
HAL Id: lirmm-04000588
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04000588

Submitted on 22 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupled Model Predictive Control for Path Following
on Complex Surfaces

Joao Cavalcanti Santos, Lénaïc Cuau, Philippe Poignet, Nabil Zemiti

To cite this version:
Joao Cavalcanti Santos, Lénaïc Cuau, Philippe Poignet, Nabil Zemiti. Decoupled Model Predictive
Control for Path Following on Complex Surfaces. IEEE Robotics and Automation Letters, 2023, 8
(4), pp.2046-2053. �10.1109/LRA.2023.3246393�. �lirmm-04000588�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04000588
https://hal.archives-ouvertes.fr


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2023 1

Decoupled Model Predictive Control for Path Following
on Complex Surfaces

João Cavalcanti Santos1, Lenaı̈c Cuau1, Philippe Poignet1 and Nabil Zemiti1

Abstract—The present letter proposes a predictive path fol-
lowing control (PPFC) that controls 5 degrees of freedom (DoFs)
of the end-effector while the remaining (decoupled) translational
DoF should be controlled by an external controller. This PPFC
is particularly useful for the path following on surfaces with
geometric uncertainties such that the external controller can be
independently designed to manage the interaction between the
tool and the surface. Therefore, the proposed strategy turns out
to be a versatile control scheme that can be integrated with
external controllers designed for applications such as robotic
surface finishing, welding and 3D printing on complex surfaces.
The corresponding optimal control problem (OCP) considers
mainly the positioning and orientation errors, tangential velocity
and control input amplitudes. The proposed PPFC is validated
experimentally in the context of robotic 3D bio-printing. A 7-DoF
redundant manipulator equipped with a distance sensor is used to
handle a print head through the desired print path. The distance
measurements are used by an external controller to correct the
printed layer height. The obtained accuracy is consistent with
the repeatability of the used manipulator and computation time
is compatible with high frequency controllers.

Index Terms—Optimization and Optimal Control; Medical
Robots and Systems; Motion Control

I. INTRODUCTION

THE motion control schemes taking as reference a curve
within a robot workspace can be broadly divided into two

groups: position tracking and path following. The former takes
a time parameterized reference, i.e. a specific desired robot
state is determined at each sampling time. This methodology
is extensively used for the motion control of industrial manip-
ulators [1], [2]. In contrast, path following control strategies do
not follow a temporal law. Typically, the control scheme aims
at converging to the desired path (which is a subset of the robot
workspace) along with a desired velocity profile. This kind of
strategy is largely used in the control of mobile robots [3], [4].
In applications in which time parametrization is not necessary,
the advantages of path following are well-known. Since this
approach drops the temporal law, path following controllers
are, in general, less likely to lead to saturated control inputs
and result in smoother convergence [5]–[7].

Model predictive control (MPC) is a suitable approach for
the design of path following controllers [8]–[11]. Thanks
to its predictive nature, a MPC strategy is able to find an
optimal set of control inputs anticipating changes within its
predictive horizon [10], [11]. Moreover, system constraints
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Fig. 1. Illustration of an application of the proposed strategy: 3D bio-printing
in which the PPFC controls 5 DoFs of the tool while an external controller
manages the distance between the extruder and the skin surface.

can be explicitly considered in the formulation of the optimal
control problem (OCP). This characteristic is of particular
interest since the best performance is often obtained in the
limits of the system capabilities [12]. Path following strategies
taking advantages of these characteristics are referred to as
predictive path following control (PPFC), e.g. [9]–[11].

Among all the practical cases in which a robotic manipu-
lator should follow a given trajectory, numerous applications
involve a desired path projected on a specific surface, e.g.
robotic welding, surface finishing, milling and 3D printing.
Typically, the robot degrees of freedom (DoFs) related to the
interaction between the tool and the surface should respond in
a significantly different manner than the remaining DoFs. For
instance, in the case of surface finishing, one may constrain
the applied contact force perpendicular to the polished surface
while the remaining DoFs should follow a given path and ve-
locity profile. Solutions to deal with such an issue include the
classic hybrid force/position control [1, Section 9.7], adaptive
variable impedance [13] and neuro-adaptive control [14].

Hybrid force/position control, as in the early work [15], de-
couples the DoFs in which position tracking and force control
should be applied. This approach has the advantage that the
control scheme responsible for tracking the desired path can
be designed independently from the controller managing the
interaction with the surface (henceforth referred to as external
controller), as illustrated in Figure 1 for the case studied in
this letter. Nevertheless, most of the studies addressing the
integration of different control schemes along different DoFs
apply position tracking approaches [14], [16].

The design of path following control strategies for robotic
manipulators capable of integrating different control schemes
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along different DoFs is scarcely addressed in the state of
the art [17], [18]. Dahroug et al. propose in [17] a visual
servoing controller able to follow a desired path keeping a
constant remote center of motion. These different aspects are
integrated thanks to the application of a task priority strategy.
Similarly, Wen and Pagilla introduce in [18] a procedure in
which an optimal path is determined based on a sequence
of check points. The obtained path is used in an overall
scheme integrating path following and force control. The
introduced strategy is used for surface polishing. Both studies
[17], [18] were focused in their corresponding applications.
An extension of these schemes to different cases applying a
general external controller is not addressed. Most importantly,
they have in common that their path following controllers use
Frenet-Serret frames [5] in order to compute tangential and
transversal strategies but without using MPC. This leaves room
for the aforementioned improvements obtained with predictive
controllers. To the best of the authors’ knowledge, the existing
PPFC strategies do not integrate an external controller along
a particular set of DoFs.

The main contribution of the present letter is the formulation
of a PPFC strategy that can be integrated to an external con-
troller managing independently the displacements along the
direction normal to a given surface of interest. The proposed
PPFC controls 5 tool DoFs while the remaining translational
DoF normal to the surface (referred to as decoupled DoF) is
controlled by the external controller. As a result, the obtained
overall controller can perform path following on a surface with
geometric uncertainties in which the behavior of the decou-
pled DoF controls the interaction (such as distance or force)
between the tool and the surface. Since the external control
can be designed independently, the interaction between the tool
and the surface can be adapted to different applications, e.g.
robotic surface finishing, welding and 3D printing. In order to
perform the path following, the proposed OCP considers the
tangential velocity along with the positioning and orientation
errors with respect to the reference curve. The proposed OCP
has the particularity that the positioning error with respect to a
direction normal to the surface of interest is disregarded, since
this DoF is controlled by the external controller.

A numerical optimization algorithm is proposed in order
to meet the real-time constraints on the solution of the OCP.
Applying such an algorithm, the strategy is validated experi-
mentally in the context of 3D bio-printing. The printing path is
generated on an initially unknown skin surface using a RGB-D
camera. In this application, the surface geometric uncertainties
are mainly caused by the errors related to the calibration
between the camera coordinate frame and the robot base frame.
As a consequence, the corresponding errors on the distance
between the extruder and the skin surface for the theoretical
printing path would hinder the appropriate deposition of the
material. Similarly to conventional fused deposition modeling
(FDM) 3D printing, the distance between the extruder and the
surface of interest plays a particularly important role on the
final result. Accordingly, the distance between the extruder and
the skin surface are corrected with an external controller using
a dedicated distance sensor. Satisfactory positioning error and
computation time are obtained.

The remainder of this letter is organized as follows. After
formulating the addressed problem in Section II, Section III
introduces the PPFC strategy, detailing the main aspects con-
sidered in the corresponding OCP. The numerical solution
of this optimization problem is discussed in Section IV.
The experimental validation is detailed in Section V and
conclusions are drawn in Section VI.

II. PRELIMINARIES
As depicted in Figure 1, this letter addresses a motion con-

trol problem in which the desired path is projected on a com-
plex surface. The desired path consists of a sequence of desired
tool positions and a sequence of desired tool orientations.
These sequences are denoted as Pd = {pd,1, pd,2, . . . ,pd,N}
and Nd = {nd,1, nd,2, . . . ,nd,N}. The strictly positive integer
N represents the number of reference points while vectors
pd,k, nd,k ∈ R3 determine the desired tool pose and orienta-
tion, respectively.

Typically, nd,k is a unit vector normal to the surface at
point pd,k. As a result, one may note that a tuple {pd,k, nd,k}
constrains 5 DoFs of the tool. The remaining sixth DoF (the
tool rotation around each nd,k) is considered as a redundant
DoF. This is the case, for instance, for robotic welding,
sanding, surface finishing and 3D printing.

Consider a n-DoF manipulator with joint positions given by
q ∈ Rn, joint velocities q̇ ∈ Rn and n ⩾ 6. The proposed
control strategy takes as state vector x =

[
qT q̇T

]T
and

aims at managing these states in order to follow the desired
path {Pd, Nd}.

III. DECOUPLED PPFC
After introducing the system model in Section III-A, the

PPFC algorithm is discussed in Section III-B.

A. Model
In order to reduce the real-time computational burden, the

control input is considered as the robot joint accelerations
u = q̈. Similar approaches are commonly used in the state of
the art, e.g. [11]. Accordingly, it is considered that an internal
controller is able to track constant joint accelerations for suf-
ficiently small sampling periods ∆t. Therefore, the resulting
discrete-time dynamic system determines the (i + 1)th state
xi+1 based on the ith state xi and control input ui+1 ∈ Rn

according to

xi+1 =

[
qi+1

q̇i+1

]
=

[
qi + q̇i ∆t+ ui+1

(
∆t2/2

)
q̇i + ui+1 ∆t

]
= Axi +Bui+1

(1)

with constant matrices A ∈ R2n×2n and B ∈ R2n×n. The
considered model is hence a linear time-invariant system.
Accordingly, for a given initial state x0 =

[
qT
0 q̇T

0

]T
, the

ith state vector after the application of a sequence of control
inputs u1, . . . ,ui can be written as

xi = Ai x0 +
[
Ai−1B Ai−2B . . . B

] u1

...
ui

 (2)
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Fig. 2. Main notation used in the design of the PPFC.

Consider also that the kinematic model of the manipulator
is known, such that the tool position p ∈ R3 and orientation
n ∈ R3 can be computed applying the forward kinematics for
a given q. As discussed in Section II, note that the unit vector
n represents uniquely the tool axis, i.e. the DoF corresponding
to the rotation around n is considered as redundant in the
present model. The tool linear ṗ and angular ω velocities
are computed based on the differential kinematics through[
ṗT ωT

]T
= J(q) q̇, where J ∈ R6×n is the manipulator

jacobian matrix. This matrix is computed as a function of the
joint positions q for each sampling period.

B. Control Scheme

The proposed path following control is formulated as an
MPC in which, for each controller cycle, an OCP is solved.
Considering an actual measured state x0, the next states
x1, . . . ,xhp

can be predicted using (2) for a given sequence
of control inputs µ =

[
uT
1 . . . uT

hp

]T
. The strictly positive

integer hp is called prediction horizon. The solution of the
OCP leads to an optimal µ∗ that minimizes a cost function
Jhp . This function should summarize the desired behavior of
the system. The design of Jhp

is discussed in the remainder
of this section.

The OCP cost function Jhp
(µ,x0,u0) is a sum of stage

costs ℓ(i,µ,x0,u0) considering the control inputs and the ith

predicted state throughout the prediction horizon:

Jhp
(µ,x0,u0) =

hp∑
i=1

ℓ(i,µ,x0,u0), (3)

where the stage cost ℓ(i,µ,x0,u0) is given by

ℓ(i,µ,x0,u0) = ℓg(qi) + ℓv(qi, q̇i)+

ku ∥ui∥2 + kdu∥ui − ui−1∥2 + kq̇∥q̇i∥2,
(4)

with positive scalars ku, kd,u and kq̇. The last three terms in
(4) aim at smoothing the trajectory by minimizing the joint
velocities and their derivatives. Vectors qi and q̇i in (4) are
obtained from (2) for given x0 and µ.

d,k

∆p

0

d,k 0

 > ∆pd,k 0

d,k  + 10

d,k  + 20

d,k  + 30

= + 2

Fig. 3. Illustration of the steps involved in Algorithm 1.

The terms ℓg(qi) and ℓv(qi, q̇i) in (4) deal with the posi-
tioning error and the tool velocity, respectively. As illustrated
in Figure 1, the PPFC does not control the translation along
the tool axis n. Therefore, regarding the tool translation, the
OCP should consider the positioning error of p with respect to
the two axes perpendicular to n. Additionally, the alignment
error ϕ related to the orientation of n itself also should be
considered. These two aspects are considered in ℓg(qi) and
illustrated in Figure 2.

The desired path is considered as a linear interpolation
between consecutive pd,k and pd,k+1. For sufficiently dense
Pd and Nd (as defined in Section II), the minimization of the
joint velocities and their derivatives in (4) leads to a smooth
trajectory taking this linearly interpolated path.

In order to compute the error on the tool position p, one
should first determine which segment {pd,k̂, pd,k̂+1} should
be considered. To this end, the closest segment to p is obtained
using the Algorithm 1, cf. Figure 3.

Algorithm 1 Computation of k̂(p, k0) and λ(p, k0)

Input: k0, p, pd,j for j ∈ {k0, k0 + 1, . . . }
Output: k̂, λ

1: k ← k0
2: λ← eTk (p− pd,k)
3: while λ ⩾ ∆pd,k do
4: k ← k + 1
5: λ← eTk (p− pd,k)
6: if λ < 0 then
7: λ← 0
8: break
9: end if

10: end while
11: k̂ ← k

For a given positive integer k0, consider that the tracking of
pd,k0 has already been performed. Thus, the previous segments
{pd,k, pd,k+1} : k < k0 should not be considered in the
algorithm. Let ek be the unit vector

ek =
pd,k+1 − pd,k

∥pd,k+1 − pd,k∥
=

pd,k+1 + pd,k

∆pd,k
, (5)

and ∆pd,k = ∥pd,k+1 − pd,k∥. The distance between pd,k0

and the projection of p on the straight line defined by pd,k0
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and pd,k0+1 can be written as eTk0
(p − pd,k0

). If the length
eTk0

(p − pd,k0
) is greater than ∆pd,k0

, the next segment is
considered. This procedure is repeated until eTk (p − pd,k) <
∆pd,k. It is possible to prove that the Algorithm 1 necessarily
converges to a finite k̂ under the assumption that there is a
positive scalar ε such that every ∆pd,k > ε. Additionally,
since the sequence k = {k0, k0+1, . . . } is considered with an
increasing order, the proposed algorithm is able to track self-
intersecting curves. This ability is illustrated in the attached
video. The convergence proof of Algorithm 1 and its capability
to track self-intersecting curves are detailed in [19].

Similarly to the desired path, the desired orientations are
interpolated between two consecutive nd,k and nd,k+1. For
this purpose, let the unit vector rk ∈ R3 and the positive
scalar θk satisfy

nd,k+1 = R(rk, θk)nd,k, (6)

where R(rk, θk) represents the rotation matrix defined by the
axis of rotation rk and angle θk. The desired orientation nd,t

for a given tool position p, is defined as

nd,t(p) = R
(
rk̂, ck̂ λ

)
nd,k̂, (7)

with k̂, λ computed using Algorithm 1 and ck = θk/∆pd,k.
Note that nd,t = nd,k̂ if λ = 0, and nd,t = nd,k̂+1 if λ =
∆pd,k̂.

Ideally, since the PPFC does not control the translation
along the tool axis n, the tool position p should follow the
blue surface Ψk depicted in Figure 2. This surface contains the
straight line segment defined by pd,k, pd,k+1 with interpolated
orientation according to (7) for 0 ⩽ λ ⩽ ∆pd,k. This surface
can be written as

Ψk =
{
z ∈ R3 | ∃λ, ρ ∈ R :

z = pd,k + λ ek + ρR(rk, ck λ)nd,k

}
.

(8)

Nevertheless, the distance between p and this complex surface
cannot be obtained analytically and its computation (based on
numerical optimization) would significantly increase the com-
putational burden related to the evaluation of Jhp . Accordingly,
Ψk is approximated by the plane Πk illustrated in Figure 2.
This plane contains the segment pd,k, pd,k+1 and is oriented
according to an intermediary vector nm,k defined as

nm,k =
(I− ek e

T
k )R(rk, θk/2)nd,k∥∥(I− ek eTk )R(rk, θk/2)nd,k

∥∥ , (9)

where the term (I − ek e
T
k ) is used to insure that nm,k is

perpendicular to ek.
Therefore, denoting Ek =

[
ek nm,k

]
, the projection of p

in the plane Πk can be computed as

pΠ,k = pd,k +Ek E
T
k (p− pd,k) (10)

and the distance dk̂ in Figure 2 is written as

dk̂ =
∥∥∥(I−Ek̂ E

T
k̂
) (p− pd,k̂)

∥∥∥ . (11)

Reminding that ℓg(qi) should quantify the positioning error
of p and the alignment error of n, the distance dk̂ and the

Robot
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Controller

additional
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+
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q
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Fig. 4. Overall control scheme.

scalar product nTnd,t are used for these respective goals so
that

ℓg(q) = kd

∥∥∥(I−Ek̂ E
T
k̂
) (p− pd,k̂)

∥∥∥2−
ka (n

T nd,t)
2,

(12)

with positive scalar gains kd and ka.
Finally, the partial stage cost ℓv(q, q̇) should penalize the

difference between the velocities along ek̂ and the desired
velocity ṗd. This is performed with

ℓv(q, q̇) = kv

(
eT
k̂
ṗ− ṗd

)2

, (13)

with a positive scalar kv .
In summary, the proposed PPFC takes the following OCP:

µ∗ = argmin
µ

Jhp(µ,x0,u0) (14a)

s. t. qmin ⩽ qi ⩽ qmax, i = 1, . . . , hp (14b)
− q̇max ⩽ q̇i ⩽ q̇max, i = 1, . . . , hp (14c)

with Jhp defined in (3) and qmin, qmax, q̇max the minimum
joint position, maximum joint position and maximum joint
velocity, respectively. The feedback output from the control
scheme is ufb(x0,u0) = u1,µ∗ , i.e. the first n elements of
µ∗. Matrices Jp, Jr ∈ R3×n are defined as submatrices of J

such as J =
[
JT
p JT

r

]T
and ṗ = Jp q̇, ω = Jr q̇.

For a given actual state
[
qT
0 q̇T

0

]T
, the desired joint

accelerations ufb computed through (14) can be used within a
tracking control at joint level. Typically, desired joint velocities
can be sent to the internal robot driver.

Figure 4 depicts the application of the proposed PPFC in an
overall control scheme. The PPFC output of (a) is integrated
over time in (b), leading to q̇′

f . One may note that partial
stage costs ℓg and ℓv present constant values for positions and
velocities varying along nm,k̂. Therefore, the minimization of
ℓg and ℓv should not lead to displacements along the direction
normal to the surface. Nevertheless, the minimization of q̇ and
its derivatives in (4) may induce non-null velocities along n,
i.e. nTJp q̇

′
f ̸= 0. For this reason, block (c) projects q̇′

f within
a subspace of Rn, such that nTJp q̇

′
f = 0, insuring that the

tool velocity along n generated by q̇f is null. This procedure
is equivalent to the application of a selection matrix (as in
[18], for instance).
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Regarding the control of the motion along n, an external
controller (d) computes q̇ec based on a given feedback signal
s. The measurements s may be obtained, for instance, with
force or distance sensors. Note that q̇ec should generate
uniquely tool velocities along n, i.e. nnT Jp q̇ec = Jp q̇ec

and Jr q̇ec = 0.

IV. NUMERICAL OPTIMIZATION

The applicability of a MPC scheme in a real-time robotic
system depends on the computation time necessary to solve
the corresponding OCP. One may note that the OCP (14) is
nonlinear and may have a significant amount of arguments
for a typical prediction horizon, e.g. 56 = n × hp for n =
7, hp = 8 as in Section V. Therefore, a detailed discussion on
the numerical solution of (14) is necessary. The present section
proposes an optimization algorithm specifically designed for
this goal.

The proposed algorithm described in Section IV-A is derived
from the one developed in [20], in which the position tracking
of cable-driven parallel robots is addressed. Since a gradient-
based solver is used, the computation of the derivatives of Jhp

is necessary. The numerical estimation of these derivatives re-
quires the computation of the overall cost function (3) at least
n×hp+1 times. This may significantly impair the efficiency of
the controller. As a solution to this issue, Section IV-B details
the analytical expressions for the derivatives of Jhp

.

A. Overall Algorithm

Consider given x0 and u0, such that the sought solution
is µ∗ minimizing Jhp

(µ,x0,u0), as in (14). For a given µ,
(2) leads to predicted tool positions pi for i = 1, . . . , hp

and corresponding sequence of integers K̂ = {k̂1, . . . , k̂hp
}

computed according to Algorithm 1. A particular numerical
issue related to the computation of µ∗ is that variations of µ
would lead to variations of the integers k̂i, which results in
discontinuous Jhp

. This would impair the efficiency of purely
gradient based solvers. For that reason, the algorithm described
in Algorithm 2 is used.

Algorithm 2 Overall numerical algorithm to solve (14)
Input: x0, u0 and initial guess µp

Output: µ∗

1: µ∗ ← µp

2: loop
3: Update K̂ for µ∗ using (2) and Algorithm 1
4: Compute µ∗ as the solution of (14) for constant K̂
5: if ∥µ∗ − µp∥ < ϵ then
6: break
7: else
8: µp ← µ∗

9: end if
10: end loop

In short, the Algorithm 2 iteratively solves simplified ver-
sions of (14) in which the sequence K̂ is taken as constant.
More precisely, the steps 3-10 of Algorithm 1 are bypassed in
order to prevent the step k ← k + 1, avoiding the variations

on K̂. Accordingly, the optimization problem in Algorithm 2
(step 4) can be solved efficiently with, for instance, sequential
quadratic programming (SQP) algorithms. It is worth noting
that the convergence of Algorithm 2 is more reliable for
reference points Pd that are sufficiently close to each other,
reducing the variation of the cost function (14a) for successive
iterations of the algorithm. The results presented in Section V
were obtained with a SQP adapted from the solver used
in [20]. This numerical algorithm applies an altered version
of the nonlinear gradient project method described in [21,
Section 18.6], cf. [22, Chapter 4]. Basic matrix operations were
performed using tools provided by the Eigen C++ library [23].

B. Derivatives of Jhp

This section presents the analytical derivatives of Jhp
for

constant K̂. The analytical derivatives are obtained straight-
forwardly based on the stage cost described in Section III-B.
The complete deduction of these expressions are omitted for
the sake of conciseness.

Consider the functions f : Rm1 → R and g : Rm1 →
Rm2 for any strictly positive integers m1 and m2. For given
input variable y ∈ Rm1 , the derivatives of such functions are
denoted as

∂

∂ y
f(y) =

[
∂

∂ y1
f(y) . . . ∂

∂ ym1
f(y)

]
and

∂

∂ y
g(y) =


∂

∂ y1
g1(y) . . . ∂

∂ ym1
g1(y)

...
. . .

...
∂

∂ y1
gm2(y) . . . ∂

∂ ym1
gm2(y)

 .

(15)

The gradient of the cost function in (14) is computed
through

∂

∂ µ
Jhp

(µ,x0,u0) =

hp∑
i=1

∂

∂ µ
ℓ(i,µ,x0,u0). (16)

Therefore, the gradient (16) can be computed by means
of the derivatives of each ℓ(i,µ,x0,u0) with respect to µ.
Denoting

ℓu,i = ℓu(i,µ,u0) = ku ∥ui∥2 + kdu∥ui − ui−1∥2,

the following expression can be deduced for i > 1:

∂ ℓu,i
∂ µ

=2
[
0T
(i−2)×n − kdu (ui − ui−1)

T . . .

ku u
T
i + kdu (ui − ui−1)

T 0T
(hp−i−1)×n

]
with 0m =

[
0 . . . 0

]T ∈ Rm. Similarly, for i = 1,

∂ ℓu,i
∂ µ

=
[
2 ku u

T
1 + kdu(u1 − u0)

T 0T
(hp−1)×n

]
.

The elements of ℓ(i,µ,x0,u0) that depend on the state
variables are first derived with respect to qi and q̇i. Clearly,

∂

∂ q̇
kq̇∥q̇∥2 = 2 kq̇ q̇

T . (17)
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Likewise, the derivatives of ℓg,i = ℓg(qi) are given by

∂ ℓg,i
∂ qi

=2 kd dk̂i
wT

k̂i
Jp(qi)−

2 ka (n
T nd,t)

(
nT ∂ nd,t

∂ qi
+ nT

d,t

∂ n

∂ qi

)
,

(18)

with wk̂i
= pi − pΠ,k̂i

/∥p− pΠ,k̂i
∥ a unitary vector perpen-

dicular to the plane Πk̂i
. Integer k̂i is computed as a function

of pi using Algorithm 1 and nd,t is obtained with (7). The
derivatives of nd,t and n can be written as

∂

∂ q
nd,t =

θ

∆pd
(r× nd,t) e

T Jp(q)

∂

∂ q
n = −n× Jr(q).

The derivatives of ℓv,i = ℓv(qi, q̇i) are given by

∂ ℓv,i
∂ q̇

= 2 kv (e
T ṗ− ṗd) e

TJp (19a)

∂ ℓv,i
∂ q

= 2 kv (e
T ṗ− ṗd) e

T
n∑

j=1

∂ jp,j
∂ q

q̇j (19b)

where jp,j ∈ R3 is the jth column vector of Jp. Its derivatives

∂ jp,j
∂ q

=
[
∂ jp,j
∂ q1

. . .
∂ jp,j
∂ qn

]
have vector columns computed as

∂ jp,j
∂ ql

=

{
jr,l × jp,j , if j ⩾ l
jr,j × jp,l, if j < l

where jr,j is the jth column vector of Jr.
For a given v ∈ Rn representing a gradient with respect to

qi, the multiplication vT ∂ qi/∂ µ considering the prediction
(2) can be written as

vT ∂ qi

∂ µ
= (∆t2)

[ (
1

2
+ (i− 1)

)
vT . . .

(
1

2
+ (i− 2)

)
vT . . .

1

2
vT 0T

(hp−i)×n

] (20)

Likewise, the multiplication vT ∂ q̇i/∂ µ is computed using

vT ∂ q̇i

∂ µ
= ∆t

[
vT . . . vT 0T

hp−i

]
. (21)

Replacing vT in (20)-(21) by the derivatives in (17)-(19),
the gradient of the stage cost is given by

∂

∂ µ
ℓ(i,µ,x0,u0) =

∂ ℓu,i
∂ µ

+

(
∂ ℓg,i
∂ qi

+
∂ ℓv,i
∂ qi

)
∂ qi

∂ µ
+(

2 kq̇ q̇i
T +

∂ ℓv,i
∂ q̇i

)
∂ q̇i

∂ µ
.

Fig. 5. Experimental set-up used to test robotic 3D bio-printing.

V. EXPERIMENTAL RESULTS

The experimental validation presented in this section is
inspired by the application of the proposed PPFC for 3D
robotic bio-printing used in the treatment of serious skin
wounds. The goal is to deposit a skin substitute over the wound
surface using a print head embedded on a robotic arm end-
effector. The used set-up is depicted in Figure 5.

A Revopoint Acusense RGB-D camera is used to deter-
mine the three-dimensional geometry of the surface on which
the skin substitute should be applied. Based on this three-
dimensional geometry, a print path covering the whole wound
can be generated. The print path consists of a sequence of
desired tool positions pd,k and the corresponding unit vectors
nd,k normal to the surface at position pd,k. The printing is
performed using a 7-DoF Franka Emika Panda robotic arm
to position a ViscoTec vipro-HEAD 5 print head along the
desired path. The substitute skin is simulated using Pluronic
F-127 + HBSS solution mixture.

The definition of the vectors pd,k and nd,k relies on the
calibration of the camera coordinate system with respect to the
robot base coordinate system. Using the materials described in
this letter, such a procedure is subject to errors of ≈ 2 mm, cf.
[24]. Indeed, errors with this magnitude affecting the distance
between the extruder and the skin surface would play a critical
role.

Using the set-up presented in Figure 5, this distance should
be equal to 0.8 mm. Similarly to fused deposition modeling
(FDM) 3D printing, variations on this distance affect signifi-
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cantly the quality of the printed surface and errors of 2 mm
would lead to unacceptable issues. Accordingly, as depicted
in Figure 5, an Acuity AR-100 distance sensor is used to
monitor the distance between the extruder and the skin. This
measurement is used by an external controller to move the
extruder along its axis n in order to correct the distance to
the skin surface. More precisely, the applied external control
strategy consists in a simple proportional correction, with a
tool translational velocity given by

ṗec = n klh(hm − hd), (22)

where hm, hd and klh are the measured layer height, desired
layer height and a scalar positive gain, respectively. The
joint velocities q̇ec can be obtained with a classic redun-
dancy resolution method [25]. One may note that the external
controller (22) does not have any feed-forward term and is
based uniquely on the tracking error hm − hd. In spite of the
simplicity of this controller, hm converges asymptotically to a
constant hd if the positioning errors related to n normal to the
surface are negligible. A feed-forward term is not necessary
to obtain stability because a precise positioning of n results
in translational velocities computed by the PPFC scheme that
are tangential to the surface. This matter is discussed in detail
in [19].

In addition to the external controller (22), the remaining
tool DoFs are controlled with the predictive control scheme
proposed in Section III-B. As a result, the desired path
is followed with the introduced PPFC, while the external
controller corrects the distance between the extruder and the
skin surface. Since the controlled robotic arm has n = 7 DoFs
and the positioning of the extruder given by the tuple {p, n}
represents 5 DoFs, it is worth noting that the proposed control
strategy implicitly performs the corresponding redundancy
resolution. Table I summarizes the used controller parameters
in accordance with the notation introduced in Section III-B.
The algorithm programmed in C++ was ran with an Intel(R)
Core(TM) i7-7820HQ CPU @ 2.90GHz.

The desired print path is determined based on the three
dimensional geometry of the skin obtained with the RGB-
D camera. The printed surface covers ≈ 800 mm2, and
leads to normal vectors nd,k with maximal variation greater
than 30◦. Since the desired path consisting of points Pd has
significant errors due to the camera calibration, the comparison
between the original desired path and the printed one P would
be meaningless. A printing performed with null error with
respect to Pd would fail to deposit the substitute skin due to
the inappropriate distance between the extruder and the skin.
Therefore, in order to compare the desired and the printed
path, a rigid transformation dTr is applied to the point cloud
determined by Pd. The rigid transformation dTr is obtained
applying iterative closest point (ICP, [26]) in order to register
the point clouds P and Pd. The registered desired path Pr

and the measured printed path P are depicted in Figure 6.
Regarding the orientation of the extruder, Figure 7 shows
the desired Nd and measured N orientations along with the
corresponding angular error. A summary of the data related
to the errors is presented in Table II. The sets P and N are
obtained based on the forward kinematics.

TABLE I
CONTROL PARAMETERS

parameter value parameter value
hp 8 ṗd 6.0× 10−3 mm/s
∆t 10.0 ms klh 4.0
ku 6.0× 10−2 kd 8.0× 104

ka 6.0× 103 kv 6.0× 104

kq̇ 6.0 kdu 1.0

TABLE II
SUMMARY OF THE POSITIONING AND ANGULAR ERRORS

Compared sets RMS Std. Dev.
Positioning error {P, Pr} 0.266 mm 0.114 mm

Angular error {N , Nd} 0.595◦ 0.308◦

4
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Fig. 6. Experimental results: comparison between desired and printed path.
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Fig. 7. Experimental results: comparison between desired and actual tool
orientation.

It is important to highlight that the errors presented in
Table II are consistent with the positioning precision obtained
with a Panda Franka Emika robotic arm. This manipulator
has a pose repeatability of 0.1mm and path deviation of
1.25 mm (based on the ISO 9283 standard). Additionally, the
final printed surface depicted in Figure 8 successfully covers
the skin.
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Fig. 8. Experimental results: final printed surface.

Regarding the computational burden, the average computing
time involved in the solution of (14) is 1.05 ms with a standard
deviation of 1.06 ms. Recalling that this solution involves the
numerical optimization of the nonlinear problem (14) taking
as arguments 56 variables (hp×n = 8×7), the computational
efficiency of the proposed scheme is considered satisfactory. It
is worth noting that the application of the analytical derivatives
described in Section IV-B reduces ≈ 70% of the computation
time necessary to solve (14).

VI. CONCLUSIONS

The present letter introduced a PPFC scheme with a de-
coupled translational DoF aligned with the tool axis. The
proposed strategy was conceived for the path following on
surfaces with geometric uncertainties. Since the design of
the external controller responsible for the management of the
decoupled DoF is independent of the proposed PPFC, the
behavior of the decoupled DoF can be adapted for different
applications, e.g. robotic surface finishing and 3D printing on
complex surfaces. A numerical algorithm was proposed for
the solution of the corresponding optimal control problem.
Experimental results in the context of robotic 3D bio-printing
led to satisfying precision and computation time. Future works
should analyze the stability of the obtained closed-loop system
considering suboptimal control inputs and different optimiza-
tion algorithms.
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