-decreasing upper
bound function u and let s : N→ N be a computable function. If Π admits a lop-kernel of size
s, then Π admits an f -dual-approximation algorithm where f(k) := u(s(k)) + k. Moreover, if
the lop-kernel is constructive, then the f -dual-approximation algorithm is also constructive.

Proof. Let k ∈ N, (I, k) be an instance of Πdec, and R be a lop-kernel of size s for Π.
We describe an f -dual-approximation algorithm A which takes as input I and k, starts by
running R with input (I, k), and continues based on its possible output. If R decides that
(I, k) is a no-instance, then optΠ(I) > k, and A returns optΠ(I) > k. If R decides that (I, k)
is a yes-instance, then optΠ(I) ≤ k, and A returns optΠ(I) ≤ k ≤ f(k) as well. Notice that if
R is constructive, then it provides a solution s of I such that valΠ(I, s) ≥ k, and A returns
this solution as well.

Finally, suppose that R outputs an equivalent instance (I ′, k′) obtained from (I, k) using
only lop-rules and such that |I ′| ≤ s(k). By using Observation 16 we can assume that
(I ′, k′) is obtained from (I, k) by a single lop-rule. Let us start by the non-constructive
case, in which A returns optΠ(I) ≤ f(k). If optΠ(I) ≤ k, then we are done as k ≤ f(k).
If optΠ(I) > k, Property 2 in Definition 15 implies that optΠ(I) ≤ optΠ(I ′) + (k − k′) ≤
u(|I ′|) + k ≤ u(s(k)) + k = f(k), where we have used that u is non-decreasing. Let us now
turn to the constructive case. As Π is well-behaved and verifies Cmin, we can compute in
polynomial time a solution s′ (of any cost), and according to the definition of u we have
valΠ(I ′, s′) ≤ u(|I ′|) ≤ u(s(k)), where we have used again that u is non-decreasing. Finally,
as the rule is constructive, we can construct in polynomial time a solution s such that
valΠ(I, s) ≤ valΠ(I ′, s′) + k ≤ f(k), and algorithm A returns this solution as well. J

Let us now turn to our main results relating the size of lop-kernels with the existence
of approximation algorithms. As in Section 3, to keep statements as simple as possible,
we provide in Subsection 4.2 results that correspond to the specialized versions for vertex-
maximization problems of results in Subsection 4.3.

4.2 Connection between lop-kernels and approximation algorithms for
vertex-minimization problems

In this subsection we deal with vertex-minimization problems. The following lemma, which
should be compared to Lemma 9 Note that the hypothesis in the second item of Lemma 9 is
slightly different from the one below, and that the obtained approximation ratios are also
slightly different.

I Lemma 20. Let Π be a vertex-minimization problem whose decision version is in NP,
c > 1 and β ≥ 1 be real numbers, and f : N→ N be a computable function.
1. If Π admits an f-dual-approximation algorithm where f(k) = O(kc), then Π admits a

polynomial-time value-approximation algorithm with ratio O(n c−1
c ) on n-vertex graphs.

2. If Π admits a f-dual-approximation algorithm where f(k) = βk, then Π admits a
polynomial-time value-approximation algorithm with ratio β.

Moreover, if the f -dual-approximation is constructive, then the corresponding approximation
algorithm is also constructive.

Proof. Let A be an f -dual-approximation algorithm for Π. We proceed to construct a
polynomial-time approximation algorithm for Π with the claimed ratio. We consider the two
statements of the lemma separately.
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Case 1: f(k) = O(kc).

Given an n-vertex graph G as instance of Π, we find k0 ∈ {0, . . . , n} defined as the smallest
positive integer k such that algorithm A returns that optΠ(G) ≤ f(k). Note that k0 can be
found in polynomial time by performing at most n + 1 calls to algorithm A. Notice that
k0 always exists as we cannot have optΠ(G) > n. If k0 = 0, then optΠ(G) ≤ f(0) = O(1),
and since the decision version of Π is in NP, we can find an optimal solution in polynomial
time by verifying all vertex subsets of size at most f(0). Otherwise, that is, if k0 ≥ 1,
our approximation algorithm returns f(k0), or if is constructive it returns a solution S0
(that is, a subset of vertices) such that |S0| ≤ f(k0). By definition of k0, we have that
optΠ(G) > k0 − 1, or equivalently optΠ(G) ≥ k0. Let us prove that this algorithm provides
the claimed approximation ratio. We distinguish two subcases depending on the value of k0.
Suppose first that k0 ≥ n1/c. In this case we get that

f(k0)
optΠ(G) ≤

n

k0
≤ O(n

c−1
c ).

Otherwise, it holds that k0 < n1/c. In this case we get that

f(k0)
optΠ(G) ≤

f(k0)
k0

< O(kc−1
0 ) = O(n

c−1
c ).

Since in both cases we have a ratio of O(n c−1
c ), the lemma follows in Case 1.

Case 2: f(k) = βk.

As in Case 1, we start by finding k0 defined as the smallest positive integer k such that
algorithm A returns that optΠ(G) ≤ f(k). If k0 = 0 we proceed as in the first case. Otherwise,
we return f(k0), or if the algorithm is constructive we return a solution S0 (that is, a subset
of vertices) such that |S0| ≥ f(k0). We have

f(k0)
optΠ(G) ≤

f(k0)
k0

≤ β,

and the lemma follows in Case 2. J

As a vertex-minimization problem whose decision version is in NP is a well-behaved
problem, the hypothesis of Lemma 20 is satisfied (by taking the identity function as upper
bound function), and thus the following theorem is immediate by pipelining Lemma 19 and
Lemma 20. The next theorem should be compared to Theorem 10.

I Theorem 21. Let Π be a vertex-minimization problem whose decision version is in NP.
1. For every real number c > 1, if Π admits a lop-kernel with O(kc) vertices, then it admits

a polynomial-time value-approximation algorithm with ratio O(n c−1
c ) on n-vertex graphs.

2. For every real number c > 1, if Π admits a lop-kernel with at most ck vertices, then it
admits a polynomial-time value-approximation algorithm with ratio (c+ 1).

Moreover, if the lop-kernel is constructive, then the corresponding approximation algorithm
is also constructive.

As the framework of lop-kernels is mainly defined as a tool to get lop-kernel lower bounds
from inapproximability, let us explicitly formulate the contrapositive of Theorem 21. Note
again that, when applying it to a concrete problem Π, the inapproximability of Π will rely
on some complexity assumption, typically P 6= NP.
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I Corollary 22. Let Π be a vertex-minimization problem whose decision version is in NP.
1. For every real number r ∈ (0, 1), if Π does not admit a polynomial-time value-approximation

algorithm with ratio O(nr) on n-vertex graphs, then Π parameterized by the solution size
does not admit a lop-kernel with O(k

1
1−r ) vertices.

2. For every real number β > 1, if Π does not admit a polynomial-time value-approximation
algorithm with ratio β, then Π parameterized by the solution size does not admit a
lop-kernel with (β − 1− ε)k vertices for any real number ε > 0.

Moreover, if the non-existence of approximation algorithms only holds for constructive
approximation algorithms, then the lower bound only holds for constructive lop-kernels.

4.3 Connection between lop-kernels and approximation algorithms for
well-behaved minimization problems

The following lemma and theorem are a more general version of Lemma 20 and Theorem 21,
respectively, for well-behaved minimization problems. The next lemma should be compared
to Lemma 12, and note that the obtained approximation ratios in the second item of both
lemmas are different.

I Lemma 23. Let Π be a well-behaved minimization problem, a ∈ R+, u : N → N, and
f : N → N be functions such that u(n) = O(na), u is polynomial-time computable, and
f is computable. Suppose that Π has u as upper bound function u and that it admits an
f -dual-approximation.
1. If f(k) = O(kd) for some real number d > 1, then Π admits a polynomial-time value-

approximation algorithm with ratio O(n
a(d−1)
d ), where n is the size of the input.

2. If f(k) = λkd+k for some real numbers d ≤ 1 and λ > 0, then Π admits a polynomial-time
value-approximation algorithm with ratio λ+ 1.

Moreover, if the dual-approximation algorithm is constructive, then the corresponding ap-
proximation algorithm is also constructive.

Proof. Let A be an f -dual-approximation algorithm for Π. For both cases in the statement
of the lemma, we proceed to construct a polynomial-time approximation algorithm for Π
with the claimed ratio.

Given an instance I of Π, we find k0 ∈ {0, . . . , u(n)} (recall that n = |I|) defined as the
smallest positive integer k such that algorithm A returns that optΠ(G) ≤ f(k). Note that
k0 can be found in polynomial time, as |I| is polynomial-time computable and its value n
is polynomially upper-bounded in the classical bit-size of the instance, and that u(n) can
be computed in polynomial time as well. Note that k0 always exists, as we cannot have
optΠ(I) > u(n). If k0 = 0, then as by hypothesis Π satisfies property Cmin, we can verify in
polynomial time whether optΠ(I) = 0 and, if it is the case, we provide an optimal solution s
with valΠ(I, s) = 0. Otherwise, we have optΠ(I) ≥ 1, and A returns f(k0), or a solution s
such that valΠ(I, s) ≤ f(k0) if the dual-approximation algorithm is constructive. In the first
case (that is, if f(k) = O(kd)), as optΠ(I) ≥ 1, we have a ratio f(0), implying the claimed
ratio. In the second case (that is, if f(k) = λkd + k), f(0) = 0, so we even have an optimal
solution.

Let us now assume that k0 ≥ 1, and recall that optΠ(I) ≥ k0. We distinguish the two
cases claimed in the statement of the lemma.
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Case 1: f(k) = O(kd).

Suppose first that k0 ≥ na/d. In this case we have

f(k0)
optΠ(I) ≤

u(n)
k0

≤ O(na)
k0

= O
(
n
a(d−1)
d

)
.

Otherwise, it holds that k0 < na/d In this case we get that

f(k0)
optΠ(I) = O((k0)d)

k0
= O

(
(k0)d−1) = O

(
n
a(d−1)
d

)
.

Since in both cases we have a ratio of O(n
a(d−1)
d ), the lemma follows in Case 1.

Case 2: f(k) = λkd + k.

In this case we have
f(k0)

optΠ(I) ≤
λkd0 + k0

k0
= λ(k0)d−1 + 1.

As d ≤ 1, the last expression in the above equation is decreasing in k0, and as k0 ≥ 1, the
maximum is reached for k0 = 1, and the approximation ratio claimed in Case 2 follows. J

The next theorem, which should be compared to Theorem 13, follows immediately by
pipelining Lemma 19 and Lemma 23. Namely, starting with the hypothesis of Theorem 24,
we first apply Lemma 19 and then Lemma 23 with d = ac and λ = αβa.

I Theorem 24. Let Π be a well-behaved minimization problem, a, c ∈ R+, u : N→ N, and
s : N→ N be functions such that u(n) = O(na), s(k) = O(kc), u is non-decreasing, and s
and u are polynomial-time computable. Suppose that Π has u as upper bound function and
that it admits a lop-kernel of size s, according to the same size function | · | associated with Π.
1. If ac > 1, then Π admits a polynomial-time value-approximation algorithm with ratio
O(n ac−1

c ).
2. If ac ≤ 1 and α, β ∈ R+ are such that u(n) ≤ αna and s(k) ≤ βkc, then Π admits a

polynomial-time value-approximation algorithm with ratio αβa + 1.
Moreover, if the lop-kernel is constructive, then the corresponding approximation algorithm
is also constructive.

The discussion provided right after Theorem 13 also applies to the above theorem. The
contrapositive of Theorem 24 yields the following corollary.

I Corollary 25. Let Π be a well-behaved minimization problem with a non-decreasing
polynomial-time computable upper bound function u(n) = O(na) for a ∈ R+. In what
follows, the size of the instance, denoted by n, and the size of the kernel are defined according
to the same size function | · | associated with Π.
1. For every real number r ∈ (0, 1), if Π does not admit a polynomial-time value-approximation

algorithm with ratio O(nr), then Π parameterized by the solution size does not admit a
lop-kernel of size O(k

1
a−r ).

2. Suppose that u(n) ≤ αna for some α ∈ R+. For every real number β > 1, if Π does not
admit a polynomial-time value-approximation algorithm with ratio β, then Π parameterized
by the solution size does not admit a lop-kernel of size β′kc′ for any real numbers β′, c′
such that ac′ ≤ 1 and αβ′a + 1 ≤ β.

Moreover, if the non-existence of approximation algorithms only holds for constructive
approximation algorithms, then the lower bound only holds for constructive lop-kernels.
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5 Applications of the framework of lop-kernels

In this section we provide several applications of the framework of lop-kernels introduced in
Section 3 and Section 4.

Our first application concerns the Maximum Minimal Vertex Cover problem, defined
in Section 2. Boria et al. [18] proved that Maximum Minimal Vertex Cover does not
admit a polynomial-time O(n 1

2−ε)-approximation algorithm for any ε > 0, unless P = NP.
Hence, by applying Corollary 11 with r = 1

2 − ε we obtain the following corollary, which
matches the best known kernel having O(k2) vertices [34].

I Corollary 26. Maximum Minimal Vertex Cover parameterized by the solution size
does not admit a lop-kernel with O(k2−ε) vertices for any ε > 0, unless P = NP.

Our second application is similar to the first one. In the Maximum Minimal Feedback
Vertex Set problem, given an n-vertex graph G and an integer k, the objective is to decide
if there exists a minimal feedback vertex set S ⊆ V (G) (i.e., a set S such that G \ S is a
forest) of size at least k. Dublois et al. [31] recently proved that the problem does not admit
a polynomial-time O(n 2

3−ε)-approximation algorithm for any ε > 0, unless P = NP. Hence,
by applying Corollary 11 with r = 2

3 − ε we obtain the following corollary, which matches
the best known kernel with O(k3) vertices also provided by Dublois et al. [31].

I Corollary 27. Maximum Minimal Feedback Vertex Set parameterized by the solution
size does not admit a lop-kernel with O(k3−ε) vertices for any ε > 0, unless P = NP.

Our third application concerns a vertex-minimization problem. In the Tree Deletion
Set problem, given a graph G and an integer k, the objective is to decide whether at most k
vertices can be deleted from an n-vertex graph G in order to obtain a tree. It is known that
this problem does not admit a polynomial-time O(n1−ε)-approximation for any ε > 0 unless
P 6= NP [56]. Corollary 22 implies the following.

I Corollary 28. Tree Deletion Set parameterized by the solution size does not admit a
polynomial lop-kernel, unless P = NP.

The interesting fact is that Tree Deletion Set admits a kernel with O(k4) vertices [38].
This kernel is the only non-artificial example of non-lop-kernel that we are aware of so far.
Thus, the algebraic reduction rule presented by Giannopoulou et al. [38], which is based on
identifying a subset of linear equations of appropriate size that captures all solutions of size
at most k, cannot be (even transformed to) a lop-rule.

Our last application deals with the Maximum Independent Set problem restricted to
Kt-free graphs, for an integer t ≥ 3. Ramsey’s theorem [52] implies that, given a Kt-free
graph on n vertices, it is always possible to find in polynomial time an independent set of
size at least n

1
t−1 . This directly implies a polynomial-time n

t−2
t−1 -approximation algorithm for

Maximum Independent Set on Kt-free graphs, and a constructive lop-kernel of size kt−1

(indeed, if the input graph has size al least kt−1, we can safely declare it a yes-instance). To
the best of our knowledge, improving this trivial approximation factor is still open, and the
only known inapproximability result is the bound O(n 1

4−ε) on triangle-free graphs recently
proved by Bonnet et al. [17], which relies on the hypothesis that NP * BPP. In the same
paper [17], the authors state the following conjecture, called the “Improved Approximation
Conjecture”: for every fixed graph H, there exists a constant ε > 0 such that Maximum
Independent Set admits a (randomized) polynomial-time n1−ε-approximation algorithm
on H-free n-vertex graphs. We state the following conjecture.
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I Conjecture 29. For every fixed graph H, the Maximum Independent Set problem
restricted to H-free graphs admits a polynomial lop-kernel.

Corollary 11, combined with the above discussion and the inapproximability result of
Bonnet et al. [17] on triangle-free graphs, imply the following.

I Corollary 30. The following claims hold:
Maximum Independent Set parameterized by the solution size does not admit a
lop-kernel with O(k4−ε) vertices on triangle-free graphs for any ε > 0, unless NP ⊆ BPP.
For every real number ε > 0 and every integer t ≥ 3, a lop-kernel with O(kt−1−ε) vertices
for Maximum Independent Set on Kt-free graphs would improve the best known
approximation ratio n

t−2
t−1 that follows from Ramsey’s theorem [52].

Conjecture 29 implies the Improved Approximation Conjecture of Bonnet et al. [17].

6 An attempt to obtain a linear kernel for MMVC

In this section we briefly explain the flaw in the linear kernel for Maximum Minimal
Vertex Cover (MMVC) claimed by Fernau [34, Corollary 4.25], and that is based on joint
unpublished work with Dehne, Fellows, Prieto, and Rosamond. The kernelization algorithm
is a small modification of a linear kernel for the Nonblocker Set problem presented by
Ore [51]. A set of vertices S of a graph G is a nonblocker if its complement is a dominating
set of G, that is, for every u ∈ S there exists v /∈ S with {u, v} ∈ E(G). In the Nonblocker
Set problem, we are given a graph G and an integer parameter k, and the goal is to decide
whether G contains a nonblocker of size at least k. Suppose for simplicity that G is connected.
The idea is to consider an arbitrary spanning tree T of G, root it arbitrarily at a vertex r,
and partition V (G) = V0 ] V1 such that the vertices in V0 (resp. V1) are within even (resp.
odd) distance from r in T . By construction, each of V0 and V1 is a nonblocker in G, so if one
of them has size at least k, we can answer “yes”, and otherwise |V (G)| ≤ 2k and we are done.

Back to MMVC, it is observed in [34, Reduction rule 24] that a simple reduction rule
allows to assume that no connected component of G is a clique (in particular, an isolated
vertex). Assume again for simplicity that G is connected. It is then claimed in [34] that,
using the same algorithm as for Nonblocker Set, the largest of V0 and V1, say V0, can
be always completed into a minimal vertex cover of G, which would immediately yield a
kernel of size at most 2k for MMVC. Unfortunately, this claim is not true: when adding new
vertices to V0 in order to make it a vertex cover of G, we may lose the minimality property,
and some vertices may need to be removed. For instance, let G be the graph obtained from
a triangle on vertices u, v, w by adding p ≥ 2 pendant vertices to each of u, v, and w. Let T
be the spanning tree obtained from G by removing the edge {v, w}, and root T at vertex
u. Then |V0| = 1 + 2p and |V1| = 2 + p, so |V0| > |V1|, and note that the edge {v, w} is the
only edge of G not covered by V0. But adding either of v or w to V0, say v, results in a
non-minimal vertex cover of G, and therefore the p pendant vertices adjacent to v have to
be removed from V0, which yields a set of size 2 + p < |V (G)|

2 = 3+3p
2 , where we have used

that p ≥ 2. In fact, deciding whether a set S ⊆ V (G) can the extended to a minimal vertex
cover of G is an NP-complete problem [20].

7 Subquadratic kernels for MMVC on particular graph classes

In this section we present subquadratic kernels for Maximum Minimal Vertex Cover
restricted to particular graph classes when the parameter is the solution size k. Namely, in
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Subsection 7.1 we provide kernels using the Erdős-Hajnal property, and in Subsection 7.2 we
provide further observations about other graph classes.

7.1 Kernels using the Erdős-Hajnal property
For a constant δ > 0, a graph H is said to satisfy the Erdős-Hajnal property with constant δ
if every H-free graph G on n vertices contains either a clique or an independent set of size
nδ. The (still open) Erdős-Hajnal conjecture [33] states that every graph H satisfies the
Erdős-Hajnal property. As reported by Chudnovsky [22], the Erdős-Hajnal conjecture has
been verified for only a small number of graphs, namely all graphs on at most four vertices,
the bull (i.e., the graph obtained by adding a pendant vertex to two different vertices of a
triangle), the complete graphs, and every graph that can be constructed from them using
the so-called substitution operation [3], which we define later.

Since our goal is to use the Erdős-Hajnal property in order to obtain kernels for Maximum
Minimal Vertex Cover, we need an algorithmic version of it. As defined by Bonnet et
al. [17], for a constant δ > 0, a graph H is said to satisfy the constructive Erdős-Hajnal
property with constant δ if there exists an algorithm that takes as input an H-free graph G
on n vertices, and outputs in polynomial-time a clique or an independent set of G of size at
least nδ. Fortunately for our purposes, all the graphs H shown to satisfy the Erdős-Hajnal
property so far, also satisfy its constructive version [17].

In the following simple lemma we show that, if H is a graph satisfying the constructive
Erdős-Hajnal property, then the vertex set of anH-free graph can be partitioned in polynomial
time into “few” cliques or independent sets. This partition will then be used to obtain
subquadratic kernels on H-free graphs for several graphs H.

I Lemma 31. Let H be a graph satisfying the constructive Erdős-Hajnal property with
constant δ. The vertex set of any H-free graph G on n vertices can be partitioned in
polynomial time into a collection of cliques C and a collection of independent sets I such
that |C|+ |I| ≤

(
1

2(1−δ)−1

)
· n1−δ.

Proof. Let G be an H-free graph on n vertices. We initialize X0 = V (G), C = I = ∅, and
we run the following procedure as far as |X0| ≥ 1:

Find in polynomial time a clique or an independent set Y in G[X0] with |Y | ≥
|X0|δ. Note that this is possible since G[X0] is anH-free graph for anyX0 ⊆ V (G).
Add Y to C or to I depending on whether Y is a clique or an independent set,
respectively (if |Y | = 1, choose C or I arbitrarily). Update X0 ← X0 \ Y .

Clearly, the above algorithm terminates in polynomial time. It remains to bound |C|+ |I|,
which is equal to the number of iterations of the algorithm. To this end, for a positive integer
i, we say that an iteration belongs to step i of the algorithm if the current set X0 at the
start of the iteration satisfies n

2i < |X0| ≤ n
2i−1 . We denote by ti the number of iterations

of the algorithm within step i. By definition, |C|+ |I| =
∑∞
i=1 ti. Let Y be a clique or an

independent set found by the algorithm within step i. Since the current set X0 satisfies
|X0| > n

2i , we have that |Y | >
(
n
2i
)δ. And since the sum of the sizes of the sets found before

the last iteration of step i is at most n
2i , it follows that ti ≤

(
n
2i
)1−δ. Note that, in particular,

ti = 0 for i > dlogne. Therefore, we conclude that

|C|+ |I| =
∞∑
i=1

ti ≤
∞∑
i=1

( n
2i
)1−δ

= n1−δ ·
∞∑
i=1

(
1

21−δ

)i
= n1−δ ·

(
1

2(1−δ) − 1

)
,

and the lemma follows. J
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We are now ready to present the subquadratic kernel on bull-free graphs. Note that, since
bipartite graphs are bull-free, MMVC restricted to bull-free graphs is NP-hard by [14] (or
by Theorem 42). In the kernels presented in this section, since we can easily obtain explicit
constants, we decided not to use the big-O notation.

I Theorem 32. The Maximum Minimal Vertex Cover problem parameterized by k
restricted to bull-free graphs admits a kernel with at most c(k − 1)7/4 + k − 1 vertices, where
c = 2

2
3
4−1

< 3.

Proof. Let (G, k) be an instance of the Maximum Minimal Vertex Cover problem,
where G is a bull-free graph. Recall that by Lemma 2 we can assume that the maximum
degree of G is at most k − 1. We start by finding greedily, starting from V (G), a minimal
vertex cover X of G. Note that X can be easily found in polynomial time by Observation 1.
If |X| ≥ k, we conclude that (G, k) is a yes-instance, so we can assume that |X| ≤ k− 1. Let
S = V (G) \X and note that S is an independent set.

Since the bull satisfies the constructive Erdős-Hajnal property with constant δ = 1
4 [17,23],

we can apply Lemma 31 to the bull-free graph G[X] and obtain in polynomial time a
partition of X into a collection of cliques C and a collection of independent sets I such that
|C| + |I| ≤ d · |X|3/4 ≤ d · (k − 1)3/4, where d = 1

2
3
4−1

< 1.47. Since we can assume that
G has no isolated vertices, as they can be safely removed without affecting the type of the
instance, it follows that

S =
⋃
C∈C

NS(C) ∪
⋃
I∈I

NS(I). (1)

Hence, our objective is to bound |NS(Y )| for every Y ∈ C ∪ I. Suppose first that I ∈ I is an
independent set. From Lemma 2, if |NS(I)| ≥ k we can conclude that (G, k) is a yes-instance,
so we can assume henceforth that

for every independent set I ∈ I, it holds |NS(I)| ≤ k − 1. (2)

Suppose now that C ∈ C is a clique. We partition NS(C) = S1
C ] S2

C as follows. Let S1
C be

an inclusion-wise maximal set of vertices in NS(C) such that for any two (not necessarily
distinct) vertices x, y ∈ S1

C , |NC(x) ∪ NC(y)| ≤ |C| − 1. That is, S1
C is a maximal set in

NS(C) such that the neighborhoods of its vertices pairwise do not cover the whole clique C.
We let S2

C = NS(C) \ S1
C . The following is the crucial property of the set S1

C .

B Claim 33. The vertices in S1
C can be ordered x1, . . . , xp so that NC(xi) ⊆ NC(xj) whenever

i ≤ j.

Proof. In order to prove the claim, it is sufficient to prove that, for any two vertices x, y ∈ S1
C ,

either NC(x) ⊆ NC(y) or NC(y) ⊆ NC(x). Suppose for the sake of contradiction that there
exist two vertices u ∈ NC(x) \NC(y) and v ∈ NC(y) \NC(x). By definition of the set S1

C ,
there exists a vertex w ∈ C \ (NC(x) ∪NC(y)). But then the vertices x, y, u, v, w induce a
bull as illustrated in Figure 1, contradicting the hypothesis that G is bull-free. J

Claim 33 implies in particular that, unless S1
C = ∅, there exists a vertex u ∈

⋂
x∈S1

C
NC(x).

Since u has degree at most k − 1 in G, and each vertex x ∈ S1
C is adjacent to u, it follows

that |S1
C | ≤ k − 1.

Let us now focus on the set S2
C . The definition of the set S1

C together with Claim 33 imply
that there exists a vertex z ∈ C \

⋃
y∈S1

C
NC(y). Consider now an arbitrary vertex x ∈ S2

C .
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x y

u v

w
z

S1
C S2

C

C

Figure 1 Configuration considered in the proof of Claim 33 and a vertex z ∈
⋂

x∈S2
C
NC(x).

Since x could not be added to S1
C , there exists a vertex y ∈ S1

C such that NC(x)∪NC(y) = C.
But since z ∈ C \

⋃
y∈S1

C
NC(y), necessarily z ∈ NC(x). It follows that z ∈

⋂
x∈S2

C
NC(x)

(see Figure 1). Using again the fact that z has degree at most k − 1 in G, we obtain that
|S2
C | ≤ k − 1. Summarizing, we have that

for every clique C ∈ C, it holds |NS(C)| = |S1
C |+ |S2

C | ≤ 2(k − 1). (3)

Putting all pieces together, Equations (1), (2), and (3) and the fact that |X| ≤ k − 1 and
|C|+ |I| ≤ d · |X|3/4 imply that, unless we have already concluded that (G, k) is a yes-instance,
we have that

|V (G)| = |X|+ |S| = |X|+ |
⋃
C∈C

NS(C)|+ |
⋃
I∈I

NS(I)|

≤ |X|+ (|C|+ |I|) · max
Y ∈C∪I

|NS(Y )| ≤ k − 1 + d · (k − 1)3/4 · 2(k − 1)

= 2d · (k − 1)7/4 + k − 1,

and the theorem follows. J

It is easy to prove that, for every integer t ≥ 2, every Kt-free graph G on n vertices
has an independent set of size n

1
t−1 , by induction on t: for t = 2 the statement is trivial,

and if t ≥ 3, then either ∆(G) < n
t−2
t−1 , and an independent set of size n

1
t−1 can be found

greedily by adding any vertex to it and deleting its neighborhood, or there exists a vertex
v ∈ V (G) of degree at least n

t−2
t−1 , in which case an independent set of size n

1
t−1 can be found

applying the inductive hypothesis to the Kt−1-free graph G[N(v)]. Clearly, this proof can
be translated to a polynomial-time algorithm to find an independent set of the appropriate
size. Therefore, for any integer t ≥ 2, Kt satisfies the constructive Erdős-Hajnal property
with constant δ = 1

t−1 . The proof of the following theorem is a simplified version of that
of Theorem 32. Note that, since bipartite graphs are Kt-free for every t ≥ 3, MMVC is
NP-hard on Kt-free graphs [14].

I Theorem 34. For every integer t ≥ 3, the Maximum Minimal Vertex Cover problem
parameterized by k restricted to Kt-free graphs admits a kernel with at most ct(k−1)

2t−3
t−1 +k−1

vertices, where ct = t−1

2
t−2
t−1−1

.

Proof. As in the proof of Theorem 32, given an instance (G, k) of Maximum Minimal
Vertex Cover, where G is a Kt-free graph, we partition V (G) = X ] S, where X is a
minimal vertex cover of G with |X| ≤ k − 1, and we use Lemma 31 to partition X into two
collections C and I of cliques and independent sets, respectively, with |C|+ |I| ≤ dt · |X|

t−2
t−1 ,

where dt = 1

2
t−2
t−1−1

. Equations (1) and (2) still hold, but now we have a much simpler version
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of Equation (3): if C ∈ C is a clique then, since G is Kt-free, necessarily |C| ≤ t− 1, which
together with the fact that ∆(G) ≤ k − 1 yield

for every clique C ∈ C, it holds |NS(C)| = (t− 1)(k − 1). (4)

Combining Equations (1), (2), and (4) we get

|V (G)| ≤ |X|+ (|C|+ |I|) · max
Y ∈C∪I

|NS(Y )| ≤ k − 1 + dt · (k − 1)
t−2
t−1 · (t− 1)(k − 1),

and the theorem follows. J

We now extend the results of Theorem 32 and Theorem 34 to more general excluded
induced graphs H, by making use of the aforementioned substitution operation. As defined
by Alon et al. [3], for two graphs H1 and H2 on disjoint vertex sets, we say that H is obtained
from H1 by substituting H2 for v ∈ V (H1) (or just obtained from H1 by substituting H2 if
the vertex v in question is not important) if

V (H) = (V (H) \ {v}) ∪ V (H2),
H[V (H2)] = H2,
H[V (H1) \ {v}] = H1 \ v, and
u ∈ V (H1) is adjacent in H to w ∈ V (H2) if and only if u is adjacent in H1 to v.

Alon et al. [3] proved that if two graphs H1 and H2 satisfy Erdős-Hajnal property and H
is obtained from H1 by substituting H2, then H satisfies the Erdős-Hajnal property as well.
More precisely, by following the details in the proof of [3, Theorem 2.1], we can derive that
if H1 and H2 satisfy Erdős-Hajnal property with constants δ1 and δ2, respectively, then H
satisfies the Erdős-Hajnal property with constant δ = δ2

δ1+|V (H1)|·δ2
. The same applies to the

constructive version of the Erdős-Hajnal property.
For an integer t ≥ 2, we define the t-bull as the graph obtained from Kt by adding a

pendant vertex to two different vertices of the clique. Note that the 2-bull is equal to P4 and
that the 3-bull is equal to the bull. Note also that, for every t ≥ 3, the t-bull is obtained
from the bull by substituting Kt−2 for the vertex of degree two of the bull. Therefore, by
the discussion in the above paragraph, since the bull and Kt−2 satisfy the constructive
Erdős-Hajnal property with constants 1

4 and 1
t−3 , respectively, it follows that, for every t ≥ 4,

the t-bull satisfies the constructive Erdős-Hajnal property with constant

δt =
1
t−3

1
4 + 5

t−3
= 4

t+ 17 .

The proof of the next theorem follows again (and generalizes) that of Theorem 32. Note
that Theorem 35 corresponds to the particular case t = 3 of Theorem 34. Note also that
bipartite graphs are t-bull-free for t ≥ 3, hence MMVC is NP-hard on t-bull-free graphs
for t ≥ 3 [14]. On the other hand, 2-bull-free graphs are exactly P4-free graphs, also called
cographs, which have cliquewidth at most two, hence by Observation 40 (proved later in
Subsection 7.2) MMVC can be solved in polynomial time on this class.

I Theorem 35. For every integer t ≥ 3, the Maximum Minimal Vertex Cover problem
parameterized by k restricted to t-bull-free graphs admits a kernel with at most ct(k− 1)2−δt +
k − 1 vertices, where δ3 = 1

4 and δt = 4
t+17 for t ≥ 4, and ct = t−1

2(1−δt)−1 .

Proof. As in the proof of Theorem 32, given an instance (G, k) of Maximum Minimal
Vertex Cover, where G is a t-bull-free graph, we partition V (G) = X ] S, where X is a
minimal vertex cover of G with |X| ≤ k − 1, and we use Lemma 31 to partition X into two
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collections C and I of cliques and independent sets, respectively, with |C|+ |I| ≤ dt · |X|1−δt ,
where δ3 = 1

4 and δt = 4
t+17 for t ≥ 4, and dt = 1

2(1−δt)−1 for every t ≥ 3. Equations (1)
and (2) still hold for every integer t ≥ 3, but now we need slightly more involved arguments
to obtain an appropriate version of Equation (3) for every t ≥ 3.

To this end, suppose that C ∈ C is a clique. We partition NS(C) = S1
C ] S2

C as follows.
Let S1

C be an inclusion-wise maximal set of vertices in NS(C) such that for any two (not
necessarily distinct) vertices x, y ∈ S1

C , |NC(x) ∪NC(y)| ≤ |C| − (t − 2). That is, S1
C is a

maximal set in NS(C) such that the neighborhoods of its vertices pairwise leave at least t− 2
uncovered vertices in the clique C. We let S2

C = NS(C) \ S1
C . The set S1

C satisfies exactly
the same crucial property as for the case t = 3 (see Claim 33).

B Claim 36. For every integer t ≥ 3, the vertices in S1
C can be ordered x1, . . . , xp so that

NC(xi) ⊆ NC(xj) whenever i ≤ j.

Proof. In order to prove the claim, it is sufficient to prove that, for any two vertices x, y ∈ S1
C ,

either NC(x) ⊆ NC(y) or NC(y) ⊆ NC(x). Suppose for the sake of contradiction that there
exist two vertices u ∈ NC(x) \ NC(y) and w ∈ NC(y) \ NC(x). By definition of the set
S1
C , there exist t − 2 vertices w1, . . . , wt−2 ∈ C \ (NC(x) ∪ NC(y)). But then the vertices
x, y, u, v, w1, . . . , wt−2 induce a t-bull, contradicting the hypothesis that G is t-bull-free. J

Claim 36 implies in particular that, unless S1
C = ∅, there exists a vertex u ∈

⋂
x∈S1

C
NC(x).

Since u has degree at most k − 1 in G, and each vertex x ∈ S1
C is adjacent to u, it follows

that |S1
C | ≤ k − 1.

Let us now focus on the set S2
C . The definition of the set S1

C together with Claim 36
imply that there exist at least t− 2 vertices z1, . . . , zt−2 ∈ C \

⋃
y∈S1

C
NC(y). Consider now

an arbitrary vertex x ∈ S2
C . Since x could not be added to S1

C , there exists a vertex y ∈ S1
C

such that |NC(x) ∪NC(y)| ≥ |C| − (t− 1). But since z1, . . . , zt−2 ∈ C \
⋃
y∈S1

C
NC(y), there

exists an index j ∈ [t− 2] such that zj ∈ NC(x). That is, every vertex x ∈ S2
C is adjacent

to at least one of the vertices z1, . . . , zt−2. Using again the fact that each of the vertices
z1, . . . , zt−2 has degree at most k−1 in G, we obtain that |S2

C | ≤ (t−2)(k−1). Summarizing,
we have that

for every clique C ∈ C, it holds |NS(C)| = |S1
C |+ |S2

C | ≤ (t− 1)(k − 1). (5)

Putting all pieces together, Equations (1), (2), and (5) and the fact that |X| ≤ k − 1
and |C| + |I| ≤ dt · |X|1−δt imply that, unless we have already concluded that (G, k) is a
yes-instance, we have that

|V (G)| ≤ |X|+ (|C|+ |I|) · max
Y ∈C∪I

|NS(Y )| ≤ k − 1 + dt · (k − 1)1−δt · (t− 1)(k − 1),

and the theorem follows. J

Let the paw be the graph obtained from a triangle by adding a pendant edge. Gyárfás [42]
showed that the paw satisfies the constructive Erdős-Hajnal property with constant δ = 1

3 .
Note that bipartite graphs are paw-free, hence MMVC is NP-hard on paw-free graphs [14].

I Theorem 37. The Maximum Minimal Vertex Cover problem parameterized by k
restricted to paw-free graphs admits a kernel with at most c(k − 1)5/3 + k − 1 vertices, where
c = 2

22/3−1 < 3.41.
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Proof. Given an instance (G, k) of Maximum Minimal Vertex Cover, where G is a
paw-free graph, we again partition V (G) = X ] S, where X is a minimal vertex cover of
G with |X| ≤ k − 1, and we use Lemma 31 to partition X into two collections C and I
of cliques and independent sets, respectively, with |C|+ |I| ≤ d · |X|2/3, where d = 1

22/3−1 .
Equations (1) and (2) still hold, and we can again obtain in a simpler way an appropriate
version of Equation (3). Indeed, let C ∈ C be a clique, and our goal is to bound |NS(C)|. If
|C| = 1 then by the fact that ∆(G) ≤ k − 1 we get that |NS(C)| ≤ k − 1, so assume that
|C| ≥ 2. Suppose for the sake of contradiction that there exists a vertex v ∈ NS(C) such
that |NC(v)| ≤ |C| − 2. Let w ∈ NC(v) and let z1, z2 be two vertices in C \NC(v). Then the
vertices v, w, z1, z2 induce a paw, contradicting the hypothesis that G is paw-free. Therefore,
for every vertex v ∈ NS(C) it holds that |NC(v)| ≥ |C| − 1. Hence, the number of edges in
G between C and NS(C) is at least |NS(C)| · (|C| − 1) and, since ∆(G) ≤ k − 1, at most
|C| · (k − 1). Using that |C| ≥ 2, it follows that

for every clique C ∈ C, it holds |NS(C)| ≤ |C|
|C| − 1 · (k − 1) ≤ 2(k − 1). (6)

Putting all pieces together, Equations (1), (2), and (6) and the fact that |X| ≤ k − 1 and
|C|+ |I| ≤ d · |X|2/3 imply that, unless we have already concluded that (G, k) is a yes-instance,
we have that

|V (G)| ≤ |X|+ (|C|+ |I|) · max
Y ∈C∪I

|NS(Y )| ≤ k − 1 + d · (k − 1)2/3 · 2(k − 1),

and the theorem follows. J

7.2 Remarks on other graph classes
In this subsection we provide additional observations about the complexity of the Maximum
Minimal Vertex Cover problem restricted to special graph classes.

I Lemma 38. For every integer t ≥ 1, the Maximum Minimal Vertex Cover problem
parameterized by k restricted to K1,t-free graphs admits a kernel with at most t(k−1) vertices.

Proof. Given an instance (G, k) of Maximum Minimal Vertex Cover, where G is a
K1,t-free graph, we again partition V (G) = X ] S, where X is a minimal vertex cover of G
with |X| ≤ k − 1. Since G is K1,t-free and S is an independent set, it holds that for every
v ∈ X, |NS(v)| ≤ t − 1, and since we can assume that G contains no isolated vertex, we
obtain that |V (G)| = |X|+ |

⋃
v∈X |NS(v)| ≤ k − 1 + (t− 1)(k − 1) = t(k − 1). J

Let C be a graph class such that there exists a polynomial-time algorithm that, given
a graph G ∈ C, outputs a proper coloring of the vertices of G using at most c colors, for
some integer c ≥ 1. We say that such a graph class C is poly-χ-c-bounded. Examples of
poly-χ-c-bounded classes are planar graphs, minor-free graphs, or, more generally, graphs of
bounded expansion. We note that Fernau [34, Corollary 4.14] provides a similar observation
for the particular case of planar graphs.

I Lemma 39. For every integer c ≥ 1, the Maximum Minimal Vertex Cover problem
parameterized by k restricted to the class of poly-χ-c-bounded graphs admits a kernel with at
most c(k − 1) vertices.

Proof. Given an instance (G, k) of MMVC, where G belongs to a poly-χ-c-bounded class,
we first compute in polynomial time a proper vertex coloring of G using at most c colors. We
may clearly assume that G has no isolated vertices, as such vertices can be safely removed.
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Let V (G) = S1 ] · · · ] Sc be the corresponding partition of V (G) into independent sets. By
Lemma 2, for every i ∈ [c] there exists a minimal vertex cover of G that contains N(Si).
Hence, if for some i ∈ [c] we have that |N(Si)| ≥ k, we can safely answer “yes”, so we
may assume that, for every i ∈ [c], |N(Si)| ≤ k − 1. Since G has no isolated vertices and
every set Si is an independent set, it follows that V (G) =

⋃
i∈[c]N(Si), so we have that

|V (G)| ≤
∑
i∈[c] |N(Si)| ≤ c(k − 1). J

Another graph class K that allows for linear kernels is defined such that, for every graph
G ∈ K, the minimum size of a dominating set of G is equal to the size of a minimum
independent dominating set of G. We furthermore ask K to be hereditary. Such graphs have
been studied, for instance, in [2, 54], and include in particular K1,3-free graphs (note that a
generalization to K1,t-graphs is given in Lemma 38). Let us see why the class K allows for a
linear kernel. As discussed at the end of Section 8, the complement of a dominating set is
called a nonblocker, and the Nonblocker Set problem admits a linear kernel [34]. On the
other hand, the complement of an independent dominating set is a minimal vertex cover.
Hence, if G ∈ K, an instance (G, k) of Nonblocker Set is positive if and only if (G, k) is
a positive instance of MMVC. Note the linear kernel for the Nonblocker Set problem
discussed at the end of Section 8 outputs a subgraph G′ of G, and we have that G′ ∈ K since
K is hereditary. Hence, the equivalence between Nonblocker Set and MMVC also holds
for G′, and it follows that this kernel is also a linear kernel for MMVC restricted to graphs
in K.

Our last contribution in this section concerns graph classes of bounded cliquewidth.
Cliquewidth, which we do not need to define here, is a graph parameter that is “smaller” than
treewidth in the sense that graph classes of bounded treewidth have also bounded cliquewidth
(the opposite is not true, as cliques have cliquewidth one but unbounded treewidth); see [24]
for the formal definition.

The variation of monadic second order logic of graphs called MSO1 is defined by a syntax
that includes the logical connectives ∨, ∧, ¬, variables for vertices, edges, sets of vertices
(but not sets of edges), the quantifiers ∀,∃ that can be applied to these variables, and the
binary relations expressing whether a vertex belongs to a set, whether an edge is incident to
vertex, whether two vertices are adjacent, and whether two sets are equal. It is well-known
that finding a minimum or maximum weight vertex set that satisfies a given graph property
expressed in MSO1 can be solved in linear time on graphs of cliquewidth bounded by a
constant [6, 24].

I Observation 40. The Maximum Minimal Vertex Cover problem can be expressed in
MSO1, and therefore it can be solved in linear time when restricted to any graph class of
cliquewidth bounded by a constant.

Proof. Given a graph G, we can express the property of a vertex set S being a minimal
vertex cover of G in the syntax of MSO1 as follows: for every pair of vertices u, v such that
u is adjacent to v, u ∈ S or v ∈ S (this guarantees that S is a vertex cover of G), and for
every vertex v ∈ V (G), v /∈ S or there exists a vertex u adjacent to v such that u /∈ S (this
guarantees, by Observation 1, that S is minimal). J

Let the diamond be the graph obtained from K4 by removing an edge. Since Brand-
städt [19] proved that {P5,diamond}-free graphs have bounded cliquewidth, from Observa-
tion 40 we immediately get the following corollary.

I Corollary 41. The Maximum Minimal Vertex Cover problem restricted to {P5, diamond}-
free graphs can be solved in linear time.
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8 Ruling out polynomial kernels for MMVC for smaller parameters

In this section we rule out, assuming that NP * coNP/poly, the existence of polynomial
kernels for MMVC parameterized by the size of a minimum vertex cover of the input graph.
As mentioned in the introduction, the reduction given in Theorem 42 also provides an
alternative proof of the NP-completeness of MMVC on bipartite graphs, which also follows
from [14]. We note that the existing NP-hardness reductions for MMVC, such as the one
in [14], do not seem to be easily modifiable so to yield the non-existence of polynomial
kernels.

I Theorem 42. The Maximum Minimal Vertex Cover problem parameterized by the
size of a minimum vertex cover (or of a maximum matching) of the input graph does not
admit a polynomial kernel unless NP ⊆ coNP/poly, even restricted to bipartite graphs.

Proof. We present a PPT from Monotone Sat parameterized by the number of variables,
which is also an NP-completeness reduction. The Monotone Sat problem is the restriction
of the Sat problem to formulas in which the literals in each clause are either all positive
or all negative. This problem is well-known to be NP-complete [37], and it is easy to see
that, when parameterized by the number of variables, it does not admit a polynomial
kernel unless NP ⊆ coNP/poly. Indeed, Fortnow and Santhanam [36] proved that the Sat
problem parameterized by the number of variables does not admit a polynomial kernel unless
NP ⊆ coNP/poly, and the classical reduction from Sat to Monotone Sat that replaces each
variable with a “positive” and a “negative” variable and adds extra clauses appropriately [37]
is in fact a PPT when the parameter is the number of variables.

Given an instance φ of Monotone Sat, where the formula φ contains n variables and m
clauses, we construct in polynomial time an instance (G, k) of Maximum Minimal Vertex
Cover as follows. For each variable xi of φ, i ∈ [n], we add to G four vertices `i, x+

i , x
−
i , ri

and three edges {`i, x+
i }, {x

+
i , x

−
i }, {x

−
i , ri}, hence inducing a P4. We call the vertex x+

i

(resp. x−i ) a positive (resp. a negative) vertex of G. For each clause Cj of φ, j ∈ [m], we
add to G a vertex cj , which we connect to the positive or negative vertices corresponding to
the literals contained in Cj . This concludes the construction of G, which is illustrated in
Figure 2(a). Note that, since φ is a monotone formula, G is a bipartite graph. Note also that
the set of vertices {x+

i , x
−
i | i ∈ [n]} is a minimum vertex cover of G of size 2n, and that the

set of edges {{`i, x+
i }, {x

−
i , ri} | i ∈ [n]} is a maximum matching of G of size 2n. We claim

that φ is satisfiable if and only if G contains a minimal vertex cover of size k := 2n+m.
x+
1 x−

1`1 r1

x+
n x−

n`n rn

cj

cj′

positive
clauses

negative
clauses

(a)

x+
1 x−

1`1 r1

x+
n x−

n`n rn

cj

cj′

positive
clauses

negative
clauses

(b)

Figure 2 (a) Illustration of the graph G built from the formula φ in the proof of Theorem 42.
(b) A minimal vertex cover X of G is shown with larger red vertices.

Suppose first that φ is satisfiable, and let σ be an assignment of the variables that satisfies
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all the clauses in φ. We proceed to define a minimal vertex cover X of G of size k. First,
add to X all the clause vertices {cj | j ∈ [m]}. For every i ∈ [n], if σ(xi) = true (resp.
σ(xi) = false), add to X vertices x−i and `i (resp. x+

i and ri). See Figure 2(b) for an
illustration, where the set X is shown with larger red vertices. Clearly, X is a vertex cover
of G. To see that it is minimal, by Observation 1 it is enough to verify that, for every vertex
v ∈ X, N [v] * X. This condition holds easily for all vertices in X that are in the P4’s,
since for each P4 its vertices in X are not adjacent. Let cj be a clause vertex. Since σ is
a satisfying assignment of the variables, there exists a variable xi such that if σ(xi) = true
(resp. σ(xi) = false) then xi ∈ Cj (resp. x̄i ∈ Cj). By definition of X, if σ(xi) = true
(resp. σ(xi) = false) then x+

i /∈ X (resp. x−i /∈ X), and by construction of G we have that
x+
i ∈ N(cj) (resp. x−i ∈ N(cj)), so in both cases N [cj ] * X.
Conversely, suppose that G contains a minimal vertex cover X of size k, and we proceed

to define a variable assignment σ as follows. For i ∈ [n], as {x+
i , x

−
i } ∈ E(G) we have that

X contains one or two vertices in the set {x+
i , x

−
i }. If x+

i /∈ X (resp. x−i /∈ X) we set
σ(xi) = true (resp. σ(xi) = false), and if both x+

i and x−i belong to X we set σ(xi) to true or
to false arbitrarily. We claim that σ satisfies all the clauses in φ. For i ∈ [n], let P i be the P4
of G induced by the vertices `i, x+

i , x
−
i , ri. Since X is a vertex cover, clearly |X ∩V (P i)| ≥ 2.

We claim that |X∩V (P i)| = 2. Indeed, if |X∩V (P i)| ≥ 3, then {`i, x+
i } ⊆ X or {x−i , ri} ⊆ X

(or both). But then N [`i] ⊆ X or N [ri] ⊆ X (or both), contradicting Observation 1. Thus,
|X ∩ V (P i)| = 2, which implies that |X ∩

⋃
i∈[n] V (P i)| = 2n, hence necessarily X contains

the whole set {cj | j ∈ [m]} of clause vertices. Consider an arbitrary clause vertex cj . Since
X is minimal and cj ∈ X, by Observation 1 there exists a neighbor of cj in G that is not
in X, and by definition of σ it follows that the literal corresponding to that neighbor of cj
satisfies clause Cj . Thus, σ is a satisfying assignment and the proof is complete.

Finally, note that the above reduction is also an NP-completeness reduction from Mono-
tone Sat to Maximum Minimal Vertex Cover on bipartite graphs. J

9 Conclusions and further research

Motivated by the existence of subquadratic kernels for the Maximum Minimal Vertex
Cover problem parameterized by the solution size, we introduced a general framework to rule
out certain types of kernels, which we called lop-kernels, for optimization problems. This “lop”
assumption does not seem to be very restrictive, as the vast majority of known kernels are in
fact lop-kernels [35]. For instance, the classical kernels for Vertex Cover, such as those
using the high-degree rule, the crown decomposition rule, or the Nemhauser-Trotter rule [35],
are lop-kernels. More involved kernels, such as those based on protrusion replacement [11],
are also lop-kernels. However, we discussed in Section 5 an example of a polynomial kernel for
a vertex-minimization problem, namely Tree Deletion Set [38], which is not a lop-kernel.
We still do not know of a similar example that is a vertex-maximization problem.

For several technical reasons, we think that the framework of lop-kernels seems to be more
suited for maximization problems. In this direction, we showed that a direct application of
our general result for vertex-maximization problems (Corollary 11) yields kernelization lower
bounds for MMVC (Corollary 26) and MMFVS (Corollary 27), matching the sizes of the
best known kernels for these problems. We also presented consequences of our results for
the Maximum Independent Set problem restricted to Kt-free graphs (Corollary 30) and
conjectured (Conjecture 29) that, for every fixed graph H, the Maximum Independent Set
problem restricted toH-free graphs admits a polynomial lop-kernel. For (vertex-)minimization
problems, the only application that we were able to find concerns the Tree Deletion Set
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problem (Corollary 28).
We believe that our results could be applied to other vertex-maximization problems, in

particular to the “max-min” version of other vertex-minimization problems, as they seem
to be quite hard to approximate. It would be interesting to find other examples of vertex-
minimization problems, other than Tree Deletion Set, where our results could be applied.
Here, the natural candidates seem to be the “min-max” version of vertex-maximization
problems, which seem to have been almost unexplored so far.

Our general results for maximization (Theorem 13) and minimization (Theorem 24)
problems take into account an upper bound function u(n) = O(na) that upper-bounds
the size of optimal solutions of the considered problems. All our applications presented in
Section 5 correspond to vertex problems, that is, to the case a = 1. We leave for further
research to find applications of our results for problems with superlinear upper bound
functions, such as edge problems, for which a = 2.

Our results are also able to derive lower bounds on the multiplicative constants of the
existing kernels (cf. for instance the second item of Corollary 11 and Corollary 22). We still
do not have any relevant application of this type for a concrete problem. For instance, if
we apply Corollary 22 to the Vertex Cover problem, relying on the non-existence of a
(2− ε)-approximation under the Unique Games Conjecture [47], we rule out the existence of
a lop-kernel with (1− ε)k vertices, which is not particularly interesting.

We presented (Section 7) subquadratic kernels for Maximum Minimal Vertex Cover
on H-free graphs for some graphs H satisfying the (constructive) Erdős-Hajnal property, such
as the bull, the complete graphs, or the paw. It would be interesting to obtain subquadratic
kernels for other graphs H satisfying the Erdős-Hajnal property, such as C4, the diamond,
P5, or C5. Note that, from [42], C4 and the diamond satisfy the constructive Erdős-Hajnal
property with constant δ ≥ 1/3. Note also that the graphs constructed in the reduction of
Theorem 42 are {C5,diamond}-free, as they are bipartite, hence MMVC is NP-hard on this
class, in contrast to the fact (Corollary 41) that MMVC can be solved in linear time on
{P5,diamond}-free graphs. To the best of our knowledge, the complexity on P5-free graphs
is open, as well as on K1,t graphs for t ≥ 3 (see Lemma 38). It is worth mentioning that
P5-free graphs have unbounded cliquewidth, because co-bipartite graphs, which are P5-free,
have unbounded cliquewidth.

As defined in Section 2, for a graph G let mmvc(G) be the maximum size of a minimal
vertex cover of G. Boria et al. [18] proved that if G is an n-vertex graph without isolated
vertices, then mmvc(G) ≥ bn1/2c. Note that this immediately yields a quadratic kernel for
MMVC: if k ≤ bn1/2c we answer “yes”, otherwise n ≤ k2. By the same argument, if C
is a graph class such that every n-vertex graph G ∈ C without isolated vertices satisfies
mmvc(G) ≥ n1/2+ε, for some ε > 0, then MMVC restricted to C admits a (subquadratic)
kernel with at most k

2
1+2ε vertices. It might be possible that this is the case for some

of the H-free graph classes for which we provided subquadratic kernels in Section 7: we
were not able to find any counterexample, that is, a family of n-vertex H-free graphs G for
which mmvc(G) = Θ(n1/2). In particular, the case of triangle-free graphs seems particularly
interesting. Haviland [43] and Goddard and Lyle [40] established upper bounds on the size of
a minimum independent dominating set (that is, the complement of a minimal vertex cover) of
triangle-free graphs. It follows from their results [40,43] that there exist n-vertex triangle-free
graphs G with mmvc(G) = Θ(n2/3 · logn), hence if such a constant ε > 0 as discussed above
exists for triangle-free graphs, necessarily ε ≤ 2

3 −
1
2 = 1

6 . Therefore, the smallest kernel
that we may obtain in this way on triangle-free graphs would have k

2
1+2ε ≤ k3/2 vertices,

which matches the size of the kernel that we obtained in Theorem 34 for the particular case
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t = 3, disregarding lower-order terms and multiplicative constants. Finding such a constant
ε > 0 on H-free graphs for small graphs H, in particular on triangle-free graphs, looks like a
challenging problem, having interesting connections with the Ramsey numbers [40,43].
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