
HAL Id: lirmm-04025606
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04025606

Submitted on 12 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stop Reinventing the Wheel! Promoting Community
Software in Computing Education

Jeremiah Blanchard, John R. Hott, Vincent Berry, Rebecca Carroll, Bob
Edmison, Richard Glassey, Oscar Karnalim, Brian Plancher, Seán Russell

To cite this version:
Jeremiah Blanchard, John R. Hott, Vincent Berry, Rebecca Carroll, Bob Edmison, et al.. Stop
Reinventing the Wheel! Promoting Community Software in Computing Education. ITiCSE-WG 2022
- 27th ACM Conference on Innovation and Technology in Computer Science Education, Jul 2022,
Dublin, Ireland. pp.261-292, �10.1145/3571785.3574129�. �lirmm-04025606�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04025606
https://hal.archives-ouvertes.fr


Stop Reinventing the Wheel!
Promoting Community Software in Computing Education

Jeremiah Blanchard∗
Dept. of Engineering Education

University of Florida
Gainesville, Florida, USA

jjb@eng.ufl.edu

John R. Hott∗
Dept. of Computer Science

University of Virginia
Charlottesville, Virginia, USA

jrhott@virginia.edu

Vincent Berry
Polytech Engineering School

LIRMM - Univ Montpellier, CNRS
Montpellier, France

vincent.berry@umontpellier.fr

Rebecca Carroll
Dept. of Computer Science

Full Sail University
Winter Park, Florida, USA
rebeccac@fullsail.edu

Bob Edmison
Dept. of Computer Science

Virginia Tech
Blacksburg, Virginia, USA

bedmison@vt.edu

Richard Glassey
School of Electrical Engineering and

Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden
glassey@kth.se

Oscar Karnalim†

School of Information and Physical
Sciences

University of Newcastle
Callaghan, NSW, Australia
oscar.karnalim@uon.edu.au

Brian Plancher
Dept. of Computer Science

Barnard College, Columbia University
New York City, NY, USA
bplancher@barnard.edu

Seán Russell
School of Computer Science
University College Dublin

Dublin, Ireland
sean.russell@ucd.ie

ABSTRACT
Historically, computing instructors and researchers have developed
a wide variety of tools to support teaching and educational research,
including exam and code testing suites and data collection solutions.
However, these tools often find limited adoption beyond their cre-
ators. As a result, it is common for many of the same functionalities
to be re-implemented by different instructional groups within the
Computing Education community. We hypothesise that this is due
in part to discoverability, availability, and adaptability challenges.
Further, instructors often face institutional barriers to deployment,
which can include hesitance of institutions to rely on community
developed solutions that often lack a centralised authority and may
be community or individually maintained.

To this end, our working group explored what solutions are cur-
rently available, what instructors needed, and the reasons behind
the above-mentioned phenomenon. To do so, we reviewed exist-
ing literature and surveyed the community to identify the tools
that have been developed by the community; the solutions that
are currently available and in use by instructors; what features
are needed moving forward for classroom and research use; what
support for extensions is needed to support further Computing Ed-
ucation research; and what institutional challenges instructors and

∗Working group leader
†Also with Maranatha Christian University.

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0010-1/22/07.
https://doi.org/10.1145/3571785.3574129

researchers are currently facing or have faced in using community
software solutions. Finally, the working group identified factors
that limited adoption of solutions. This work proposes ways to
integrate and improve the availability, discoverability, and dissemi-
nation of existing community projects, as well as ways to manage
and overcome institutional challenges.

CCS CONCEPTS
• Social and professional topics→ Student assessment; • Soft-
ware and its engineering → Software libraries and repositories;
Open source model.

KEYWORDS
educational tools, computing education, computing education re-
search, open source software, community software

ACM Reference Format:
Jeremiah Blanchard, John R. Hott, Vincent Berry, Rebecca Carroll, Bob
Edmison, Richard Glassey, Oscar Karnalim, Brian Plancher, and Seán Russell.
2022. Stop Reinventing the Wheel!: Promoting Community Software in
Computing Education. In 2022 ITiCSE Working Group Reports (ITiCSE-WGR
’22), July 8–13, 2022, Dublin, Ireland. ACM, New York, NY, USA, 32 pages.
https://doi.org/10.1145/3571785.3574129

1 INTRODUCTION
Practically from the birth of computing disciplines, instructors and
researchers have built, used, and published software for community
use to assist one another with student assessment and research
in computing coursework [51, 79, 81]. At first, source was shared
through journals and books [51]. As the Computing Education
Research (CER) community grew, so too did the avenues for dis-
tribution, with the rise of networking and eventually ubiquitous

 

261

https://orcid.org/0000-0003-2995-5102
https://orcid.org/0000-0002-8305-325X
https://orcid.org/0000-0001-7271-4027
https://orcid.org/0000-0001-5606-4140
https://orcid.org/0000-0002-5861-1029
https://orcid.org/0000-0002-8996-0221
https://orcid.org/0000-0003-4930-6249
https://orcid.org/0000-0002-0078-3653
https://orcid.org/0000-0003-1992-8303
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3571785.3574129
https://doi.org/10.1145/3571785.3574129
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571785.3574129&domain=pdf&date_stamp=2022-12-29


ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

access and the unprecedented capacity for sharing source through
the Internet. The ease of publication and lack of centralised listing
and filtering mechanisms led to difficulty in discovering tools, a
problem that persists to this day [119].

Even when tools are discovered, instructors and researchers may
find that institutions are hesitant to endorse the use of solutions that
do not have a centralised authority, as is common in community-
driven projects. By comparison, centralised solutions offered by
large technology firms are more easily discovered through market-
ing and name-recognition. These firms also offer a clear, recognised
authority that can be held accountable, assuaging many institu-
tional concerns during risk assessment processes. These solutions
almost always come at a cost, though, whether directly via fees, or
indirectly via a surrender of some degree of privacy, or both [134].

Some instructors and researchers find the costs associated with
such platforms burdensome and/or objectionable, particularly when
fees are ultimately passed on to students, and they may be an insur-
mountable hurdle to students and faculty from socio-economically
disadvantaged populations or regions. As a result, instructors and re-
searchers often resort to developing in-house solutions, essentially
reinventing the wheel by generation and institution [51, 79, 81, 82].
However, there are some community-driven, non-profit solutions
that have developed within the CER community and that have
managed to achieve success, both in terms of discoverability and
institutional deployment [43, 46]. Likewise, many Open Source
Software (OSS) projects have found success and wide utilisation.
There are lessons that the CER community can learn from these
examples that could be applied more broadly to help instructors
and researchers build on existing tools and frameworks.

This working group aimed to address these research questions:
RQ1 What existing tools are available for computing educators?
RQ2 What challenges need to be addressed to support better soft-

ware use, software development, availability, and discover-
ability of existing CER community projects?

RQ3 What suggested directions could address the challenges to
using, developing, and discovering CER community projects?

To answer these questions, the working group explored what
instructional and research solutions are currently available, those
that are in demand, reasons for the challenges to wider adoption
and collaboration, and potential avenues to support community
software development and adoption in the future by identifying and
building on successes in the CER and OSS communities. Specifically,
the working group:

(a) reviewed literature, identifying existing community software
in computing education / CER and its functionality, barri-
ers to discoverability and adoption of such software, and
successful models to support community development;

(b) deployed an international survey to educators and education
researchers soliciting feedback on experiences, challenges,
and initiatives related to community software development
and use in classrooms and research, as well as the current
needs of the computing education and CER communities;

(c) analysed results, in concert with reviewed literature, to iden-
tify ways to integrate and improve the availability and dis-
coverability of existing CER community projects, as well as
manage and overcome institutional challenges; and

(d) developed suggested directions for a combined effort of the
CER community to identify and disseminate new solutions.

2 SIMILAR STUDIES
Prior literature reviews and surveys on computing education tools
over the past ten years have focused primarily on highlighting
tools for narrow domains such as visualisation systems [169] and
plagiarism detectors [129]. Of the few works we discovered that
attempted to describe tools for computing education more broadly,
we found them to be most useful as an illustrative example of tool
categories instead of a comprehensive list of available tools.

2.1 Domain-specific Reviews
Program visualisation systems were covered in 2013 by Sorva et al.
[169]. They focused on systems or tools intended for teaching be-
ginners about the runtime behaviour of computer programs. In-
terestingly, they observed that most of these systems appear to
have been short-lived research prototypes, and that only a small
handful of them have been used outside their site of creation. They
also concluded that, at the time, "open-source communities work-
ing on these systems are almost nonexistent" [169]. As potential
remedies, they cite forum launches and financial support to lower
collaboration thresholds.

Similarly, Sorva et al. [170] reviewed and provided a large list of
resources and solutions for generic programming visualisation sys-
tems, but their work narrowly focused on introductory CS courses.

A systematic literature review of plagiarism detectors was pub-
lished in 2019 by Novak et al. [129]. It covered not only available
tools but also other aspects of plagiarism detection including com-
mon code disguises, similarity algorithms, and evaluation instru-
ments. According to the review, JPlag [142], MOSS [158], and Sher-
lock from University of Warwick [87] are the three most commonly
mentioned in the literature. The authors also stressed the impor-
tance of evaluation instruments: not many evaluation metrics and
data sets are available for comparison.

A review of automated assessment tools for programming as-
signments was recently conducted by Paiva et al. [132]. This review
focused on the supported types of exercises, security measures
adopted, testing techniques used, type of feedback produced, and
the information offered to the teacher to optimise learning. It ob-
served that papers published over the last 5 to 6 years mainly focus
on tool development, static analysis techniques and feedback [132,
Fig. 3] and concluded that there is strong need for empirical studies
examining the role and value of automated assessment techniques.

2.2 Comprehensive Reviews and Surveys
The SIGCSE recurring panel entitled "Technology We Can’t Live
Without," which highlights computing education technology and
tools, has had seven near-annual issues since 2015 [55, 56, 58–61].
These are informal surveys of panel members’ software and hard-
ware tools for their courses and serve as quick touch points, since
they are informal panels of small groups of instructors and are
not designed to be thorough comprehensive surveys of tools in
computing education. However, they do list tools including: email
notification aids (i.e., Boomerang for Gmail); classroom engagement

 

262



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

sites (i.e., Kahoot! and EDPuzzle Socrative); classroom management
(i.e., Github and Dropbox); and many others.

Furthermore, Brusilovsky et al. [26] also listed tools for: program
Visualisation (Jeliot, jGRASP, BlueJ); algorithm visualisation (Ani-
mal, jHAVE); coding tools (CodeLab, CloudCoder, CodeAcademy);
algorithm and program simulation tools (TRAKLA2, JSAV, UUhis-
tle); problem-solving support tools (Problets, js-parsons, WadeIn,
ELM-ART, JavaGuide); classroom management (Github, Dropbox,
Gradescope, ZipGrade, Google Drive); and social navigation sys-
tems and others (Educo, Progressor). However, as the focus of the
work was on the need for smart learning content in computing
education, the tools and their features are not described in detail.

3 METHODS
Our inquiry, guided by our research questions, was designed to
expand on prior work by producing a comprehensive review of
current tools, listing challenges to the development and adoption
of CER community projects, and providing suggested directions to
address those challenges. To do so, we performed a comprehensive
literature review and conducted a community survey. Results from
both efforts form the basis of our list of existing tools available
for computing educators (RQ1), while the survey results highlight
challenges and suggested solutions (RQ2 and RQ3).

3.1 Community Survey
A survey was developed for members of the computing education
research community to address the following topics:

(1) The most important tools participants use and their satisfac-
tion with those tools;

(2) Tools that have been developed by participants;
(3) Features and/or tools participants would like to see;
(4) Challenges in using open source and commercial software;
(5) Barriers to community software deployment, development,

and/or maintenance.
We first asked respondents about up to five tools that they find

most important in their work. For each tool, we asked the respon-
dent to provide details about the tool, including their satisfaction
with it (Table 1). They rated satisfaction on a seven-point Likert
scale from "Extremely Dissatisfied" to "Extremely Satisfied". We also
asked respondents to identify their favourite and least favourite
tools, as well as what tools or features they would like to see in the
future (Table 3). We then asked respondents if they participated in
the development of any tools, and asked them for information of
up to five of these tools (Table 2). We further asked them to identify
the top three challenges they encountered when using open source
and commercial software, respectively, and when developing tools.
We provided space for respondents to leave additional information
(Table 3). Finally, the survey concluded with demographic questions
about the respondent’s institution, career, and course-load (Table 8).
Additionally, all questions were voluntary; respondents could skip
any question they did not want to answer.

The survey was distributed to the SIGCSE mailing list, Teach-
ing Track Faculty discussion on Piazza, ITiCSE 2022 Moodle site,
and to the members’ colleagues. Participation in the survey was
voluntary and the data was collected anonymously. However, it
should be mentioned that since respondents were asked to include

information on tools they developed, this impacted the anonymity
if their responses.

The resulting anonymous survey data was then parsed by work-
ing group members and analysed to uncover trends. Before analysis,
we restructured data for analysis. For example, in preparing to anal-
yse the question "What is your least favorite tool?" and "Why?",
the names of the tools themselves were extracted from the text and
curated (unifying the cases across answers and correcting typos
in names and other issues). Once the data were prepared, the re-
sults were processed to generate charts and tables. Key results are
included in Sections 5 and 7. We also analysed various additional
cuts of the data to see if any of the demographic data affected the
overall results and found these complementary analyses to be in-
conclusive. This indicated to us that the trends we uncovered were
broadly applicable, holding across institution type, class size, TA
support, years of experience teaching, percentage of time dedicated
to teaching, and other demographic metrics. Finally, we also added
to our main lists of tools any tool that was reported by no less than
4 of the respondents (10% of the survey group) and not already
uncovered by the literature search, as this indicated that the tool
was likely used by a relatively large portion of the community.

3.2 Literature Review
We paired our community survey with a comprehensive literature
review to identify available tools and summarise historical chal-
lenges to adoption, as well as successful models of dissemination
for community-developed and maintained software. The literature
review was compiled in a quasi-systematic manner, combining the
benefits of systematic review and traditional review. Our methodol-
ogy is therefore intended to be replicable while also allowing some
flexibility in the process. This was critical due to the challenges
of discoverability, which necessitated casting a very wide net in
the search process (see Section 7). Additionally, the review was
performed from scratch instead of relying on existing literature
reviews for consistency across topics, since prior works tended
to focus narrowly on a chosen topic, have differing methodolo-
gies, and were published in different years. Our review focused on
summarising recent trends of available tools in the last 10 years.

Our literature review methodology consisted of six subsequent
steps. First, a number of computing education and research topics
that involve the use of tools were defined based on discussions
amongst the authors of this working group report (see Table 5).
While the topics do not guarantee identification of all tools, they
are likely to capture the most common and/or popular tools.

Search queries for each of the tool categories were then defined.
Due to differences in nomenclature for each of the tool categories,
we specifically tailored dedicated queries per category, as seen in
Table 6. In most cases, multiple simple queries were attempted;
however, for autograders and polling, one query was constructed
to catch multiple related search terms. Some required a broadening
or relabelling of the topic area to include relevant tools. For exam-
ple, plagiarism detectors are commonly used to help instructors
identifying plagiarism, an act of reusing either colleagues’ code or
one’s own code without proper acknowledgement [36]1. Given that

1Such an act is often referred to as collusion when authors of the original work are
aware about the misconduct but let that happen [52].

 

263



ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

Table 1: Important Tools Questions

Q# Question Type

Q1 Link to the tool’s website (if applicable) Text Entry
Q2 How satisfied are you with...? Likert
Q3 Please share any additional information on your satisfaction with... Text Entry
Q4 Tool Category [See Table 5] Check boxes
Q5 Does the tool provide any prepacked related course content? Yes/No
Q6 If so, to what extent are you using that prepacked course content? Text Entry
Q7 How did you find out about...? [See Table 12] Checkboxes
Q8 Is ... open source? Yes/No
Q9 If so, who maintains...? Text Entry

Table 2: Tool Development Questions

Q# Question Type

Q13 What is the tool? Text Entry
Q14 What problem does it solve? [See Table 5] Check boxes
Q15 How widely is it being used? Text Entry
Q16 Who maintains the tool? Text Entry
Q17 How was the tool released? Text Entry
Q18 Is it open source? Yes/No
Q19 Does it integrate with any other tools? Why did you integrate it with those tools? Text Entry
Q20 Is there anything else you’d like to tell us about this tool? Text Entry

Table 3: Additional Survey Questions

Q# Question Type

Q10 What is your favorite tool that you can’t live without? Why? Text Entry
Q11 What is your least favorite tool that you’d love to replace? Why? Text Entry
Q12 What new tools or features of tools do you wish existed? Why? Text Entry
Q21 What are your top 3 challenges to using a new open source tool? [See Table 4] Text Entry
Q22 What are your top 3 challenges to using a new commercial tool? [See Table 4] Text Entry
Q23 What are your top 3 challenges to using a developing a new tool? [See Table 4] Text Entry
Q24 Is there anything else you would like to share about barriers to tool development or use? Text Entry
Q25 Is there anything else you would like to tell us about tool development or use? Text Entry

Table 4: Challenges with Developing or Using Tools

C# Challenge

C1 Concerns of data security
C2 Concerns over reliability
C3 Concerns over accountability
C4 Concerns about a centralized authority
C5 Concerns over price or cost sharing
C6 Concerns over content IP (intellectual property)
C7 Concerns over development time
C8 Concerns over integration / learning time
C9 Concerns over maintenance time / long-term support
C10 Compatibility with LMS in use

Table 5: Computing Education Topics

T# Topic Section

T1 Autograders 6.1
T2 Plagiarism (similarity) detectors 6.2
T3 Code sharing and execution environments 6.3
T4 Class management / monitoring 6.5
T5 Open textbooks 6.6
T6 Polling 6.7
T7 Visualisations 6.4

 

264



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

Table 6: Computing education topics and their queries for the comprehensive literature review

ID Topic Queries

T1 Autograders [All: autograd*] OR [All: “auto grader”] OR [All: “auto grading”] OR [All: “auto
grade”]

T2 Plagiarism (similarity) detectors “code plagiarism”, “code similarity”, “text plagiarism”, “text similarity”
T3 Code sharing and execution environments "IDE Plugin", "computer-based testing", "IDE", "block-based programming", "block

programming", "dual-modality programming", "multimodal programming"
T4 Class management / monitoring “classroom management” AND ”tool”, “learning management system”, “e-learning

AND computer science”, ”course management”
T5 Open textbooks “open textbook”, “textbook” +open, “etextbook”, “e-textbook”
T6 Polling ACM: [[All: poll] OR [All: polling]] AND [Abstract: tool] AND [Abstract: education]

IEEE: ("Full Text & Metadata":"poll" OR "Full Text & Metadata":"polling") AND ("IEEE
Terms":Education) AND ("Abstract":tool)

T7 Visualisations “Algorithm Visualisation”, “Algorithm Visualization”, “Interactive content”, “smart
learning content”, “interactive learning activities”, “interactive learning activity”,
“Program visualisation”

plagiarism detection is often based on similarity across submissions
and assessments in computing education expect code in addition to
regular text submissions, four queries were used: “code plagiarism”,
“code similarity”, “text plagiarism”, and “text similarity”. Likewise,
quizzing and polling are terms that are used broadly within and
without the education domain. We therefore focused our search
queries on "poll" and "polling" terms due to the high percentage of
false positives brought by queries on "quiz" or "quizzing."

The second step of the literature reviewwas to deploy the queries
on both IEEE Xplore and the ACM Digital Library. These queries
were executed from 24May to 10 September 2022. The latter data-
base is known for its specific focus on the computing community
while the former is for the wider community of engineers. We also
considered other potentially relevant databases (e.g., Scopus and
Springer). However, these databases cover a much wider scope of
work and fields outside of computing; as such, they yield a low
signal-to-noise ratio (e.g., many more irrelevant results than rele-
vant ones2) or a large number of false-positives (i.e., many retrieved
but irrelevant results [38]), limiting their value to our search.We are
additionally aware of the existence of publication venues that are in-
dexed by neither ACM Digital Library nor IEEE Xplore (e.g., Taylor
& Francis’ Computer Science Education and Elsevier’s Computers &
Education). However, we did not include those as this would entail
consideration of other publication venues while defining minimum
threshold for “good” publication venues can be subjective and de-
batable. To ensure articles focused on recent work relevant to the
CER community, we limited our search to the last ten years (April
2012 to April 2022).

Third, per query and database, the results were checked sequen-
tially for relevance. Once six or more irrelevant papers in a row
were visited, we terminated the search. We identified this threshold
through a trial-and-error process. For class management (T4) and
polling (T6), the threshold was increased to ten irrelevant papers
due to a higher rate of irrelevant papers. Relevancy was defined
based on title, abstract, and keywords. Papers were only included

2https://www.nngroup.com/articles/signal-noise-ratio/

if they discussed tools related to the topic and were not already
added to the literature review article set.

Fourth, for all resulting papers, we excluded papers present-
ing opinion (as these are by definition subjective), algorithmic or
technical methods (as they represent ongoing experiments), and
inaccessible tools – i.e., those without working links, without ex-
plicit information about how to access the tools, and that could
not be found via simple Google search. We also excluded papers
that required author contact to access, as we classified such tools
as inaccessible. Finally, we excluded papers that reviewers could
not comprehend (i.e., written in a language other than English or
lacking clarity) and papers that were duplicates of those already
identified in our search, as some papers were included in results
from multiple queries or were indexed by both ACMDigital Library
and IEEE Xplore.

Fifth, tools presented in the resulting papers were listed and com-
piled. Other tools mentioned in these papers were also included if
they were commonly mentioned or deemed important for research
development of the topic. As mentioned earlier, we also added in
additional tools that were reported by ≥10% of survey respondents.

Sixth, characteristics of the resulting tools were analysed and
summarised based on their website and/or relevant publication(s).
We also tried some tools to gain better understanding of them.

3.3 Other Known Tools
Some tools that do not appear in the literature review nevertheless
are well known and used in Computing Education. While the rea-
sons vary and are intended to be addressed in part by this work,
they include commercial tools and those developed by large foun-
dations that are advertised rather than published in peer-reviewed
venues and works. Despite their lack of appearance in the scientific
literature and their relatively low response rate in the community
survey, the use of these tools plays an important role in Computing
Education and Computing Education Research, so we include them
in the appendix to provide a more complete picture.

 

265



ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

4 STATISTICAL FINDINGS
4.1 Community Survey
Our community survey received 43 responses, with 39 voluntarily
providing their institution names. Two of the institutions (5.2%)
offer secondary education; sixteen offer bachelor programs (41%);
five offer master programs (12.8%); and another sixteen (41%) offer
PhD programs. Most of the respondents also provide their country
information. A majority of them are from US (24) while others are
from France (4), Indonesia (3), Brazil (2), Australia (1), Canada (1),
India (1), and Switzerland (1). A discussion on possible reasons for
the low number of respondents is included in section 7.2.

4.2 Literature Review
The number of papers and tools discovered at each stage of our
literature review are shown in Table 7, and we summarised these
results in Figure 1. The "search result" refers to papers retrieved
from the ACM Digital Library and IEEE Xplore databases; the full
queries used can be found in Table 6. A priori (initially) relevant
papers were retrieved papers that we considered relevant based on
their title, abstract, and keywords, so long as they were found before
the search is terminated. As mentioned in Section 3.2, papers with
inaccessible tools were excluded. These are papers indicating tools
with no explicit access information and that we could not elucidate
through simple web search queries. Some papers also presented
methods for doing a particular task, which were excluded as well.
Papers were also excluded if they were primarily opinion pieces,
could not be comprehended due to grammatical issues, or reported
tools whose instructions were not written in English. Additional
tools were also added where appropriate from the paper references.

Our queries retrieved 23,693 search results of which 2.5% (584)
were considered initially relevant based on their title, abstract, and
keywords before the check reached six or ten consecutive irrelevant
results. Around three fourths of them (72.8% or 425 papers) were
excluded, mostly because they either described inaccessible tools
(131) or only presented methods (174). Nineteen tools were added
to our list as they were merely mentioned in the a priori (initially)
relevant papers but appeared to be relevant to development of the
topic. In total, we reported on 140 tools from our literature review
(see Table 7 for their distribution across considered topics).

Figure 1: 23,693 initial search results led to only 140 tools.

5 PERCEPTIONS OF TOOLS
Survey respondents completed 159 tool reports covering 103 distinct
tools (as some tool were reported by several respondents). We
present below the findings of these survey questions regarding
CER community members’ perceptions of existing tools, work that
is needed, and the challenges in developing and deploying tools in
computing education.

5.1 Satisfaction with Existing Tools
The results from our survey show that the community on the whole
has a relatively favourable opinion of the wide variety of tools they
use and diverse viewpoints on how they would like to improve
them. That said, on average the least favourable class of tools were
Learning Management Systems (LMS), which we speculate may
be caused by the fact that the adoption of an LMS is typically
decided at the institutional level and not by each individual course
instructor, meaning that instructors often do not have a choice
regarding which LMS they can use.

When asked about their “favorite” tool, the responses were quite
diverse, with a wide array of tools mentioned and very few overlap-
ping responses. Of the 31 responses, 3 (9.7%) mentioned Gradescope;
2 each (6.5% each) mentioned Beamer, Python, and WebCAT. All
other responses were unique. That said, a common theme emerged
throughout the responses as most of the favourite tools were ei-
ther autograders or coding environments designed to better enable
students to debug their own code and to avoid IT issues with envi-
ronment setup and provisioning.

When asked about their “least favorite” tool, the responses were
even more diverse with only unique responses except for one: Can-
vas. In fact, of the 26 responses to this question, 30.8% (n=8) reported
that Canvas was their least favourite tool, citing various issues with
different parts of the tool, with one respondent noting that it “does
everything sort of okay, but nothing particularly well.”

When asked about their satisfaction with commonly used tools,
respondents were generally positive, with only 5 reports (3.1%) of
dissatisfaction with a tool. Of the tools that at least 10% of respon-
dents reported, the lowest average satisfaction was reported for
Canvas and MOSS (both between somewhat satisfied and satisfied),
matching the fact that Canvas was the most common “least fa-
vorite” tool. Similarly, the tools with the highest satisfaction scores
were Zoom, Gradescope, and Python (all between satisfied and very
satisfied), with Gradescope appearing from the “favorite” tool list.

Finally, a total of 23 respondents indicated tools or features they
would like to see in the future. Of these, 17.4% (𝑛 = 4) indicated
they would like to see improved plagiarism detection tools, while
13.0% (𝑛 = 3) hoped for improved autograder options, and 13.0%
(𝑛 = 3) wanted better integration and features in learning manage-
ment systems. Another 8.7% (𝑛 = 2) wanted better code execution
environments, and 8.7% (𝑛 = 2) wanted improved tools for code
sharing. All other responses were unique to individual users.

5.2 Challenges in Software Use & Development
We asked survey respondents to select their top three challenges
with using open source tools, using commercial tools, and develop-
ing their own tools. 38 respondents completed the sections on using
open source and commercial tools, while 37 respondents completed

 

266



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

Table 7: Statistics of papers and tools from our comprehensive literature review with T1-T7 topics taken from Table 5

Metrics T1 T2 T3 T4 T5 T6 T7 Total

Search result 680 1818 14464 4603 638 138 1352 23693
A priori (initially) relevant papers 74 80 74 187 31 48 90 584
Excluded papers

Unavailable tools 25 19 13 25 7 13 29 131
Only presenting methods 28 50 0 65 10 5 16 174
Other reasons 0 7 41 45 5 10 12 120

Additional tools from references of a priori relevant papers 0 18 0 1 0 0 0 19
Reported tools 21 22 20 21 3 20 33 140

the section on developing tools. A list of possible challenge options
are detailed in Table 4. Overall we found that the overwhelming
challenge with commercial tools was cost, while for open source
tool use and tool development it was the time needed to develop,
integrate, and maintain a reliable product.

5.2.1 Using Open Source Software. As shown in Figure 2, we found
that the biggest concerns with the use of open source tools were
maintenance (𝑛 = 27, 71.1%); integration / learning time (𝑛 = 24,
63.2%); and reliability (𝑛 = 20, 52.6%). This indicated that while
open source tools may provide a great solution, educators may be
wary of relying on a tool and spending time to learn it when it may
not continue to be actively developed and maintained.

5.2.2 Using Commercial Software. We also found that the over-
whelmingly biggest concern with the use of commercial software is
the price / cost (𝑛 = 29, 76.3%) (Figure 2). Notably, educators were
more worried about data security (𝑛 = 15, 39.5%) for commercial
tools than for open source tools (𝑛 = 11, 26.8%), even though com-
mercial companies, in theory, have increased resources to spend
on such efforts. It’s worth noting that commercial options tend to
have higher visibility and are therefore more likely to be targeted
than their open-source counterparts. As with open source tools,
integration / learning time still remains a large concern (𝑛 = 14,
36.8%).

5.2.3 Developing Custom Software. As shown in Figure 3, survey
respondents are, for the most part, concerned with the same topics
with tool development as with open source software integration.
The biggest change is that there is a much smaller focus on inte-
gration / learning time (𝑛 = 10, 24.4%) and a much larger focus on
development time (𝑛 = 28, 75.7%), which follows from the need
to develop instead of learn a tool. Following that, we again find
maintenance (𝑛 = 26, 70.3%) and reliability (𝑛 = 14, 37.8%) as the
leading concerns.

5.3 Accessibility and Discoverability
We also analysed the survey results to identify how the respondents
reported discovering each tool (Figure 4). The most common way
respondents reported discovering tools was through colleagues
(𝑛 = 88, 55.3%), with most of those colleagues being at the re-
spondent’s home institution (𝑛 = 72, 45.3%). Another 34 (21.4%)
reports indicated that the tool was found via an Internet search;
11.9% (𝑛 = 19) were installed as part of the institution’s LMS, and
10.7% (𝑛 = 17) were inherited with a course’s materials. Another

Figure 2: Respondents reported challenges integrating both
open source and commercial software.

Figure 3: Respondents reported challenges in integrating
open source tools and developing new tools.

 

267



ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

16 (10.1%) were created by the respondents themselves. Critical
to this study, only 7.5% (𝑛 = 12) of tools were found via papers
(2.5%, 𝑛 = 4) and conferences (5.0%, 𝑛 = 8), and no other commu-
nity mechanisms (e.g., community publications or websites) were
mentioned in the free responses of completed surveys. For each
tool report, respondents could indicate more than one method of
discovery, so percentages summed to more than 100%.

Figure 4: Respondents reported how they discovered the tools
they use, noting that in most cases it was through colleagues.

5.4 Most Important Tools: Proprietary vs. Open
Source

A total of 39 respondents reported what they considered to be their
“most important tools.” The most commonly reported tools were
a mix of open source and proprietary solutions: Canvas (𝑛 = 14,
35.9% of respondents), open source; Moodle (𝑛 = 6, 15.4%), open
source; Gradescope (𝑛 = 6, 15.4%), proprietary; Repl.it (𝑛 = 4,
10.3%), proprietary; Python (𝑛 = 4, 10.3%), open source; MOSS
(𝑛 = 4, 10.3%), proprietary; and Zoom (𝑛 = 4, 10.3%), proprietary.
All other tools were mentioned by less than 10% of respondents.

While the tools included a mix of open source and proprietary
projects, it is notable that every project in this set has a centralised
corporation or foundation authority (and all are commercial except
for the Python Software Foundation). Of the tools with at least two
respondents, 20 of 25 have such a central authority.

6 DISCOVERED TOOLS
In this section, we summarize the discovered tools from the litera-
ture review and community survey in each of the seven topic areas
(Table 5). As mentioned earlier, for tools identified in the survey to
be included in this list, the tool must have been mentioned by at
least 4 respondents, or 10% of the overall responses. As such, there
are many well-known tools that did not meet this criteria, including
Visual Studio Code, Eclipse, and IntelliJ. It may be that respondents
viewed these tools as so ubiquitous as to be universally known to

the community, and thus no mention of them was needed, however
they were also not discovered in the literature review.

A full list of discovered tools and links, including those from the
community survey that did not meet inclusion criteria (Table 19),
can be found in the appendix. To improve the discoverability of
these tools, and to enable them to be updated in the future, we have
also posted our full list to GitHub at https://csed-tools.github.io/.

6.1 Autograders
Autograders have been used in Computing Education for decades [76]
and are well-used today [132]. Due to the contexts in which the
autograders were created, it is worth noting that an autograder may
be only a portion of a larger tool; that is, there is significant overlap
among our tool categories. Many of the autograders discovered
were either embedded as part of a larger learning system, such as
those found in EarSketch [168] and OpenDSA [122], or built for a
specific use case, such as Reveal [88] and TermAdventure [174]. The
more popular autograders according to survey results, Gradescope
and Web-CAT [45], are more generalised to support additional use
cases and programming languages.

In the context of our literature review, we identified 18 auto-
graders and related plug-ins that met our discovery threshold, as
described below, and listed in Table 13.

Alloy4Fun [111] is a web application that allows students to write
Alloy [83] formal specification models, similar to the interface of
the Alloy Analyzer. To build-in autograding support, Alloy4Fun
provides a method for instructors to embed secret paragraphs in ex-
ercise models; these exercises can then be shared with students who
must then meet the specification. The authors provide a method for
downloading and visualising overall statistics from the exercises.

AutoGrader [108] compares student submissions to a correct refer-
ence implementation, rather than using test cases provided by the
instructor. It generates test inputs using a white-box fuzzer, then
compares program output as well as any deviation in execution
path to the reference implementation to determine correctness.

AutoStyle [35, 186] is a web-based system that allows instructors
to provide hints to students on style to improve readability and
conciseness. After initial submissions, student code is analysed
for Assignment-Branch-Conditional (ABC) score and similarity,
then clustered and displayed to the instructor. The instructor then
assigns hints to each cluster, after which new submissions will
be assigned a cluster using a 𝑘−nearest neighbours approach to
determine immediate feedback.

ChocoPy [131] is a subset of the Python 3.6 language augmented
with static typing to enable students to develop a RISC-V compiler
for the language. The authors provide a reference manual for the
language as well as an web-based IDE that supports compiling code
to assembly. As part of their course implementation, the authors
include autograders that compare parsed abstract syntax trees and
execute student-generated RISC-V code.

CPSGrader [90] is an autograding system for cyber-physical sys-
tems and robotics labs. It uses machine learning to generate test
benches to test correctness of student controllers.

 

268

https://csed-tools.github.io/


Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

EarSketch [157, 168] is a web application, which includes a com-
panion online textbook, to teach introductory programming with
Python. Students write Python code to create music. The authors
describe an autograding system for assignments that determines if
the student code produces the desired musical output.

GitGrade (2018) [193] is a submission system built on top of a Gitlab
instance at the University of Washington. It provides interfaces for
assignment submissions, code reviews, and autograding scripts, as
well as interfacing with Canvas.

Gradescope (2014)3 is a tool that was mentioned by 15% of the
survey respondents. It is a grading solution that is used to evaluate
student answers to online assignments, including those that are
handwritten, and can be used for quizzes given to students. It’s
somewhat student-friendly in the sense that the phone app allows
them to scan then submit answers they wrote on a paper sheet.

JupyterCanvasSubmit [67] provides a Jupyter notebook to be
distributed to students in JupyterHub that will connect with Canvas.
It allows a student to submit an HTML version of their notebook
to Canvas.

Learn-OCaml [29] is a web-based environment for the OCaml
programming language. It includes an autograder that provides
feedback to the student and commits their work and results to a Git
repository. Ceci et al. [31] extended the functionality by creating an
infrastructure to also record and track unsuccessful compilations.

Mastery Learning Quiz App [15] is a quizzing application to
support Mastery Learning [19]. To use this tool, students were
provided paper quizzes and asked to submit their responses in an
online form. A Python script autogrades the form submissions,
analyses the results, and provides high-level feedback on learning
outcomes.

OpenDSAProgrammed Instruction [122] extends theOpenDSA [160]
textbook to include true/false, multiple choice, select all, fill in the
blank, and other programmed instruction exercises. Student an-
swers are autograded before they are allowed to move to the next
section of the textbook.

Reveal [88] is an exam environment with integrated autograding
functionality. The system utilises exam-specific virtual machines
(VMs) that are installed on computer lab machines. The VMs pro-
vide limited access to external resources through a whitelist, in-
cluding access to Google’s cache of sites such as StackOverflow4,
without allowing students to post new questions to those sites. Re-
veal provides a method for students to obtain hints, or solutions,
in multi-part questions and submit their work when they have
completed a question. It also includes autograders for both coding
questions and student-supplied integration tests.

SnapCheck [184] is an autograding test framework for Snap! [71],
Scratch, and other visual programs. It is implemented in Snap! and
provides a web-based and API framework to define test cases.

SQL File Evaluation (SQLFE) [182] is an evaluation tool for
MySQL and Oracle SQL queries. It scores submitted answers based
on interpretation of the query, as well as similarity of the query to
3https://gradescope.com
4https://stackoverflow.com

instructor-provided answers. Additionally, it can apply the queries
to a known sample data set, and compare the results from the
student query to the results generated by the instructor’s query=.

Submitty [137] provides course management along with language-
independent autograding for programming assignments. It has been
expanded in 2019 by Maicus et al. [115] to include autograding of
distributed algorithms and in 2020 [114] for computer graphics
submissions.

TermAdventure [174] teaches command-line terminal skills; it
is written in Go and executed from the command line. Students
complete challenges that are defined by instructors, which are
autograded based on test conditions defined in the challenge.

uAssign [12] teaches command-line terminal skills using an in-
browser terminal emulator. Instructors create assignments for stu-
dents to complete, which are then autograded by the system.

Web-CAT [45] is an automated grading system designed around
test-driven development that incorporates interactive coding in-
struction. Its plug-in-style architecture supports scale and customi-
sation. One notable feature is the support for student-written tests.
It has been extended multiple times in the literature, such as adding
support for additional languages and submission types including
Jupyter Notebooks [117] and Habanero-Java [10].

6.2 Plagiarism (Similarity) Detectors
In the context of plagiarism detectors, we identified 22 tools and
their domains, links, and sources that can be seen in Table 14.
Despite the name, plagiarism detectors do not actually detect pla-
giarism (and collusion) [95]. They only report striking similarities
among student submissions and let instructors determine which
are potentially a result of misconduct. Sometimes, these tools are
referred to as similarity detectors.

Seventeen of the tools are dedicated to code while seven of
them can also accommodate text via limited human language pre-
processing. Most code plagiarism detectors do intra-corpal compar-
ison [105], where both source and copied submissions are assumed
to be in the same corpus. CodeQuiry is the only tool that facilitates
inter-corpal comparison with some publicly-available code. While
inter-corpal comparison can certainly help instructors to identify
more instances of plagiarism and collusion, it is not as straightfor-
ward as with regular (human) text, where strikingly similar wording
is a strong indicator of copying. With computer programs, it is far
more likely that independently developed programs doing the same
task will be coincidentally similar.

Many plagiarism detectors can be used locally, which may be
necessary to conform with the data privacy requirements of many
institutions [165]. CodeQuiry, MOSS, and Lichen are the only tools
that require the programs to be submitted over the internet.

Regarding the user interface, around two thirds of code plagia-
rism detectors (11 of 17) only offer command line interface (CLI).
Using such tools might be challenging for some computing educa-
tors due to their lack of familiarity with CLI [4]. CodeQuiry and
Lichen provide graphical user interface (GUI) as web applications
while other tools with GUI provide those as the desktop ones.

Three code plagiarism detectors are commercial: AntiCutAnd-
Paste, CodeQuiry, and CodeMatch. Since these tools typically have

 

269



ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

a trial version, computing educators interested in using these tools
are expected to take that opportunity to measure its suitability prior
purchasing.

CodeMatch has the largest coverage of languages (45), followed
by Copy/Paste Detector (25) and MOSS (24). These tools might be
suitable for institutions teaching various programming languages.
Sherlock (Sydney) can cover any languages, but that means it uses
no language-specific pre-processing and the result might be slightly
less accurate. Keywords and syntax for examples, might vary across
programming languages and cannot be treated in the same way.

It is worth noting that some tools only accommodate a few
programming languages as they consider many language-specific
aspects for higher accuracy. JPlag generalises some program state-
ments; BPlag uses a program dependency graph to detect similarity;
and Power & Waldron’s tool relies on Verilog code behaviour.

Five text plagiarism detectors are found in the literature. Tur-
nitin, Safeassign, and UniCheck accommodate both inter-corpal and
intra-corpal comparisons, can only be used online, are featured with
GUI (web-based), and are commercial. WCopyFind and plagiarism-
checker.com are the non-commercial ones. The former can be used
locally and only supports intra-corpal comparison while the latter
can search similar text on the internet (inter-corpal comparison).

Safeassign covers the largest number of text languages (22), fol-
lowed by UniCheck (18) and Turnitin (9). plagiarismchecker.com
andWCopyFind claim that they can cover any text languages. How-
ever, such claim means no language-specific pre-processing is in-
volved and the tools might have less accurate result.

AntiCutAndPaste is a plagiarism detector with both graphical
user interface and command line interface. It is a commercial tool
but users can try some features for free. The tool covers C++, C#,
Delphi, Java, Visual Basic, and general text.

BPlag [34] is a Java plagiarism detector that deals with extreme
code disguises, where the copied code looks completely different
to the original one although sharing the same semantic. The tool
determines similarity based on dynamic execution behaviour. It is
featured with command line interface and it might be useful for
broadly-specified assessments (e.g., creating a 2D game with at least
two moving objects) and open-ended assessments (e.g., create a
game without specific instructions) [165].

CCFinder [91] is a code clone detector that can be used for de-
tecting code plagiarism. Although code clone detection is not quite
similar to code plagiarism detection [24], both tasks rely on code
similarity. The tool has a graphical user interface and covers: C,
C++, C#, COBOL, Java, and Visual Basic.

CodeMatch is a commercial code plagiarism detector with the
largest coverage of programming language (46 as of this writing).
The tool can be used locally and it is featured with a graphical user
interface. Users can use a trial version with limited features.

CodeQuiry is a commercial plagiarism detector covering 20 pro-
gramming languages (see the list on their website) and regular text.
Unique to this tool, it also compares submitted code to 20 billion
lines of public code. The graphical user interface is web-based and
users need to submit their code online.

Copy/Paste Detector is the part of PMD source code analyser
project with a command line interface. The tool can do intra-corpal
comparison for 25 programming languages (see the list on the
website).

Deckard [85] is another code clone detector that can be used for
code plagiarism detector apart from CCFinder [91] and Sourcer-
erCC [156]. The tool only covers two programming languages (C
and Java) but it is argued to be scalable for large data sets. It is
featured with command line interface.

JPlag [142] is a common code plagiarism detector [129] that can
also handle general text. The tool was previously designed as a web
service like MOSS [158], but now it is designed as a Java desktop
application with a command line interface. Further, the code is
available on GitHub and it is maintained by the community. The
tool currently covers six programming languages: C, C++, C#, Java,
Python, and Scheme.

Lichen [136] is a plagiarism detector in Submitty, an open source
course management, assignment submission, exam and grading
system from the Rensselaer Center for Open Source Software. It
can report striking similarities among student submissions written
in C++, Java, MIPS, Python and general text.

MOSS [158] is another popular code plagiarism detector [129]. It
is a public web service accessible via command line interface. A
number of community contributions to the tool are listed on the
website, some of which are about the development of graphical user
interface. According to the website, MOSS covers 24 programming
languages and it is managed by Stanford University.

Plaggie [5] is somewhat similar to JPlag [142] except that it is
exclusive to Java submissions. It was developed when JPlag was
still a web service and JPlag’s code was not open for public.

plagiarismchecker.com is a free online plagiarism detector for
any regular text. The tool can search similar text from the internet
and report it to the user.

Power andWaldron [140]’s Tool is dedicated to check plagiarism
on Verilog hardware description language. The tool is written in
C++ and the code is publicly available.

Safeassign (2013) is a commercial text plagiarism detector in Black-
board, a learning management system. The tool can do both intra-
corpal and inter-corpal comparisons and it covers 25 human lan-
guages including English, Chinese, Malay, and German.

Sherlock (Sydney) is a plagiarism detector with command line
interface. The tool can handle any language (both programming
and human languages) as it relies on no language-specific pre-
processing. The tool was maintained by the University of Sydney.
However, the original link is not accessible anymore and a set of
developers extracted the code from Google cache and put that on
GitHub.

Sherlock (Warwick) [87] (not related to the tool of the same name
mentioned above) is a desktop plagiarism detector with graphical
user interface. The tool is maintained by the University of Warwick
and it is integrated to BOSS submission system [86]. It currently
covers C, C++, Java, and general text.

 

270



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

SIM [64] is an early desktop plagiarism detector with command
line interface. It was developed with C and it covers 8086 assembler
code, C, C++, Java, Lisp, Miranda, Modula-2, Pascal, and general
text.

SourcererCC [156] is a code clone detector that is applicable to
code plagiarism detection. It is featured with a command line in-
terface and covers C, C++, C#, and Java. The code is available for
public.

STRANGE [94] is actually a module to report detailed similarities
and differences between two source code files. However, the tool
can also act as a standalone similarity detector for Java and Python
submissions via command line interface. The tool has been further
developed in two directions: comprehensiveness5 [96] (reporting
three layers of similarity, especially useful for trivial and strongly
directed assessments [165]) and scalability6 (replacing running
Karp-Rabin greedy string tiling [187] with locality sensitive hashing
algorithms). Both are featured with graphical user interface for
convenience.

Turnitin is a common commercial plagiarism detector for regular
text written in nine languages: Danish, Dutch, English, French,
German, Norwegian, Portuguese, Spanish, and Swedish. The tool
supports both intra-corpal and inter-corpal comparison. Further, it
is featured with intuitive graphical user interface.

UniCheck is somewhat similar to Turnitin except that it covers
more human languages (18, see full list on the website). All lan-
guages covered by Turnitin except Swedish are also covered by
UniCheck.

WCopyFind is another plagiarism detector that can work with
any regular text; it does not have language-specific pre-processing.
Unlike other text plagiarism detectors, WCopyFind can run locally
and it only supports intra-corpal comparison.

6.3 Development Environments
There are a wide variety of development environments that are
used. Some are common to classrooms and industry, and others
are specifically built to teach programming. In particular, block-
based development environments are well represented by several
core projects that have spawned multiple derivative projects. The
tools listed here are some of the less common ones that we found
instructors are using in the classroom. Table 15 contains the details
of the tools, their URLs, and how the tool was discovered.

Alice Netbeans Plugin [40] facilitates combining the use of Alice
and Java in a CS1 course. It allows students to take the projects they
start in Alice, a language developed to teach programming using
video and 3-D graphics, and convert them to Java, showing the
student how the languages relate, and also how they are different.

Amphibian [18] is a visualisation plugin for the IntelliJ IDE that
allows students to switch between block-based and text-based in-
terpretations of Java code. This allows instructors to use both types
of representations within their course materials.

5https://github.com/oscarkarnalim/CSTRANGE
6https://github.com/oscarkarnalim/SSTRANGE

Blockly [181] is a block-based programming environment that
runs in a web browser. It is developed by Google and released un-
der an open source license. Such is the popularity of the project
that it has led to multiple derivative projects in different contexts,
such as BlocklyDuino, Blockly@rduino, BlocklyProp, Block-
yTalky [161] and BrickLayer [53].

cs50.io [7] is a web-based IDE for education. It provides an in-
browser code editor, as well as a terminal window and elevated
privileges to the student during their session. The browser editor
functions as a front-end to a Docker container that hosts a full
Ubuntu OS instance. More recently, it adopted GitHub codespaces7
as the backend for the editor.

MakeCode [14] is both a platform and block-based programming
environment for programming microcontroller-based devices. It is
developed by Microsoft and released under an open source license.
It is available for a number of different microcontroller platforms,
including the BBC micro:bit, the Arduino, and the Adafruit Circuit
Playground Express.

Repl.it is an in-browser IDE that provides multi-user interaction
within the editor, allowing students to work in teams on program-
ming projects. Instructors can monitor coding sessions, and provide
feedback within the context of the editor. Also, it provides an auto-
mated grader to assess student submissions.

Reveal [89] is a lab environment exam platform, which intends to
provide student developers with access to a full suite of develop-
ment resources, while preventing collusion between test takers. It
provides a hinting platform, as well as autograding functionality.

Scratch [148] is a block-based programming environment aimed at
children in the 8-16 age range. It was developed by the MIT Media
Lab, has been translated to 70+ languages, and is released under
an open source software license. It has also been used to teach
programming to younger children using the Scratch Jr project [50]
and older children as they progress in their development using
Patch [149]. It has also spawned a collection of works to help
teachers analyse Scratch projects, such as the Scratch Analysis
Tool [33], Dr Scratch [127] and Hairball [20].

SDES [173] or Simple and Dynamic Examination System is an
automatic exam question generator. It supports plugins to allow it
to automatically generate questions based on arbitrary input data
or from XML-formatted files. Additionally, the authors emphasise
the tools ability to offer more secure examinations, as the tool runs
completely standalone from other tools.

Snap! [72] is a block-based programming environment, much like
Blockly and Scratch, which similarly targets both 8-14 year-olds,
but also includes more advanced features, such as recursion, to
help support older learners. It is developed by the University of
California, Berkeley, and is released under an open source software
license. An extension to Snap! includes the ability to introduce
parallelism into student projects [49].

7https://code.cs50.io/

 

271



ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

Thonny [6] is a Python IDE that provides alternative ways for
tracing code, visualisations for the call stack geared to novice pro-
grammers, as well as collecting analytic data about student activity
within the tool. It is also extensible through a plugin architecture.

6.4 Visualisations
The use of program and algorithm visualisations to improve the un-
derstanding of algorithms has been practised in computer science
education for decades [11]. Initial tools supported the visualisations
of sorting algorithms and of various graph algorithms [25]. While
this still describes a large number of current tools, alternative appli-
cations of visualisations in computer science education have been
developed over the intervening years.

In addition to typical algorithm visualisation, new applications
of visualisation are used to aid learning in cryptography, operating
systems, data structures, and control flow. In congruence with the
wider application of visualisation has been the shift in how appli-
cations were deployed. Early examples of visualisation tools could
only be used on a single platform. Over time this changed and later
instances offered support for multiple platforms. This trend contin-
ued, with many of the more recently produced tools are developed
as web applications such that only a browser is required for use.

The remaining text in this section introduces the tools that were
discovered through the literature review and survey. Only tools
where availability could be determined, as a binary or through
open source code, were included. Table 16 contains the details of
the tools, the platform(s) they support, their URLs, and how the
tool was discovered.

AlgoRythmics [153] provides interactive visualisations for a small
number of algorithms. However, for each of these algorithms the
environment provides a number of different modes of interaction
from animations to interactively performing the steps of the algo-
rithms to completing portions of the code in a fill in the blanks
manner.

AlgoTouch [54] provides a framework for learning about algo-
rithms through manipulating data in a visualisation. AlgoTouch
is designed for use with large touchscreen devices or interactive
whiteboards. The only issue limiting its wider use is that the avail-
able documentation and examples are only available in French.
Development appears to be ongoing at time of publishing.

Alice [145] is a block-based programming environment for the
creation of animations, interactive narratives, or simple 3D games.
Alice is designed to teach logical and computational thinking skills,
fundamental principles of programming and to be a first exposure
to object-oriented programming. Development on this project is
ongoing at the time of publication.

Animal [152] is one of the oldest traditional algorithm visualisation
tools that remains available in computer science education. Animal
comes equipped with a large number of prepared animations to aid
learning of data structures, algorithms, cryptography, searching,
sorting andmore. Animal requires no complex installation or set-up,
students or teachers can download a single executable jar file. The
addition of custom animations does require a number of extra steps.
Development has continued on this tool for a long time, however
the last versioned release was in 2018.

AnimOS CPU-Scheduling [102] provides a framework for testing
and visualising a number of CPU scheduling algorithms. The be-
haviour of processes and scheduling algorithms can be customised
and the selections will be shown in an animated visualisation. The
system captures and presents relevant statistics from the scheduling
simulations for better understanding of the differences between
algorithms. It is unclear if there has been any further development
since this tool was created.

BlueJ [16] is a Java development environment that is designed
specifically for beginners. Included in its long list of features is the
ability to visualise the execution of Java code. Development on this
project appears to be ongoing at the time of publication.

BRIDGES [28] is a library that provides a basic interface for visu-
alisation in early computer science education. Students can create
interactive representations of their data with very little code to aid
understanding of different concepts. In addition, recent versions
also include additional APIs for the creation of basic games that
can be played on the web or smartphone devices. Development on
this project is ongoing at the time of publication.

Choc [128] is a toolkit for teachers to craft small programs that can
be explored interactively. The programs are visual in nature and
execution is controlled through the use of sliders. While this tool
shows some potential, there has been no development since 2013.

Cryptography Visualisation Tools are collection of six visuali-
sation systems for explaining different cryptographic algorithms
(DESvisual, AESvisual, RSAvisual, SHAvisual, ECvisual, & VIGvi-
sual). They allow students to interactively work through the dif-
ferent cryptography algorithms with questions at different stages.
Bucking the trend of more modern tools, each is available as a sep-
arate program with binaries for Windows, Linux and Mac. There is
no evidence of continuing development on any of the above tools.

CrypTool(s) bundles a collection of resources and tools for learning
about cryptography, with versions available as binaries onWindows
(CT1 & CT2), a Java version (JCryptTool/JCT) and finally an web
based version (CrypTool-Online/CTO). Resources are available to
explain algorithms, animate them and even includes cryptography
based games and contests. Development on all of the tools in this
section appears to be ongoing at time of publishing.

Data Structure Visualizations, provided by David Galles [57] is
one of the earliest examples of content provision moving towards
the web, it started life as a Java project in the previous decade, was
subsequently rewritten in Flash for the web and finally ported to
HTML5/Javascript. The site contains a large variety of visualisations
for different data structures and algorithms. In addition, the full
source code is provided as well as a tutorial describing how to create
custom visualisations. It is unclear if there has been any ongoing
development with respect to this project since 2011.

Dynamic Data Structures (DDS) [144] provides a web-based in-
teractive simulation of manipulating node objects in a linked list.
Students can create nodes and references and manipulate them
to simulate different list operations. DDS features accurate por-
trayal of reference management, such that it is easy to accidentally
lose objects when they can be cleared using a simulated garbage
collector.

 

272



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

Additional tools available are a prototypical BTree manipulat-
ing tool as well as tools for manipulating directed and undirected
graphs. These tools are listed as in development, however it is
unclear if any development has been done since 2019.

ExplorViz [74] is a software visualisation system, rather than
program or algorithm visualisation. The aim of this software is
to present the user with a representation of the architecture, run-
time behaviour and development process using a number of static
or interactive 2D and 3D visualisations. This tool remains under
development at time of publishing.

Flap.js [103] is designed as a web based alternative to JFlap. Flap.js
is developed by students (under the supervision of a faculty mentor)
specifically for use in classes about the theory of computability.
The project remains under development at time of publication.

Flow [27] is different from traditional approaches to program or
algorithm visualisation. Rather than focus on data and how it is
manipulated, Flow visualises the flow of control during the exe-
cution of a Java application. Flow can be particularly useful when
introducing students to concepts like call stacks or when describing
the inversion of control for UI programming. Flow is available as a
standalone program, but may more often be used as a plugin for
the IntelliJ IDEA development environment. It is unclear if devel-
opment is ongoing as the latest version of the plugin was released
in 2020.

Highway Data Examiner (HDX) [178] provides a framework for
visualising a number of graph algorithms as well as a number of
real world data sets that they can be tested on. The project aims
to provide data sets small enough that algorithms can be worked
through manually as well as large scale examples representing
places in the real world. Algorithms can then be directly visualised
as an overlay over the real maps from OpenStreetMap8. Work on
HDX and the datasets it utilises appears to be ongoing at time of
publishing.

JFLAP [151] is a collection of visual tools which can be used as
an aid in learning concepts of formal languages and automata the-
ory. JFLAP evolved from a collection of existing tools which were
ported to Java and continuously built upon for many years. The
most recent version of JFLAP (7.1) was released in 2018, though
it appears that a consistent effort has been under way since 2015
to port the functionality to HTML5 and JavaScript to enable its
use within the OpenDSA interactive eTextbook (see Flap.js above).
JFLAP is provides visualisations of the represented systems as well
as interactive components for learning how they work. In addition,
OpenFlap content within the OpenDSA interactive eTextbook can
be provided in the form of gradable exercises the students must
complete.

jGRASP [39] is a lightweight development environment created to
provide visualisations to improve the comprehensibility of software.
It provides control structure diagrams, UML class diagrams, and
run-time visualisation for primitives and objects. It is available as
standalone software as well as plugins for Eclipse and IntelliJ IDEA.
Development is ongoing at the time of publication.

8https://www.openstreetmap.org/

Jive [84] is an eclipse plugin that provides visualisations of the ex-
ecution of Java code. This visualisations are presented in a number
of different forms and adds features such as reverse stepping and
the extraction of finite state machines from the execution trace of
a program. Development appears to be ongoing on this project up
until 2021, and may be continuing at time of publication.

JavaScript Algorithm Visualization Library (JSAV) [93] pro-
vides the scaffolding in JavaScript to produce algorithms visuali-
sations for use within web pages and specifically eTextbooks like
OpenDSA. Last updated in 2019, the JSAV project itself does not
contain a large number of examples that can be used. However, due
to its heavy use within the OpenDSA interactive eTextbook there
are a large number of examples available9.

JSVEE and Kelmu [166] are libraries that enable the visualisation
of programs on the web. This is similar in concept to JSAV, but
intended instead for the visualisation of programs. JSVEE allows
the creation of embeddable animations showing the execution of
programs, Kelmu enables the addition of annotations to these ani-
mations to provide extra information and improve learning. The
animations produced are ideal for use within on-line interactive
eTextbooks.

JSVEE supports Python and Scala, but animations must be gen-
erated using a transpiler to create the custom JavaScript that is
required. JSVEE and Kelmu were last updated in 2020.

JSON-based Algorithm Animation Language [180] (JAAL) is
an attempt to define a language that can be used to represent al-
gorithm animations. Typically, most implementations either have
a custom representation or can only be represented in code. One
novel feature of this tool is that user can interactively perform the
steps of the algorithm and be scored on correctness with feedback.
Development on this project is ongoing at time of publication.Mar-

ble MLFQ [97] is similar in design and purpose to AnimOS. Marble
MLFQ is however focused on only the multilevel feedback queue
rather than the different algorithms available in AnimOS. Marble
MLFQ has not been developed since 2018.

Moodle TraceGenerator [155] generates code tracing quizzes that
provide feedback in the form of program visualisations. Questions
can be generated in a number of forms for both the C and Python
programming languages. Development of this project is ongoing at
time of publication.

Omnicode [92] is a live programming environment with always-on
run-time value visualisations. The project appears to have ceased
development when it was first published.

Online Python Tutor [69] is an early example of a web based
program visualisation tool. Originally supporting only the Python
programming language, support has since been added for Java,
C, C++ and JavaScript. Online Python Tutor has been used by
millions to help understand the execution of their code. Active
development by the original author appears to have ended in 2019,
however a large number of forks of the code exist with continuing
development.

9https://github.com/OpenDSA/OpenDSA/tree/master/AV

 

273

https://www.openstreetmap.org/
https://github.com/OpenDSA/OpenDSA/tree/master/AV


ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

Pathfinding Visualizer ThreeJS allows the user to explore how
a number of 2-dimensional searching algorithms operate. The user
can create 3-dimensional representations of mazes and view the
progress of the searching algorithms from different points within
the simulation.

Programming Language Interpreter for Visualization of Exe-
cution Trace (PLIVET) was initially developed as PVC [80] but has
evolved into its current form. PLIVET is a web based application
for visualising the execution of C programs. In function, this is the
same as Python Tutor Online, but PLIVET adds a small number
of features such as IO support and modifies the way programs are
represented to make them more understandable. PLIVET appears
to be still under development a time of publishing.

Recursion Tree Visualizer [133] visualises the execution of a
number of recursive algorithms. There are a number of pre-populated
examples, but custom code can be added in either Python or Node.
The execution of the functions are shown through the generation
of a tree representing function calls and the returned values at each
point.

TigerJython [99] is a programming environment for Python. It is
primarily designed to improve novice experience through the use of
modified error messages, but it does also provide visualisations to
aid students in the debugging process. TigerJython remains under
development at the time of publication.

Thread Safe Graphics Library [3] (TSGL) is a library created
to enable students to learn about the behaviour of multi-threaded
programs through visualisation. This includes the ability to visualise
the execution of existing parallel code and visualisations of classical
problems like the dining philosophers. TSGL appears to be under
continued development, but the latest updated was in 2021.

Thread Safe Audio Library [2] (TSAL) is not a visualisation
library or too, but instead a sonification tool. Designed to help
visually impaired students learn computing concepts the library
provides APIs for producing sounds based on the the operations in
code. As examples, several sorting algorithms were used to create
distinct sonifications. This project appears to be under continued
development at time of publishing.

UUhistle [167] is another program visualisation tool for introduc-
tory programming education. UUhistle is designed to help novice
programmers improve their code-tracing skills and understanding
of programming concepts and programming-language constructs.
UUhistle is no longer under development as it has been replaced
by JSVEE and Kelmu.

Vamonos [30] provides another library for showing algorithm
visualisations within a browser. Vamonos has not been actively
developed since 2016, but provides a library of pre-made visualisa-
tions that can be used. The unique feature provided by Vamonos is
that it can output visualisations into a single HTML file containing
all of the required CSS and JavaScript.

VeriSIM [141] is an online learning environment designed to aid
the understanding of modelling as well as UML diagrams and their
creation. This project appears to be under continued development
at time of publishing.

VisuAlgo [70] is a platform for algorithm visualisation on the
web. Since its initial development, a large number of visualisations
have been created and are available on the platform. In addition to
the available visualisations, VisuAlgo also enables students to take
automatically generated and graded quizzes to help ensure mastery
of the relevant topics. VisuAlgoworks inmultiple languages and has
been in continuous development since its creation, with current
work is focusing on adapting the system for use on tablets and
phones.

Willow [125] is a web based tool that combines elements of al-
gorithm visualisation and program visualisation. Objects are visu-
alised as nodes connected by references and arrays are represented
as bars, all of which are updated as the code is executed. In addition,
the stack is represented showing the changes over time in a very
similar manner to the Flow plugin. Willow has not been actively
developed since 2020.

6.5 Class Management
Adoption of Learning Management Systems (LMS) has grown in
the last 30 years [68] and the need for remote access for higher
education has only accelerated in the wake of the COVID-19 pan-
demic [135]. Discussion around LMSs may have once been about
the auxiliary benefits of using the tool [107] but it is now considered
an expectation for most higher education institutions.

We considered Learning Management Systems any tool designed
to assist instructors in classroommanagement and included features
for student assessment and tracking, class communication, and
content delivery. For the sake of this review, the following terms
fall under this grouping:

• Learning Activity Management Systems (LAMS)
• Learning Content Management System (LCMS)
• Course Management Systems (CMS)
• Virtual Learning Environments (VLE)

Through the survey and literature review, this resolved into 10
Learning Management Systems, three tools designed to integrate
with LMSs, and four useful in classroom monitoring and interac-
tions. Table 17 contains the details of the tools, the platform(s) they
support, their URLs, and how the tool was discovered.

Blackboard [68] began as CourseInfo and held much of the North
American education space within six years of its launch. It has since
acquired and folded in other products such asWebCT (2005) and An-
gel Learning (2010) as part of its feature set [135] and re-branded to
Blackboard Learn (Blackboard). It can be cloud-based and offers the
ability to integrate with third party applications [68]. Favorite tools
in a 2019 survey of students and faculty at a small university [9]
singled out learning content, assignments, and grading tools. This
also mentioned that faculty at their institution focused on using
Blackboard as a content repository which suggests a slow adoption
of other LMS features.

A usability study comparing Blackboard Learn and Canvas found
similar satisfaction ratings, suggesting that these two were equiva-
lent systems for the student experience [68]. Another investigation
on general student acceptance of Blackboard also documented [162]
positive experiences with the platform.

 

274



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

Some noted severe shortcomings in Blackboard that were over-
come with the addition of Microsoft’s Sharepoint content manage-
ment system [189] but the feature set may have evolved to cover
these gaps in the seven years since that article.

Because Blackboard is one of the older LMS tools, it is much-
discussed in the literature but it was not mentioned by respondents
in our survey.

Canvas [68] by Instructure has increased its market-share consid-
erably in the North American region since its initial launch. Like
Blackboard and MoodleCloud it can operate entirely via the cloud
and integrate third party applications in addition to the typical LMS
features of calendar, activity submission, and content delivery [68].
Canvas supplies some limited support to group work within its
discussion board system. This LMS is also touted as "the world’s
most reliable LMS" with a 99.9% up-time in one study [48].

Coursera [41] is a proprietary web-based LMS developed with the
goal of increasing student capacity without increasing infrastruc-
ture costs in the Massive Open Online Course (MOOC) format [41].
To do this, it incorporates automatic test-based grading, forums,
and content delivery. Coursera’s features also include integrations
with other LMSs such as Blackboard Learm, Moodle, Canvas and
D2L.

Doubtfire [146] is one of the newer LMS solutions which adver-
tises itself as a lightweight learning management system. Some
distinguishing features include portfolio grading, the creation and
the management of student groups, and an Agile-centered task
management philosophy with burn charts for student tasks. Liter-
ature in the review noted that instructors used Doubtfire and its
audio feedback tools, in addition to the LMS used at their intuition
(BrightSpace by D2L), as a way to provide better discussion oppor-
tunities between online and campus students and their tutors [146].

Google Classroom is a light-weight cloud web based freemium
model LMS. One interesting feature is the ability for this LMS to
export data for further analysis but this LMS does not yet allow for
integration with edtech tools and third-party ad-ons.

Gooru [112] is a free customisable LMS designed for content shar-
ing and collaboration between courses. One notable feature is sum-
mary data analysis for monitoring student activity and engagement.

Gradecraft [77] was built at the University of Michigan with the
philosophy of gamification to improve student engagement. This
brings with it features such as a leveling system, achievement
badges, and leaderboards. "Levels are unlocked" instead of "pre-
requisites met" along with a goal-setting Points Planner.

Isaac Computer Science [183] is a free computing education
learning platform designed for secondary schools in the United
Kingdom. This platform offers gamified interactive learning content
aimed at students working towards UK standardised assessments.

Moodle, and its cloud version MoodleCloud, is known for sup-
porting higher institutions with added customisation. Moodle was
the most popular learning platform in the literature review by far
due to its mutability as many of the papers focused on institution
variants of Moodle.

Notably, one Moodle variant was tuned for low-bandwidths to
help cope with the needs of rural, low-income areas in developing
nations [192].

Taman Belajar [191] is web-based free LMS designed for MOOC
interaction that was found to be easy and interesting to use and
appropriate at the secondary level [191].

6.5.1 LMS Integrations.

HKU Space Soul [78] is a mobile application that functions as an
integration with Moodle 2.0 to use Mobile Learning (M-Learning) to
aid in knowledge scaffolding, content access, and reduce cognitive
load [78].

One researcher cited a "glaring shortcoming" in the sweeping
lack of support for computing courses in today’s LMS [143].

Real Talk [147] Audio feedback tool developed for integration
with the DoubtFire LMS. This scaling system is meant for teacher-
asynchronous and student-synchronous discussions for online courses.

WhatsApp is a Mobile Instant Messaging Service (MIM) that fa-
cilitates near-synchronous communication across web or mobile
clients. One novel use of this tool included using it to leave asyn-
chronous audio feedback on student work in addition to working
with the Doubtfire LMS [146] with a positive response from stu-
dents. This can also be leveraged by integrating it via API with other
systems such as web-based social discussion platform TutorSpace.
This allowed for better content distribution and faster response
time in student-teacher communication [113].

6.5.2 Classroom Monitoring and Interaction.

Elgg OSN [179] is more of an engine than a tool itself but success
was cited in using it to create a custom Online Social Network
(OSN) as a supplement to the learning management system. Default
features include blog, discussion board, file gallery and profile for
the purpose of community building.

Microsoft Teams [8] is an MIM created by Microsoft as part of the
MS Office 365 suite and was used to offer online tutoring support
during the COVID-19 pandemic, when travel and in-person classes
were limited.

Piazza is a commercial tool that enables asynchronous interactions
between and among students, teaching assistants, and instructors.
Instructors can also endorse and moderate answers and comments
posted by students.

RepoBee [65] is an open source command-line tool that helps
with management of Git repositories on GitHub, GitLab or Gitea.
Features include templates and a plugin system that allows for
customisation and integration into systems like GitHub Classrooms.

Spatial [138] is ametaverse 3D visualisation tool that was leveraged
in one study by integrating it with its learning management system
(Moodle 4.0) environment during the COVID-19 lockdown. This
virtual classroom had cognitive impact even when delivered over
varying broadband speeds.

Because the adoption of LMS is typically made at the institu-
tional level and not with each individual course, this list may have

 

275



ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

less variation and experimentation than other categories of tools
presented here. We can speculate that this may also contribute
to Learning Management Systems being the "least favourite tool"
among our survey responses.

6.6 Open Textbooks
The number of open textbooks10 has increased in recent years, but
many of them are not evaluated in published research. As such, our
review of the literature did not reveal many open textbooks or tools
to create open textbooks11.

Jupyter Notebooks12 were originally developed as tooling for
interactive data science. They have since been enhanced [42] to
allow instructors to include executable coding examples and assign-
ments within the Notebook. Auto-grading support has been built
into some existing tools as well [118].

OpenDSA13 began as an open-source data structures and algo-
rithms book, which was moved to an e-book format to allow inter-
active visualisations to be included inline in the text [160]. It has
been extended to be a subject-agnostic, full-featured e-text frame-
work that also includes inline quizzes, programming exercises, and
LMS integration. It also collects extensive analytics which are avail-
able to instructors for insights about how their course material is
being received by students [47][44].

Runestone Academy14 provides an authoring and delivery plat-
form for open-source interactive textbooks focused on computer sci-
ence. Runestone’s authoring tools allow instructors to create their
own textbooks with interactive elements, including assessments,
and live examples, and then host them on the Runestone infrastruc-
ture. Several popular first CS books are available from Runestone,
including Java,Java,Java by Morelli, et al. 15, and CSAwesome, the
College Board-endorsed curriculum for the AP Computer Science
A course 16.

6.6.1 Other Tools for Creating Open Textbooks. Even with the va-
riety of tools reported being used to create open textbooks, a large
number of papers we found talked about using more general, exist-
ing open-source tools to create textbooks. Included in this set (but
not exhaustive by any means) are tools for taking meta-formatted
text files, and converting them to static HTML/CSS with some
Javascript interactivity (i.e. Hugo17, Jekyll18, Sphinx19), GitHub20.

10An open textbook is defined as an electronic document that has an open license that
makes it free to use and change. Different "free" licenses may require attribution of
the original authors and/or licensing new contributions in a free form.
11There are a wide variety of textbooks offered by textbook publishers in some type of
electronic form, often including interactive content and knowledge assessments built
into the text. As our focus is on open-source, free-to-use texts, we do not enumerate
them here.
12https://www.jupyter.org/
13https://opendsa-server.cs.vt.edu/
14https://blog.runestone.academy
15https://runestone.academy/ns/books/published/javajavajava/book-1.html
16https://course.csawesome.org
17https:/gohugo.io/
18https:/jekyllrb.com/
19https:/sphinx-doc.org/
20https://github.com

Also, there were a number of discussions about creating cross-
platform mobile applications using widely available frameworks
(see Flutter21 and Cordova 22 as examples).

6.6.2 Approaches and Standards. We identified a number of papers
which, while they didn’t identify open-textbooks directly, had what
we thought were useful ideas for addressing issues around creating
and using open textbooks. These includes:

• Instructional design model proposals when using open texts
to support online courses [150].

• A model for creating a virtual environments that could be
used as a basis for textbooks [63].

• A process for converting traditional texts into online, open
texts [130].

• A process for reusing and refactoring open text materials
to account for the change in context (i.e. different regions)
where the materials are used [37][22].

• A review of studies on the effectiveness of open course ma-
terials used in higher education [188].

• Models for evaluating the motivational influences on using
open textbooks in introductory CS courses [139][159].

• Managing versioning of curricular materials in a distributed
fashion [116].

6.7 Polling / Quizzing
By nature, polling and quizzing are not specific to CS education,
and indeed most papers we found describe tools used in different
domains. Following this, we decided to include in our analysis tools
that are not CS-centred as long as they can be used in computing
education or modified to that purpose. Asking questions to students
is also a facility included in many larger-scope tools or tools centred
on a specific category (e.g., virtual conference software). Thus, for
the poll/quiz category we needed more restrictive queries than for
other types of tools studied. Moreover, as the same query was not
giving meaningful results in both investigated databases, we needed
to customise those queries separately. As a result, we obtained a
larger ratio of number of relevant papers over number of result
papers.

What’s more, when analysing the query results, limiting our-
selves to examining only the metadata content of found papers led
to missing interesting results. Thus, unlike the other topics, we
examined the full text of the reviewed papers to detect poll/quiz
tools or such functionalities in larger-scope tools. For the same
reason, we used a 10-in-a-row stopping criterion to examine query
results.

In total, 35 tools were identified (see Table 18), 21 coming from
the literature review, eight more from the survey and six more were
previously known to the working group but were not identified in
either the literature review nor the survey.

We fount that most tools in this topic are commercial, which
we believe is largely due to the fact that there is a broad educa-
tional market at stake: polls and quizzes apply in all domains, in
connection to many platforms or kinds of other tools23, and from

21https://www.flutter.dev/
22https://cordova.apache.org/
23e.g. virtual meeting tools (Zoom, Webex, Teams, GatherTown) or content manage-
ment solutions (Google Docs Editor).

 

276



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

students starting in primary school, continuing through secondary
and higher education, and into employment.

As a consequence, we found few papers presenting a tool de-
signed by the authors, and still less presenting open-source tools.
Most papers reported about the use of existing tools. Indeed, the fact
that there is a large corpus of existing commercial polling/quizzing
tools competing for market shares leads most of them to have
appealing characteristics (i.e. easy to use, technically advanced,
well-documented and supported, offering a free plan and integra-
tion to various LMS). This in turn leaves little room for the proposal
of new tools in the topic, save for specific niches [66]. Moreover,
the COVID-19 pandemic has put a much greater emphasis on edu-
cational technologies, e.g. polling [164], leading many instructors
to experiment with existing tools and report about their findings
through research papers in education [32, e.g.].

Below, we briefly review the tools found in the literature review
and survey. We do not mention polling/quizzing tools integrated
by default in an LMS.

Acadly is mostly known for capturing attendance (it uses WiFi
to propagate a local signal throughout the classroom via mesh-
networking). Questions can be asked to students through various
kinds of polls supporting image and Math-Tex content. This tool
can be used either through a browser or within a dedicated app. It
integrates with LMSs and Zoom. [32] use it for proposing game-
based learning.

Adobe Captivate allows users to produce interactive presentations
using the slide show metaphor (i.e., alternating a slide of text, with
a slide containing a video followed by a slide containing a quiz).
Kolås [100] report that content was initially rendered in Flash and
now in HTML5 format. It includes several kinds of quizzes such as
drag-n-drop or short text answers.

Google App Scripts is a tool that allows users to make connections
between different kinds of cloud-based tools such as Google forms
and presentations but also whiteboards. Kloos et al. [98] shows
how this tool facilitates information flow between tools without
having to do it manually. Smoothing the process to switch from
one activity to the other one (e.g., along the Bloom’s Taxonomy)
reduces the instructor’s mental load while conducting classes.

Facebook is a social media whose use for teaching was more thor-
oughly investigated since the COVID-19 pandemic. A social media
allows to enhance social interaction, more focused learning, more
’amiable’ classroom environment [190]. When students are enrolled
in a class group, they can be proposed polls and Yu and Liu [190]
reports that this led to more democratic and participatory forms of
dialog.

Factitious [66] is one of the very few open-source tools we found
for quizzing. The authors created a new tool because they needed
to fit a particular niche: detecting fake news and improving news
literacy. In their case, they wanted to control a game environment
to provide contextualised feedback.

GatherTown is a proximity-based video conferencing solution
where people are represented by game-like avatars on a map and
where people in the same map location can interact. This system
can be used in distance learning settings to recreate a sense of

awareness to other students and, in particular, can help students
to form teams by assembling their personas around a common
location of this virtual world. Siegel et al. [164] reviews several
innovative works relying on this platform.

Google Forms is a long existing tool for writing surveys. It is
integrated with Google classroom (2014) and since 2016 it also
allows to compose quizzes typically for educational purposes. It is
often used in combination with Google Docs [21].

GoToMeeting and GoToWebinar are commercial virtual meeting
tools (VMT) that include audience poll and survey functionalities.
These tools can be embedded in virtual classrooms, and Wang and
Lee [185] reports on its use in a physical classroom.

HapYak is a commercial solution to create interactive videos. Among
others, the content creator can poll viewers and embed quizzes as
well in its online videos, response being recorded for individual
viewers. Interactive videos allow to engage students in an active
learning position compared to simple videos. Kolås [100] advises
to use them in MOOCs to avoid high drop-out rates.

iClicker is a commercial audience response system that is famous
for coming with hardware remote controls that students use to
indicate their answers. Current versions use smartphones to replace
the remote controls, though institutions might provide students
with the hardware to avoid social discrimination. This tool can be
used for attendance recording, polling or quizzing students. Shryock
[163] reports that it was through the use of peer interactions and
classroom discussions that the tool positively affected the learning
experience.

Kahoot! is one of the most frequently mentioned tools to question
students, e.g. to gamify day-to-day lessons [32, 32, 73, 98, 164].
This web app offers different kinds of quizzes but no direct LMS
integration.

OpenIRS-UCM [62] is one of the very few open source software
proposed in this category. It is an interactive polling system written
in Java and compatible with different hardware clicker systems as
well as smartphones. Moreover it offers LMS integration and quiz
results can be exported.

PollEverywhere is a frequently-cited tools [21, 32, 121], because of
the many questioning features it allows (for example, polls, surveys,
quiz, word clouds). It can be used in a classroom or for a larger
audience. The company maintaining it is open-sourcing portions
of software.

Polly is one of those systems that gained new interest during the
COVID-19 crisis [123]. It integrates with communications tools
like Slack and Microsoft Teams (which can be useful in the context
of student projects), as well as video conferencing platforms like
Zoom.

Socrative is a quizzing tool that allows multiple choice, true/false
and short answer questions. There is a dedicated app for the teacher
and one for students. Questions can flow according to a rhythm
decided by the instructor or alternatively by the student. The tool
allows instructors to give contextualised feedback at the end of
each question (as in H5P), making it a good fit for auto-evaluation
assessments.Both Chan and Lo [32] and Kloos et al. [98] mention

 

277



ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

this tool as being a popular choice, yet it didn’t show up in our
survey responses. This is probably due to the fact that it targets the
K-12 education market.

TwitchTV is a live streaming platform mainly used by gamers, but
the fact that people in the audience compete to have the streamer’s
attention and that polls are available to get feedback from the audi-
ence makes a tool that can be used in some teaching context [171].

Veriguide [106] was introduced as a web toolbox to promote the
enhancement of teaching and learning in writing, such as student
writing project or internship reports. It contains different com-
ponents including an online polling system. It also provides an
anti-plagiarism system that seems to have overtaken other initial
functionalities since then.

Wooclap is a quizzing and polling web service that can integrate
with LMS and Microsoft Powerpoint. It can be used in class to
engage students, with or without the dedicated phone app, and also
in distance learning applications.

Zoom is a virtual meeting tool whose usage exploded during the
COVID-19 pandemic. This tool appears several times in the liter-
ature review [32, 123] and is also mentioned in more than 15% of
the answers to the community survey. The tool allows hosts to
poll their audience in several ways, including answer selection,
agree/disagree items, short text answers. Polls can be planned in
advance and their result be exported.

7 DISCUSSION
Some surprising issues arose during the analysis of the survey
responses and the literature review assembly. These highlight not
only possible faults within the information collected but also some
trends of concern in computing education academia, including the
availability of tools presented in peer-reviewed literature and the
general discoverability of tools.

7.1 Availability
A recurring theme in our literature review was that a staggering
number of tools were unavailable to reviewers (64.1%, 𝑛 = 227),
and as such, were excluded from our literature corpus. Surprisingly,
this included a large number of tools that were touted as "open
source" solutions. In some cases, this was because the tool required
the author to be contacted for access to the tool; in others, the links
were broken or pointed to an landing page without a link to reach
the tool itself; and in yet others, no link or method for obtaining or
using the tool was provided at all.

It is possible that some tools may have lost supporting infrastruc-
ture or stewardship of its author or authoring organisation during
the 10 year review period. It is also possible that some authors of
tools have been hesitant to make tools available due to security
concerns, especially with respect to web environments under active
development that may become the targets of security attacks or
other related breaches. These concerns are understood and appreci-
ated by the reviewers and, we suspect, the broader CER community.
Conversely, it is important for the community to be able to access
tools in order to review them properly, and for reproducibility;
additionally, it is reasonable to expect that solutions advertised

(in literature or otherwise) and "open source" solutions are indeed
open and accessible to the research and teaching communities.

7.2 Discoverability
Respondents on the survey gave us a window into how participants
in the CER community find and use tools. Overall, discoverability
is a very large challenge as the vast majority (83%) of tools reported
were found through colleagues or inherited from a course or in-
stitution. In fact, more people built their own tools (10.1%) than
found tools via the community’s publications and venues (7.5%).
Unsurprisingly, therefore, some commonly used tools (e.g., Piazza)
did not appear in the literature review. This poses a significant
challenge to tool discovery for new educators entering the field,
especially those at smaller institutions.

7.3 Development & Deployment
Tool deployment can be challenging for both open source and
commercial tools. That said, the major barriers and challenges are
quite different between the two.

For commercial software, there were significant concerns from
the CER community over price or cost sharing of a tool. Notably,
educators were more worried about data security for commercial
tools than for open source tools even though commercial compa-
nies, in theory, have increased resources to spend on such efforts.
We postulate that the concern for cost is driven by the fact that
institutions, departments, and instructors have limited budgets. The
heightened concern of giving data to an organisation outside the
university (data security) may be driven by increased level of trust
in in-house tools or tools that keep data in house.

For open source software, the concern over price is replaced
with concerns around maintenance, integration/learning time, and
reliability. We postulate that, because many open source tools are
often not actively maintained and developed once they are released,
educators are wary of having to update the tool themselves or fix
bugs as issues arise. Similarly, these tools often require moremanual
effort on the part of the educator to implement and learn how to
use. Both of these issues are exacerbated by the fact that anyone
can easily publish open source software without proper user testing
and/or intention to make the software useful for other educators.
In short, open source tools often trade cost for time, which can be
an issue for educators who are already time constrained.

We also find it intriguing that developing tools (whether open
source or commercial) faces the same concerns as integrating open
source tools, once the shift from integration/learning time to devel-
opment time is taken into account. We postulate that this is again
driven by fears around the time commitment needed to keep the
tools usable and reliable, especially when there may not be many
collaborators helping educators develop and maintain a tool.

Finally, as mentioned earlier, we also analysed various additional
cuts of the data to see if any of the demographic data affected the
overall results and found all of those analyses to be inconclusive.
This indicates to us that the trends we uncovered are broadly appli-
cable, holding across institution type, class size, TA support, years
of experience teaching, percentage of time dedicated to teaching,
and other demographic metrics.

 

278



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

8 LIMITATIONS
We recognise that our experiences as computer science educators
influenced the areas of tooling we considered, how we formulated
the searches for the literature review, and even where we submitted
our surveys.

8.1 Literature Review
We have identified several limitations with our literature review:

• Each topic area was queried independently. This required
the use of different relevancy criteria and search queries to
produce enough results without overwhelming the search
with an extensive number of false positives.

• Human error could have occurred in judging initial relevance
of papers by abstract and title without reading the full paper.

• The quality of indexing and results returned by query en-
gines of the repositories we searchedmay vary. It’s likely that
additional resources would be found by extending the litera-
ture review to include other search engines such as Google
Scholar, which may also result in differing "relevance" scor-
ing and surfacing different papers.

• Literature varied on the focus of tools or methodology using
tools. There may be some variance between working group
members in deciding whether the tool was discussed enough
to justify its inclusion in the review.

• Our inclusion criteria are not guaranteed to select all relevant
papers.

• The literature review aimed to list available tools without
considering their coverage and their number of users in the
CER community; it is possible that some tools only work for
specific use cases and environments.

8.2 Community Survey
Likewise, we identified several limitations to the community survey:

• The timeline for the survey likely influenced the small num-
ber of responses (𝑛 = 43). Survey distribution was driven
by the timeline of the conference, which was in the summer
when most instructors are on holiday. We also asked for
responses within two weeks.

• The venues to which we submitted the request likely influ-
enced the number of responses. In particular, the SIGCSE
mailing list subscribers were asked to simultaneously com-
plete several ITiCSE working group surveys, which we sus-
pect led to "survey fatigue".

• The type of responses we received were likely influenced by
the venues throughwhichwe advertised.We focused on com-
puting education venues, but it may be that the respondents
covered a specific segment of computer science instructors,
specifically those who teach introductory classes. Thus, we
may not have captured some tools used by instructors in
more specific courses (e.g., tools associated with teachingmo-
bile application development). Expanding the set of groups
would likely have resulted in a more diverse set of responses.

• The length of the survey may have deterred some respon-
dents from completing it. We aimed for a comprehensive
survey that covered tooling areas that we hypothesised most
instructors would find familiar. However, this resulted in a

lengthy 38 question survey with several additional open re-
sponse fields. We had a number of partially-complete survey
responses, which may have been due to the survey length.

• The definition of a tool is somewhat subjective and resulted
in a elevated degree of variance in survey responses. Python,
for example, was submitted 4 times and could be classified
as a means to make tools rather than a tool on its own. Re-
spondents may have assumed that the survey was requesting
novel tools and omitted those that they take for granted as
known within the computing education community. There
may also be the assumption that some tools provide a very
basic level of classroom support (one extreme example could
be Microsoft Office and Google Docs application suites) and
decided not to include them.

8.3 Other Potential Biases
We include in the appendix a list of tools that we have used our-
selves, in addition to those identified in the literature review and
survey. Tools reported based on working group members’ expe-
rience are subjective, but we have ensured that the listed tools
were available publicly, useful to computing educators, and, in our
judgement, relevant to the discussion.

Another limitation centres on the "openness" of the tools. When
discussing tools incurring a fee, our survey conflated "commercial"
and "proprietary" solutions; however, these terms are not synony-
mous. Some tools are "commercial" and "open source", were the
tool is free to use, and the "license" pays for support. Other tools
that are "commercial" and "open source" have a core set of features
that is available as an open-source tool, but then include additional,
value-added features that are only available via a license. Further
investigating the more subtle aspects of software licensing and
monetary models - and how they impact the CER community - is
an important area of future investigation.

9 CONCLUSION AND FUTUREWORK
In this work we aimed to better understand why many tools with
similar functionalities continue to be re-implemented by different
instructional groups within the Computing Education community
and often find limited adoption beyond their creators.

We began by exploring RQ1: What are existing tools available
for computing educators? To do so we performed a literature review
and community survey and detailed our results in Section 6 with
additional data and tools available in the appendix. While not a
completely exhaustive list of tools, we hope that this data can serve
as a foundational starting point for those searching for software
tools for computer education.

By analysing both the survey results and the experiences of find-
ing tools through a literature review, we developed an answer to
RQ2:What are challenges that need to be addressed to support better
software use, software development, availability, and discoverabil-
ity of existing community projects? Detailed in Sections 5 and 7,
we found that availability and discoverability were major impedi-
ments to tool use; most educators found their tools through word
of mouth from colleagues or inherited their tools through a course
or institution. We also found that fears of integration, maintenance,
and development time leading to a lack of reliability were a major

 

279



ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

impediment to tool creation and open source tool use. Conversely,
price / cost was the major limiting factor for commercial tool use
and data security was a higher concern for commercial than open
source tools.

Finally, we conclude with an answer to RQ3: What suggested
directions could address the challenges to using, developing, and dis-
covering CER community projects? The outcomes of our literature
review and community survey suggest two main directions for
tool use and development in the computing education community
going forward - specifically, that open source tools described in
the literature should provide an archival link and that a central
repository is needed to enhance discoverability and adoption of
these tools.

Papers with open source tools should include an archival
link to the code. It is not sufficient note that readers may “ask the
author” for code advertised as open source; likewise, a download
link on a personal website is not sufficient for archival purposes.
Such solutions construct brittle systems where broken links and
deprecated email addresses render tools permanently inaccessible.
We argue that publications that cannot provide an archival link
should not claim that their tool is open source, as these works
are not truly accessible to the community and for posterity. Tool
archives should exist in a durable location for longevity’s sake. The
question of the appropriate venue for archival is a significant ques-
tion that must be addressed; commercial services, such as GitHub,
may provide a more durable home for open source projects, but
raise other issues, such as inappropriate use as training material
for AI services, or possibly eventual closure as an active host, as
happened with code.google.com - which had been host to over
1.4 million open source projects. Efforts such as [44] are paving
the way for how frameworks can be created for sharing computer
science content more broadly. Ultimately, links to software should
be required at paper submission, to the extent practical, taking
into account funding restrictions, patent applications, or similar
restrictions that might warrant exception. Such exceptions should
be clearly justified by authors upon submission and reviewed by
the venue of publication.

The community requires the construction, maintenance, and
moderation of a a central tool repository. This would not
only ensure easy access to archival links from publications but
would also enable a central location for early career professionals
to more quickly and easily find relevant tools. Furthermore, such
a repository needs to be maintained and moderated to overcome
barriers to tool adoption and use. Similar efforts have proven suc-
cessful for introductory computer science course materials—e.g.,
EngageCSEdu [124], which provides open access to peer-reviewed
material. By following EngageCSEdu’s model as an example, tools
may be submitted for peer-review to the repository, then presented
with context for their use, without needing to find the developers’
websites or git repositories. Finally, we note that this repository
should also welcome closed source tools (with a corresponding
binary) and open source tools without papers. It should therefore
be the job of the maintainer to ensure the submitted tools are up to
a standard that enables (relatively) easy use and adoption by the
community.

Tools that reach a “critical mass” of use should be eligible
for some form of community support. Tools that are widely
adopted incur a cost that is borne by the original developers and
the institutions. This cost can be non-trivial, even when academic
discounts (e.g., for hosting costs) are utilised. If a tool is “widely-
adopted,” as defined by the community, there should be support
for that tool. At a minimum, the community has an interest in
avoiding bit rot, as tools can cease to work due to incompatibility
issues. A community-developed resource pool could help to address
this burden, and also address concerns of ongoing maintenance
and security. We could also leverage development and software
engineering courses that require students to participate to Free
Open-Source Software projects [23, 104]. The community could
maintain a list of community tools seeking new contributors, con-
tact points, and how / when volunteers can become involved.

The breadth of tools that have been developed for the computing
education community by the community shows the commitment
that instructors and staff have to making computing accessible to
anyone. This report shows that many of these tools await new
adopters, but that there are also many other tools that still need to
be built. We hope that this report provides some clarity for what is
available, and what is needed.

As mentioned previously, this working group has compiled the
data we collected at https://csed-tools.github.io/. We encourage
members of the CER community to submit new tools, edits, and
maintenance pull requests on the source site for this repository
at https://github.com/csed-tools/csed-tools.github.io/. Our hope is
that we, as a community, might use this as a starting point, that we
might stop reinventing the wheel - and instead work together to
build the tools we and our students will use in the coming decades.

REFERENCES
[1] Saša Adamović, Irina Branović, Dejan Živković, Violeta Tomašević, and Milan

Milosavljević. 2011. Teaching interactive cryptography: the case for CrypTool.
In IEEE Conf. ICEST. https://doi.org/10.13140/2.1.1065.0564

[2] Joel C Adams, Bryce D Allen, Bryan C Fowler, Mark C Wissink, and Joshua J
Wright. 2022. The Sounds of Sorting Algorithms: Sonification as a Pedagogical
Tool. In Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2022). Association for Computing Machinery, New York,
NY, USA, 189–195. https://doi.org/10.1145/3478431.3499304

[3] Joel C Adams, Patrick A Crain, Christopher P Dilley, Christiaan D Hazlett,
Elizabeth R Koning, Serita M Nelesen, Javin B Unger, and Mark B Vande Stel.
2018. TSGL: A tool for visualizing multithreaded behavior. J. Parallel and Distrib.
Comput. 118 (2018), 233–246. https://doi.org/10.1016/j.jpdc.2018.02.025

[4] Alireza Ahadi and Luke Mathieson. 2019. A comparison of three popular
source code similarity tools for detecting student plagiarism. In 21st Australasian
Computing Education Conference. https://doi.org/10.1145/3286960.3286974

[5] Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. 2006. Plaggie: GNU-
licensed source code plagiarism detection engine for Java exercises. In Sixth
Baltic Sea Conference on Computing Education Research. https://doi.org/10.1145/
1315803.1315831

[6] Aivar Annamaa. 2015. Introducing Thonny, a Python IDE for Learning Program-
ming. In Proceedings of the 15th Koli Calling Conference on Computing Education
Research (Koli, Finland) (Koli Calling ’15). Association for Computing Machinery,
New York, NY, USA, 117–121. https://doi.org/10.1145/2828959.2828969

[7] Dan Armendariz, David J. Malan, and Nikolai Onken. 2016. A Web-Based IDE
for Teaching with Any Language (Abstract Only). In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (Memphis, Tennessee,
USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA,
711. https://doi.org/10.1145/2839509.2844712

[8] Karina Assiter. 2020. Experiences Offering an Online Version of Computer
Science Support (Peer Tutoring) to Undergraduate Computer Science Majors in
the Era of COVID-19. J. Comput. Sci. Coll. 36, 2 (oct 2020), 96–107.

[9] Mohammed Awad, Khouloud Salameh, and Ernst L. Leiss. 2019. Evaluating
Learning Management System Usage at a Small University. In Proceedings of
the 2019 3rd International Conference on Information System and Data Mining

 

280

code.google.com
https://csed-tools.github.io/
https://github.com/csed-tools/csed-tools.github.io/
https://doi.org/10.13140/2.1.1065.0564
https://doi.org/10.1145/3478431.3499304
https://doi.org/10.1016/j.jpdc.2018.02.025
https://doi.org/10.1145/3286960.3286974
https://doi.org/10.1145/1315803.1315831
https://doi.org/10.1145/1315803.1315831
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.1145/2839509.2844712


Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

(Houston, TX, USA) (ICISDM 2019). Association for Computing Machinery, New
York, NY, USA, 98–102. https://doi.org/10.1145/3325917.3325929

[10] Maha Aziz, Heng Chi, Anant Tibrewal, Max Grossman, and Vivek Sarkar. 2015.
Auto-grading for parallel programs. In Proceedings of the Workshop on Education
for High-Performance Computing - EduHPC '15. ACM Press. https://doi.org/10.
1145/2831425.2831427

[11] Ron Baecker. 1973. Towards animating computer programs: a first progress
report. In Proceedings of 3rd Man-Computer Communications Seminar (CMCCS
’73). National Research Council of Canada, Ottawa, Ontario, Canada, 4:1—-4:10.
https://doi.org/10.20380/GI1973.04

[12] Jacob Bailey and Craig Zilles. 2019. uAssign. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. ACM. https://doi.org/10.
1145/3287324.3287458

[13] Kannan Balasubramanian. 2021. Experiments with the Cryptool Software. In
Research Anthology on Blockchain Technology in Business, Healthcare, Education,
and Government, Information Resources Management Association (Ed.). IGI
Global, Hershey, PA, USA, 424–432. https://doi.org/10.4018/978-1-7998-5351-
0.ch025

[14] Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michał Moskal,
and Jacqueline Russell. 2019. Microsoft makecode: embedded programming for
education, in blocks and typescript. In Proceedings of the 2019 ACM SIGPLAN
Symposium on SPLASH-E. 7–12.

[15] Elisa Baniassad, Alice Campbell, Tiara Allidina, and Asrai Ord. 2019. Teaching
Software Construction at Scale with Mastery Learning: A Case Study. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET). IEEE. https://doi.org/10.1109/icse-
seet.2019.00027

[16] Michael Berry and Michael Kölling. 2014. The State of Play: A Notional
Machine for Learning Programming. In Proceedings of the 2014 Conference
on Innovation & Technology in Computer Science Education (ITiCSE ’14). As-
sociation for Computing Machinery, New York, NY, USA, 21–26. https:
//doi.org/10.1145/2591708.2591721

[17] Vincent Berry, Arnaud Castelltort, Chrysta Pelissier, Marion Rousseau, and
Chouki Tibermacine. 2022. ShellOnYou: Learning by Doing Unix Command
Line. In 27th ACM Conference on on Innovation and Technology in Computer
Science Education. 379–385. https://doi.org/10.1145/3502718.3524753

[18] Jeremiah Blanchard, Chistina Gardner-McCune, and Lisa Anthony. 2019. Am-
phibian: Dual-Modality Representation in Integrated Development Environ-
ments. In 2019 IEEE Blocks and Beyond Workshop (B&B). 83–85. https://doi.org/
10.1109/BB48857.2019.8941213

[19] Benjamin S Bloom. 1968. Learning for Mastery. Instruction and Curriculum.
Regional Education Laboratory for the Carolinas and Virginia, Topical Papers
and Reprints, Number 1. Evaluation comment 1, 2 (1968), n2.

[20] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and
Diana Franklin. 2013. Hairball: Lint-inspired static analysis of scratch projects. In
Proceeding of the 44th ACM technical symposium on Computer science education.
215–220.

[21] Uugangerel Bold and Borchuluun Yadamsuren. 2019. Use of Social Media
as an Educational Tool: Perspectives of Mongolian University Educators. In
Proceedings of the 10th International Conference on Social Media and Society
(Toronto, ON, Canada) (SMSociety ’19). Association for Computing Machinery,
New York, NY, USA, 233–243. https://doi.org/10.1145/3328529.3328564

[22] Pavel Boytchev and Svetla Boytcheva. 2019. Innovative ELearning Technologies
in the Open Education Era. In Proceedings of the 20th International Confer-
ence on Computer Systems and Technologies (Ruse, Bulgaria) (CompSysTech
’19). Association for Computing Machinery, New York, NY, USA, 324–331.
https://doi.org/10.1145/3345252.3345300

[23] Grant Braught and Farhan Siddiqui. 2022. Factors Affecting Project Selection
in an Open Source Capstone. In Proceedings of the 27th ACM Conference on
on Innovation and Technology in Computer Science Education Vol. 1 (Dublin,
Ireland) (ITiCSE ’22). Association for Computing Machinery, New York, NY,
USA, 358–364. https://doi.org/10.1145/3502718.3524760

[24] Romain Brixtel, Mathieu Fontaine, Boris Lesner, Cyril Bazin, and Romain Robbes.
2010. Language-independent clone detection applied to plagiarism detection.
In 10th IEEE Working Conference on Source Code Analysis and Manipulation.
https://doi.org/10.1109/SCAM.2010.19

[25] M H Brown. 1988. Exploring algorithms using Balsa-II. Computer 21, 5 (1988),
14–36. https://doi.org/10.1109/2.56

[26] Peter Brusilovsky, Stephen Edwards, Amruth Kumar, Lauri Malmi, Luciana
Benotti, Duane Buck, Petri Ihantola, Rikki Prince, Teemu Sirkiä, Sergey Sos-
novsky, Jaime Urquiza, Arto Vihavainen, and Michael Wollowski. 2014. In-
creasing Adoption of Smart Learning Content for Computer Science Education.
In Proceedings of the Working Group Reports of the 2014 on Innovation & Tech-
nology in Computer Science Education Conference (Uppsala, Sweden) (ITiCSE-
WGR ’14). Association for Computing Machinery, New York, NY, USA, 31–57.
https://doi.org/10.1145/2713609.2713611

[27] Yoann Buch, Yiquan Zhou, and Tair Sabirgaliev. 2016. Flow. http://findtheflow.io

[28] David Burlinson, Mihai Mehedint, Chris Grafer, Kalpathi Subramanian, Jamie
Payton, Paula Goolkasian, Michael Youngblood, and Robert Kosara. 2016.
BRIDGES: A System to Enable Creation of Engaging Data Structures Assign-
ments with Real-World Data and Visualizations. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (Memphis, Tennessee,
USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA,
18–23. https://doi.org/10.1145/2839509.2844635

[29] Benjamin Canou, Roberto Di Cosmo, and Grégoire Henry. 2017. Scaling up
Functional Programming Education: Under the Hood of the OCaml MOOC.
Proc. ACM Program. Lang. 1, ICFP, Article 4 (aug 2017), 25 pages. https://doi.
org/10.1145/3110248

[30] Brent Carmer and Mike Rosulek. 2015. Vamonos: Embeddable visualizations of
advanced algorithms. In 2015 IEEE Frontiers in Education Conference (FIE). 1–8.
https://doi.org/10.1109/FIE.2015.7344263

[31] Alana Ceci, Hanneli C. A. Tavante, Brigitte Pientka, and Xujie Si. 2021. Data
Collection for the Learn-OCaml Programming Platform. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education. ACM. https:
//doi.org/10.1145/3408877.3439579

[32] Sumie Chan and Noble Lo. 2021. Impacts of Gamification in Remote Learning
in Tertiary Education (ICSLT 2021). Association for Computing Machinery, New
York, NY, USA, 26–34. https://doi.org/10.1145/3477282.3477290

[33] Zhong Chang, Yan Sun, Tin-Yu Wu, and Mohsen Guizani. 2018. Scratch analysis
Tool (SAT): a modern scratch project analysis tool based on ANTLR to assess
computational thinking skills. In 2018 14th International Wireless Communica-
tions & Mobile Computing Conference (IWCMC). IEEE, 950–955.

[34] Hayden Cheers, Yuqing Lin, and Shamus P. Smith. 2021. Academic source code
plagiarism detection by measuring program behavioral similarity. IEEE Access
9 (2021). https://doi.org/10.1109/ACCESS.2021.3069367

[35] Rohan Roy Choudhury, HeZheng Yin, Joseph Moghadam, and Armando Fox.
2016. AutoStyle: Toward Coding Style Feedback At Scale. In Proceedings of
the 19th ACM Conference on Computer Supported Cooperative Work and Social
Computing Companion (San Francisco, California, USA) (CSCW ’16 Companion).
Association for Computing Machinery, New York, NY, USA, 21–24. https:
//doi.org/10.1145/2818052.2874315

[36] Georgina Cosma and Mike Joy. 2008. Towards a definition of source-code
plagiarism. IEEE Transactions on Education 51, 2 (May 2008). https://doi.org/10.
1109/TE.2007.906776

[37] Tim Coughlan, Rebecca Pitt, and Patrick McAndrew. 2013. Building Open
Bridges: Collaborative Remixing and Reuse of Open Educational Resources
across Organisations. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Paris, France) (CHI ’13). Association for Computing
Machinery, New York, NY, USA, 991–1000. https://doi.org/10.1145/2470654.
2466127

[38] W Bruce Croft, Donald Metzler, and Trevor Strohman. 2010. Search Engines:
Information Retrieval in Practice.

[39] James Cross, Dean Hendrix, and David Umphress. 2014. Dynamic Program
Visualizations for Java (Abstract Only). In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’14).
Association for Computing Machinery, New York, NY, USA, 749–750. https:
//doi.org/10.1145/2538862.2539028

[40] Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper.
2012. Mediated Transfer: Alice 3 to Java. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). Association for Computing Machinery, New York, NY, USA,
141–146. https://doi.org/10.1145/2157136.2157180

[41] Balakrishnan Dasarathy, Kevin Sullivan, Douglas C. Schmidt, Douglas H. Fisher,
and Adam Porter. 2014. The Past, Present, and Future of MOOCs and Their
Relevance to Software Engineering. In Future of Software Engineering Proceedings
(Hyderabad, India) (FOSE 2014). Association for Computing Machinery, New
York, NY, USA, 212–224. https://doi.org/10.1145/2593882.2593897

[42] Roland DePratti. 2020. Jupyter Notebooks versus a Textbook in a Big Data
Course. J. Comput. Sci. Coll. 35, 8 (apr 2020), 208–220.

[43] Martin Dougiamas and Peter C Taylor. 2002. Interpretive Analysis of an Internet-
based Course Constructed using a New Courseware Tool called Moodle. In 2nd
Conference of HERDSA (The Higher Education Research and Development Society
of Australasia). 7–10.

[44] Bob Edmison, Stephen H. Edwards, Margaret Ellis, Lujean Babb, Chris Mayfield,
Nick Swanye, Youna Jung, and Marthe Honts. 2023. Toward a New State-level
Framework for Sharing Computer Science Content. In Proceedings of the 54th
ACMTechnical Symposium on Computer Science Education (Toronto, ON, Canada)
(SIGCSE ’23). Association for Computing Machinery, New York, NY, USA.

[45] Stephen H Edwards. 2003. Using test-driven development in the classroom:
Providing students with concrete feedback on performance. In Proceedings of
the International Conference on Education and Information Systems: Technologies
and Applications (EISTA’03).

[46] Stephen H. Edwards. 2014. Work-in-Progress: Program Grading and Feed-
back Generation with Web-CAT. In First ACM Conference on Learning @ Scale
Conference. ACM, 215–216. https://doi.org/10.1145/2556325.2567888

 

281

https://doi.org/10.1145/3325917.3325929
https://doi.org/10.1145/2831425.2831427
https://doi.org/10.1145/2831425.2831427
https://doi.org/10.20380/GI1973.04
https://doi.org/10.1145/3287324.3287458
https://doi.org/10.1145/3287324.3287458
https://doi.org/10.4018/978-1-7998-5351-0.ch025
https://doi.org/10.4018/978-1-7998-5351-0.ch025
https://doi.org/10.1109/icse-seet.2019.00027
https://doi.org/10.1109/icse-seet.2019.00027
https://doi.org/10.1145/2591708.2591721
https://doi.org/10.1145/2591708.2591721
https://doi.org/10.1145/3502718.3524753
https://doi.org/10.1109/BB48857.2019.8941213
https://doi.org/10.1109/BB48857.2019.8941213
https://doi.org/10.1145/3328529.3328564
https://doi.org/10.1145/3345252.3345300
https://doi.org/10.1145/3502718.3524760
https://doi.org/10.1109/SCAM.2010.19
https://doi.org/10.1109/2.56
https://doi.org/10.1145/2713609.2713611
http://findtheflow.io
https://doi.org/10.1145/2839509.2844635
https://doi.org/10.1145/3110248
https://doi.org/10.1145/3110248
https://doi.org/10.1109/FIE.2015.7344263
https://doi.org/10.1145/3408877.3439579
https://doi.org/10.1145/3408877.3439579
https://doi.org/10.1145/3477282.3477290
https://doi.org/10.1109/ACCESS.2021.3069367
https://doi.org/10.1145/2818052.2874315
https://doi.org/10.1145/2818052.2874315
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1145/2470654.2466127
https://doi.org/10.1145/2470654.2466127
https://doi.org/10.1145/2538862.2539028
https://doi.org/10.1145/2538862.2539028
https://doi.org/10.1145/2157136.2157180
https://doi.org/10.1145/2593882.2593897
https://doi.org/10.1145/2556325.2567888


ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

[47] Margaret Ellis, Clifford A. Shaffer, and StephenH. Edwards. 2019. Approaches for
Coordinating ETextbooks, Online Programming Practice, Automated Grading,
and More into One Course. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY, USA, 126–132. https://doi.org/10.
1145/3287324.3287487

[48] Anatalia N. Endozo, Solomon Oluyinka, and Richard G. Daenos. 2019. Teachers’
Experiences towards Usage of Learning Management System: CANVAS. In
Proceedings of the 2019 11th International Conference on Education Technology and
Computers (Amsterdam, Netherlands) (ICETC 2019). Association for Computing
Machinery, New York, NY, USA, 91–95. https://doi.org/10.1145/3369255.3369257

[49] Annette Feng, Mark Gardner, and Wu chun Feng. 2017. Parallel programming
with pictures is a Snap! J. Parallel and Distrib. Comput. 105 (2017), 150–162. https:
//doi.org/10.1016/j.jpdc.2017.01.018 Keeping up with Technology: Teaching
Parallel, Distributed and High-Performance Computing.

[50] Louise P Flannery, Brian Silverman, Elizabeth R Kazakoff, Marina Umaschi Bers,
Paula Bontá, and Mitchel Resnick. 2013. Designing ScratchJr: Support for early
childhood learning through computer programming. In Proceedings of the 12th
international conference on interaction design and children. 1–10.

[51] George E. Forsythe and Niklaus Wirth. 1965. Automatic Grading Programs.
Commun. ACM 8, 5 (may 1965), 275–278. https://doi.org/10.1145/364914.364937

[52] Robert Fraser. 2014. Collaboration, collusion and plagiarism in computer science
coursework. Informatics in Education 13, 2 (2014). https://doi.org/10.15388/
infedu.2014.10

[53] Michelle Friend, Michael Matthews, Victor Winter, Betty Love, Deanna Moisset,
and Ian Goodwin. 2018. Bricklayer: elementary students learn math through
programming and art. In Proceedings of the 49th ACM technical symposium on
computer science education. 628–633.

[54] Patrice Frison. 2015. A Teaching Assistant for Algorithm Construction. In Pro-
ceedings of the 2015 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’15). Association for Computing Machinery, New York,
NY, USA, 9–14. https://doi.org/10.1145/2729094.2742588

[55] Ria Galanos, Michael Ball, John Dougherty, Joe Hummel, and David J. Malan.
2018. Technology We Can’t Live Without!, Revisited. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (Baltimore, Maryland,
USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
1043–1044. https://doi.org/10.1145/3159450.3159629

[56] Ria Galanos, Whitaker Brand, Sumukh Sridhara, Mike Zamansky, and Evelyn
Zayas. 2017. Technology We Can’t Live Without! Revisited. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education (Seattle,
Washington, USA) (SIGCSE ’17). Association for Computing Machinery, New
York, NY, USA, 659–660. https://doi.org/10.1145/3017680.3017691

[57] David Galles. 2011. Data Structure Visualizations. https://www.cs.usfca.edu/
~galles/visualization/index.html

[58] Dan Garcia, Zelda Allison, Abigail Joseph, David J. Malan, and Kristin Stephens-
Martinez. 2022. Technology We Can’t Live Without! (COVID-19 Edition). In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
V. 2 (Providence, RI, USA) (SIGCSE 2022). Association for Computing Machinery,
New York, NY, USA, 1043–1044. https://doi.org/10.1145/3478432.3499221

[59] Dan Garcia, Tiffany Barnes, Art Lopez, Chinma Uche, and Jill Westerlund.
2021. Technology We Can’t Live Without!, Revisited. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education (Virtual Event,
USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA,
138–139. https://doi.org/10.1145/3408877.3432571

[60] Daniel D. Garcia, Leslie Aaronson, Shawn Kenner, Colleen Lewis, and Susan
Rodger. 2016. Technology We Can’t Live Without!, Revisited. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education (Memphis,
Tennessee, USA) (SIGCSE ’16). Association for Computing Machinery, New York,
NY, USA, 236–237. https://doi.org/10.1145/2839509.2844668

[61] Daniel D. Garcia, Eric Allatta, Manuel Pérez-Quiñones, and Jeff Solin. 2015.
Technology We Can’t Live Without!. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE
’15). Association for Computing Machinery, New York, NY, USA, 597–598. https:
//doi.org/10.1145/2676723.2677336

[62] Carlos Garcia Sanchez, Fernando Castro, Jose Ignacio Gomez, Christian Tenllado,
Daniel Chaver, and Jose Antonio Lopez-Orozco. 2012. OpenIRS-UCM: An Open-
Source Multi-Platform for Interactive Response Systems. In Proceedings of the
17th ACM Annual Conference on Innovation and Technology in Computer Science
Education (Haifa, Israel) (ITiCSE ’12). Association for Computing Machinery,
New York, NY, USA, 232–237. https://doi.org/10.1145/2325296.2325352

[63] Eric Gilbert. 2015. Open Book: A Socially-Inspired Cloaking Technique That Uses
Lexical Abstraction to Transform Messages. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
477–486. https://doi.org/10.1145/2702123.2702295

[64] David Gitchell and Nicholas Tran. 1999. Sim: a utility for detecting similarity in
computer programs. In 30th SIGCSE Technical Symposium on Computer Science
Education. https://doi.org/10.1145/299649.299783

[65] Richard Glassey and Simon Larsén. 2020. Towards Flexible and Extensible
Git-Based Course Management with RepoBee. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education (Trond-
heim, Norway) (ITiCSE ’20). Association for Computing Machinery, New York,
NY, USA, 537–538. https://doi.org/10.1145/3341525.3393999

[66] Lindsay Grace and Bob Hone. 2019. Factitious: Large Scale Computer Game to
Fight Fake News and Improve News Literacy. In Extended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3290607.3299046

[67] Emily Gubski and Steven Wolfman. 2020. Jupyter/Canvas Submission Frame-
work Integration. In Proceedings of the 51st ACM Technical Symposium on Com-
puter Science Education. ACM. https://doi.org/10.1145/3328778.3372670

[68] Ma. Janice J. Gumasing, Abigail B. Vasquez, Angelo Luis S. Doctora, andWilliam
Davin D. Perez. 2022. Usability Evaluation of Online Learning Management
System: Comparison between Blackboard and Canvas. In 2022 The 9th Interna-
tional Conference on Industrial Engineering and Applications (Europe) (Barcelona,
Spain) (ICIEA-2022-Europe). Association for Computing Machinery, New York,
NY, USA, 25–31. https://doi.org/10.1145/3523132.3523137

[69] Philip J Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visu-
alization for Cs Education. In Proceeding of the 44th ACMTechnical Symposium on
Computer Science Education (SIGCSE ’13). Association for Computing Machinery,
New York, NY, USA, 579–584. https://doi.org/10.1145/2445196.2445368

[70] StevenHalim, Zi Chun Koh, Victor Bo, Huai Loh, and Felix Halim. 2012. Learning
Algorithms with Unified and Interactive Web-Based Visualization. , 53-68 pages.
http://www.comp.nus.edu.sg/

[71] Brian Harvey, Daniel D. Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. 2013.
SNAP! (Build Your Own Blocks) (Abstract Only). In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (Denver, Colorado, USA)
(SIGCSE ’13). Association for Computing Machinery, New York, NY, USA, 759.
https://doi.org/10.1145/2445196.2445507

[72] Brian Harvey, Daniel D Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. 2013.
Snap!(build your own blocks). In Proceeding of the 44th ACM technical symposium
on Computer science education. 759–759.

[73] H. Hashim, N. A. Salim, andM. Kassim. 2018. Students’ Response on Implementa-
tion of Kahoot in the Classroom. In 2018 IEEE 10th International Conference on En-
gineering Education (ICEED). 1–4. https://doi.org/10.1109/ICEED.2018.8626899

[74] Wilhelm Hasselbring, Alexander Krause, and Christian Zirkelbach. 2020. Ex-
plorViz: Research on software visualization, comprehension and collaboration.
Software Impacts 6 (nov 2020), 100034. https://doi.org/10.1016/j.simpa.2020.
100034

[75] FelienneHermans. 2020. Hedy: AGradual Language for Programming Education.
In ACM Conference on International Computing Education Research. https:
//doi.org/10.1145/3372782.3406262

[76] Jack Hollingsworth. 1960. Automatic Graders for Programming Classes. Com-
mun. ACM 3, 10 (oct 1960), 528–529. https://doi.org/10.1145/367415.367422

[77] Caitlin Holman, Stephen Aguilar, and Barry Fishman. 2013. GradeCraft: What
CanWe Learn from a Game-Inspired Learning Management System?. In Proceed-
ings of the Third International Conference on Learning Analytics and Knowledge
(Leuven, Belgium) (LAK ’13). Association for Computing Machinery, New York,
NY, USA, 260–264. https://doi.org/10.1145/2460296.2460350

[78] Patrick Hung, Jeanne Lam, Chris Wong, and Tyrone Chan. 2015. A Study on
Using Learning Management System with Mobile App. In 2015 International
Symposium on Educational Technology (ISET). 168–172. https://doi.org/10.1109/
ISET.2015.41

[79] Sheung-Lun Hung, Iam-For Kwok, and Raymond Chan. 1993. Automatic
Programming Assessment. Computers & Education 20, 2 (1993), 183–190.
https://doi.org/10.1016/0360-1315(93)90086-X

[80] Ryosuke Ishizue, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki
Fukazawa. 2018. PVC: Visualizing C Programs on Web Browsers for Novices.
In Proceedings of the 49th ACM Technical Symposium on Computer Science Edu-
cation (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
245–250. https://doi.org/10.1145/3159450.3159566

[81] Julia Isong. 2001. Developing an Automated Program Checkers. Journal of
Computing Sciences in Colleges 16, 3 (2001), 218–224.

[82] David Jackson. 1996. A Software System for Grading Student Computer Pro-
grams. Computers & Education 27, 3-4 (1996), 171–180. https://doi.org/10.1016/
S0360-1315(96)00025-5

[83] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT
press.

[84] S. Jayaraman, B Jayaraman, and D Lessa. 2017. Compact visualization of Java
program execution. Software: Practice and Experience 47, 2 (feb 2017), 163–191.
https://doi.org/10.1002/spe.2411

[85] L Jiang, GMisherghi, Z Su, and S Glondu. 2007. DECKARD: scalable and accurate
tree-based detection of code clones. In 29th International Conference on Software
Engineering. https://doi.org/10.1109/ICSE.2007.30

 

282

https://doi.org/10.1145/3287324.3287487
https://doi.org/10.1145/3287324.3287487
https://doi.org/10.1145/3369255.3369257
https://doi.org/10.1016/j.jpdc.2017.01.018
https://doi.org/10.1016/j.jpdc.2017.01.018
https://doi.org/10.1145/364914.364937
https://doi.org/10.15388/infedu.2014.10
https://doi.org/10.15388/infedu.2014.10
https://doi.org/10.1145/2729094.2742588
https://doi.org/10.1145/3159450.3159629
https://doi.org/10.1145/3017680.3017691
https://www.cs.usfca.edu/~galles/visualization/index.html
https://www.cs.usfca.edu/~galles/visualization/index.html
https://doi.org/10.1145/3478432.3499221
https://doi.org/10.1145/3408877.3432571
https://doi.org/10.1145/2839509.2844668
https://doi.org/10.1145/2676723.2677336
https://doi.org/10.1145/2676723.2677336
https://doi.org/10.1145/2325296.2325352
https://doi.org/10.1145/2702123.2702295
https://doi.org/10.1145/299649.299783
https://doi.org/10.1145/3341525.3393999
https://doi.org/10.1145/3290607.3299046
https://doi.org/10.1145/3328778.3372670
https://doi.org/10.1145/3523132.3523137
https://doi.org/10.1145/2445196.2445368
http://www.comp.nus.edu.sg/
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.1109/ICEED.2018.8626899
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/367415.367422
https://doi.org/10.1145/2460296.2460350
https://doi.org/10.1109/ISET.2015.41
https://doi.org/10.1109/ISET.2015.41
https://doi.org/10.1016/0360-1315(93)90086-X
https://doi.org/10.1145/3159450.3159566
https://doi.org/10.1016/S0360-1315(96)00025-5
https://doi.org/10.1016/S0360-1315(96)00025-5
https://doi.org/10.1002/spe.2411
https://doi.org/10.1109/ICSE.2007.30


Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

[86] Mike Joy, Nathan Griffiths, and Russell Boyatt. 2005. The BOSS online submis-
sion and assessment system. Journal on Educational Resources in Computing 5,
3, Article 2 (Sep 2005). https://doi.org/10.1145/1163405.1163407

[87] Mike Joy and Michael Luck. 1999. Plagiarism in programming assignments.
IEEE Transactions on Education 42, 2 (1999). https://doi.org/10.1109/13.762946

[88] An Ju, BenMehne, AndrewHalle, and Armando Fox. 2018. In-class coding-based
summative assessments: tools, challenges, and experience. In Proceedings of the
23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education. ACM. https://doi.org/10.1145/3197091.3197094

[89] An Ju, Ben Mehne, Andrew Halle, and Armando Fox. 2018. In-Class Coding-
Based Summative Assessments: Tools, Challenges, and Experience. In Proceed-
ings of the 23rd Annual ACM Conference on Innovation and Technology in Com-
puter Science Education (Larnaca, Cyprus) (ITiCSE 2018). Association for Com-
puting Machinery, New York, NY, USA, 75–80. https://doi.org/10.1145/3197091.
3197094

[90] Garvit Juniwal, Sakshi Jain, Alexandre Donzé, and Sanjit A. Seshia. 2015.
Clustering-Based Active Learning for CPSGrader. In Proceedings of the Sec-
ond (2015) ACM Conference on Learning @ Scale. ACM. https://doi.org/10.1145/
2724660.2728702

[91] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002). https://doi.org/10.
1109/TSE.2002.1019480

[92] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing
Machinery, New York, NY, USA, 737–745. https://doi.org/10.1145/3126594.
3126632

[93] Ville Karavirta and Clifford A Shaffer. 2013. JSAV: The JavaScript Algorithm
Visualization Library. In Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’13). Association for
Computing Machinery, New York, NY, USA, 159–164. https://doi.org/10.1145/
2462476.2462487

[94] Oscar Karnalim and Simon. 2021. Explanation in code similarity investigation.
IEEE Access 9 (2021). https://doi.org/10.1109/ACCESS.2021.3073703

[95] Oscar Karnalim, Simon, and William Chivers. 2019. Similarity detection tech-
niques for academic source code plagiarism and collusion: a review. In IEEE
International Conference on Engineering, Technology and Education. https:
//doi.org/10.1109/TALE48000.2019.9225953

[96] Oscar Karnalim, Simon, and William Chivers. 2022. Layered similarity detection
for programming plagiarism and collusion on weekly assessments. Computer
Applications in Engineering Education In press (2022). https://doi.org/10.1002/
cae.22553

[97] Spencer Killen, Evan Giese, Huy Huynh, and Indratmo. 2017. Marble MLFQ:
An educational visualization tool for the multilevel feedback queue algorithm.
In 2017 8th IEEE Annual Information Technology, Electronics and Mobile Commu-
nication Conference (IEMCON). 663–669. https://doi.org/10.1109/IEMCON.2017.
8117201

[98] Carlos Delgado Kloos, Carmen Fernández-Panadero, Carlos Alario-Hoyos, Pe-
dro Manuel Moreno-Marcos, María Blanca Ibáñez, Pedro J. Muñoz-Merino,
Boni García, and Iria Estévez-Ayres. 2022. Programming Teaching Interaction.
In 2022 IEEE Global Engineering Education Conference (EDUCON). 1965–1969.
https://doi.org/10.1109/EDUCON52537.2022.9766697

[99] Tobias Kohn and Bill Manaris. 2020. Tell Me What’s Wrong: A Python IDE
with Error Messages. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (Portland, OR, USA) (SIGCSE ’20). Association for
Computing Machinery, New York, NY, USA, 1054–1060. https://doi.org/10.
1145/3328778.3366920

[100] Line Kolås. 2015. Application of interactive videos in education. In 2015 In-
ternational Conference on Information Technology Based Higher Education and
Training (ITHET). 1–6. https://doi.org/10.1109/ITHET.2015.7218037

[101] Nils Kopal, Olga Kieselmann, Arno Wacker, and Bernhard Esslinger. 2014.
CrypTool 2.0. Datenschutz und Datensicherheit - DuD 38, 10 (2014), 701–708.
https://doi.org/10.1007/s11623-014-0274-7

[102] Gregor Kotainy and Olaf Spinczyk. 2014. AnimOS CPU-Scheduling. https:
//ess.cs.tu-dortmund.de/Software/AnimOS/CPU-Scheduling/

[103] Andrew Kuo, Lexseal Lin, Diana Issatayeva, and Mia Minnes. 2022. Flap.js.
https://github.com/flapjs

[104] Stan Kurkovsky. 2022. Using Scaffolding to Simplify FOSS Adoption (ITiCSE ’22).
Association for Computing Machinery, New York, NY, USA, 587–588. https:
//doi.org/10.1145/3502717.3532163

[105] Thomas Lancaster and Fintan Culwin. 2004. A comparison of source code
plagiarism detection engines. Computer Science Education 14, 2 (2004). https:
//doi.org/10.1080/08993400412331363843

[106] Tak Pang Lau, Shuai Wang, Yuanyuan Man, Chi Fai Yuen, and Irwin King. 2014.
Language Technologies for Enhancement of Teaching and Learning in Writing.
In Proceedings of the 23rd International Conference on World Wide Web (Seoul,

Korea) (WWW ’14 Companion). Association for Computing Machinery, New
York, NY, USA, 1097–1102. https://doi.org/10.1145/2567948.2580058

[107] Shu-Sheng Liaw. 2008. Investigating students’ perceived satisfaction, behavioral
intention, and effectiveness of e-learning: A case study of the Blackboard system.
Computers & Education 51, 2 (2008), 864–873. https://doi.org/10.1016/j.compedu.
2007.09.005

[108] Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu. 2019. Automatic Grading
of Programming Assignments: An Approach Based on Formal Semantics. In
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET). 126–137. https://doi.org/10.
1109/ICSE-SEET.2019.00022

[109] Jun Ma, Jun Tao, Melissa Keranen, Jean Mayo, Ching-Kuang Shene, and Chaoli
Wang. 2014. SHAvisual: A Secure Hash Algorithm Visualization Tool. In Pro-
ceedings of the 2014 Conference on Innovation & Technology in Computer Science
Education (ITiCSE ’14). Association for Computing Machinery, New York, NY,
USA, 338. https://doi.org/10.1145/2591708.2602663

[110] Jun Ma, Jun Tao, Jean Mayo, Ching-Kuang Shene, Melissa Keranen, and Chaoli
Wang. 2016. AESvisual: A Visualization Tool for the AES Cipher. In Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE ’16). Association for Computing Machinery, New York, NY,
USA, 230–235. https://doi.org/10.1145/2899415.2899425

[111] Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo Silva,
Ana C.R. Paiva, Miguel Sozinho Ramalho, and Daniel Silva. 2021. Experiences
on teaching alloy with an automated assessment platform. Science of Computer
Programming 211 (nov 2021), 102690. https://doi.org/10.1016/j.scico.2021.102690

[112] Salvador John M. Magalong and Brando C. Palomar. 2019. Effects of Flipped
Classroom Approach Using Gooru Learning Management System on Students’
Physics Achievement. In Proceedings of the 10th International Conference on
E-Education, E-Business, E-Management and E-Learning (Tokyo, Japan) (IC4E
’19). Association for Computing Machinery, New York, NY, USA, 75–78. https:
//doi.org/10.1145/3306500.3306540

[113] Jyotirmaya Mahapatra, Saurabh Srivastava, Kuldeep Yadav, Kundan Shrivastava,
and Om Deshmukh. 2016. LMS Weds WhatsApp: Bridging Digital Divide Using
MIMs. In Proceedings of the 13th International Web for All Conference (Montreal,
Canada) (W4A ’16). Association for Computing Machinery, New York, NY, USA,
Article 42, 4 pages. https://doi.org/10.1145/2899475.2899485

[114] Evan Maicus, Matthew Peveler, Andrew Aikens, and Barbara Cutler. 2020.
Autograding Interactive Computer Graphics Applications. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. ACM.
https://doi.org/10.1145/3328778.3366954

[115] Evan Maicus, Matthew Peveler, Stacy Patterson, and Barbara Cutler. 2019. Au-
tograding Distributed Algorithms in Networked Containers. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education. ACM.
https://doi.org/10.1145/3287324.3287505

[116] Srikesh Mandala and Kevin A. Gary. 2013. Distributed Version Control for
Curricular Content Management. In 2013 IEEE Frontiers in Education Conference
(FIE). 802–804. https://doi.org/10.1109/FIE.2013.6684936

[117] Hamza Manzoor, Amit Naik, Clifford A. Shaffer, Chris North, and Stephen H.
Edwards. 2020. Auto-Grading Jupyter Notebooks. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. ACM. https://doi.org/10.
1145/3328778.3366947

[118] Hamza Manzoor, Amit Naik, Clifford A. Shaffer, Chris North, and Stephen H.
Edwards. 2020. Auto-Grading Jupyter Notebooks. Association for Computing
Machinery, New York, NY, USA, 1139–1144. https://doi.org/10.1145/3328778.
3366947

[119] Fenwick McKelvey and Robert Hunt. 2019. Discoverability: Toward a Definition
of Content Discovery Through Platforms. Social Media+ Society 5, 1 (2019).
https://doi.org/10.1177%2F2056305118819188

[120] Dhruv Misra. 2020. Pathfinding Visualizer in 3D. https://github.com/
dhruvmisra/Pathfinding-Visualizer-ThreeJS%0A

[121] Guillaume de Moffarts and Sébastien Combéfis. 2020. Challengr, a Classroom
Response System for Competency Based Assessment and Real-Time Feedback
with Micro-Contests. In 2020 IEEE Frontiers in Education Conference (FIE). 1–4.
https://doi.org/10.1109/FIE44824.2020.9273992

[122] Mostafa Mohammed, Piexuan Ge, Samnyeong Heo, and Clifford A. Shaffer.
2021. Support for Programmed Instruction in an eTextbook. In Proceedings
of the 52nd ACM Technical Symposium on Computer Science Education. ACM.
https://doi.org/10.1145/3408877.3439586

[123] György Molnár and David Sik. 2020. The virtual toolkit of digital instruction and
its application in digital work forms. In 2020 11th IEEE International Conference
on Cognitive Infocommunications (CogInfoCom). 000597–000600. https://doi.
org/10.1109/CogInfoCom50765.2020.9237855

[124] Alvaro E Monge, Cameron L Fadjo, Beth A Quinn, and Lecia J Barker. 2015.
EngageCSEdu: engaging and retaining CS1 and CS2 students. ACM Inroads 6, 1
(2015), 6–11.

[125] Pedro Moraes and Leopoldo Teixeira. 2019. Willow: A Tool for Interactive
Programming Visualization to Help in the Data Structures and Algorithms
Teaching-Learning Process. In Proceedings of the XXXIII Brazilian Symposium on

 

283

https://doi.org/10.1145/1163405.1163407
https://doi.org/10.1109/13.762946
https://doi.org/10.1145/3197091.3197094
https://doi.org/10.1145/3197091.3197094
https://doi.org/10.1145/3197091.3197094
https://doi.org/10.1145/2724660.2728702
https://doi.org/10.1145/2724660.2728702
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1145/2462476.2462487
https://doi.org/10.1145/2462476.2462487
https://doi.org/10.1109/ACCESS.2021.3073703
https://doi.org/10.1109/TALE48000.2019.9225953
https://doi.org/10.1109/TALE48000.2019.9225953
https://doi.org/10.1002/cae.22553
https://doi.org/10.1002/cae.22553
https://doi.org/10.1109/IEMCON.2017.8117201
https://doi.org/10.1109/IEMCON.2017.8117201
https://doi.org/10.1109/EDUCON52537.2022.9766697
https://doi.org/10.1145/3328778.3366920
https://doi.org/10.1145/3328778.3366920
https://doi.org/10.1109/ITHET.2015.7218037
https://doi.org/10.1007/s11623-014-0274-7
https://ess.cs.tu-dortmund.de/Software/AnimOS/CPU-Scheduling/
https://ess.cs.tu-dortmund.de/Software/AnimOS/CPU-Scheduling/
https://github.com/flapjs
https://doi.org/10.1145/3502717.3532163
https://doi.org/10.1145/3502717.3532163
https://doi.org/10.1080/08993400412331363843
https://doi.org/10.1080/08993400412331363843
https://doi.org/10.1145/2567948.2580058
https://doi.org/10.1016/j.compedu.2007.09.005
https://doi.org/10.1016/j.compedu.2007.09.005
https://doi.org/10.1109/ICSE-SEET.2019.00022
https://doi.org/10.1109/ICSE-SEET.2019.00022
https://doi.org/10.1145/2591708.2602663
https://doi.org/10.1145/2899415.2899425
https://doi.org/10.1016/j.scico.2021.102690
https://doi.org/10.1145/3306500.3306540
https://doi.org/10.1145/3306500.3306540
https://doi.org/10.1145/2899475.2899485
https://doi.org/10.1145/3328778.3366954
https://doi.org/10.1145/3287324.3287505
https://doi.org/10.1109/FIE.2013.6684936
https://doi.org/10.1145/3328778.3366947
https://doi.org/10.1145/3328778.3366947
https://doi.org/10.1145/3328778.3366947
https://doi.org/10.1145/3328778.3366947
https://doi.org/10.1177%2F2056305118819188
https://github.com/dhruvmisra/Pathfinding-Visualizer-ThreeJS%0A
https://github.com/dhruvmisra/Pathfinding-Visualizer-ThreeJS%0A
https://doi.org/10.1109/FIE44824.2020.9273992
https://doi.org/10.1145/3408877.3439586
https://doi.org/10.1109/CogInfoCom50765.2020.9237855
https://doi.org/10.1109/CogInfoCom50765.2020.9237855


ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

Software Engineering (SBES 2019). Association for Computing Machinery, New
York, NY, USA, 553–558. https://doi.org/10.1145/3350768.3351303

[126] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. 2004.
Visualizing Programs with Jeliot 3. InWorking Conference on Advanced Visual
Interfaces. 373–376. https://doi.org/10.1145/989863.989928

[127] Jesús Moreno-León and Gregorio Robles. 2015. Dr. Scratch: A web tool to auto-
matically evaluate Scratch projects. In Proceedings of the workshop in primary
and secondary computing education. 132–133.

[128] Nate Murray and Ari Lerner. 2013. Choc Traceable Programming. https:
//www.newline.co/choc/

[129] Matija Novak, Mike Joy, and Dragutin Kermek. 2019. Source-code similarity
detection and detection tools used in academia: a systematic review. ACM
Transactions on Computing Education 19, 3 (2019). https://doi.org/10.1145/
3313290

[130] Hidehisa Oku, Kayoko Matsubara, and Masayuki Booka. 2013. Feasibility Study
of PDF Based Digital Textbooks for University Students with Difficulty to Handle
Print Textbooks. In Proceedings of the 7th International Convention on Rehabilita-
tion Engineering and Assistive Technology (Gyeonggi-do, South Korea) (i-CREATe
’13). Singapore Therapeutic, Assistive & Rehabilitative Technologies (START)
Centre, Midview City, SGP, Article 14, 4 pages.

[131] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. 2019. ChocoPy: a pro-
gramming language for compilers courses. In Proceedings of the 2019 ACM
SIGPLAN Symposium on SPLASH-E - SPLASH-E 2019. ACM Press. https:
//doi.org/10.1145/3358711.3361627

[132] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated
Assessment in Computer Science Education: A State-of-the-Art Review. ACM
Trans. Comput. Educ. 22, 3, Article 34 (jun 2022), 40 pages. https://doi.org/10.
1145/3513140

[133] Bruno Papa. 2020. Recursion Tree Visualizer. https://recursion.vercel.app/
[134] Panagiotis Papadopoulos, Nicolas Kourtellis, Pablo Rodriguez Rodriguez, and

Nikolaos Laoutaris. 2017. If You Are Not Paying for It, You Are the Product: How
Much Do Advertisers Pay to Reach You?. In Internet Measurement Conference.
ACM, 142–156. https://doi.org/10.1145/3131365.3131397

[135] Diane Peters. 2021. Learning management systems are more important than ever.
Retrieved 2022-07-08 from https://www.universityaffairs.ca/features/feature-
article/learning-management-systems-are-more-important-than-ever/

[136] Matthew Peveler, Tushar Gurjar, Evan Maicus, Andrew Aikens, Alexander
Christoforides, and Barbara Cutler. 2019. Lichen: customizable, open source
plagiarism detection in Submitty. In 50th ACMTechnical Symposium on Computer
Science Education. https://doi.org/10.1145/3287324.3293867

[137] Matthew Peveler, Evan Maicus, and Barbara Cutler. 2019. Comparing Jailed
Sandboxes vs Containers Within an Autograding System. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education. ACM. https:
//doi.org/10.1145/3287324.3287507

[138] M. Pigultong. 2022. Cognitive Impacts of Using a Metaverse embedded on
Learning Management System for Students with Unequal Access to Learning
Resources. In 2022 10th International Conference on Information and Education
Technology (ICIET). 27–31. https://doi.org/10.1109/ICIET55102.2022.9779045

[139] Kerttu Pollari-Malmi, Julio Guerra, Peter Brusilovsky, Lauri Malmi, and Teemu
Sirkiä. 2017. On the Value of Using an Interactive Electronic Textbook in
an Introductory Programming Course. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’17). Association for ComputingMachinery, NewYork, NY, USA, 168–172.
https://doi.org/10.1145/3141880.3141890

[140] James F. Power and John Waldron. 2020. Calibration and analysis of source
code similarity measures for Verilog hardware description language projects. In
51st ACM Technical Symposium on Computer Science Education. https://doi.org/
10.1145/3328778.3366928

[141] Prajish Prasad and Sridhar Iyer. 2020. VeriSIM: A Learning Environment for
Comprehending Class and Sequence Diagrams Using Design Tracing. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing: Software Engineering Education and Training (Seoul, South Korea) (ICSE-
SEET ’20). Association for Computing Machinery, New York, NY, USA, 23–33.
https://doi.org/10.1145/3377814.3381705

[142] Lutz Prechelt, GuidoMalpohl, andMichael Philippsen. 2002. Finding plagiarisms
among a set of programs with JPlag. Journal of Universal Computer Science 8, 11
(2002).

[143] Nick Rahimi and Nancy L. Martin. 2020. Challenges and Strategies for On-
line Teaching in Information Technology and Other Computing Programs. In
Proceedings of the 21st Annual Conference on Information Technology Education
(Virtual Event, USA) (SIGITE ’20). Association for Computing Machinery, New
York, NY, USA, 218–222. https://doi.org/10.1145/3368308.3415369

[144] Robert Ravenscroft. 2018. An HTML5 Browser Application for Modeling and
Teaching Linked Lists: (Abstract Only). In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (SIGCSE ’18). Association for Com-
puting Machinery, New York, NY, USA, 1106. https://doi.org/10.1145/3159450.
3162232

[145] Saquib Razak, Huda Gedawy, Wanda P Dann, and Donald J Slater. 2016. Alice in
the Middle East: An Experience Report from the Formative Phase. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE
’16). Association for Computing Machinery, New York, NY, USA, 425–430. https:
//doi.org/10.1145/2839509.2844593

[146] Jake Renzella and Andrew Cain. 2020. Enriching Programming Student Feed-
back with Audio Comments. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering Education and Training
(Seoul, South Korea) (ICSE-SEET ’20). Association for Computing Machinery,
New York, NY, USA, 173–183. https://doi.org/10.1145/3377814.3381712

[147] Jake Renzella, Andrew Cain, and Jean-Guy Schneider. 2021. Real Talk: Illu-
minating Online Student Understanding with Authentic Discussion Tools. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Educa-
tion (Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery,
New York, NY, USA, 886–892. https://doi.org/10.1145/3408877.3432484

[148] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun.
ACM 52, 11 (Nov 2009). https://doi.org/10.1145/1592761.1592779

[149] William Robinson. 2016. From scratch to patch: Easing the blocks-text transi-
tion. In Proceedings of the 11th Workshop in Primary and Secondary Computing
Education. 96–99.

[150] Virginia Rodés, Pollyana Notargiacomo Mustaro, Ismar Frango Silveira, Nizam
Omar, and Xavier Ochôa. 2014. Instructional Design Models to Support Collab-
orative Open Books for Open Education. In Proceedings of the XV International
Conference on Human Computer Interaction (Puerto de la Cruz, Tenerife, Spain)
(Interacción ’14). Association for Computing Machinery, New York, NY, USA,
Article 93, 7 pages. https://doi.org/10.1145/2662253.2662346

[151] Susan H Rodger, Julian Genkins, Ian McMahon, and Peggy Li. 2013. Increasing
the Experimentation of Theoretical Computer Science with New Features in
JFLAP. In Proceedings of the 18th ACMConference on Innovation and Technology in
Computer Science Education (ITiCSE ’13). Association for Computing Machinery,
New York, NY, USA, 351. https://doi.org/10.1145/2462476.2466521

[152] Guido Rößling, Markus Schüler, and Bernd Freisleben. 2000. The ANIMAL
Algorithm Animation Tool. In Proceedings of the 5th Annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and Technology in Computer Science Education
(ITiCSE ’00). Association for Computing Machinery, New York, NY, USA, 37–40.
https://doi.org/10.1145/343048.343069

[153] Palma Rozalia Osztian, Zoltan Katai, and Erika Osztian. 2020. Algorithm Vi-
sualization Environments: Degree of interactivity as an influence on student-
learning. In 2020 IEEE Frontiers in Education Conference (FIE). IEEE, 1–8. https:
//doi.org/10.1109/FIE44824.2020.9273892

[154] Seán Russell. 2021. Automatically Generated and Graded Program Tracing
Quizzes with Feedback. In Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 2 (Virtual Event, Germany)
(ITiCSE ’21). Association for Computing Machinery, New York, NY, USA, 652.
https://doi.org/10.1145/3456565.3460054

[155] Seán Russell. 2022. Automated Code Tracing Exercises for CS1. In Computing
Education Practice 2022 (Durham, United Kingdom) (CEP 2022). Association for
Computing Machinery, New York, NY, USA, 13–16. https://doi.org/10.1145/
3498343.3498347

[156] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. Sourcerercc: scaling code clone detection to big-code. In 38th Inter-
national Conference on Software Engineering. https://doi.org/10.1145/2884781.
2884877

[157] Avneesh Sarwate, Creston Brunch, Jason Freeman, and Sebastian Siva. 2018.
Grading at scale in earsketch. In Proceedings of the Fifth Annual ACM Conference
on Learning at Scale. ACM. https://doi.org/10.1145/3231644.3231708

[158] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In International Conference on Manage-
ment of Data. https://doi.org/10.1145/872757.872770

[159] Patrick Seeling. 2015. Assessing student views of traditional, free, and interactive
modifications for an introductory networking course. In 2015 IEEE Frontiers in
Education Conference (FIE). 1–4. https://doi.org/10.1109/FIE.2015.7344286

[160] Clifford A. Shaffer. 2016. OpenDSA: An Interactive ETextbook for Computer
Science Courses. In Proceedings of the 47th ACM Technical Symposium on Com-
puting Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association
for Computing Machinery, New York, NY, USA, 5. https://doi.org/10.1145/
2839509.2850505

[161] R Benjamin Shapiro, Annie Kelly, Matthew Ahrens, and Rebecca Fiebrink. 2016.
BlockyTalky: A physical and distributed computer music toolkit for kids. NIME.

[162] Parisa Shayan, Roberto Rondinelli, Menno van Zaanen, and Martin Atzmueller.
2019. Descriptive Network Modeling and Analysis for Investigating User Ac-
ceptance in a Learning Management System Context. In Proceedings of the 23rd
International Workshop on Personalization and Recommendation on the Web and
Beyond (Hof, Germany) (ABIS ’19). Association for Computing Machinery, New
York, NY, USA, 7–13. https://doi.org/10.1145/3345002.3349288

[163] Kristi J. Shryock. 2015. Engaging students inside the classroom to increase
learning. In 2015 IEEE Frontiers in Education Conference (FIE). 1–7. https://doi.

 

284

https://doi.org/10.1145/3350768.3351303
https://doi.org/10.1145/989863.989928
https://www.newline.co/choc/
https://www.newline.co/choc/
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3513140
https://recursion.vercel.app/
https://doi.org/10.1145/3131365.3131397
https://www.universityaffairs.ca/features/feature-article/learning-management-systems-are-more-important-than-ever/
https://www.universityaffairs.ca/features/feature-article/learning-management-systems-are-more-important-than-ever/
https://doi.org/10.1145/3287324.3293867
https://doi.org/10.1145/3287324.3287507
https://doi.org/10.1145/3287324.3287507
https://doi.org/10.1109/ICIET55102.2022.9779045
https://doi.org/10.1145/3141880.3141890
https://doi.org/10.1145/3328778.3366928
https://doi.org/10.1145/3328778.3366928
https://doi.org/10.1145/3377814.3381705
https://doi.org/10.1145/3368308.3415369
https://doi.org/10.1145/3159450.3162232
https://doi.org/10.1145/3159450.3162232
https://doi.org/10.1145/2839509.2844593
https://doi.org/10.1145/2839509.2844593
https://doi.org/10.1145/3377814.3381712
https://doi.org/10.1145/3408877.3432484
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/2662253.2662346
https://doi.org/10.1145/2462476.2466521
https://doi.org/10.1145/343048.343069
https://doi.org/10.1109/FIE44824.2020.9273892
https://doi.org/10.1109/FIE44824.2020.9273892
https://doi.org/10.1145/3456565.3460054
https://doi.org/10.1145/3498343.3498347
https://doi.org/10.1145/3498343.3498347
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/3231644.3231708
https://doi.org/10.1145/872757.872770
https://doi.org/10.1109/FIE.2015.7344286
https://doi.org/10.1145/2839509.2850505
https://doi.org/10.1145/2839509.2850505
https://doi.org/10.1145/3345002.3349288
https://doi.org/10.1109/FIE.2015.7344076
https://doi.org/10.1109/FIE.2015.7344076


Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

org/10.1109/FIE.2015.7344076
[164] Angela A. Siegel, Mark Zarb, Bedour Alshaigy, Jeremiah Blanchard, Tom Crick,

Richard Glassey, John R. Hott, Celine Latulipe, Charles Riedesel, Mali Senapathi,
Simon, and David Williams. 2022. Teaching through a Global Pandemic: Educa-
tional Landscapes Before, During and After COVID-19. In Proceedings of the 2021
Working Group Reports on Innovation and Technology in Computer Science Edu-
cation (Virtual Event, Germany) (ITiCSE-WGR ’21). Association for Computing
Machinery, New York, NY, USA, 1–25. https://doi.org/10.1145/3502870.3506565

[165] Simon, Oscar Karnalim, Judy Sheard, Ilir Dema, Amey Karkare, Juho Leinonen,
Michael Liut, and Renée McCauley. 2020. Choosing Code Segments to Exclude
from Code Similarity Detection. In ACM Working Group Reports on Innovation
and Technology in Computer Science Education. https://doi.org/10.1145/3437800.
3439201

[166] Teemu Sirkiä. 2016. Jsvee & Kelmu: Creating and Tailoring Program Anima-
tions for Computing Education. In 2016 IEEE Working Conference on Software
Visualization (VISSOFT). 36–45. https://doi.org/10.1109/VISSOFT.2016.24

[167] Teemu Sirkiä and Juha Sorva. 2012. Exploring Programming Misconceptions:
An Analysis of Student Mistakes in Visual Program Simulation Exercises. In Pro-
ceedings of the 12th Koli Calling International Conference on Computing Education
Research (Koli, Finland) (Koli Calling ’12). Association for Computing Machinery,
New York, NY, USA, 19–28. https://doi.org/10.1145/2401796.2401799

[168] Sebastien Siva, Tacksoo Im, Tom McKlin, Jason Freeman, and Brian Magerko.
2018. Using Music to Engage Students in an Introductory Undergraduate Pro-
gramming Course for Non-Majors. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM. https://doi.org/10.1145/
3159450.3159468

[169] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A review of generic program
visualization systems for introductory programming education. ACM Transac-
tions on Computing Education 13, 4 (Nov 2013). https://doi.org/10.1145/2490822

[170] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. ACM Trans.
Comput. Educ. 13, 4, Article 15 (nov 2013), 64 pages. https://doi.org/10.1145/
2490822

[171] Alina Striner, AndrewM.Webb, Jessica Hammer, and Amy Cook. 2021. Mapping
Design Spaces for Audience Participation In Game Live Streaming. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 329, 15 pages. https://doi.org/10.1145/3411764.3445511

[172] Filip Strömbäck, Linda Mannila, and Mariam Kamkar. 2022. Pilot Study of
Progvis: A Visualization Tool for Object Graphs and Concurrency via Shared
Memory. In Australasian Computing Education Conference (Virtual Event, Aus-
tralia) (ACE ’22). Association for Computing Machinery, New York, NY, USA,
123–132. https://doi.org/10.1145/3511861.3511885

[173] Sari Sultan and Ayed Salman. 2019. Automatically Generating Exams via Pro-
grammable Plug-Ins, and Generic XML Exam Support. In Proceedings of the
10th International Conference on E-Education, E-Business, E-Management and
E-Learning (Tokyo, Japan) (IC4E ’19). Association for Computing Machinery,
New York, NY, USA, 184–188. https://doi.org/10.1145/3306500.3306504

[174] Marek Šuppa, Ondrej Jariabka, Adrián Matejov, and Marek Nagy. 2021. Ter-
mAdventure: Interactively Teaching UNIX Command Line, Text Adventure
Style. In Proceedings of the 26th ACM Conference on Innovation and Technology in
Computer Science Education V. 1. ACM. https://doi.org/10.1145/3430665.3456387

[175] Jun Tao, Jun Ma, Melissa Keranen, Jean Mayo, and Ching-Kuang Shene. 2012.
ECvisual: A Visualization Tool for Elliptic Curve Based Ciphers. In Proceedings
of the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE
’12). Association for Computing Machinery, New York, NY, USA, 571–576. https:
//doi.org/10.1145/2157136.2157298

[176] Jun Tao, Jun Ma, Melissa Keranen, Jean Mayo, Ching-Kuang Shene, and Chaoli
Wang. 2014. RSAvisual: A Visualization Tool for the RSA Cipher. In Proceedings
of the 45th ACM Technical Symposium on Computer Science Education (SIGCSE
’14). Association for Computing Machinery, New York, NY, USA, 635–640. https:
//doi.org/10.1145/2538862.2538891

[177] Jun Tao, Jun Ma, Jean Mayo, Ching-Kuang Shene, and Melissa Keranen. 2011.
DESvisual: A Visualization Tool for the DES Cipher. J. Comput. Sci. Coll. 27, 1
(oct 2011), 81–89.

[178] James D. Teresco. 2012. Highway Data and Map Visualizations for Educa-
tional Use. In Proceedings of the 43rd ACM Technical Symposium on Com-
puter Science Education (Raleigh, North Carolina, USA) (SIGCSE ’12). Asso-
ciation for Computing Machinery, New York, NY, USA, 553–558. https:
//doi.org/10.1145/2157136.2157295

[179] Brian Thoms and Evren Eryilmaz. 2018. Social Software Design To Facilitate
Service-Learning In Interdisciplinary Computer Science Courses. In Proceedings
of the 49th ACM Technical Symposium on Computer Science Education (Baltimore,
Maryland, USA) (SIGCSE ’18). Association for Computing Machinery, New York,
NY, USA, 497–502. https://doi.org/10.1145/3159450.3159572

[180] Artturi Tilanterä, Giacomo Mariani, Ari Korhonen, and Otto Seppälä. 2021.
Towards a JSON-based Algorithm Animation Language. In 2021 Working Con-
ference on Software Visualization (VISSOFT). 135–139. https://doi.org/10.1109/
VISSOFT52517.2021.00026

[181] Jake Trower and Jeff Gray. 2015. Blockly Language Creation and Applications:
Visual Programming for Media Computation and Bluetooth Robotics Control.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Edu-
cation (Kansas City, Missouri, USA) (SIGCSE ’15). Association for Computing
Machinery, New York, NY, USA, 5. https://doi.org/10.1145/2676723.2691871

[182] Paul J. Wagner. 2020. The SQL File Evaluation (SQLFE) Tool. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education. ACM.
https://doi.org/10.1145/3328778.3372599

[183] Jane Waite, Andrea Franceschini, Sue Sentance, Mathew Patterson, and James
Sharkey. 2021. An Online Platform for Teaching Upper Secondary School Computer
Science. Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3481282.3481287

[184] Wengran Wang, Chenhao Zhang, Andreas Stahlbauer, Gordon Fraser, and
Thomas Price. 2021. SnapCheck: Automated Testing for Snap! Programs. In Pro-
ceedings of the 26th ACM Conference on Innovation and Technology in Computer
Science Education V. 1. ACM. https://doi.org/10.1145/3430665.3456367

[185] Ye Diana Wang and Seungwon "Shawn" Lee. 2013. Embedding Virtual Meeting
Technology in Classrooms: Two Case Studies. In Proceedings of the 14th Annual
ACM SIGITE Conference on Information Technology Education (Orlando, Florida,
USA) (SIGITE ’13). Association for Computing Machinery, New York, NY, USA,
83–90. https://doi.org/10.1145/2512276.2512279

[186] Eliane S. Wiese, Michael Yen, Antares Chen, Lucas A. Santos, and Armando
Fox. 2017. Teaching Students to Recognize and Implement Good Coding Style.
In Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale. ACM.
https://doi.org/10.1145/3051457.3051469

[187] Michael J Wise. 1996. YAP3: improved detection of similarities in computer
program and other texts. In 27th SIGCSE Technical Symposium on Computer
Science Education. https://doi.org/10.1145/236452.236525

[188] Billy T.M. Wong and Kam Cheong Li. 2019. Using Open Educational Resources
for Teaching inHigher Education: A Review of Case Studies. In 2019 International
Symposium on Educational Technology (ISET). 186–190. https://doi.org/10.1109/
ISET.2019.00046

[189] BruceWorobec and Robert Bryant. 2016. Using Sharepoint as a Limited Learning
Management System. J. Comput. Sci. Coll. 32, 2 (dec 2016), 11–18.

[190] Fu-Yun Yu and Yu-Hsin Liu. 2015. Social Media as a Teaching and Learning
Tool for In-class Q&A Activities to Promote Learning and Transform College
Engineering Classroom Dynamics: The Case of Facebook. In 2015 IEEE 15th
International Conference on Advanced Learning Technologies. 299–300. https:
//doi.org/10.1109/ICALT.2015.11

[191] Budi Yulianto, Andyni Khosasih, Evawaty Tanuar, and Yuventia Prisca Diyanti
Todalani Kalumbang. 2021. Taman Belajar: Learning Management System (LMS)
That Provides Free Massive Open Online Course (MOOC) for School Students. In
2021 4th International Conference on Education Technology Management (Tokyo,
Japan) (ICETM’21). Association for Computing Machinery, New York, NY, USA,
52–58. https://doi.org/10.1145/3510309.3510318

[192] Tiguiane Yélémou, Borlli Michel Jonas Somé, and Wilfried Kiélem. 2018. An
Enhanced Moodle-based Learning Management System to Account for Low
Bandwidths. In 2018 1st International Conference on Smart Cities and Communities
(SCCIC). 1–4. https://doi.org/10.1109/SCCIC.2018.8584553

[193] Jeremy K. Zhang, Chao Hsu Lin, Melissa Hovik, and Lauren J. Bricker. 2020.
GitGrade. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education. ACM. https://doi.org/10.1145/3328778.3372634

 

285

https://doi.org/10.1109/FIE.2015.7344076
https://doi.org/10.1145/3502870.3506565
https://doi.org/10.1145/3437800.3439201
https://doi.org/10.1145/3437800.3439201
https://doi.org/10.1109/VISSOFT.2016.24
https://doi.org/10.1145/2401796.2401799
https://doi.org/10.1145/3159450.3159468
https://doi.org/10.1145/3159450.3159468
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1145/3411764.3445511
https://doi.org/10.1145/3511861.3511885
https://doi.org/10.1145/3306500.3306504
https://doi.org/10.1145/3430665.3456387
https://doi.org/10.1145/2157136.2157298
https://doi.org/10.1145/2157136.2157298
https://doi.org/10.1145/2538862.2538891
https://doi.org/10.1145/2538862.2538891
https://doi.org/10.1145/2157136.2157295
https://doi.org/10.1145/2157136.2157295
https://doi.org/10.1145/3159450.3159572
https://doi.org/10.1109/VISSOFT52517.2021.00026
https://doi.org/10.1109/VISSOFT52517.2021.00026
https://doi.org/10.1145/2676723.2691871
https://doi.org/10.1145/3328778.3372599
https://doi.org/10.1145/3481282.3481287
https://doi.org/10.1145/3481282.3481287
https://doi.org/10.1145/3430665.3456367
https://doi.org/10.1145/2512276.2512279
https://doi.org/10.1145/3051457.3051469
https://doi.org/10.1145/236452.236525
https://doi.org/10.1109/ISET.2019.00046
https://doi.org/10.1109/ISET.2019.00046
https://doi.org/10.1109/ICALT.2015.11
https://doi.org/10.1109/ICALT.2015.11
https://doi.org/10.1145/3510309.3510318
https://doi.org/10.1109/SCCIC.2018.8584553
https://doi.org/10.1145/3328778.3372634


ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

A DEMOGRAPHIC SURVEY QUESTIONS
Table 8 lists the various optional demographic questions included
in our survey.

Table 8: Demographic Survey Questions

Q# Question Type

Q26 Institution Level [See Table 9] Multiple Choice
Q27 Institution Name Text Entry
Q28 Institution Location Text Entry
Q29 Stage of Career [Table 10] Multiple Choice
Q30 What is the approximate distribution Text Entry

of your workload in your role between
research, teaching, administration,
and other?

Q31 What is the largest class you teach? Multiple Choice
[See Table 11]

Q32 What is your TA to student ratio? Text Entry
That is, for how many students do
you get one TA on average?

Table 9: Institution Levels

O# Option

O1 Primary Education
O2 Secondary Education
O3 Tertiary Education: Undergraduate (Bachelor’s) Awarding
O4 Tertiary Education: Master’s Awarding
O5 Tertiary Education: PhD Awarding/Other

Table 10: Stage of Career

O# Option

O1 0-5 years teaching experience
O2 6-15 years teaching experience
O3 16+ years teaching experience

Table 11: Class Size

O# Option

O1 Small (<50 students)
O2 Medium (50-100 students)
O3 Large (100-199 students)
O4 Very Large (200+ students)

B DISCOVERED AND OTHER KNOWN TOOLS
Table 12 lists the different discovery methods that survey respon-
dents could indicate for the tools they mentioned. For completeness,
we list all the discovered tools in the literature review and com-
munity survey, along with information on how to access those
tools. Tools appear in the list divided by type of tool if they were
mentioned by at least 10% of respondents in the survey or were
found during the literature review process. Table 13 displays the
list of autograders; Table 14 contains the list of plagiarism detec-
tors; development environments and plugins are listed in Table 15;
visualization tools are displayed in Table 16; class management and
LMS systems are in Table 17; and Table 18 lists the polling and
quizzing tools. Since there were fewer open textbook tools, their
information has been included in Section 6.6. Additionally, Table 19
lists all tools with links that were included in the survey responses
but did not meet the 10% threshold. Finally, Table 20 lists a number
of tools that did not appear in the either the literature review or
survey but may be useful to the Computing Education community.

Table 12: Discovery categories for tools reported in the com-
munity survey

D# Discovery Method

D1 Searching the internet
D2 From colleagues at other institutions
D3 From colleagues at your institution
D4 “Inherited” when starting on a course
D5 By attending conferences
D6 By reading papers
D7 Built into institution’s LMS
D8 I created it

 

286



Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

Table 13: Discovered auto-grading tools with two possible sources: literature review (rev) and community survey (sur)

Name Domain Link Source(s)

Alloy4Fun [111] Alloy Models http://alloy4fun.inesctec.pt/ rev
AutoGrader [108] Code https://github.com/s3team/AutoGrader rev
AutoStyle [35, 186] Code https://github.com/autostyle/autostyle rev
ChocoPy [131] Code https://chocopy.org/ rev
CPSGrader [90] Code http://cpsgrader.org/ rev
EarSketch [157, 168] Code https://earsketch.gatech.edu/ rev
GitGrade [193] Code https://gitgrade.cs.washington.edu/ rev
Gradescope Code https://gradescope.com sur
JupyterCanvasSubmit [67] Code https://github.com/eagubsi/JupyterCanvasSubmit rev
Learn-OCaml [31] Code https://github.com/ocaml-sf/learn-ocaml rev
Mastery Learning Quiz App [15] Assignment https://github.com/tiara-allidina7/

MasteryLearningQuizApp
rev

OpenDSA Programmed Instruction [122] Quiz/Practice https://opendsa-server.cs.vt.edu/ rev
Reveal [88] Code in Exams https://github.com/ace-lab/reveal rev
SnapCheck [184] Code https://github.com/emmableu/SnapCheck rev
SQLFE [182] Code https://github.com/wagnerpj42/SQL-File-Evaluation rev
Submitty [137] Code https://submitty.org rev
Submitty: Graphics Applications [114] Code https://submitty.org rev
Submitty: Distributed Algorithms [115] Code https://submitty.org rev
TermAdventure (2021) [174] Terminal https://github.com/NaiveNeuron/TermAdventure rev
uAssign [12] Terminal https://github.com/jakebailey/ua rev
Web-CAT [45] Code https://github.com/web-cat sur
Web-CAT Jupyter Plugin [117] Code https://github.com/web-cat/web-cat-plugin-

JupyterPlugin
rev

 

287

http://alloy4fun.inesctec.pt/
https://github.com/s3team/AutoGrader
https://github.com/autostyle/autostyle
https://chocopy.org/
http://cpsgrader.org/
https://earsketch.gatech.edu/
https://gitgrade.cs.washington.edu/
https://gradescope.com
https://github.com/eagubsi/JupyterCanvasSubmit
https://github.com/ocaml-sf/learn-ocaml
https://github.com/tiara-allidina7/MasteryLearningQuizApp
https://github.com/tiara-allidina7/MasteryLearningQuizApp
https://opendsa-server.cs.vt.edu/
https://github.com/ace-lab/reveal
https://github.com/emmableu/SnapCheck
https://github.com/wagnerpj42/SQL-File-Evaluation
https://submitty.org
https://submitty.org
https://submitty.org
https://github.com/NaiveNeuron/TermAdventure
https://github.com/jakebailey/ua
https://github.com/web-cat
https://github.com/web-cat/web-cat-plugin-JupyterPlugin
https://github.com/web-cat/web-cat-plugin-JupyterPlugin


ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

Table 14: Discovered plagiarism (similarity) detectors with two possible sources: literature review (rev) and community survey
(sur).

Name Domain Link Source(s)

AntiCutAndPaste Code & text http://www.plagiarism-report.com/anticutandpaste/ rev
BPlag [34] Code https://github.com/hjc851/BPlag rev
CCFinder [91] Code http://www.ccfinder.net/ rev
CodeMatch Code https://www.safe-corp.com/products_codematch.htm rev
CodeQuiry Code & text https://codequiry.com/ rev
Copy/Paste Detector Code https://pmd.github.io/latest/pmd_userdocs_Copy/

PasteDetector.html
rev

Deckard [85] Code https://github.com/skyhover/Deckard rev
JPlag [142] Code & text https://github.com/jplag/JPlag rev
Lichen [136] Code & text https://submitty.org/instructor/course_management/

plagiarism
rev

MOSS [158] Code https://theory.stanford.edu/~aiken/moss/ rev, sur
Plaggie [5] Code https://www.cs.hut.fi/Software/Plaggie/ rev
plagiarismchecker.com Text http://www.plagiarismchecker.com/ rev
Power and Waldron [140]’s Tool Code https://github.com/johnwaldron-tcd/codemark-

verilog-cleaner-tokeniser
rev

Safeassign Text https://help.blackboard.com/SafeAssign/Student/
Submit_SafeAssign

rev

Sherlock (Sydney) Code & text https://github.com/diogocabral/Sherlock rev
Sherlock (Warwick) [87] Code & text https://warwick.ac.uk/fac/sci/dcs/research/ias/

software/sherlock/
rev

SIM [64] Code & text https://dickgrune.com/Programs/similarity_tester/ rev
SourcererCC [156] Code https://github.com/Mondego/SourcererCC rev
STRANGE [94] Code https://github.com/oscarkarnalim/strange rev
Turnitin Text https://www.turnitin.com/ rev
UniCheck Text https://unicheck.com/ rev
WCopyFind Text https://plagiarism.bloomfieldmedia.com/software/

wcopyfind/
rev

Table 15: Discovered development environments and plugins with two possible sources: literature review (rev) and community
survey (sur).

Name Link Source(s)

Alice Netbeans Plugin [40] https://github.com/TheAliceProject/alice3 rev
Amphibian [18] https://github.com/cacticouncil/amphibian rev
Blockly [181] https://developers.google.com/blockly rev
cs50.io [7] https://cs50.io rev
Makecode [14] https://www.microsoft.com/en-us/makecode rev
Repl.it https://replit.com/ sur
Reveal [89] https://github.com/ace-lab/reveal rev
Scratch [148] https://scratch.mit.edu/ rev
SDES [173] https://github.com/SariSultan/SDES rev
Snap! [72] https://snap.berkeley.edu/ rev
Thonny [6] https://thonny.org rev

 

288

http://www.plagiarism-report.com/anticutandpaste/
https://github.com/hjc851/BPlag
http://www.ccfinder.net/
https://www.safe-corp.com/products_codematch.htm
https://codequiry.com/
https://pmd.github.io/latest/pmd_userdocs_Copy/Paste Detector.html
https://pmd.github.io/latest/pmd_userdocs_Copy/Paste Detector.html
https://github.com/skyhover/Deckard
https://github.com/jplag/JPlag
https://submitty.org/instructor/course_management/plagiarism
https://submitty.org/instructor/course_management/plagiarism
https://theory.stanford.edu/~aiken/moss/
https://www.cs.hut.fi/Software/Plaggie/
http://www.plagiarismchecker.com/
https://github.com/johnwaldron-tcd/codemark-verilog-cleaner-tokeniser
https://github.com/johnwaldron-tcd/codemark-verilog-cleaner-tokeniser
https://help.blackboard.com/SafeAssign/Student/Submit_SafeAssign
https://help.blackboard.com/SafeAssign/Student/Submit_SafeAssign
https://github.com/diogocabral/Sherlock
https://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/
https://warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/
https://dickgrune.com/Programs/similarity_tester/
https://github.com/Mondego/SourcererCC
https://github.com/oscarkarnalim/strange
https://www.turnitin.com/
https://unicheck.com/
https://plagiarism.bloomfieldmedia.com/software/wcopyfind/
https://plagiarism.bloomfieldmedia.com/software/wcopyfind/
https://github.com/TheAliceProject/alice3
https://github.com/cacticouncil/amphibian
https://developers.google.com/blockly
https://cs50.io
https://www.microsoft.com/en-us/makecode
https://replit.com/
https://github.com/ace-lab/reveal
https://scratch.mit.edu/
https://github.com/SariSultan/SDES
https://snap.berkeley.edu/
https://thonny.org


Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

Table 16: List of Visualisation tools that can be used teaching computer science with two possible sources: literature review
(rev) and community survey (sur).

Name Platform Link Source(s)

AlgoRythmics [153] Web https://algorythmics.ms.sapientia.ro/ rev
AlgoTouch [54] Java https://algotouch.irisa.fr/ rev, sur
Alice [145] Java https://www.alice.org/ rev
ANIMAL [152] Java http://www.algoanim.net/ rev
AnimOS CPU-Scheduling [102] Web https://ess.cs.tu-dortmund.de/Software/AnimOS/CPU-

Scheduling/
rev

BRIDGES [28] Web http://bridgesuncc.github.io/ rev
BlueJ [16] Java https://www.bluej.org/ rev
Choc [128] Web https://www.newline.co/choc/ rev
Cryptography Visualization Tools(
DESvisual [177], AESvisual [110],
RSAvisual [176], SHAvisual [109],
ECvisual [175], & VIGvisual [175])

Multi https://pages.mtu.edu/~shene/NSF-4/ rev

CT1 [1], CT2 [101], JCT & CTO [13] Windows,
Java, Web

https://www.cryptool.org/en/ rev

Data Structure Visualizations [57] Web https://www.cs.usfca.edu/~galles/visualization/index.html rev
DDS [144] Web http://dsviewer.org/ rev
ExplorViz [74] Java, Web https://www.explorviz.net/ rev
Flap.js [103] Web https://github.com/flapjs sur
Flow [27] Java, Plugin http://findtheflow.io rev
HDX [178] Web https://courses.teresco.org/metal/hdx/ rev
JAAL [180] Web https://github.com/atilante/JAAL rev
JFLAP [151] Java https://www.jflap.org/ rev
jGRASP [39] Java, Plugin https://www.jgrasp.org/ rev
Jive [84] Plugin https://cse.buffalo.edu/jive/ rev
JSAV [93] Web https://github.com/vkaravir/JSAV rev
JSVEE and Kelmu [166] Web https://github.com/Aalto-LeTech/jsvee rev
Marble MLFQ [97] Web https://learn-mlfq.herokuapp.com/ rev
Moodle Trace Generator [154] Web https://github.com/CSTools-UCD/moodle-trace-generator rev
Omnicode [92] Web https://github.com/eddings/Omnicode rev
Online Python Tutor [69] Web https://pythontutor.com/ rev, sur
Pathfinding Visualizer ThreeJS [120] Web https://github.com/dhruvmisra/Pathfinding-Visualizer-ThreeJS rev
PLIVET [80] Web https://github.com/RYOSKATE/PLIVET rev
Progvis [172] Windows,

Linux
https://storm-lang.org/index.php?q=06-Programs%2F01-
Progvis.md

rev

Recursion Tree Visualizer [133] Web https://github.com/brpapa/recursion-tree-visualizer rev
TigerJython [99] Java https://tigerjython.ch/en rev
TSGL [3] C++ lib https://github.com/Calvin-CS/TSGL sur
TSAL [2] C++ lib https://github.com/Calvin-CS/TSAL rev, sur
UUhistle [167] Java http://www.uuhistle.org/index.php rev
Vamanos [30] Web https://rosulek.github.io/vamonos/ rev
VeriSIM [141] Web https://verisim.tech rev
VisuAlgo [70] Web https://visualgo.net/ rev, sur
Willow [125] Web https://github.com/pedro00dk/willow rev

 

289

https://algorythmics.ms.sapientia.ro/
https://algotouch.irisa.fr/
https://www.alice.org/
http://www.algoanim.net/
https://ess.cs.tu-dortmund.de/Software/AnimOS/CPU-Scheduling/
https://ess.cs.tu-dortmund.de/Software/AnimOS/CPU-Scheduling/
http://bridgesuncc.github.io/
https://www.bluej.org/
https://www.newline.co/choc/
https://pages.mtu.edu/~shene/NSF-4/
https://www.cryptool.org/en/
https://www.cs.usfca.edu/~galles/visualization/index.html
http://dsviewer.org/
https://www.explorviz.net/
https://github.com/flapjs
http://findtheflow.io
https://courses.teresco.org/metal/hdx/
https://github.com/atilante/JAAL
https://www.jflap.org/
https://www.jgrasp.org/
https://cse.buffalo.edu/jive/
https://github.com/vkaravir/JSAV
https://github.com/Aalto-LeTech/jsvee
https://learn-mlfq.herokuapp.com/
https://github.com/CSTools-UCD/moodle-trace-generator
https://github.com/eddings/Omnicode
https://pythontutor.com/
https://github.com/dhruvmisra/Pathfinding-Visualizer-ThreeJS
https://github.com/RYOSKATE/PLIVET
https://storm-lang.org/index.php?q=06-Programs%2F01-Progvis.md
https://storm-lang.org/index.php?q=06-Programs%2F01-Progvis.md
https://github.com/brpapa/recursion-tree-visualizer
https://tigerjython.ch/en
https://github.com/Calvin-CS/TSGL
https://github.com/Calvin-CS/TSAL
http://www.uuhistle.org/index.php
https://rosulek.github.io/vamonos/
https://verisim.tech
https://visualgo.net/
https://github.com/pedro00dk/willow


ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

Table 17: Discovered class management tools with two possible sources: literature review (rev) and community survey (sur).

Name Platform Link Source(s)

Blackboard Learn Web https://www.blackboard.com/ rev
Canvas Multi https://www.instructure.com/canvas rev
Coursera Web https://www.coursera.org/ rev
Doubtfire Web https://doubtfire.io/ rev
Elgg Web/PHP https://elgg.org/ rev
Google Classroom Web https://edu.google.com/ rev
Gooru Web https://gooru.org/about/ sur
GradeCraft Web https://gradecraft.com/ rev
HKU Space Soul Mobile https://soul2.hkuspace.hku.hk/ rev
Isaac Computer Science Web https://isaaccomputerscience.org/ sur
Moodle Multi https://moodle.org/ rev,sur
MicrosoftTeams Multi https://www.microsoft.com/en-us/microsoft-

teams/group-chat-software
rev

Piazza Multi https://piazza.com/ sur
RealTalk Multi https://zenodo.org/record/4780955#.YssRiFjMI8M rev
RepoBee Multi https://repobee.org/ rev
Taman Belajar Web https://tamanbelajar.com/ rev
WhatsApp Mobile https://www.whatsapp.com/ rev

Table 18: Discovered polling/quizzing tools with two possible sources: literature review (rev) and community survey (sur). For
each one we indicate if there is at least one LMS with which it integrates (more closely than just an iframe embedding).

Name LMS Integra-
tion

Link Source(s)

Acadly yes https://www.acadly.com/ rev
Adobe Captivate yes https://www.adobe.com/fr/products/captivate.html rev
AMC QCM no https://www.auto-multiple-choice.net/index.fr sur
Facebook no https://facebook.com rev
Factitious no http://factitious-pandemic.augamestudio.com/ rev
Formative Quizzing yes https://yantraedu.com/ sur
Gathertown no https://www.gather.town/ rev
Google Apps script no https://developers.google.com/apps-script rev
Google Forms no https://www.google.com/intl/en/forms/about/ rev, sur
GoToMeeting no https://www.goto.com rev
HapYak yes https://corp.hapyak.com rev
iclicker yes https://www.iclicker.com/ rev
Kahoot! no https://kahoot.it rev, sur
Kytos no https://github.com/tychonievich/quizzes sur
Ms Office Mix https://office-mix.apponic.com/ rev
OpenIRS-UCM yes http://openirs-ucm.sourceforge.net/ rev
PollEverywhere yes https://www.polleverywhere.com/ rev
Polly no http://www.polly.ai/ rev
Quizlet no https://quizlet.com
Quizizz yes https://quizizz.com/ sur
Slido no https://www.sli.do/ rev, sur
Socrative no https://socrative.com rev
TwitchTV no https://www.twitch.tv rev
Veriguide yes https://veriguide1.cse.cuhk.edu.hk/portal/plagiarism_detection/

index.jsp
rev

Wooclap yes https://www.wooclap.com rev
Zoom yes https://zoom.us/ rev

 

290

https://www.blackboard.com/
https://www.instructure.com/canvas
https://www.coursera.org/
https://doubtfire.io/
https://elgg.org/
https://edu.google.com/
https://gooru.org/about/
https://gradecraft.com/
https://soul2.hkuspace.hku.hk/
https://isaaccomputerscience.org/
https://moodle.org/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://piazza.com/
https://zenodo.org/record/4780955#.YssRiFjMI8M
https://repobee.org/
https://tamanbelajar.com/
https://www.whatsapp.com/
https://www.acadly.com/
https://www.adobe.com/fr/products/captivate.html
https://www.auto-multiple-choice.net/index.fr
https://facebook.com
http://factitious-pandemic.augamestudio.com/
https://yantraedu.com/
https://www.gather.town/
https://developers.google.com/apps-script
https://www.google.com/intl/en/forms/about/
https://www.goto.com
https://corp.hapyak.com
https://www.iclicker.com/
https://kahoot.it
https://github.com/tychonievich/quizzes
https://office-mix.apponic.com/
http://openirs-ucm.sourceforge.net/
https://www.polleverywhere.com/
http://www.polly.ai/
https://quizlet.com
https://quizizz.com/
https://www.sli.do/
https://socrative.com
https://www.twitch.tv
https://veriguide1.cse.cuhk.edu.hk/portal/plagiarism_detection/index.jsp
https://veriguide1.cse.cuhk.edu.hk/portal/plagiarism_detection/index.jsp
https://www.wooclap.com
https://zoom.us/


Stop Reinventing the Wheel! ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

Table 19: Tools listed by respondents of the community survey that did not meet the inclusion criteria, i.e., have less than 4
mentions, but included a URL.

Name Link # Mentions

Beamer https://bitbucket.org/rivanvx/beamer/ and https://tikz.dev/ 3
GitHub Classroom https://classroom.github.com 3
Google Docs https://docs.google.com 3
Google Meet meet.google.com 2
Git https://git-scm.com/ 2
GitHub https://github.com 2
Visual Studio Code https://code.visualstudio.com 2
ACP https://acp.foe.auckland.ac.nz/ 1
AMC QCM https://www.auto-multiple-choice.net/index.fr 1
Archimedes https://github.com/tychonievich/archimedes 1
AutoMultipleChoice https://www.auto-multiple-choice.net 1
Coding Exams https://github.com/deternitydx/coding-exams 1
Compilatio https://www.compilatio.net/ 1
E-Strange https://e-strange.org/ 1
Eclipse https://eclipse.org 1
Emacs https://www.gnu.org/software/emacs/ 1
Explain Everything App https://explaineverything.com/ 1
ffmpeg http://ffmpeg.org/ 1
Formative Quizzing https://yantraedu.com/ 1
Geany https://www.geany.org/ 1
GitLab https://about.gitlab.com/ 1
hedy https://www.hedycode.com/ 1
IntelliJ https://www.jetbrains.com/idea/ 1
Java Tutor https://pythontutor.com/java.html 1
Jenkins https://www.jenkins.io/ 1
Js-Parsons http://js-parsons.github.io/ 1
junit https://junit.org/junit5/ 1
Kytos https://github.com/tychonievich/quizzes 1
LaTeX https://www.latex-project.org/ 1
MyDigitalHand https://beta.mydigitalhand.org 1
Notion https://www.notion.so/ 1
OH Queue https://www.eberly.cmu.edu/ohq/#/ 1
Otter Autograder https://otter-grader.readthedocs.io/en/latest/ 1
Padlet https://padlet.com/dashboard 1
Pugofer (Haskell) interpreter https://github.com/rusimody/pugofer 1
Pylagiarism https://github.com/defeo/pylagiarist 1
pytest https://docs.pytest.org/en/7.1.x/ 1
quizlet https://quizlet.com/ 1
Rephactor https://rephactor.com// 1
RStudio https://www.rstudio.com/ 1
Coding Exams (Sherlock) https://github.com/deternitydx/coding-exams 1
Slack https://slack.com/ 1
Slido https://www.slido.com/ 1
TigerJython https://tigerjython.ch/en 1
UCSD Lecture Podcasting http://podcast.ucsd.edu 1
Unreal Engine 5 https://www.unrealengine.com/en-US/ 1
Visual Studio https://visualstudio.microsoft.com/ 1
VMWare Workstation https://www.vmware.com/ 1
Win Merge https://winmerge.org/ 1
Xournal++ https://xournalpp.github.io/ 1
YouTube https://www.youtube.com/ 1
7Zip https://www.7-zip.org/ 1

 

291

https://bitbucket.org/rivanvx/beamer/
https://tikz.dev/
https://classroom.github.com
https://docs.google.com
meet.google.com
https://git-scm.com/
https://github.com
https://code.visualstudio.com
https://acp.foe.auckland.ac.nz/
https://www.auto-multiple-choice.net/index.fr
https://github.com/tychonievich/archimedes
https://www.auto-multiple-choice.net
https://github.com/deternitydx/coding-exams
https://www.compilatio.net/
https://e-strange.org/
https://eclipse.org
https://www.gnu.org/software/emacs/
https://explaineverything.com/
http://ffmpeg.org/
https://yantraedu.com/
https://www.geany.org/
https://about.gitlab.com/
https://www.hedycode.com/
https://www.jetbrains.com/idea/
https://pythontutor.com/java.html
https://www.jenkins.io/
http://js-parsons.github.io/
https://junit.org/junit5/
https://github.com/tychonievich/quizzes
https://www.latex-project.org/
https://beta.mydigitalhand.org
https://www.notion.so/
https://www.eberly.cmu.edu/ohq/#/
https://otter-grader.readthedocs.io/en/latest/
https://padlet.com/dashboard
https://github.com/rusimody/pugofer
https://github.com/defeo/pylagiarist
https://docs.pytest.org/en/7.1.x/
https://quizlet.com/
https://rephactor.com//
https://www.rstudio.com/
https://github.com/deternitydx/coding-exams
https://slack.com/
https://www.slido.com/
https://tigerjython.ch/en
http://podcast.ucsd.edu
https://www.unrealengine.com/en-US/
https://visualstudio.microsoft.com/
https://www.vmware.com/
https://winmerge.org/
https://xournalpp.github.io/
https://www.youtube.com/
https://www.7-zip.org/


ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland Jeremiah Blanchard et al.

Table 20: Additional tools known to the working group authors that may be useful to the Computing Education community;
some of them are featured with references for further reading.

Name Link Purpose

Ceebot http://www.ceebot.com/ceebot/index-e.php Teaching tool
CSTRANGE [96] https://github.com/oscarkarnalim/CSTRANGE Plagiarism (similarity) detector
Discord https://discord.com Discussion/classroom tool
DOMJudge https://www.domjudge.org/ Autograder
Hedy [75] https://www.hedycode.com/ Teaching tool
Jeliot 3 [126] http://cs.joensuu.fi/jeliot/ Program visualisation/ IDE
Kattis https://open.kattis.com/ Autograder
MS PowerPoint https://www.microsoft.com/en-us/microsoft-

365/powerpoint
Presentation

Nearpod https://nearpod.com Poll/ quiz
NetSupport https://www.netsupportschool.com/ Class management/monitoring
Overleaf https://overleaf.com/ LaTeX collaboration
Reddit https://reddit.com Discussion/classroom tool
Sakai https://www.sakailms.org/ Class management/monitoring
ShellOnYou [17] https://shellonyou.fr Autograder
TopHat https://tophat.com Poll/quiz
Typeform https://www.typeform.com/examples/polls/ Poll/quiz
Votar https://votar.libre-innovation.org/index.en.html Poll/quiz
Xamarin Workbooks https://docs.microsoft.com/en-us/archive/msdn-

magazine/2016/connect/xamarin-workbooks-the-
interactive-future-of-technical-docs

Interactive programming

 

292

http://www.ceebot.com/ceebot/index-e.php
https://github.com/oscarkarnalim/CSTRANGE
https://discord.com
https://www.domjudge.org/
https://www.hedycode.com/
http://cs.joensuu.fi/jeliot/
https://open.kattis.com/
https://www.microsoft.com/en-us/microsoft-365/powerpoint
https://www.microsoft.com/en-us/microsoft-365/powerpoint
https://nearpod.com
https://www.netsupportschool.com/
https://overleaf.com/
https://reddit.com
https://www.sakailms.org/
https://shellonyou.fr
https://tophat.com
https://www.typeform.com/examples/polls/
https://votar.libre-innovation.org/index.en.html
https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/connect/xamarin-workbooks-the-interactive-future-of-technical-docs
https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/connect/xamarin-workbooks-the-interactive-future-of-technical-docs
https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/connect/xamarin-workbooks-the-interactive-future-of-technical-docs

	Abstract
	1 Introduction
	2 Similar Studies
	2.1 Domain-specific Reviews
	2.2 Comprehensive Reviews and Surveys

	3 Methods
	3.1 Community Survey
	3.2 Literature Review
	3.3 Other Known Tools

	4 Statistical Findings
	4.1 Community Survey
	4.2 Literature Review

	5 Perceptions of Tools
	5.1 Satisfaction with Existing Tools
	5.2 Challenges in Software Use & Development
	5.3 Accessibility and Discoverability
	5.4 Most Important Tools: Proprietary vs. Open Source

	6 Discovered Tools
	6.1 Autograders
	6.2 Plagiarism (Similarity) Detectors
	6.3 Development Environments
	6.4 Visualisations
	6.5 Class Management
	6.6 Open Textbooks
	6.7 Polling / Quizzing

	7 Discussion
	7.1 Availability
	7.2 Discoverability
	7.3 Development & Deployment

	8 Limitations
	8.1 Literature Review
	8.2 Community Survey
	8.3 Other Potential Biases

	9 Conclusion and Future Work
	References
	A Demographic Survey Questions
	B Discovered and Other Known Tools



