
HAL Id: lirmm-04028295
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04028295v1

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameterized Complexity of Computing Maximum
Minimal Blocking and Hitting Sets

Júlio Araújo, Marin Bougeret, Victor Campos, Ignasi Sau

To cite this version:
Júlio Araújo, Marin Bougeret, Victor Campos, Ignasi Sau. Parameterized Complexity of Com-
puting Maximum Minimal Blocking and Hitting Sets. Algorithmica, 2023, 85 (2), pp.444-491.
�10.1007/s00453-022-01036-5�. �lirmm-04028295�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04028295v1
https://hal.archives-ouvertes.fr

Parameterized complexity of computing maximum
minimal blocking and hitting sets
Júlio Araújo
Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil
julio@mat.ufc.br

Marin Bougeret
LIRMM, Université de Montpellier, CNRS, Montpellier, France
marin.bougeret@lirmm.fr

Victor A. Campos
Departamento de Computação, Universidade Federal do Ceará, Fortaleza, Brazil
victoitor@ufc.br

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France
ignasi.sau@lirmm.fr

Abstract
A blocking set in a graph G is a subset of vertices that intersects every maximum independent

set of G. Let mmbs(G) be the size of a maximum (inclusion-wise) minimal blocking set of G.
This parameter has recently played an important role in the kernelization of Vertex Cover
with structural parameterizations. We provide a panorama of the complexity of computing mmbs
parameterized by the natural parameter and the independence number of the input graph. We also
consider the closely related parameter mmhs, which is the size of a maximum minimal hitting set of
a hypergraph. Finally, we consider the problem of computing mmbs parameterized by treewidth,
especially relevant in the context of kernelization. Since a blocking set intersects every maximum-
sized independent set of a given graph and properties involving counting the sizes of arbitrarily large
sets are typically non-expressible in monadic second-order logic, its tractability does not seem to
follow from Courcelle’s theorem. Our main technical contribution is a fixed-parameter tractable
algorithm for this problem.

2012 ACM Subject Classification Design and analysis of algorithms→ Fixed parameter tractability.

Keywords and phrases maximum minimal blocking set, maximum minimal hitting set, parameterized
complexity, treewidth, kernelization, vertex cover, upper domination.

Funding Júlio Araújo: CNPq-Pq 304478/2018-0, CAPES-PrInt 88887.466468/2019-00 and CAPES-
STIC-AmSud 88881.569474/2020-01.
Victor A. Campos: FUNCAP - PNE-011200061.01.00/16.
Ignasi Sau: DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), ELIT (ANR-20-
CE48-0008-01), and UTMA (ANR-20-CE92-0027).

1 Introduction

Given a graph G, we denote by α(G) the maximum size of an independent set of G, that
is, of a set of pairwise non-adjacent vertices. For the sake of conciseness, we abbreviate
“independent set” as is, and “maximum independent set” as mis. A set B ⊆ V (G) is a blocking
set, abbreviated as bs, of G if α(G \B) < α(G), where G \B = G[V (G) \B]. Equivalently, B
is a blocking set of G if for every mis I∗ ⊆ V (G), I∗∩B 6= ∅. In this work we are interested in
(inclusion-wise) minimal blocking sets, which we abbreviate as mbs. We denote by mmbs(G)
the maximum size of an mbs of G, and by Maximum Minimal Blocking Set (MMBS
for short) the problem where, given a graph G and an integer β, the objective is to decide
whether mmbs(G) ≥ β. The main objective of this paper is to study the parameterized

https://orcid.org/0000-0001-7074-2753
mailto:julio@mat.ufc.br
https://orcid.org/0000-0002-9910-4656
mailto:marin.bougeret@lirmm.fr
https://orcid.org/0000-0002-2730-4640
mailto:victoitor@ufc.br
https://orcid.org/0000-0002-8981-9287
mailto:ignasi.sau@lirmm.fr

2 Parameterized complexity of computing maximum minimal blocking and hitting sets

complexity of MMBS. As discussed below, this problem is strongly related to the Maximum
Minimal Hitting Set (MMHS) problem, for which we also present several results.

Role of maximum minimal blocking sets in kernelization. Given a graph G, a set of
vertices S ⊆ V (G) is a vertex cover if it contains at least one endpoint of every edge. The
Vertex Cover (VC for short) problem asks, given a graph G and an integer k, if there
is a vertex cover S of G such that |S| ≤ k. For a fixed graph class F , the VC/dist-to-F
parameterized problem is defined as follows. The input is a triple (G,X, k) where G is a
graph, X ⊆ V (G), and G \X belongs to F . The set X is often referred to as a modulator to
F , and |X| as the distance of G to F . The objective of the problem is to decide whether G
admits a vertex cover of size at most k, and the parameter is |X|. A kernel of vertex size f
for this problem is a polynomial-time algorithm that, given an input (G,X, k), outputs an
equivalent instance (G′, X ′, k′) with |V (G′)| ≤ f(|X|). Informally, such a kernel compresses
the input graph G to a smaller graph G′ whose size is bounded by a function f depending
only on |X|. If f is a polynomial (resp. linear) function, we speak of a polynomial (resp.
linear) kernel. We refer the reader to Section 2 for formal definitions. The VC/dist-to-F
problem has been defined by Jansen and Bodlaender [23] for F being the class of forests
as a way to improve the linear kernel for Vertex Cover parameterized by the standard
parameter k. Their main result is a polynomial kernel for VC/dist-to-F (for F being the
forests).

This result triggered a long line of follow-up research, which aimed to find the most
general graph families F such that VC/dist-to-F admits a polynomial kernelization [19].
Several results were proved for specific families F such as those of degree at most two,
of bounded treedepth, pseudo-forests (see [9, 19] for a complete list of references), and a
major open question in this area is to find a characterization of the families F for which
VC/dist-to-F admits a polynomial kernel [9]. This is where parameter mmbs comes into
play, as we proceed to explain.

Kernelization algorithms for VC/dist-to-F usually proceed in two steps. In step 1,
they reduce the number of connected components of G \X to a polynomial in |X|, and in
step 2 they reduce the size of each connected component of G \X to a polynomial in |X|
as well. Minimal blocking sets have been introduced in the seminal paper of Jansen and
Bodlaender [23] for the case of F being the class of forests as a handy tool to achieve step 1.
After that, this notion has been generalized and reused for example in [9, 10, 21], finally
leading to the following black box tool for step 1, where mmbs(F) = supG∈F mmbs(G).

I Theorem 1 (Hols et al. [21]). Let F be a hereditary graph class on which VC can be solved
in polynomial time. There is a polynomial-time algorithm that, given an instance (G,X, k)
of VC/dist-to-F , returns an equivalent instance (G0, X, k0) of VC/dist-to-F such that
G0 \X ∈ F and has O(|X|mmbs(F)) connected components.

Informally, Theorem 1 states that, if mmbs(F) is bounded by a constant, then “half” of
the kernelization algorithm can be done automatically. Moreover, it has been shown that
mmbs(F) being bounded by a constant is necessary in order to obtain a polynomial kernel:

I Theorem 2 (Hols et al. [21]). Unless NP ⊆ coNP/poly, VC/dist-to-F does not admit a
kernel of size O(|X|mmbs(F)−ε) for any ε > 0.

These two theorems suggest that mmbs might be the right candidate to characterize
graph classes F for which VC/dist-to-F admits a polynomial kernel. However, it turns out
that there exists a class F where mmbs(F) is bounded by a constant, but for which there

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 3

is no polynomial kernel for VC/dist-to-F under standard complexity assumptions [21].
Nevertheless, for minor-closed families1, the following theorem shows that mmbs is indeed the
correct parameter in order to characterize the existence of polynomial kernels for VC/dist-
to-F .

I Theorem 3 (Bougeret et al. [9]). If F is a minor-closed graph class, then VC/dist-to-F
admits a polynomial kernel if and only if mmbs(F) is bounded by a constant.

To summarize this discussion, for general graph classes F , having bounded mmbs(F) is
necessary but not sufficient, although having bounded mmbs(F) yields “half” of the kernel.
For minor-closed classes F , having bounded mmbs(F) is indeed the correct characterization.
These results explain the recent interest in computing mmbs(F) for different classes F [21],
and thus our motivation to study the complexity of the MMBS problem.

Let us also mention that computing mmbs can in addition be useful when implementing
any of the previously mentioned kernels. Indeed, given an instance (G,X, k) of VC/dist-
to-F with |V (G)| = n, the algorithm behind Theorem 1 takes as additional input the value
mmbs(F) and outputs the claimed equivalent instance in time nmmbs(F)+O(1). However,
when implementing this algorithm, we can rather first compute mmbs(G \ X), and use
the algorithm of Theorem 1 with additional input mmbs(G \X) instead of mmbs(F) (note
that mmbs(G \ X) ≤ mmbs(F), potentially much smaller), and thus obtain a running
time nmmbs(G\X)+O(1), and an equivalent instance (G0, X, k0), where G0 \ X ∈ F , with
O(|X|mmbs(G\X)) connected components.

Contribution and related work. In what follows we present our contribution and relate
it to previous work, by considering each parameterization of the studied problems separately.

Choice of the parameters. As the VC/dist-to-F problem has only been considered for graph
classes F where Maximum Independent Set (IS for short) can be solved in polynomial
time, we also incorporate this assumption in this work, hence motivating the parameterization
of MMBS by combinations of α (i.e., the size of a mis of the input graph) and the threshold
β (the solution size). Moreover, since in all the previously mentioned cases where VC/dist-
to-F has a polynomial kernel [9, 19] the graphs in the class F have bounded treewidth, we
also consider the MMBS problem parameterized by the treewidth of the input graph G.

Problems related to computing mmbs. We denote by Maximum Minimal Hitting Set
(MMHS for short) the problem where, given a hypergraph H and an integer β, the objective
is to decide whether mmhs(H) ≥ β, where mmhs(H) is the size of a largest minimal hitting
set of H, that is, an (inclusion-wise) minimal set of vertices of H containing at least one
vertex of every hyperedge. A dominating set in a graph G is a subset of vertices S ⊆ V (G)
such that every vertex in V (G) \ S has a neighbor in S. We denote by Upper Dominating
Set (Up-Dom for short) the problem of computing a maximum (inclusion-wise) minimal
dominating set in an input graph G. As pointed out by Bazgan et al. [2], Up-Dom is a
special case of MMHS, as we can create a hyperedge for each closed neighborhood of the
vertices in G, implying that the negative results stated below for Up-Dom transfer directly
to MMHS. As mentioned before, we only consider graph classes F where IS can be solved in
polynomial time. A natural special case of such classes is when α is constant, and in this case
MMBS reduces to MMHS by simply generating in time nα+O(1) a hyperedge for each mis of
G. Let us now define parameterizations for MMBS and MMHS. A parameterization is, in a

1 A graph class is minor-closed if any minor of a member in the class also belongs to it, and a graph H is
a minor of a graph G is H can be obtained from a subgraph of G by contracting edges.

4 Parameterized complexity of computing maximum minimal blocking and hitting sets

nutshell, a function mapping instances of a decision problem to non-negative integers (see
Section 2 for the details). For MMBS, recall that we have a graph G and a positive integer
k as input and we wish to decide whether mmbs(G) ≥ k. Let G denote the set of all graphs.
We define, with slight abuse of notation, the parameters α : G × N→ N as α(G, k) = α(G)
and β : G × N→ N as β(G, k) = mmbs(G). Similarly, for MMHS, we define the parameters
α as α(H, k) = maxH∈E(H) |H| and β as β(H, k) = mmhs(H).

The first objective of this paper is to obtain a complete landscape of the parameterized
complexity of MMBS and MMHS under different combinations of α and β to compare the
behavior of these two problems. To the best of our knowledge, the parameterized complexity
of MMBS has not been considered before in the literature. On the other hand, the MMHS
problem has received considerable attention, especially concerning the enumeration of minimal
hitting sets, as it allows to construct the so-called dual hypergraph, that is, the hypergraph
having a hyperedge for every minimal hitting set of the original hypergraph. Let us now
present our contributions together with the related work about the parameterized complexity
of MMHS, for each different parameterization that we consider.

Parameterization by α or β separately. When parameterizing by α only, both MMBS and
MMHS are para-NP-hard, meaning NP-hard for fixed values of the parameter. Indeed, the
particular case α = 2 of MMHS corresponds to the Maximum Minimal Vertex Cover
(MMVC for short) problem, which is NP-hard [8]. When parameterizing by β only, we show
in Proposition 6 that MMBS is para-NP-hard, whereas MMHS is W[1]-hard [2] and XP [5].
As discussed in Section 3, the W[1]-hardness proof of [2] implies that, unless the Exponential
Time Hypothesis (ETH for short) fails, Up-Dom cannot be solved in time f(k) · no(

√
k) on

n-vertex graphs for any computable function f . We improve this lower bound by showing in
Theorem 7 that Up-Dom cannot be solved in time f(k) · no(k) for any computable function
f , implying the same result (replacing k by β) for MMHS. We point out that very recently
and independently from our work, this improved lower bound for Up-Dom has also been
proved by Dublois et al. [18].

Parameterization by one parameter while fixing the other. When fixing α and parameterizing
by β, MMBS reduces to MMHS, which was known to be FPT [15], and for which we provide
in Proposition 16 a polynomial kernel with O(βα) vertices, generalizing the known quadratic
kernel for MMVC [8, 20]. When fixing β and parameterizing by α, we show in Proposition 6
that MMBS is W[1]-hard, whereas MMHS is FPT (as it is even FPT parameterized by the
sum as explained in the next paragraph).

Parameterization by the sum. Finally, when parameterizing by α+ β, the hardness result
given in Proposition 6 (i.e., parameterizing by α for fixed β) implies that MMBS is W[1]-hard,
whereas MMHS is FPT for the following reasons. We first provide in Corollary 18 a simple
FPT algorithm for MMHS that reduces to an extension problem considered by Bläsius et
al. [5], and then design in Theorem 24 a more involved ad-hoc algorithm to improve the
running time to O∗(2αβ), where the O∗-notation hides multiplicative polynomial terms (see
Section 2).

Our results considering parameters α and β are summarized in Table 1.

Parameterization by treewidth. Let us now turn to the second objective of this paper, which
is the parameterization by treewidth. It is known that both Up-Dom [2] and MMVC [8] are
FPT parameterized by treewidth, but none of these results implies the same result for MMBS.
We also mention that that the problem of finding a maximum minimal set intersecting all
maximum cliques of a graph is FPT parameterized by treewidth [25], implying that MMBS

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 5

Parameter MMBS MMHS
β para-NP-hard (Proposition 6) XP ([5], Corollary 18)

W[1]-hard [2]
@ f(β) · (|V (H)|+ |E(H)|)o(β) (Corollary 11)

α para-NP-hard (Proposition 6) para-NP-hard (MMVC for α = 2) [8]
β (α fixed) Reducible to MMHS in time

nα+O(1)
Kernel with O(βα) vertices (Proposition 16)
FPT in O∗(αβ) [15] (O∗ hides nf(α))

α (β fixed) W[1]-hard (Proposition 6)
XP (reduction to MMHS)

FPT (as it is FPT by α+ β)

α+ β W[1]-hard (Proposition 6) FPT (Corollary 18 and Theorem 24)
XP (reduction to MMHS)

Table 1 Parameterized complexity of MMBS and MMHS with parameters α and β. The main
differences between MMBS and MMHS show up in the parameterizations by β and α+ β.

is FPT parameterized by treewidth of the complement of the input graph. We prove in
Theorem 51 that MMBS is FPT parameterized by treewidth, which is the main technical
result of this paper. Let us mention that MMBS does not seem to be (at least, easily)
expressible in monadic second-order logic, due to the fact that the a blocking set in a graph
G is defined so that it intersects every maximum-sized independent set of G, and properties
involving counting the sizes of arbitrarily large sets are typically non-expressible in monadic
second-order logic [7, 13]. This is why, in order to deduce that MMBS is FPT parameterized
by treewidth, we cannot directly apply Courcelle’s theorem [12], and we need to design an
ad-hoc algorithm that is quite involved, needing a number of technical lemmas. In Section 4.1
we discuss the list of inputs of our dynamic programming algorithm, along with several
examples to illustrate the difficulties that motivate their choice.

Organization. In Section 2 we provide preliminaries about graphs, parameterized complexity
and treewidth, the formal statement of the considered problems, and we state in Lemma 4
several useful properties of minimal blocking and hitting sets. Section 3 is devoted to
parameterizations by α and β, and Section 4 to the algorithm for MMBS parameterized by
treewidth. We conclude the article in Section 5 with some directions for further research.

2 Preliminaries

Graphs and functions. We only provide here basic definitions and refer the reader to [16]
for any missing definitions about graphs. We only consider finite simple graphs with no loops
nor multiple edges. For a graph G and a vertex v ∈ V (G), we denote by NG(v) the set of
vertices of G adjacent to v and, for a subset S ⊆ V (G), we let NS(v) = NG(v)∩S. When the
graph G is clear from the context, we may omit the subscript. Given B ⊆ V (G), we denote
G \B = G[V (G) \B] where G[X] denotes the graph induced by X ⊆ V (G). We denote a
triangle, that is, a complete graph on three vertices, on vertices u, v, w by (u, v, w). Given
a graph G, we say that X ⊆ V (G) is a vertex cover if for any edge e ∈ E(G), e ∩X 6= ∅,
and that X is a dominating set if for every v ∈ V (G) \ X, there exists u ∈ X such that
{u, v} ∈ E. Given a hypergraph H, we say that I ⊆ V (H) is an independent set if for every
H ∈ E(H), H * I, and that X ⊆ V (H) is a hitting set if for every S ∈ E(H), S ∩X 6= ∅. A
graph class is hereditary if it is closed under induced subgraphs.

If a set A is partitioned into pairwise disjoint subsets A1, . . . , Ak, we denote it by
A = A1] · · ·]Ak. If A is a set, we denote by 2A the collection containing all the subsets

6 Parameterized complexity of computing maximum minimal blocking and hitting sets

of A. Given a function f : A → B and a subset A′ ⊆ A, we denote by f|A′ the restriction
of f to A′. For a positive integer k, we let [k] be the set containing every integer i such
that 1 ≤ i ≤ k.

For a function f mapping graphs to integers (such as the parameterizations α and β

discussed before) and a class of graphs F , we define f(F) = supG∈F f(G). Given two
functions f1 and f2, mapping instances I of a problem to N), if there exists a polynomial p
such that for every instance I, f1(I) ≤ f2(I) · p(|I|), where |I| is the size of I, then we write
f1 = O∗(f2).

Parameterized complexity. We refer the reader to [14, 17] for basic background on
parameterized complexity, and we recall here only some basic definitions. A parameterized
problem is a language L ⊆ Σ∗ × N, where Σ is some fixed alphabet. For an instance
I = (x, k) ∈ Σ∗×N, k is called the parameter. Given a classical (non-parameterized) decision
problem Lc ⊆ Σ∗ and a function κ : Σ∗ → N, we denote by Lc/κ = {(x, κ(x)) | x ∈ Lc} the
associated parameterized problem.

A parameterized problem L is fixed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f , and a constant c such that given an instance I = (x, k), A
(called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.
For instance, the Vertex Cover problem parameterized by the size of the solution is FPT.

A parameterized problem L is XP if there exists an algorithm A (called an XP algorithm)
and two computable functions f and g such that given an instance I = (x, k), A (called
an XP algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|g(k). For
instance, the Independent Set problem parameterized by the size of the solution is XP.

Within parameterized problems, the W-hierarchy may be seen as the parameterized
equivalent to the class NP of classical decision problems. Without entering into details
(see [14, 17] for the formal definitions), a parameterized problem being W[1]-hard can be
seen as a strong evidence that this problem is not FPT. The canonical example of W[1]-hard
problem is Independent Set parameterized by the size of the solution.

The most common way to transfer W[1]-hardness is via parameterized reductions. A
parameterized reduction from a parameterized problem L1 to a parameterized problem L2 is
an algorithm that, given an instance (x, k) of L1, outputs an instance (x′, k′) of L2 such that

(x, k) is a yes-instance of L1 if and only if (x′, k′) is a yes-instance of L2,
k′ ≤ g(k) for some computable function g, and
the running time is bounded by f(k) · |x|O(1) for some computable function f

If L1 is W[1]-hard and there is a parameterized reduction from L1 to L2, then L2 is W[1]-hard
as well.

A parameterized problem is para-NP-hard if it is NP-hard for some fixed value of the
parameter, implying in particular that the problem cannot be in XP unless P = NP.

A kernelization algorithm for a parameterized problem L is an algorithm A that, given
an instance (x, k) of L, generates in polynomial time an equivalent instance (x′, k′) of Q
such that |x′|+ k′ ≤ f(k), for some computable function f : N→ N. If f(k) is bounded from
above by a polynomial function, we say that L admits a polynomial kernel. In particular, if
f(k) is bounded by a linear (resp. quadratic) function, then we say that L admits a linear
(resp. quadratic) kernel.

The Exponential Time Hypothesis (ETH for short) of Impagliazzo et al. [22] is a complexity
assumption implying that the 3-SAT problem cannot be solved in time 2o(n) restricted to
formulas with n variables.

List of considered problems. We denote by IS the Maximum Independent Set problem
where, given a graph G and an integer k, the objective is to decide whether α(G) ≥ k, and by

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 7

CIS the Multicolored Independent Set problem, where given graph G and an integer
k such that V (G) is partitioned into k cliques {Vi | i ∈ [k]}, the goal is to decide whether
α(G) ≥ k.

In the two following problems, recall that mmbs(G) (resp. mmhs(H)) denotes the size of
a largest minimal blocking set of G (resp. largest minimal hitting set of H).

Maximum Minimal Blocking Set (MMBS)
Input: A graph G and a positive integer β.
Question: mmbs(G) ≥ β?

Maximum Minimal Hitting Set (MMHS)
Input: A hypergraph H and a positive integer β.
Question: mmhs(H) ≥ β?

I Property 1. If (H, β) is an instance of MMHS, then there is an equivalent instance (H′, β)
satisfying that there is no pair of hyperedges H1, H2 ∈ E(H′) such that H1 (H2. Moreover,
such an equivalent instance can be constructed in polynomial time.

Proof: Let (H, β) be an instance of MMHS such that H1, H2 ∈ E(H) and H1 (H2. Let
H′ be obtained from H by removing H2. We claim that S is a minimal hitting set of H if,
and only if, S is a minimal hitting set of H′.

Let S be a minimal hitting set ofH. Since E(H′) = E(H)\{H2}, it follows that S is indeed
a hitting set of H′. To prove that S is a minimal hitting set of H′, by contradiction let s ∈ S
such that S− = S\{v} is a hitting set ofH′. In particular, there is a vertex h1 ∈ H1∩S− (H2.
Thus, S− would be a hitting set of H since H1 (H2 and E(H′) = E(H)\{H2}, contradicting
the minimality of S.

Conversely, let S′ be a minimal hitting set of H′. As before, there is h1 ∈ H1 ∩ S′ (H2.
Thus, S′ is a hitting set of H. To prove that S′ is a minimal hitting set of H, assume that
S′− = S′ \ {v} is a hitting set of H, for some v ∈ S′. Since E(H′) = E(H) \ {H2}, we have
that S′− = S′ \ {v} would be a hitting set of H′, contradicting the choice of S′. 2

Thus, by Property 1 we can always assume that no hyperedge is included in another.
Moreover, following the definition of hypergraph given in [4], we also assume that no hyperedge
is empty and that each vertex belongs to some hyperedge. We formalize these assumptions
in the following observation for further reference.

I Observation 1. Whenever (H, β) is an instance of MMHS in this work, we assume that:
1. For every H ∈ E(H), H 6= ∅;
2. For every v ∈ V (H), there is H ∈ E(H) such that v ∈ H;
3. For every H1, H2 ∈ E(H), it is not true that H1 (H2.

While the third claim is a consequence of Property 1, note that the two first claims of
Observation 1 could also be assumed without loss of generality. Indeed, if some hyperedge is
empty, then no hitting set exists; and if some vertex does not belong to any hyperedge, then
it does not belong to any minimal hitting set and could be safely removed.

The problem Maximum Minimal Vertex Cover (MMVC) corresponds to the restric-
tion of MMHS to instances where all hyperedges have size two, i.e., graphs. For a fixed
positive integer α, we also define α-MMHS as the MMHS problem restricted to instances
whose hypergraph H is such that |H| ≤ α for every H ∈ E(H), and α-MMBS as the MMBS

8 Parameterized complexity of computing maximum minimal blocking and hitting sets

problem restricted to instances whose graph G is such that α(G) ≤ α. Notice that in any
FPT or kernel algorithm for α-MMHS or for α-MMBS, as α is fixed, the running time
given using the O∗-notation might typically hide a term nf(α), where n is the number of
vertices of the graph or hypergraph under consideration. Finally, we define MMBS= (resp.
MMBS≤) as the MMBS problem where the objective is to decide whether mmbs(G) = β

(resp. mmbs(G) ≤ β).

Extension-MMHS (Ext-MMHS)
Input: A hypergraph H and a two subsets X,Y ⊆ V (H) such that X ∩ Y = ∅.
Question: Does there exist a minimal hitting set S of H such that X ⊆ S ⊆ V (H) \ Y ?

Problem Ext-MMHS was defined by Bläsius et al. [5]. We also define Simple-Ext-
MMHS as the special case of the Ext-MMHS where Y = ∅.

The last problem we define here is the “max-min” version of Dominating Set.

Upper Dominating Set (Up-Dom)
Input: A graph G and an integer k.
Question: Does G contain a minimal dominating set of size at least k?

Tree decompositions and treewidth. A tree decomposition of a graph G is a pair
D = (T,B), where T is a tree and B = {Xw | w ∈ V (T)} is a collection of subsets of V (G),
called bags, such that:⋃

w∈V (T)X
w = V (G),

for every edge {u, v} ∈ E, there is a w ∈ V (T) such that {u, v} ⊆ Xw, and
for every {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T ,
Xx ∩Xy ⊆ Xz.

We call the vertices of T nodes of D and the sets in B bags of D. The width of a tree
decomposition D = (T,B) is maxw∈V (T) |Xw| − 1. The treewidth of a graph G, denoted by
tw(G), is the smallest integer t such that there exists a tree decomposition of G of width at
most t. We need to introduce nice tree decompositions, which will make the presentation of
the algorithm of Section 4 much simpler.

Nice tree decompositions. Let D = (T,B) be a rooted tree decomposition of G (meaning
that T has a special vertex r called the root). As T is rooted, we naturally define an ancestor
relation among bags, and say that Xw′ is a descendant of Xw if the vertex set of the unique
simple path in T from r to w′ contains w. In particular, every node w is a descendant of
itself. For every w ∈ V (T), we define GXw = G[

⋃
{Xw′ | Xw′ is a descendant of Xw in T}].

Such a rooted decomposition is called a nice tree decomposition of G if the following
conditions hold:

Xr = ∅,
every node of T has at most two children in T ,
for every leaf ` ∈ V (T), X` = ∅. Each such a node ` is called a leaf node,
if w ∈ V (T) has exactly one child w′, then either
Xw = Xw′ ∪ {v} for some v 6∈ Xw′ . Each such a node is called an introduce node,
Xw = Xw′ \ {v} for some v ∈ Xw′ . Each uch a node is called a forget node, and

if w ∈ V (T) has exactly two children wL and wR, then Xw = XwL = XwR . Each such a
node is called a join node.

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 9

In the case of a join node, notice that there is no edge in GXw between V (GXwL) \Xw and
V (GXwR) \Xw. Given a tree decomposition of a graph G, it is possible to transform it in
polynomial time into a nice one of the same width [24].

For the sake of simplicity of the (already quite heavy) notation used in the dynamic
programming algorithm of Section 4, we will drop the vertices of V (T) from the notation of
bags defined above. Therefore, in the case of an introduce or forget node, the bag Xw and
its child Xw′ will be denoted X and XC , respectively, and in the case of a join node, the
bag Xw and its children XwL and XwR will be denoted X,XL, and XR respectively.

Basic properties. We now state some basic properties of the considered problems that will
be used later. The ones concerning minimal blocking sets have been already (explicitly or
implicitly) observed in [21], but for the sake of completeness we prove all of them here.

I Lemma 4. The following properties hold.
1. For every graph G, B ⊆ V (G) is an mbs of G if and only if B is a bs of G and, for every

v ∈ B, there is a mis Iv of G such that Iv ∩B = {v}.
2. For every hypergraph H, B ⊆ V (H) is an minimal hitting set of H if and only if B

is a hitting set of H and, for every v ∈ B, there is a hyperedge Hv of H such that
Hv ∩B = {v}.

3. For every graph G, there exists a unique mis in G if and only if mmbs(G) = 1.

Proof: Property 1. For the forward implication, consider an mbs B of G. As B is minimal,
for every v ∈ B, there exists a mis Iv such that Iv ∩ {B \ {v}} = ∅. As B is a bs, Iv ∩B 6= ∅,
implying Iv ∩B = {v}. The backward implication is immediate. The proof of Property 2 is
almost the same.

Property 3. For the forward implication, let I be the unique mis of G, B be a bs of G,
and v ∈ B ∩ I. If |B| ≥ 2 then B is not minimal as {v} is still a bs. Let us now prove the
contrapositive of the backward implication. Suppose that G contains two distinct mis I1 and
I2. Since I1 and I2 have the same cardinality and are distinct, there is v1 ∈ I1 \ I2 and there
is v2 ∈ I2 \ I1. Note that {v1, v2} is a minimal blocking set of G, thus mmbs(G) ≥ 2.

2

3 Parameterization by α and β

In this section we establish the results summarized in Table 1 about the parameterized
complexity of MMBS and MMHS under several parameterizations depending on α and β.
We present the negative and the positive results in Section 3.1 and Section 3.2, respectively.

3.1 Hardness results
It is natural to ask, for a graph G, whether computing α(G) can help toward computing
mmbs(G), and vice-versa. In fact, the parameters α and mmbs are linked by the duality
relation discussed in what follows.

Given a ground set S, a clutter is a family A of subsets of S such that no set A1 ∈ A
contains another set A2 ∈ A. Given a clutter A, the family of blocking sets of A, denoted by
b(A), is the set of minimal subsets B of S such that B intersects every set A ∈ A. Notice
that b(A) is a clutter, and thus b(b(A)) is well-defined. The following theorem provides a
duality relation and can be found, for instance, in [4].

I Theorem 5. b(b(A)) = A.

10 Parameterized complexity of computing maximum minimal blocking and hitting sets

If we apply Theorem 5 to our setting, namely with A being the set of all mis of a graph
G, we get that b(A) is the set of all mbs, and that the set of minimal sets intersecting all the
sets in b(A) is the set of all mis. Even if this theorem gives a relation between mbs and mis,
it seems, to the best of our knowledge, that it does not provide a way to compute α(G) from
mmbs(G), or mmbs(G) from α(G).

Let us start with the easy direction.

I Property 2. Let F be a hereditary graph class. If the problem of computing an mbs
(not necessarily maximum) is polynomial-time solvable on F , then IS is polynomial-time
solvable on F . This implies that if MMBS is polynomial-time solvable on F , then IS is
polynomial-time solvable on F .

Proof: Suppose that we have an algorithm that, given a graph G ∈ F , outputs in polynomial
time an mbs B of G. According to Lemma 4 (Property 1), for every v ∈ B there exists a mis
Iv such that Iv ∩ B = {v}, implying that α(G \ B) = α(G)− 1 as B is a blocking set. As
G \ B ∈ F because F is hereditary, we can repeat the same argument to G \ B, stopping
when we obtain an empty graph. It follows that α(G) is equal to the number of iterations of
this procedure. 2

Let us now show that there is no hope to get the same kind of property in the backward
direction. We point out a related result in [21] showing that there is a graph class F where
mmbs(F) = 1, as there is a unique mis for any G ∈ F (see Property 3 of Lemma 4), but IS
is not polynomial-time solvable unless NP = RP. This result is obtained through a reduction
from Unique-SAT and guarantees that if the original instance is a yes-instance, then there
is a unique mis of size k, and otherwise a unique mis of size k − 1. In the following result,
the situation is different, as we target a complexity result for MMBS, and not for IS. For a
graph class F , let α(F) = supG∈F α(G).

I Proposition 6. There exist
a hereditary graph class F where α(F) ≤ 2 and on which MMBS is NP-hard (implying
that 2-MMBS is NP-hard), and
a graph class F where IS is polynomial-time solvable, and MMBS/α is W[1]-hard, even
the particular case of deciding, given an input graph G, whether mmbs(G) > 1. This
implies that MMBS/β is para-NP-hard, and that MMBS/(α+ β) is W[1]-hard.

Proof: It is known that IS remains NP-hard on triangle-free graphs. Indeed, Poljak [26]
observed that if F is the graph obtained from G by subdividing every edge of G twice, then
α(F) = α(G) +m(G). Since F is triangle-free, the result follows.

Boria et al. [8, Theorem 1] presented a reduction from IS to MMVC to deduce an
inapproximability result for MMVC. Their reduction builds, from an instance (G, k) of IS,
an instance (H, k′) of MMVC by adding to G n(G) + 1 new pendant vertices at each vertex
v ∈ V (G), i.e. adding n(G)+1 vertices of degree one whose unique neighbor in H is v, in order
to obtain H. Then, they observe that G has an independent set S of cardinality k if, and only
if, V (H) \ S is a minimal vertex cover of H, i.e. k′ = n(G)− k + k(n(G) + 1) = (k − 1)n(G).

The addition of a vertex of degree one does not introduce any triangle in a graph. Thus,
by applying the reduction of Boria et al. to an instance of IS restricted to triangle-free
graphs, we may deduce that MMVC is NP-hard on triangle-free graphs.

To prove our first statement, we reduce from MMVC on triangle-free graphs, and given
an input G of MMVC, we define our input G′ of MMBS as the complement of G (that is,
the graph obtained from G by swapping edges and non-edges). We may also assume that G
contains at least one edge. Observe that as G is triangle-free and G contains at least one

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 11

edge, α(G′) = 2. Moreover, there is a bijection between edges of G and mis of G′. This
implies that for every subset B ⊆ V (G), B is a vertex cover of G if and only if B is a bs of
G′, and thus that B is a minimal vertex cover of G if and only if B is an mbs of G′.

To prove our second statement, we reduce from the Multicolored Independent Set
(CIS) problem. It is known that CIS/k is W[1]-hard [14] . Given an input (G, k) of CIS,
where V (G) is partitioned into k cliques {Vi | i ∈ [k]}, let G1 be a copy of G and let G2 be
the graph composed of an is of size k. We define G′ as the graph obtained by taking the
disjoint union of G1 and G2, and adding all edges between V (G1) and V (G2). Observe that
|V (G′)| = |V (G)|+ k, that α(G′) ≤ k as α(Gi) ≤ k, and α(G′) = k as V (G2) is an is.

If (G, k) is a yes-instance, there are two distinct (even disjoint) mis Ii in G′: we can define
I1 ⊆ V (G1) as an is of size k in G, and I2 = V (G2). This implies by Lemma 4 (Property 3)
that mmbs(G′) ≥ 2.

Conversely, if (G, k) is a no-instance, the unique mis of G′ is V (G2), implying by Lemma 4
(Property 3) that mmbs(G′) = 1. Finally, this is a parameterized reduction as α(G′) ≤ k, and
IS is polynomial-time solvable restricted to the family of graphs produced by the reduction.
2

Let us now turn to lower bounds for MMHS/β. It is known that MMHS/β is W[1]-
hard [2] and that, unless the ETH fails, Simple-Ext-MMHS cannot be solved in time
f(|X|) · (n+m)o(|X|) for any computable function f : N→ N, where n and m are the number
of vertices and hyperedges of the input hypergraph, respectively [5]. In our next theorem we
prove the same lower bound for Up-Dom, transferring the result to MMHS as well (recall
that Up-Dom is a special case of MMHS).

Let us mention that the reduction for MMHS/β of Bazgan et al. [2] is a reduction from
Multicolored Independent Set parameterized by k, showing that, in fact, Up-Dom is
W[1]-hard parameterized by the solution size, where the parameter of the Up-Dom instance
is O(k2). While being indeed a parameterized reduction, it only implies that, unless the ETH
fails, Up-Dom cannot be solved in time f(k) · (n + m)o(

√
k) for any computable function

f : N→ N. We also mention that very recently and independently from our work, Theorem 7
has also been proved by Dublois et al. [18], by using a reduction quite similar to ours.

I Theorem 7. Unless the ETH fails, the Upper Dominating Set problem cannot be solved
in time f(k) · |V (G)|o(k) for any computable function f : N→ N.

Proof: Chen et al. [11] proved that, unless the ETH fails, the k-Clique problem, i.e. deciding
whether a given graph has a clique of size at least k, cannot be solved in time f(k) · no(k) on
n-vertex graphs for any computable function f : N→ N.

In the Multicolored k-Independent Set problem, we are given a graph G and an
integer parameter k, such that V (G) is partitioned into k sets V1]· · ·]Vk, and the question is
whether G contains an independent set containing exactly one vertex in Vi, for i ∈ [k]. There
is a simple parameterized reduction from k-Clique to the Multicolored k′-Independent
Set problem parameterized by k′, namely CIS/k′, with linear dependency on the parameter,
i.e. k′ is linear in k [14]. Thus, the result of Chen et al. [11] implies that the CIS cannot be
solved in time f(k) · no(k) on n-vertex graphs for any computable function f : N→ N.

We present a parameterized reduction from CIS to Up-Dom that, given an instance
(G, k) of CIS, creates in polynomial time a graph G′ that contains a minimal dominating
set of size at least 3k if and only if G contains a multicolored is of size k. By the above
discussion, such a reduction concludes the proof of the theorem.

Given G, with V (G) = V1] · · ·] Vk, for every color i ∈ [k] we add to G′ three copies
Ai, Bi, Ci of Vi, and let Ui = Ai ∪ Bi ∪ Ci be their union. We denote A =

⋃
i∈[k]Ai,

12 Parameterized complexity of computing maximum minimal blocking and hitting sets

B =
⋃
i∈[k]Bi, C =

⋃
i∈[k] Ci, and, for a vertex v ∈ V (G), we denote by vA, vB , vC its

corresponding copy in A,B,C, respectively. For every i ∈ [k], the set Ui induces, in G′, a
clique minus the triangles {(vA, vB , vC) | v ∈ Vi}. That is, within the same color i, every
vertex is adjacent to all other vertices except for its two other copies. For every edge
{u, v} ∈ E(G) such that u ∈ Vi and v ∈ Vj with i 6= j, we add to G′ the edges {uA, vB} and
{uB , vA}. This concludes the construction of G′. We claim that G contains a multicolored is
of size k if and only if G′ that contains a minimal dominating of size at least 3k.

Let first S ⊆ V (G) be a multicolored is of size k. Let D ⊆ V (G′) contain, for every
vertex v ∈ S, its three copies vA, vB , vC . Note that |D| = 3k. We claim that D is a minimal
dominating set of G′. Since D contains a vertex in each of the 3k cliques into which V (G′) is
partitioned, D is clearly a dominating set. Consider a vertex vA ∈ D∩A (the case vB ∈ D∩B
is symmetric). Then D \ {vA} is not a dominating set, since by the hypothesis that S is an
is in G, no vertex in D \ {vA} is adjacent to vA. Consider now a vertex vC ∈ D ∩ C, with
v ∈ Vi. Then D \ {vC} is not a dominating set either, as D ∩ (Ai ∪Bi) = {vA, vB}, and none
of vA and vB is adjacent to vC . Hence, D is a minimal dominating set of G′ and we are done.

Conversely, let D ⊆ V (G′) be a minimal dominating set with |D| ≥ 3k.

B Claim 8. For every i ∈ [k], |D ∩Ai| ≤ 1 and |D ∩Bi| ≤ 1.

Proof of the claim: We say that an index i ∈ [k] is abnormal if |D ∩Ai| ≥ 2 or |D ∩Bi| ≥ 2
(or both), and normal otherwise. We will construct a set D′ ⊆ V (G′) with |D′| = |D| such
that if i is normal, |D′ ∩Ui| ≤ 3, and if i is abnormal, |D′ ∩Ui| ≤ 2. Hence, if there exists an
abnormal index, it holds that |D| = |D′| < 3k, contradicting the hypothesis that |D| ≥ 3k.
We now proceed to the construction of D′, which is not required to be a dominating set of
G′. We start with D′ = D, and we update D′ as described below.

For every abnormal index i, we do the following. Since |D ∩Ai| ≥ 2 or |D ∩Bi| ≥ 2, by
construction of G′ we have that D ∩ (Ai ∪ Bi) dominates Ui, and since N(Ci) = Ai ∪ Bi,
necessarily |D ∩ Ci| = 0, as otherwise D would not be minimal. If |D ∩ Ui| = 2 we
do nothing, as we already have that |D′ ∩ Ui| = |D ∩ Ui| ≤ 2. Assume henceforth that
|D ∩ Ui| = |D ∩ (Ai ∪Bi)| ≥ 3.

To simplify the presentation, suppose that |D ∩ Ai| ≥ |D ∩ Bi|, the other case being
symmetric. Hence, we have that |D ∩Ai| ≥ 2. Note that any two vertices in the set D ∩Ai,
say uA and vA, dominate the whole set Ui. Hence, since D is a minimal dominating set of
G′, for every other vertex wA ∈ (D ∩ Ai) \ {uA, vA} (resp. w′B ∈ D ∩Bi) there must exist
an index j 6= i (resp. ` 6= i) and a vertex zB ∈ Bj (resp. z′A ∈ A`) not in D and dominated
only by wA (resp. w′B), that is, with zB /∈ D (resp. z′A /∈ D) and ND(zB) = {wA} (resp.
ND(z′A) = {w′B}); see Figure 1(a) for an illustration, where the vertices in D are depicted in
red. Note that such an index j (resp. `) is necessarily normal, as otherwise vertex zB (resp.
z′A) would be already dominated within Uj (resp. U`). Note also that, for the same reason,
D ∩Bj = ∅ (resp. D ∩A` = ∅). For each such a vertex wA ∈ D (resp. w′B ∈ D), we remove
vertex wA (resp. w′B) from D′ and we add vertex zB (resp. z′A) to D′; see Figure 1(b) for an
illustration, where the vertices in D′ are depicted in red. We say that vertex zB ∈ Bj (resp.
z′A ∈ A`) is a sink. This concludes the construction of D′. It just remains to verify that the
claimed properties of D′ are satisfied.

By construction, we clearly have that |D′| = |D|. Note that, if i is an abnormal index as
in the above paragraph, then Ai ∪ Bi cannot contain any sink since all the vertices of Ui
are already dominated by D ∩ Ui. Hence, no vertex is added to D′ ∩ Ui and it holds that
D′ ∩ Ui = {uA, vA}, so we indeed have that |D′ ∩ Ui| ≤ 2.

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 13

Ai

Bi

Ci

Aj

Bj

Cj

A`

B`

C`

uA

vA

wA

zB w′
B

z′A

(b)

Ai

Bi

Ci

Aj

Bj

Cj

A`

B`

C`

uA

vA

wA

zB w′
B

z′A

(a)

Figure 1 Configuration in the proof of Claim 8. Index i is abnormal, while indices j and ` are
normal. Vertices zB and z′A are sinks. (a) The vertices in D are depicted in red. (b) The vertices in
D′ are depicted in red.

It remains to verify that, if j is a normal index, then |D′ ∩ Uj | ≤ 3. Since the vertices in
Cj have neighbors only in Uj , necessarily |D ∩Uj | ≥ 1. Hence, at most one vertex in Aj and
at most one vertex in Bj are not dominated by the vertices in D ∩Uj . Thus, each of Aj and
Bj contains at most one sink. We distinguish three cases according to the number of sinks
in Aj ∪Bj .

Suppose first that Aj ∪Bj contains no sink. In this case, note that |D′ ∩ Uj | = |D ∩ Uj |,
by the definition of D′. Recall that, since j is normal, then |D ∩Aj | ≤ 1 and |D ∩Bj | ≤ 1.
Since D is a minimal dominating set and N(Cj) ⊆ Aj ∪Bj , note that |D ∩Cj | ≤ 2, because
two vertices in Cj suffice to dominate all vertices Aj ∪ Bj . However, it is not possible to
have |D ∩ Cj | = 2, |D ∩Aj | = 1, and |D ∩Bj | = 1 because of the minimality of D, as one
vertex of Cj could be removed. Thus, |D′ ∩ Uj | = |D ∩ Uj | ≤ 3.

Suppose now that Aj∪Bj contains exactly one sink, so we have that |D′∩Ui| = |D∩Ui|+1.
Suppose without loss of generality that the sink is a vertex zA ∈ Aj , so we have |D∩Aj | = 0.
Since zA is not dominated by D∩Ui, necessarily |D∩Bj | ≤ 1 and |D∩Cj | ≤ 1, so |D∩Ui| ≤ 2
and |D′ ∩ Ui| ≤ 3.

Finally, suppose that Aj ∪Bj contains two sinks zA ∈ Aj and z′B ∈ Bj , so we have that
|D′ ∩ Ui| = |D ∩ Ui| + 2, |D ∩ Aj | = 0, and |D ∩ Bj | = 0. Also, since none of zA and z′B
can be dominated by D ∩ Uj , necessarily z = z′ and D ∩ Cj = {zC}, so |D ∩ Cj | = 1. Thus,
|D ∩ Ui| ≤ 1 and |D′ ∩ Ui| ≤ 3, and the claim follows. �

B Claim 9. For every i ∈ [k], |D ∩ Ui| ≤ 3.

Proof of the claim: Suppose for contradiction that there exists i ∈ [k] such that |D ∩ Ui| ≥ 4.
By Claim 8, necessarily |D ∩ Ci| ≥ 2. If |D ∩ Ci| ≥ 3, then deleting all but any two vertices
in D ∩ Ci results in a proper subset of D that is still a dominating set of G′, contradicting
the minimality of D. Hence |D ∩ Ci| = 2, |D ∩Ai| = 1, and |D ∩Bi| = 1. Let uA ∈ D ∩Ai
and let vC , wC ∈ D ∩Ci. At least one among v and w, say v, is not equal to u. Then the set
D \ {wC} is still a dominating set of G′, contradicting again the minimality of D. �

B Claim 10. For every i ∈ [k], |D ∩Ai| = |D ∩Bi| = |D ∩ Ci| = 1.

Proof of the claim: Since by hypothesis we have that |D| ≥ 3k and by Claim 9 it holds that
|D ∩ Ui| ≤ 3 for every i ∈ [k], necessarily |D ∩ Ui| = 3 for every i ∈ [k]. We claim that, for
every i ∈ [k], |D ∩ Ci| = 1. Suppose first for contradiction that there exists i ∈ [k] such that
|D ∩ Ci| = 3. Then |D ∩ Ai| = |D ∩Bi| = 0, and any two of the three vertices in |D ∩ Ci|

14 Parameterized complexity of computing maximum minimal blocking and hitting sets

dominate Ui (recall that all the neighbors of the vertices in Ci are in Ui), contradicting
the minimality of D. Assume now, again for contradiction, that there exists i ∈ [k] such
that |D ∩ Ci| = 2. Suppose without loss of generality that |D ∩ Ai| = 1 and |D ∩ Bi| = 0,
and let D ∩ Ai = {uA} and D ∩ Ci = {vC , wC}. At least one vertex among v and w is
different from u, say v. Then D \ {wC} is still a dominating set of G′, contradicting the
minimality of D. Thus, for every i ∈ [k], |D ∩ Ci| = 1. Therefore, since, for every i ∈ [k],
|D ∩ Ui| = 3 and, by Claim 8 we have that |D ∩Ai| ≤ 1 and |D ∩Bi| ≤ 1, we conclude that
|D ∩Ai| = |D ∩Bi| = |D ∩ Ci| = 1. �

We proceed to define from D a multicolored is S ⊆ V (G) with |S| = k. Consider an
arbitrary index i ∈ [k]. By Claim 10, D ∩Ai = {uA}, D ∩Bi = {vB}, and D ∩ Ci = {wC}.
Note that if u 6= v, then uA and vB would dominate the whole set Ui and wC could be
removed from D, contradicting its minimality. Thus, we have that u = v. We define
S ∩ Vi = {v}. It remains to verify that S is indeed an is of G. Consider u, v ∈ S with u ∈ Vi
and v ∈ Vj . If {u, v} ∈ E(G) then D \ {uA} would still be a dominating set of G′. Indeed,
vertex uA would be dominated by vB , and the other vertices in Ai would still be dominated
by uB . Thus, {u, v} /∈ E(G) and S is indeed a multicolored is in G. 2

Theorem 7 immediately yields the following corollary for MMHS.

I Corollary 11. Unless the ETH fails, MMHS cannot be solved in time f(β) · (|V (H)| +
|E(H)|)o(β) for any computable function f : N→ N.

Proof: As mentioned in Section 1 – Problems related to computing mmbs – recall that
Up-Dom is a particular case of MMHS when we consider each closed neighborhood of each
vertex v ∈ V (G) of an instance (G, k) of Up-Dom to be a hyperedge H of an instance (H, k)
of MMHS having V (G) as vertex set of H. 2

3.2 Positive results
Let us now turn to positive results, and consider a graph class where IS can be solved
in polynomial time. As according to Proposition 6 we cannot hope to solve MMBS in
polynomial time, we consider the parameterized complexity of the MMBS problem. The
first result shows the crucial difference between the problems of, given a graph G and a
positive integer β, deciding whether mmbs(G) = β and deciding whether mmbs(G) ≥ β. In
any maximization problem, the first property implies the second one, but the backward
implication is not always true. In particular, for MMBS, mmbs(G) ≥ β does not imply that
G contains an mbs of size exactly β, and this is informally what makes the inequality version
harder.

As observed in [20] or in [15, Proposition 1], deciding whether there exists a minimal
hitting set of size exactly β, or at most β, in a hypergraph with hyperedges of size at most α
can be trivially decided by a search-tree in time O∗(αβ). However, we cannot use this result
directly, as a reduction to MMHS would require time nα(G) to generate the hyperedges, and
thus we have to define an ad-hoc algorithm, which is also based on branching.

I Proposition 12. Let F be a hereditary graph class on which IS is polynomial-time solvable.
Then MMBS=/(α+β) and MMBS≤/(α+β) are FPT restricted to input graphs in F . More
precisely, they can both be solved in time O∗(α(G)β).

Proof: We only prove the result for MMBS=, as it directly implies the result for MMBS≤.
Consider an input graph G ∈ F . Let us define an algorithm A(X) that, given a set X ⊆ V (G)

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 15

with |X| ≤ β, answers “yes” if and only if there exists an mbs B of G such that X ⊆ B

and |B| = β, in which case we say that X is a yes-set. The algorithm starts with X = ∅,
and calls itself recursively for a larger set X obtained from branching on vertices of a mis of
G \X, as detailed below. Note that if |X| = β, then A(X) answers “yes” if and only if X is
an mbs. This can be checked in polynomial time, as it is equivalent to the properties that
α(G \X) < α(G) and α(G \ (X \ {v})) = α(G) for every v ∈ X, and as we assumed that IS
is polynomial-time solvable in F , and F is hereditary. Let us now consider the cases where
0 ≤ |X| < β. If α(G \X) < α(G), then we answer “no” as X is already a bs, and thus no
superset X ′) X can be an mbs. Otherwise, we have that α(G\X) = α(G). Since G\X ∈ F
as F is hereditary and IS is polynomial-time solvable on F , we can compute in polynomial
time a mis I of G \ X. Indeed, note that we can construct a subset S corresponding to
a mis of a graph G by knowing an algorithm to the decision problem IS as follows: first
compute α(G) by linearly checking the |V (G)| possible values. For every vertex v ∈ V (G), if
α(G− v) = α(G) then remove v from G and iterate; otherwise, add v to S, remove v and its
neighborhood from G and iterate. Observe that I is also a mis of G, and that I ∩X = ∅. In
this case, A(X) returns

∨
v∈I A(X ∪ {v}).

Let us now prove the correctness of this latter case. Suppose first that X is a yes-set, and
let B be an mbs in G of size β such that X ⊆ B. As B is a bs, there exists v ∈ I ∩B. As
I ∩X = ∅, we get v /∈ X, and thus X ∪ {v} is a yes-set and A(X) returns “yes”. We prove
the other direction by reverse induction on |X|, the case |X| = β being correct as discussed
above. Consider a set X with |X| < β, and suppose inductively that the claimed property is
correct for sets of size |X|+ 1. Thus, if A(X ∪ {v}) returns “yes” for some v ∈ I, then by
induction (X ∪ {v}) is a yes-set, implying by definition of A that X is also a yes-set.

Let us finally discuss the running time of the algorithm, given an input graph G. Starting
with X = ∅, for every set X the algorithm performs a polynomial number of operations, and
then branches on a set I of size at most α(G), as such a set I is always a mis of a subgraph
of G. As the depth of the branching tree corresponding to the algorithm is at most β, the
claimed running time follows. 2

First note that the hypothesis “IS is polynomial-time solvable” in Proposition 12 could
be relaxed to “IS is FPT when parameterized by the natural parameter”, but the time
complexity for solving MMBS=/(α+ β) and MMBS≤/(α+ β) would be a function of the
time complexity of such an FPT algorithm. Observe also that, unless FPT = W[1], we cannot
obtain results similar to Proposition 12 to decide whether mmbs(G) ≥ β, and even in time
O∗(f(α(G), β)) for any computable function f , as it would imply that MMBS/(α+ β) is
FPT, contradicting the fact that MMBS/β is para-NP-hard by Proposition 6. Thus, we
need consider a stronger assumption than assuming that IS is polynomial-time solvable on
F . Namely, in what follows we consider the α-MMBS problem, that is, the case where α is
fixed. Recall that, according to Proposition 6, even 2-MMBS remains NP-hard, motivating
the study of the parameterized complexity of α-MMBS.

I Proposition 13. For every fixed positive integer α, α-MMBS/β and α-MMHS/β are
FPT. More precisely, both problems can be solved in time O∗(αβ).

Proof: Given an input graph G of α-MMBS, we compute in time O∗(nα) the hypergraph H
where V (H) = V (G), and H is a hyperedge in H if and only if H is a mis in G. By definition
of α-MMBS, all hyperedges of H have size exactly α, and for every B ⊆ V (G), B is an mbs
in G if and only if B is a minimal hitting set in H. Then, according to [15, Lemma 6], as α
is fixed we can decide whether there is a minimal hitting set of H of size at least β in time
O∗(αβ). 2

16 Parameterized complexity of computing maximum minimal blocking and hitting sets

We point out that in both Proposition 13 and [15, Lemma 6], in order to decide whether
there is a minimal hitting set of H of size at least β, there is a term |V (H)|f(α) hidden inside
the O∗-notation. This means that [15, Lemma 6] does not imply that MMHS/(α + β) is
FPT (recall that function α in the parameterization of MMHS denotes the size of a largest
hyperedge of H). However, according to the following two propositions, it turns out that
MMHS/(α+ β) is indeed FPT. This highlights a difference between MMHS and MMBS, as
according to Proposition 6 MMBS/(α+ β) is unlikely to be FPT.

Let us start with a kernelization result, using the well-known notion of sunflower.

I Definition 14. Let β ∈ N. Given a hypergraph H, a sunflower in H with β petals and
core C ⊆ V (H) is a collection of β hyperedges H1, . . . ,Hβ of H such that Hi ∩Hj = C for
all i, j ∈ [β], i 6= j, and for every i ∈ [β] the so-called petal Hi \C is not empty. We say that
a function s : N2 → N is a sunflower function if, for every hypergraph H whose hyperedges
have size at most α, if |E(H)| > s(α, β) then H admits a sunflower with β petals.

It is known (see for instance [14]) that s1(α, β) := (α2)!α(β − 1)α is a sunflower function.
Even if this is not relevant for our next proposition, where α is fixed, we point out that this
bound has recently been improved by Bell et al. [3] to

s2(α, β) := (cβ · log(α))α for some positive constant c. (1)

I Lemma 15. Let β ∈ N, and let H be a hypergraph such that no hyperedge is included in
another hyperedge. If H has a sunflower with β petals, then mmhs(H) ≥ β.

Proof: Let {Hi | i ∈ [β]} be a sunflower of H with β petals. Let C =
⋂
i∈[β]Hi and

S = V (H) \ C. As there is no H ∈ E(H) such that H ⊆ C, it follows that S is a hitting set
of H. Let S′ ⊆ S be a minimal hitting set of H. For every i ∈ [β], Hi \C 6= ∅ by definition of
a sunflower, hence S′ must contain at least one vertex in Hi \ C. This implies that |S′| ≥ β,
and thus that mmhs(H) ≥ β. 2

In the next proposition we derive polynomial kernels when α is fixed. The kernel for
α-MMBS follows straightforwardly from the kernel for α-MMHS, but we provide the details
as we cannot directly claim that any kernel for α-MMHS implies a kernel for MMBS. For
example, removing a hyperedge in α-MMHS cannot necessarily be translated to α-MMBS.

I Proposition 16. Let α be a fixed positive integer. Let s(α, β) be a sunflower function that
is polynomial in β. Then,

α-MMBS/β admits a polynomial kernel with at most α · s(α, β) vertices, which can be
constructed in time O∗(|V (G)|α), and
α-MMHS/β admits a polynomial kernel with at most α · s(α, β) vertices, which can be
constructed in time O∗(|V (H)|) (that is, not depending on α).

Proof: Let us start with α-MMHS. Consider an instance (H, β) of α-MMHS. By Observa-
tion 1, recall that every vertex belongs to at least one hyperedge. If |E(H′)| ≤ s(α, β), then
we get |V (H′)| ≤ α · |E(H′)| ≤ α · s(α, β) and we are done. Otherwise, as s is a sunflower
function, it follows that H′ contains a sunflower with β petals (by Property 1, recall that we
assume that our instances for MMHS have no pair of hyperedges such that one is a proper
subset of another). According to Lemma 15, we get that (H, β) is a yes-instance.

Let (G, β) be an instance of α-MMBS. In time O∗(|V (G)|α) we can compute an equivalent
instance (H, β) of α-MMHS by creating a hyperedge for every mis of G. Although there
might be a vertex that belongs to no mis of G, by Observation 1, we may assume that H
has no vertex that does not belong to any hyperedge, by removing such vertices if they

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 17

exist. As remarked before, such vertices cannot be part of any minimal hitting set of H. As
all hyperedges have size exactly α(G), no hyperedge can be included in another hyperedge.
Again, if |E(H′)| ≤ s(α, β), then we get |V (H′)| ≤ α · |E(H′)| ≤ α · s(α, β) and we are done.
Otherwise, as s is a sunflower function, it follows that H′ contains a sunflower with β petals.
According to Lemma 15, we get that (H, β) is a yes-instance. 2

Even if Proposition 16 implies that MMHS/(α+β) is FPT, the running time obtaining by
applying brute force to the kernelized instance is O∗(2α·s(α,β)), and thus doubly exponential
in α. This motivates the question of obtaining a faster FPT algorithm for MMHS/(α+ β).
We point out that trying to improve the running time by considering separated parameters,
instead of the aggregated parameter α+ β, is not possible as MMHS/β is W[1]-hard [2], and
MMHS/α is already NP-hard for α = 2, as it corresponds to MMVC. A first way to get a
faster FPT algorithm is to reduce to the Simple-Ext-MMHS problem.

Please recall that in the Simple-Ext-MMHS problem we are given a hypergraph H and
a subset X ⊆ V (H) and the question is whether H has a minimal hitting set S such that
X ⊆ S. Bläsius et al. [5] proved (they actually study the more general Ext-MMHS version)
that Simple-Ext-MMHS can be solved in time O∗(λ|X|), where λ = min

(
|E(H)|
|X| ,∆(H)

)
and ∆(H) = maxv∈V (H) |{H ∈ E(H) | v ∈ H}| is the maximum degree of H. Let us
denote this algorithm presented by Bläsius et al. [5] as B. For precise details about B, the
reader is referred to [5]. Informally, algorithm B just guesses for each x ∈ X its “private”
hyperedge Hx such that Hx ∩X = {x}, and checks that there is no H ∈ E(H) such that
H ⊆ (

⋃
x∈X Hx) \X. Thus, guessing a hyperedge for every x ∈ X yields the claimed running

time. In the next proposition we formalize these ideas, using ideas similar to those in the
proof of Proposition 12.

I Proposition 17. We can decide an instance (H, β) of MMHS in time O∗((α(H) · λ)β),
where λ = min

(
|E(H)|
β ,∆(H)

)
and ∆(H) = maxv∈V (H) |{H ∈ E(H) | v ∈ H}|.

Proof: Let (H, β) be an instance of MMHS. To decide (H, β), we actually propose a more
general algorithm that decides (H, β) while forcing a subset X ⊆ V (H) to be part of a
solution. Thus, let us define an algorithm A that, given H, β, and a set X ⊆ V satisfying
|X| ≤ β, decides whether there exists a minimal hitting set S of H such that X ⊆ S and
|S| ≥ β. The algorithm A has recursive calls in which the third parameter, i.e. the set X,
may change. The algorithm A starts with X = ∅, i.e. in order to decide (H, β) we just
output A(H, β, ∅). Let us describe A, depending on |X|.

If |X| = β, then algorithm A returns A(H, β,X) = B(H, X) (recall that B is the
algorithm of Bläsius et al. [5] for Simple-Ext-MMHS described above). Note that, in case
|X| = β, we just need to decide whether there is a minimal hitting set extending X, which is
exactly what algorithm B does.

Suppose now that 0 ≤ |X| < β. If there is no H ∈ E(H) such that H ∩ X = ∅, then
algorithm A outputs “no”. Indeed, note that, since |X| < β, at least one vertex in V (H) \X
needs to be included into a solution S, but then S will certainly be not a minimal hitting set
if there is no H ∈ E(H) such that H ∩X = ∅.

Otherwise, let H ∈ E(H) such that H ∩ X 6= ∅. In this case A(H, β,X) returns∨
v∈H A(H, β,X ∪ {v}). Since H ∩ X = ∅ and any solution S must be a hitting set, we

need to include at least one vertex of H into S. Thus, algorithm A performs brute force by
checking all possible cases of addition of a vertex of H to be in S, by adding it to the set X
of forced vertices. Note that indeed H has a minimal hitting set S such that X ⊆ S and
|S| ≥ β if, and only if, H has a minimal hitting set S′ such that X ∪ {v} ⊆ S′ and |S′| ≥ β,
for some v ∈ H.

18 Parameterized complexity of computing maximum minimal blocking and hitting sets

As in each step of algorithm A we branch, in the worst case, on all vertices of a hyperedge
H, the running time is bounded by O∗(αβ · f(α, β)), where O∗(f(α, β)) is the running time
of algorithm B. Recall that f(α, β) = O∗(λβ) and λ = min

(
|E(H)|
β ,∆(H)

)
. 2

I Corollary 18. The following claims hold:
MMHS/β is XP.
MMHS/(α+ β) is FPT. More precisely, it can be solved in time O∗(αβ(cβ · log(α))αβ),
where c is the constant in the sunflower function s2 of Equation (1).

Proof: The fact that MMHS/β is XP is a direct consequence of Proposition 17.
To prove that MMHS/(α+β) is FPT, one can obtain an FPT algorithm as follows. Given

an instance (H, β), recall that by Observation 1 H has no vertex that does not belong to any
hyperedge of H. Then, notice that ∆(H′) ≤ |E(H′)|. By Property 1, we may also assume
that H′ has no pair of hyperedges one being a subset of another. Thus, if |E(H′)| > s2(α, β),
then H′ has a sunflower with β petals and it is an “yes” instance thanks to Lemma 15.
Otherwise, we have that (recall that s2 is the sunflower function defined in Equation (1)):

λ = min
(
|E(H′)|

β
,∆(H′)

)
≤ min

(
|E(H′)|

β
, |E(H′)|

)
≤ s2(α, β)

β
= (cβ · log(α))α

β
.

Thus, by applying Proposition 17 to (H′, β), we get the desired FPT algorithm. 2

Even if the algorithm of Proposition 17 gives a running time matching the lower bound
of Corollary 11 for the dependency on |E(H)|, we can get a faster FPT algorithm for
MMHS/(α+ β) using an ad-hoc algorithm that does not reduce to the extension problem.
Namely, we present in Theorem 24 an algorithm for MMHS/(α+β) running in time O∗(2αβ).
We first need some preliminaries.

I Definition 19. Let H be a hypergraph, let I ⊆ V (H) be an is in H, and let X ⊆ V (H). Let
HI such that V (HI) = V (H) \ I, and E(HI) = {H \ I | H ∈ E(H)},
EX̄ = {H ∈ E(H) | H ∩X = ∅}, and
HX̄ such that V (HX̄) = V (H) and E(HX̄) = EX̄ .

I Lemma 20. Let H be a hypergraph and let I ⊆ V (H) be an is in H.
1. For every minimal hitting set S of HI , S is also a minimal hitting set of H. This implies

mmhs(H) ≥ mmhs(HI).
2. For every minimal hitting set S∗ of H such that S∗ ∩ I = ∅, S∗ is also a minimal hitting

set of HI .

Proof: For the first property, let S be a minimal hitting set of HI . Let us first prove that S
is a hitting set of H. Consider an arbitrary hyperedge H ∈ E(H). As I is an is, H \ I 6= ∅,
and as S is a hitting set of HI and H \ I ∈ E(HI), we get S ∩ (H \ I) 6= ∅. Let us now prove
that S is minimal. Consider an arbitrary vertex v ∈ S. By the minimality in HI , there exists
H ∈ E(HI) such that (S \ {v}) ∩H = ∅, implying that (S \ {v}) ∩ (H ∪ I) = ∅ as S ∩ I = ∅,
where H ∪ I ∈ E(H).

For the second property, let H ′ ∈ E(HI), where H ′ = H \ I, H ∈ E(H). As S∗ is a
hitting set of H, S∗ ∩ H 6= ∅, and as S∗ ∩ I = ∅, we get S∗ ∩ H ′ 6= ∅. Let us now verify
the minimality. Consider an arbitrary vertex v ∈ S∗. As S∗ is minimal in H, there exists
H ∈ E(H) such that (S∗ \ {v}) ∩H = ∅, implying (S∗ \ {v}) ∩ (H \ I) = ∅. 2

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 19

I Lemma 21. Let H be a hypergraph, let X ⊆ V (H), and let S′ be a minimal hitting set of
HX̄ . There exists a minimal hitting set S of H such that S′ ⊆ S.

Proof: Let S = S′ ∪X. Observe that S is a hitting set of H. Now, as far as there exists
v ∈ S∩X such that S\{v} is still a hitting set of H, remove v from S. Let S∗ be the obtained
set, which satisfies S′ ⊆ S∗ ⊆ S, and let us verify that S∗ is minimal. For every v ∈ S∗ ∩X,
by definition of S∗ we have that S∗ \ {v} is not a hitting set of H. For every v ∈ S∗ ∩ S′, as
S′ is minimal in HX̄ , it follows that there exists H ∈ EX̄ such that (S′ \ {v}) ∩H = ∅. As
H ∩X = ∅, we get (S∗ \ {v}) ∩H = ∅ as well. 2

We are now ready to present our FPT algorithm.

I Definition 22. Given an instance (H, β) for MMHS and X ⊆ V (H), we define algorithm
Aβ(H, X) as follows:

If EX̄ = ∅,
if |X| ≥ β and X is minimal hitting set of H, return “yes”.
Otherwise, return “no”.

Otherwise, build S be a minimal hitting set of HX̄ .
If |S| ≥ β, return “yes”.
Otherwise, return

∨
S1∈LA

β(HS1 , X∪(S\S1)), where L = {S1 ⊆ S | S1 is an is of HX̄}.

In order to analyze the algorithm, given an input (H, X) of Aβ , we define the measure

m(H, X) =
{

max{|H| | H ∈ E(HX̄)} , if E(HX̄) 6= ∅
0 , otherwise.

I Lemma 23. The following statements hold:
1. If Aβ(H, X) returns “yes”, then mmhs(H) ≥ β.
2. If there exists a minimal hitting set S∗ of H such that X ⊆ S∗ and |S∗| ≥ β, then

Aβ(H, X) returns “yes”.
The above properties imply that, given an instance (H, β) of MMHS, Aβ(H, ∅) returns “yes”
if and only if mmhs(H) ≥ β.

Proof: We use the notation introduced in Definition 22. By Observation 1, recall that H
has no hyperedge H ∈ E(H) such that H = ∅. Moreover, observe that since H does not
contain an empty hyperedge, by Observation 1, m(H, X) = 0 is equivalent to E(HX̄) = ∅.

We prove both properties by induction on m(H, X). Let us start with the first property.
Suppose that Aβ(H, X) returns “yes”. If m(H, X) = 0, then E(HX̄) = ∅, and the claimed

property is true. Let is now assume that m(H, X) > 0. As E(HX̄) 6= ∅, the algorithm goes to
the second case and chooses S. If |S| ≥ β, then by Lemma 21 we get that mmhs(H) ≥ |S| ≥ β.
Otherwise, there exists an is S1 of HX̄ such that Aβ(HS1 , X ∪ (S \ S1)) returns “yes”.

Let us argue that m(HS1 , X ∪ (S \ S1)) < m(H, X). Indeed, as S is a hitting set of HX̄ ,
each hyperedge in EX̄ intersects S. In particular, notice that m(H, X ∪S) = 0 as EX∪S = ∅.
Recall that HS1 is obtained from H by removing the vertices of S1 from V (H) and from
the hyperedges containing such vertices. Note that m(HS1 , X ∪ (S \ S1)) corresponds to
the maximum cardinality of a hyperedge of E(HX∪(S\S1)

S1
). By definition, such hyperedges

correspond to hyperedges of H that do not intersect X ∪ (S \ S1) in the hypergraph HS1 .
Since S is a hitting set of E(HX̄), the hyperedges in E(HX∪(S\S1)

S1
) necessarily contain

at least one vertex of S1. Since we removed the vertices in S1 from all hyperedges they
belong when constructing HS1 , each such hyperedge has lost at least one element. Thus, the

20 Parameterized complexity of computing maximum minimal blocking and hitting sets

inequality follows as for each hyperedge of E(HX∪(S\S1)
S1

) attaining m(HS1 , X ∪ (S \ S1)),
there is a hyperedge in E(HX̄) having at least one more vertex of S1 as element.

As m(HS1 , X ∪ (S \ S1)) < m(H, X), by induction we get mmhs(HS1) ≥ β, implying by
Lemma 20 that mmhs(H) ≥ β.

Let us now turn to the second property, and assume that there exists a minimal hitting
set S∗ of H such that X ⊆ S∗ and |S∗| ≥ β. Suppose first that m(H, X) = 0, implying that
E(HX̄) = ∅. In this case, we have that X is already a hitting set of H, and thus, as S∗ is
minimal and X ⊆ S∗, we get that S∗ = X, implying that |X| ≥ β and that the algorithm
returns “yes”. Suppose now that m(H, X) > 0, implying E(HX̄) 6= ∅, and thus that the
algorithm goes to the second case and chooses S. If |S| ≥ β then we are done. Otherwise,
since |S| < β ≤ |S∗|, there is at least one vertex in S∗ \ S. Let S∗1 = S \ S∗ and S∗2 = S ∩ S∗.
Since S∗ is a hitting set of H, there is no H ∈ E(H) such that H ⊆ S∗1 . This implies that
S∗1 is an is. Consequently, we have S∗1 ∈ L. Thanks to Lemma 20, we have that S∗ is also a
minimal hitting set of HS∗1 . Since X∪(S\S∗1) ⊆ S∗, andm(HS∗1 , X∪(S\S∗1)) < m(H, X), we
use the induction hypothesis to conclude that Aβ(HS∗1 , X ∪ (S \S∗1)) returns “yes”. Therefore,
A(H, X) returns “yes” as well. 2

I Theorem 24. MMHS/(α+ β) can be solved in time O∗(2αβ).

Proof: Given an instance (H, β) of MMHS, we simply call Aβ(H, ∅). According to Lemma 23,
this algorithm correctly decides whether mmhs(H) ≥ β. Let us now analyze the running time.
Let f(β, α, n) be the worst case running time of the algorithm Aβ(H, X) when m(H, X) ≤ α
and |V (H)| = n. We get that there exists a polynomial p1 such that f(β, 0, n) ≤ p1(n),
as when m(H, X) = 0 we have E(HX̄) = ∅ and the algorithm only checks whether X is a
minimal hitting set of size at least β. Otherwise, the algorithm first builds a minimal hitting
set S of HX̄ . This can also be done in polynomial time, say p2(n). The worst case happens if
|S| ≤ β − 1. In this case, we have a recursive call for each possible subset S1 ⊆ S that is an
is. We potentially have 2β−1 recursive calls, but we ensure that the cardinality of the largest
hyperedge not hit decreases by at least one unit, i.e. we just need f(β, α − 1, n) steps for
each recursive call in the worst case. Thus, in order to evaluate f , let p(n) = p1(n) + p2(n)
and b = 2β−1. Observe that

f(β, α, n) ≤
{
p(n) + bf(β, α− 1, n) , if α ≥ 1;
p(n) , otherwise.

Thus, by simple substitution, note that

f(β, α, n) ≤ (bi−1 + . . .+ b) · p(n) + bi · f(β, α− i, n).

Consequently, by taking i = α, we deduce that

f(β, α, n) ≤ p(n) ·
(
bα+1 − 1
b− 1

)
=
(

(2β−1)α+1 − 1
2β−1 − 1

)
.

2

4 MMBS parameterized by treewidth

In this section we prove that MMBS/tw is FPT. The algorithm requires a long case analysis.
As one may expect, we present a dynamic programming (DP) algorithm using a nice tree

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 21

decomposition of the input graph G. In Section 4.1, we present the notation we need and we
provide some intuition about the parameters that we store in the tables of the algorithm. In
Sections 4.2, 4.3, and 4.4 we present how to compute the table entries for a join, introduce,
and forget node, respectively. In Section 4.5 we combine the previous ingredients to complete
the algorithm.

4.1 Preliminaries
Consider a graph G and subsets X ⊆ V (G), B ⊆ V (G), and Z ⊆ X such that Z is an is of
G. We say that a set I ⊆ V (G) is an (X,Z)-is if I is an is of G such that I ∩X = Z. We
denote by

α(X,Z)(G) the size of a largest (X,Z)-is in G, and by
αB(X,Z)(G) the size of a largest (X,Z)-is I in G such that I ∩B = ∅.

In both cases, if such a set does not exist, we set the corresponding parameter to −∞. We
say that a set B ⊆ V (G) is an (X,Z)-bs in G if αB(X,Z)(G) < α(X,Z)(G), and we say that
(X,Z) is blocked by B in G. These concepts are illustrated in Figure 2. Observe that if
B ∩ Z 6= ∅ then B is an (X,Z)-bs (as αB(X,Z)(G) = −∞), but the backward implication is
not necessarily true as B may contain one vertex in X \ Z of each maximum (X,Z)-is of
G. Observe also that an (∅, ∅)-is of G is simply an is of G, implying that α(∅,∅)(G) = α(G).
Similarly, an (∅, ∅)-bs is a bs of G.

Z1

u2

X

Z2

u1

Figure 2 In this example there is only one maximum (X,Z1)-is which is I = Z1 ∪ {u1, u2}. Note
that B = {u1} is an (X,Z1)-bs, but B is not an (X,Z2)-bs.

In what follows we assume that we are given a nice tree decomposition D = (T,B) of the
input graph G as defined in Section 2. In particular, recall that

every node of T has at most two children,
if a bag X corresponds to a node of T having two children with bags XL and XR, then
X = XL = XR (the node corresponding to X is a join node);
if a bag X corresponds to a node of T having one child with bag XC , then

either X (XC and |XC | = |X|+ 1 (the node corresponding to X is a forget node), or
XC (X and |X| = |XC |+ 1 (the node corresponding to X is an introduce node).

Discussion on the list of parameters used in the DP algorithm

As usual, our dynamic programming algorithm performs a leaf-to-root traversal of a nice tree
decomposition D = (T,B) of an input graph G computing, for each node of the corresponding
tree T , a set of tuples from the corresponding tuples of its children. Let us first explain the
intuition behind each parameter of such tuples we shall compute and why they are needed.
The formal details are presented in Definition 26 (page 24).

To simplify the presentation, we call a bag of the tree decomposition join bag (resp. forget
bag, introduce bag) if its corresponding node is a join node (resp. forget node, introduce

22 Parameterized complexity of computing maximum minimal blocking and hitting sets

node). We also speak about the children of a bag, meaning the bags corresponding to the
children of the considered node.

Consider a join bag X with children XL = XR = X, and suppose we look for a maximum
mbs B of GX . First, finding separately a maximum mbs BL in GXL and BR in GXR will
not guarantee that the size of BL ∪BR (assuming BL ∪BR is an mbs in GX) is maximum,
and thus we introduce a parameter B0 ⊆ X and look for an mbs B of the graph GX such
that B ∩X = B0.

Let I be a mis of GX , IL = I ∩ V (GXL), and IR = I ∩ V (GXR). Observe that IL (resp.
IR) is not necessarily a mis of GXL (resp. GXR), and thus it is pointless to find an mbs BL
(resp. BR) in GXL (resp. GXR), as blocking maximum independent sets of GXL and GXR

may not imply that we block maximum independent sets of GX . This motivates the above
notion of (X,Z)-is in GX . More precisely, let L = {Z ⊆ X | there exists a mis I of GX such
that I ∩X = Z}. Then, B is an mbs of GX if and only if:
1. (blocking condition) for every Z ∈ L, B is an (X,Z)-bs in GX , and
2. (minimality condition) for every v ∈ B, there must exist Z ∈ L such that B \ {v} is not

an (X,Z)-bs in GX .
This explains why we have, in our list of parameters of our dynamic programming (and also
the input of our auxiliary problem in Definition 27), a list L of subsets of X, in addition
to the set B0. Notice that there may exist Z ∈ L with Z = ∅. Toward the correct notion
of the operator ‘`’ given in Definition 26, let us introduce some intermediate ones that we
denote by ‘`0’, ‘`1’, ‘`2’ and whose scope is limited to this preliminary discussion (as they
will not be used in the eventual DP algorithm). Given (X,B0,L) and a set B, we say that
B `0 (X,B0,L) if and only if

B ∩X = B0, and
B satisfies the two properties above (blocking and minimality conditions).

Such a set B will be called a solution to (X,B0,L) (instead of bs).
Let us now argue that these three parameters are still not sufficient to design our algorithm,

by exhibiting two situations where we suppose that we computed “small solutions”, but
extending these small solutions to the current bag creates a solution which no longer respects
the minimality condition.

v1
v2

Z1 Z2 Z3

GXL
GXR

u w1

w2

X

Figure 3 B `0 (X, ∅,L) where L = {Z1, Z2, Z3}, B = {u, v1, v2}, and B′ = {u,w1, w2}.

Let us start with the first situation. Suppose first that we have a solution B `0 (X,B0,L)
for some L = {Z1, Z2, Z3}, as depicted in Figure 3. Recall that X = XL = XR and let
BL = B ∩ V (GXL) and BR = B ∩ V (GXR). We prove in Lemma 31 (page 25) that, for
every Z ∈ L, B is an (X,Z)-bs in GX if and only if BL is an (XL, Z)-bs in GXL or BR
is an (XR, Z)-bs in GXR . Thus, it may be the case, as in Figure 3, that BL = {u} is
an (XL, Z)-bs in GXL for Z ∈ LL = {Z1, Z2}, and BR = {v1, v2} is an (XR, Z)-bs in

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 23

GXR for Z ∈ LR = {Z2, Z3}. Suppose now that we compute B′L and B
′R such that

B
′L `0 (XL, B0,LL) and B′R `0 (XR, B0,LR), and let B′ = B

′L ∪B′R. It may be the case
that B′ does not verify the previous minimality condition 2. Indeed, let u ∈ B′L \X and
suppose that B′L \{u} is not an (XL, Z1)-bs in GXL . Unfortunately, if B′R is an (XR, Z1)-bs
in GXR (even if Z1 /∈ LR), we will have that B′ \ {u} is still a (X,Z1)-bs in GX , and thus
maybe still an (X,Z)-bs for any Z ∈ L. We overcome this problem by forcing B′R not to be
an (XR, Z1)-bs in GXR . This explains why we have in the input a list S of subsets of X,
and we now impose that for any Z ∈ S, B must not be an (X,Z)-bs in GX .

Thus, now we denote by B `1 (X,B0,L,S) the property that B `0 (X,B0,L) and, for
any Z ∈ S, B is not an (X,Z)-bs in GX .

u1

Z0 Z3

u2

v

GXL GXR

X

Z1 Z2

Figure 4 B0 = {v}, B
′L = {u1, v}, and B

′R = {u2, v}.

Let us now turn to the second situation, which is depicted Figure 4, where L =
{Z0, Z1, Z2, Z3} and B0 = {v}. Suppose that we compute B′L and B′R such that B′L `1
(XL, B0,LL,SL) where LL = {Z0, Z1, Z2}, SL = {Z3} and B

′R `1 (XR, B0,LR,SR) where
LR = {Z1, Z2, Z3} and SR = {Z0}. Let B′ = B

′L ∪ B′R. Let v ∈ B0. By minimality
condition 2, there exists Z ∈ LL such that B′L \ {v} is not an (XL, Z)-bs in GXL (where
Z = Z1 in Figure 4). In the same way, there exists Z ′ ∈ LR such that B′R \ {v} is not an
(XR, Z ′)-bs in GXR (where Z ′ = Z2 in Figure 4). If Z 6= Z ′, we may not be able to conclude
that there exists a Z ′′ ∈ L such that B′ \ {v} is not an (X,Z ′′)-bs in GX . In the example
depicted in Figure 4, B′ \ {v} is still an (X,Z)-bs in GX for every Z ∈ L. Thus, for v ∈ B0,
we will keep control of the minimality condition in a more precise way by
• introducing another list L2 of subsets of X, and still ask that B is an (X,Z)-bs in GX

for any Z ∈ L2,
• introducing a function f : B0 → L2, and
• (minimality condition in B0) requiring that for every v ∈ B0, B\{v} is not an (X, f(v))-bs

in GX .
In the previous example, we would have to set either fL(v) = fR(v) = Z1 or fL(v) = fR(v) =
Z2, but none of these choices leads to a feasible solution on both the left and the right hand
sides. This is not surprising, as in fact there is no set B such that B `1 (X,B0,L,S) where
L = {Z0, Z1, Z2, Z3}, B0 = {v}, and S = ∅. Indeed, being an (X,Z0)-bs in GX forces any B
to contain u1 (as B cannot contain the vertex of Z0), and being a (X,Z3)-bs in GX forces
any B to contain u2. This means that we necessarily have {u1, u2, v} ⊆ B. Then, observe
that B is not minimal as {u1, u2} is still a (X,Z)-bs in GX for any Z ∈ L. The conclusion is
that in this situation, forcing v to be in any solution leads to an infeasible instance.

Finally, even when using function f , and defining accordingly B `2 (X,B0,L1,L2, f,S)
if B `1 (X,B0,L1,S) and B respects the previous minimality condition in B0, there is a
last important detail. Suppose B′L `2 (XL, B0,LL1 ,LL2 , fL,SL) where for example that

24 Parameterized complexity of computing maximum minimal blocking and hitting sets

LL1 = {Z1}, LL2 = {Z2}, and consider v ∈ B′L \B0. We know that there exists Z such that
B
′L \ {v} is not an (XL, Z)-bs in GXL , but we must even impose that Z ∈ LL1 , as otherwise

if Z = Z2 then B′ \ {v} would still be an (X,Z)-bs in GX . Thus, the minimality condition
is finally as follows:
1. (minimality condition outside B0, forcing Z ∈ L1) ∀v ∈ B \ B0, ∃Z ∈ L1 such that

B \ {v} is not an (X,Z)-bs in GX .
2. (minimality condition in B0) ∀v ∈ B0, B \ {v} is not an (X, f(v))-bs in GX , where

f(v) ∈ L2.

Even if we only discussed here the case where X is a join node, it turns out that this list
of parameters is also enough for the introduce and forget nodes.

Defining the auxiliary problem

Let us now define the auxiliary problem that will be solved by our DP algorithm.

I Definition 25. Let G be a graph and let D = (T,B) be a nice tree decomposition of G. Let
E(G,D) be the set containing all tuples (X,B0,L1,L2, f,S) such that:
• X ∈ B,
• B0 ⊆ X,
• L1,L2,S ⊆ 2X such that for every Z ∈ L1 ∪ L2 ∪ S, Z is an is of G, and
• f : B0 → L2.

I Definition 26. Let G be a graph and let D = (T,B) be a nice tree decomposition of G. For
every (X,B0,L1,L2, f,S) ∈ E(G,D) and B ⊆ V (GX), we write B ` (X,B0,L1,L2, f,S) if
and only if
i) B ∩X = B0,
ii) ∀Z ∈ L1 ∪ L2, B is an (X,Z)-bs in GX ,
iii) ∀Z ∈ S, B is not an (X,Z)-bs in GX ,
iv) and the following two minimality conditions are satisfied:

a) ∀v ∈ B \B0, ∃Z ∈ L1 such that B \ {v} is not an (X,Z)-bs in GX , and
b) ∀v ∈ B0, B \ {v} is not an (X, f(v))-bs in GX .

Let us point out that there may exist Z ∈ L1 ∪ L2 ∪ S with Z = ∅, and that if ∃Z ∈ S
such that B0 ∩ Z 6= ∅, then there is no solution (because of Property iii).

I Definition 27. We define the optimization problem Π as follows, where we consider that
the input graph G and a nice tree decomposition D of G are fixed:

Input: A tuple (X,B0,L1,L2, f,S) ∈ E(G,D).
Output: A set B ⊆ V (GX) such that B ` (X,B0,L1,L2, f,S).
Objective: Maximize |B|.

We say that an instance I of Π is feasible if there exists a set B such that B `
(X,B0,L1,L2, f,S). Let us now show that being able to solve optimally problem Π is
sufficient for computing the parameter mmbs(G), for a given graph G.

I Proposition 28. Let G be a graph and D = (T,B) be a nice tree decomposition of G such
that T is rooted at X0 = {∅}. For every B ⊆ V (G),

B ` (∅, ∅, {∅}, ∅, ∅, ∅) if and only if B is an mbs of G.

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 25

Proof: Let (X,B0,L1,L2, f,S) = (∅, ∅, {∅}, ∅, ∅, ∅). Recall that being an (∅, ∅)-bs in GX0 is
equivalent to being a bs in G.

Suppose first that B ` (∅, ∅, {∅}, ∅, ∅, ∅). By Property ii, B is an (∅, ∅)-bs in GX0 , implying
that B is a bs of G. Let us now prove that B is minimal. Let v ∈ B. As v ∈ B \ B0, by
Property iva, there exists Z ∈ L1 such that B \ {v} is not an (X0, Z)-bs in G. As L1 = {∅},
we obtain that B \ {v} is not an (∅, ∅)-bs in G, and thus not a bs in G.

Suppose now that B is an mbs of G. Property ii is satisfied as B is a bs in G. Let us now
prove Property iva. Let v ∈ B \B0. As B is minimal, B \ {v} is not a bs in G, and thus not
an (∅, ∅)-bs in GX0 = G, where ∅ ∈ L1. 2

The following proposition is now immediate.

I Proposition 29. Given an n-vertex graph G with treewidth tw(G) = t, if
• t1(n, t) is the time to compute a nice tree decomposition D of G of width t, and
• tA(n, t) is the time to compute an optimal solution of problem Π,
then one can compute mmbs(G) in time O(t1(n, t) + tA(n, t)).

In what follows, namely in Sections 4.2, 4.3, and 4.4, we fix an input graph G and a nice
tree decomposition D = (B, T) of G of width t.

4.2 Join node
Before proving Lemma 32 corresponding to the join case, let us first prove the following
technical lemmas.

I Lemma 30. For every I ⊆ V (GX) and every Z ⊆ X where Z is an is of GX , I is a
maximum (X,Z)-is in GX if and only if IL = I ∩V (GXL) is a maximum (XL, Z)-is in GXL

and IR = I ∩ V (GXR) is a maximum (XR, Z)-is in GXR .

Proof: For the forward implication, suppose I is a maximum (X,Z)-is in GX . Let IL∗ be a
maximum (XL, Z)-is in GXL . Then, we claim that (I \ IL) ∪ IL∗ is still an is. Indeed, notice
that there is no edge between IL∗ ∩X and IR, because IL∗ ∩X = IL ∩X = Z. Moreover,
there is also no edge between IL∗ \X and IR \X as, by the properties of a tree decomposition,
there is no edge even between V (GXL

) \X and V (GXR
) \X.

As ((I \ IL)∪ IL∗)∩X = Z, this implies that (I \ IL)∪ IL∗ is an (X,Z)-is in GX and that
|I| ≥ (I \ IL)∪ IL∗ . As I ∩ IL = I ∩ IL∗ = Z, we get |IL| ≥ |IL∗ |. As IL ∩XL = Z, we obtain
that IL is a maximum (XL, Z)-is in GXL . The same arguments hold for IR.

For the backward implication, suppose IL is a maximum (XL, Z)-is in GXL and IR

is a maximum (XR, Z)-is in GXR . Observe first that IL ∪ IR is an (X,Z)-is in GX , as
there is no edge between V (GXL

) \X and V (GXR
) \X. Let I∗ be a maximum (X,Z)-is

in GX . Note that IL∗ := I∗ ∩ V (GXL) is an (XL, Z)-is in GXL , and symmetrically that
IR∗ := I∗ ∩ V (GXR) is an (XR, Z)-is in GXR . This implies that |IL∗ | ≤ |IL| and |IR∗ | ≤ |IR|.
As IL∗ ∩ IR∗ = IL ∩ IR = Z, the previous inequalities imply |I∗| ≤ |I|, meaning that I is a
maximum (X,Z)-is in GX . 2

I Lemma 31. Let Z ⊆ X. For every B ⊆ V (GX), B is an (X,Z)-bs in GX if and only
if BL = B ∩ V (GXL) is an (XL, Z)-bs in GXL or BR = B ∩ V (GXR) is an (XR, Z)-bs in
GXR .

Proof: For the forward implication, suppose B is an (X,Z)-bs in GX . Suppose by contra-
diction that there exists a maximum (XL, Z)-is IL in GXL such that IL ∩ BL = ∅, and a
maximum (XR, Z)-is IR in GXR such that IR ∩BR = ∅. Let I = IL ∪ IR. By Lemma 30, I

26 Parameterized complexity of computing maximum minimal blocking and hitting sets

is a maximum (X,Z)-is in GX . As IL ∩B = IL ∩BL = ∅, and also IR ∩B = IR ∩BR = ∅,
we get I ∩ (BL ∪BR) = I ∩B = ∅, a contradiction to the hypothesis that B is an (X,Z)-bs
in GX .

For the backward implication, suppose BL is an (XL, Z)-bs in GXL or BR is an (XR, Z)-
bs in GXR . Suppose by contradiction that there exists a maximum (X,Z)-is I in GX such
that I ∩ B = ∅. By Lemma 30, IL = I ∩ V (GXL) is a maximum (XL, Z)-is in GXL and
IR = I ∩V (GXR) is a maximum (XR, Z)-is in GXR . As IL∩B = IR∩B = ∅, we obtain that
BL is not an (XL, Z)-bs in GXL and that BR is not an (XR, Z)-bs in GXR , a contradiction.
2

We are now ready to state the main lemma of this section.

I Lemma 32. Let (X,B0,L1,L2, f,S) ∈ E(G,D) where X ∈ B is a join node and XL, XR

are the children of X (with X = XL = XR). For every B ⊆ V (GX), it holds that
B ` (X,B0,L1,L2, f,S) if and only if there exist sets BL, BR,LA1 ,LB1 ,LC1 ,LA2 ,LB2 ,LC2 such
that the following properties hold:

1. B = BL ∪BR,
2. L1 = LA1] LB1] LC1 and L2 = LA2] LB2] LC2 ,
3. for every v ∈ B0, f(v) ∈ LB2 ,
4. BL ` (XL, B0,LL1 ,LL2 , fL,SL), where
• LL1 = LA1 ,
• LL2 = LB1 ∪ LB2 ∪ LA2 ,
• fL = f , and
• SL = S ∪ LC1 ∪ LC2 ;

and BR ` (XR, B0,LR1 ,LR2 , fR,SR), where

• LR1 = LC1 ,
• LR2 = LB1 ∪ LB2 ∪ LC2 ,
• fR = f , and
• SR = S ∪ LA1 ∪ LA2 .

Proof: For the forward implication, suppose first that B ` (X,B0,L1,L2, f,S). Let BL =
B ∩ V (GXL) and BR = B ∩ V (GXR), satisfying Property 1 of the lemma. For i ∈ [2], let

• LAi = {Z ∈ Li | BL is an (XL, Z)-bs in GXL and BR is not an (XR, Z)-bs in GXR},
• LCi = {Z ∈ Li | BL is not an (XL, Z)-bs in GXR and BR is an (XR, Z)-bs in GXR}, and
• LBi = {Z ∈ Li | BL is an (XL, Z)-bs in GXL and BR is an (XR, Z)-bs in GXR}.

By Definition 26, for every Z ∈ Li, as B is an (X,Z)-bs in GX . By Lemma 31, we
obtain that BL is an (XL, Z)-bs in GXL or BR is an (XR, Z)-bs in GXR . This implies that
Li = LAi] LBi] LCi , and thus Property 2 is satisfied.

For Property 4, let us only prove that BL ` (XL, B0,LL1 ,LL2 , fL,SL), as the proof for
BR follows the same arguments. We verify that each of the (non-trivial) properties of
Definition 26 is satisfied.

Property ii. We need to prove that BL is an (XL, Z)-bs in GXL for every Z ∈ LL1 ∪ LL2 .
This follows from the definition of the sets LLi , and by the hypothesis that B is an (X,Z)-bs
in GX for every Z ∈ L1 ∪ L2 (since B ` (X,B0,L1,L2, f,S)).

Property iii. Let us prove that BL is not an (XL, Z)-bs in GXL , for every Z ∈ SL =
S ∪ LC1 ∪ LC2 . Let Z ∈ SL. If Z ∈ S, then since B is not an (X,Z)-bs in GX , because

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 27

B ` (X,B0,L1,L2, f,S), we have by Lemma 31 that BL is not an (XL, Z)-bs in GXL . If
Z ∈ LC1 ∪ LC2 , then the result follows from definition of LCi .

Property iva. We have to prove that ∀v ∈ BL \B0, ∃Z ∈ LL1 = LA1 such that BL \ {v}
is not an (XL, Z)-bs in GXL . If BL = B0, the statement trivially holds. Otherwise, let
v ∈ BL \ B0. As B ` (X,B0,L1,L2, f,S), there exists Z ∈ L1 such that B \ {v} is not an
(X,Z)-bs in GX , by Definition 26. This implies, by Lemma 31, that BL \ {v} is not an
(XL, Z)-bs in GXL . As B \ {v} ⊇ BR, we get that BR is not an (X,Z)-bs in GX , and thus
by Lemma 31 that BR is not an (XR, Z)-bs in GXR , implying that Z ∈ LA1 .

Property ivb. We finally have to prove that ∀v ∈ B0, BL \ {v} is not an (XL, f
L(v))-bs

in GXL . Let v ∈ B0. Let Z = fL(v) = f(v), where Z ∈ L2. As B ` (X,B0,L1,L2, f,S),
B \{v} is not an (X,Z)-bs in GX , implying by Lemma 31 that BL \{v} is not an (XL, Z)-bs
in GXL . Moreover, as B is an (X,Z)-bs in GX and B \ {v} is not an (X,Z)-bs in GX , we
deduce that v ∈ Z, implying that Z ∈ LB2 ⊆ LL2 . Note also that fL(v) ∈ LB2 , as required by
Property 3.

For the backward implication, suppose that there exist BL, BR,LA1 ,LB1 ,LC1 ,LA2 ,LB2 ,LC2
satisfying the lemma’s conditions. Let us prove that B ` (X,B0,L1,L2, f,S), by verifying
again that each of the (non-trivial) properties of Definition 26 is satisfied.

Property ii. We have to prove that B = BL ∪ BR is an (X,Z)-bs in GX , for every
Z ∈ L1 ∪ L2. By hypothesis, we know that: BL ` (XL, B0,LL1 ,LL2 , fL,SL) and BR `
(XR, B0,LR1 ,LR2 , fR,SR). By Definition 26, we deduce that BL is an (XL, Z)-bs in GXL ,
for every Z ∈ LL1 ∪ LL2 = LA1 ∪ LA2 ∪ LB1 ∪ LB2 . By Lemma 31, B is an (X,Z)-bs in GX , for
every Z ∈ LA1 ∪ LA2 ∪ LB1 ∪ LB2 . Analogously, one may deduce that B is an (X,Z)-bs in GX ,
for every Z ∈ LC1 ∪ LC2 ∪ LB1 ∪ LB2 . Thus, B is an (X,Z)-bs in GX , for every Z ∈ L1 ∪ L2.

Property iii. We have to prove that B is not an (X,Z)-bs in GX , for every Z ∈ S.
Let Z ∈ S. Since BL ` (XL, B0,LL1 ,LL2 , fL,SL) and S ⊆ SL, we have that BL is not an
(XL, Z)-bs in GXL , by Definition 26. As BL is not an (XL, Z)-bs in GXL and, analogously,
BR is not an (XR, Z)-bs in GXR , it implies by Lemma 31 that B is not an (X,Z)-bs in GX .

Property iva. Let us now prove that for every v ∈ B \B0, there is Z ∈ L1 = LA1]LB1]LC1
such that B \ {v} is not an (X,Z)-bs in GX . If B = B0, then there is nothing to prove.
Otherwise, let v ∈ B \ B0, and suppose without loss of generality that v ∈ BL \ B0. As
BL ` (XL, B0,LL1 ,LL2 , fL,SL), and as LL1 = LA1 , there exists Z ∈ LA1 such that BL \ {v} is
not an (XL, Z)-bs in GXL . As Z ∈ LA1 , LA1 ⊆ SR, and BR ` (XR, B0,LR1 ,LR2 , fR,SR), BR
is not an (XR, Z)-bs in GXR . Thus, by Lemma 31, B \ {v} is not an (X,Z)-bs in GX .

Property ivb. Let us finally prove that for each v ∈ B0, B \ {v} is not an (X, f(v))-bs
in GX . Let v ∈ B0 and let Z = f(v). By Property 3, we know that Z ∈ LB2 , i.e. Z is both
in LL2 and LR2 . Then, as BL ` (XL, B0,LL1 ,LL2 , fL,SL) and fL = f , by Property ivb we
get that BL \ {v} is not an (XL, Z)-bs in GXL . Using the same arguments for BR, we get
that BR \ {v} is not an (XR, Z)-bs in GXR . By Lemma 31, we obtain that B \ {v} is not an
(X,Z)-bs in GX . 2

4.3 Introduce node

I Definition 33. Let G be a graph, X ⊆ V (G), v ∈ X, and R ⊆ 2X . We denote
• R(v) = {Z ∈ R | v ∈ Z},
• R(v̄) = {Z ∈ R | v /∈ Z}, and
• rv(R) = {Z \ {v} | Z ∈ R}.

28 Parameterized complexity of computing maximum minimal blocking and hitting sets

Before proving Lemma 38 corresponding to the introduce case, let us first prove the
following lemmas where we assume that X ∈ B is an introduce node and that XC is the
child of X with XC = X \ {v} for some vertex v ∈ X.

I Lemma 34. Let Z ⊆ X such that Z is an is with v ∈ Z. For every I ⊆ V (G) such that
v ∈ I, I is a maximum (X,Z)-is in GX if and only if I \ {v} is a maximum (XC , Z \ {v})-is
in GXC .

Proof: For the forward implication, suppose that I is a maximum (X,Z)-is in GX such that
v ∈ I. Note that I \{v} is an (XC , Z \{v})-is in GXC . Let I ′ be a maximum (XC , Z \{v})-is
in GXC . Since NGX

(v) ⊆ X by the properties of a tree decomposition, and since Z is an
is of G, we deduce that I ′ ∪ {v} is an (X,Z)-is in GX , implying |I ′ ∪ {v}| ≤ |I|. Therefore
|I \ {v}| ≥ |I ′|, hence I \ {v} is a maximum (XC , Z \ {v})-is in GXC .

For the backward implication, suppose that I \ {v} is a maximum (XC , Z \ {v})-is in
GXC . Note that I is an (X,Z)-is in GX . Let I ′ be a maximum (X,Z)-is in GX . As I ′ \ {v}
is an (XC , Z \ {v})-is in GXC , we get |I ′ \ {v}| ≤ |I \ {v}| and therefore, since both I and I ′
contain v, |I ′| ≤ |I| and the lemma follows. 2

I Lemma 35. Let Z ⊆ X such that Z is an is with v /∈ Z. For every I ⊆ V (G) such that
v /∈ I, I is a maximum (X,Z)-is in GX if and only if I is a maximum (XC , Z)-is in GXC .

Proof: For the forward implication, suppose that I is a maximum (X,Z)-is in GX such that
v /∈ I. Note that I is an (XC , Z)-is in GXC . Let I ′ be a maximum (XC , Z)-is in GXC . As I’
is an (X,Z)-is in GX , |I ′| ≤ |I|, leading to the desired result.

For the backward implication, consider that I is a maximum (XC , Z)-is in GXC . Note
that I is an (X,Z)-is in GX . Let I ′ be a maximum (X,Z)-is in GX . Since v /∈ Z, v /∈ I ′ and
I ′ is an (XC , Z)-is in GXC , we deduce that |I ′| ≤ |I|. 2

I Lemma 36. Let Z ⊆ X such that Z is an is. For every B ⊆ V (GX) such that v /∈ B, B
is an (X,Z)-bs in GX if and only if B is an (XC , Z \ {v})-bs in GXC .

Proof: For the forward implication, assume that B is an (X,Z)-bs in GX such that v /∈ B.
Let I be a maximum (XC , Z \ {v})-is in GXC . Suppose first that v ∈ Z. By Lemma 34, we
get that I ∪ {v} is a maximum (X,Z)-is in GX , implying that B ∩ (I ∪ {v}) 6= ∅. As v /∈ B,
we get B ∩ I 6= ∅. Suppose now that v /∈ Z. By Lemma 35, we get that I is a maximum
(X,Z)-is in GX , implying B ∩ I 6= ∅.

For the backward implication, suppose that B is an (XC , Z \ {v})-bs in GXC . Let I be a
maximum (X,Z)-is in GX . Suppose first that v ∈ Z. By Lemma 34, we get that I \ {v} is
a maximum (XC , Z \ {v})-is in GXC , implying that B ∩ (I \ {v}) 6= ∅. Suppose now that
v /∈ Z. By Lemma 35, we get that I is a maximum (XC , Z)-is in GXC , implying B ∩ I 6= ∅.
2

I Lemma 37. Let Z ⊆ X such that Z is an is with v /∈ Z. For every B ⊆ V (GX) such that
v ∈ B, B is an (X,Z)-bs in GX if and only if B \ {v} is an (XC , Z)-bs in GXC .

Proof: For the forward implication, suppose that B is an (X,Z)-bs in GX such that v ∈ B.
Let I be a maximum (XC , Z)-is in GXC . By Lemma 35, I is a maximum (X,Z)-is in GX ,
implying that B ∩ I 6= ∅. As v /∈ I, we get (B \ {v}) ∩ I 6= ∅.

For the backward implication, suppose that B \ {v} is an (XC , Z)-bs in GXC . Let I be a
maximum (X,Z)-is in GX . By Lemma 35, I is a maximum (XC , Z)-is in GXC , implying
that (B \ {v}) ∩ I 6= ∅. 2

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 29

We are now ready to state the main lemma of this section. Let us recall that given a
function f : A→ B and a subset A′ ⊆ A, we denote by f|A′ the restriction of f to A′.

I Lemma 38. Let (X,B0,L1,L2, f,S) ∈ E(G,D) where X ∈ B is an introduce node and
XC is the child of X with XC = X \ {v}. For every B ⊆ V (GX), B ` (X,B0,L1,L2, f,S)
if and only if one of the following two cases holds:

Case 1: v ∈ B and there exist LA2 ,LB2 such that
1. L2(v) = LA2] LB2 ,
2. f(v) ∈ LA2 ,
3. for every Z ∈ S, v /∈ Z, and
4. B \ {v} ` (X \ {v}, B0 \ {v},LC1 ,LC2 , fC ,SC), where
• LC1 = L1(v̄),
• LC2 = L2(v̄),
• fC = f|B\{v}, and
• SC = S ∪ rv(LA2).

Case 2: v /∈ B and B ` (X \ {v}, B0,LC1 ,LC2 , fC ,SC), where
• LC1 = rv(L1),
• LC2 = rv(L2),
• fC(v′) = f(v′) \ {v} for every v′ ∈ B0, and
• SC = rv(S).

Proof: For the forward implication, suppose thatB ⊆ V (GX) is such thatB ` (X,B0,L1,L2, f,S).
We distinguish the two cases considered in Lemma 38. In both cases, we verify that each of
the corresponding properties is satisfied.

Case 1. Suppose that v ∈ B, and thus v ∈ B0, as v ∈ X and B0 = B ∩ X. Let
LA2 = {Z ∈ L2| B \ {v} is not an (X,Z)-bs in GX}. By Property ivb applied to v, we get
that f(v) ∈ LA2 , implying Property 2. Moreover, for every Z ∈ LA2 , there exists a maximum
(X,Z)-is I in GX such that I ∩ (B \ {v}) = ∅, and thus if we had v /∈ Z, then v /∈ I and
I ∩B = ∅, a contradiction. This implies that LA2 ⊆ L2(v), and we define LB2 = L2(v) \ LA2 ,
implying Property 1. By Property iii, as B is not an (X,Z)-bs in GX for every Z ∈ S and
v ∈ B, we get Property 3. Let us now prove Property 4, by verifying each of the non-trivial
properties of Definition 26 applied to B \ {v}.

Property ii. Recall that XC = X \ {v}. We need to prove that B \ {v} is an (XC , Z)-bs
in GXC , for every Z ∈ LC1 ∪ LC2 = L1(v̄) ∪ L2(v̄). Let Z ∈ LC1 ∪ LC2 . As v /∈ Z, Lemma 37
implies that B \ {v} is an (XC , Z)-bs in GXC .

Property iii. We must prove that B \ {v} is not an (XC , Z)-bs in GXC , for every
Z ∈ SC = S ∪ rv(LA2). Let Z ∈ SC . If Z ∈ S, as v /∈ Z (which we know from Property 3)
and B is not an (X,Z)-bs in GX (since B ` (X,B0,L1,L2, f,S)), Lemma 37 implies that
B \ {v} is not an (XC , Z)-bs in GXC . If Z ∈ rv(LA2), then let Z ′ be such that Z = Z ′ \ {v}.
We know that B \ {v} is not an (X,Z ′)-bs in GX . By Lemma 36, we get that B \ {v} is not
an (XC , Z)-bs in GXC .

Property iva. Let us now prove that, for every v′ ∈ (B \ {v}) \ (B0 \ {v}) there is
Z ∈ LC1 = L1(v̄) such that (B \ {v}) \ {v′} is not an (XC , Z)-bs in GXC . Since v ∈ B0, let
v′ ∈ B \B0. Since B ` (X,B0,L1,L2, f,S), there exists Z ∈ L1 such that B \ {v′} is not an
(X,Z)-bs in GX . As v ∈ B \ {v′}, this implies that Z ∈ L1(v̄). As v /∈ Z, from Lemma 37
we get that (B \ {v}) \ {v′} is not an (XC , Z)-bs in GXC .

Property ivb. We now have to prove that for every v′ ∈ B0 \ {v}, (B \ {v}) \ {v′} is not an
(XC , fC(v′))-bs inGXC . IfB0\{v} = ∅, we have nothing to prove. Otherwise, let v′ ∈ B0\{v}.

30 Parameterized complexity of computing maximum minimal blocking and hitting sets

Since B ` (X,B0,L1,L2, f,S), there exists Z ∈ L2 such that Z = fC(v′) = f(v′) and B\{v′}
is not an (X,Z)-bs in GX . As v ∈ B \{v′}, this implies that Z ∈ L2(v̄). As v /∈ Z, Lemma 37
implies that (B \ {v}) \ {v′} is not an (XC , Z)-bs in GXC .

Case 2. Suppose that v /∈ B. Let us prove thatB ` (X\{v}, B0, rv(L1) ,rv(L2), fC , rv(S)),
where fC(v′) = f(v′) \ {v} for every v′ ∈ B0.

Property ii. We first prove that B is an (XC , Z)-set in GXC , for every Z ∈ LC1 ∪ LC2 =
rv(L1) ∪ rv(L2). Let Z ∈ rv(L1) ∪ rv(L2) where Z = Z ′ \ {v} and Z ′ ∈ L1 ∪ L2. As v /∈ B
and B is an (X,Z ′)-bs in GX , Lemma 36 implies that B is an (XC , Z)-bs in GXC .

Property iii. Let us prove that B is not an (XC , Z)-bs in GXC , for every Z ∈ SC = rv(S).
Let Z ∈ rv(S), where Z = Z ′ \ {v} and Z ′ ∈ S. As v /∈ B, and as B is not an (X,Z ′)-bs in
GX , Lemma 36 implies that B is not an (XC , Z)-bs in GXC .

Property iva. We now prove that, for every v′ ∈ B \ B0, there exists Z ∈ LC1 = rv(L1)
such that B \ {v′} is not an (XC , Z)-bs in GXC . Suppose that B \ B0 6= ∅, as otherwise
the statement trivially holds. Let v′ ∈ B \B0. Since B ` (X,B0,L1,L2, f,S), there exists
Z ∈ L1 such that B \ {v′} is not an (X,Z)-bs in GX . As v /∈ B \ {v′}, Lemma 36 implies
that B \ {v′} is not an (XC , Z \ {v})-bs in GXC , and Z \ {v} ∈ LC1 .

Property ivb. We must finally prove that, for every v′ ∈ B0, B\{v′} is not an (XC , fC(v′))-
bs in GXC . Let v′ ∈ B0. Since B ` (X,B0,L1,L2, f,S), let Z = f(v′), where Z ∈ L2, such
that B \ {v′} is not an (X,Z)-bs in GX (by Property ivb). As v /∈ B \ {v′}, Lemma 36
implies that B \ {v′} is not an (XC , Z \ {v})-bs in GXC , and Z \ {v} = fC(v′).

We now focus on the backward implication, and we distinguish again the two cases
according to the possible hypothesis. In both cases, remind that our goal is to prove that
B ` (X,B0,L1,L2, f,S).

Case 1. Let B with v ∈ B and suppose that there exist LA2 ,LB2 satisfying the statement
of the lemma.

Property ii. Let us prove that B is an (X,Z)-bs in GX , for every Z ∈ L1 ∪ L2. Let
Z ∈ L1 ∪L2. If v ∈ Z, then as v ∈ B it follows that B is an (X,Z)-bs in GX . Otherwise, by
Property ii, we get that B \ {v} is an (XC , Z)-bs in GXC . As v /∈ Z, Lemma 37 implies that
B is an (X,Z)-bs in GX .

Property iii. We now prove that B is not an (X,Z)-bs in GX , for every Z ∈ S. Let
Z ∈ S. We know that B \ {v} is not an (XC , Z)-bs in GXC . By hypothesis, v /∈ Z, and thus
Lemma 37 implies that B is not an (X,Z)-bs in GX .

Property iva. We have to show that, for every v′ ∈ B \B0, there exists Z ∈ L1 such that
B \ {v′} is not an (X,Z)-bs in GX . Assume that B \B0 6= ∅. Let v′ ∈ B \B0. By hypothesis,
there exists Z ∈ LC1 = L1(v̄) such that (B \ {v}) \ {v′} is not an (XC , Z)-bs in GXC . As
v /∈ Z, Lemma 37 implies that (B \ {v′}) is not an (X,Z)-bs in GX .

Property ivb. We finally prove that, for every v′ ∈ B0, B \ {v′} is not an (X, f(v′))-bs
in GX . Let v′ ∈ B0 and let Z = f(v′). Suppose first that v′ = v. By Property 2 we know
that Z ∈ LA2 , and by Property 1 we know that v ∈ Z, implying then that there exists Z ′
such that Z = Z ′ ∪ {v}. As rv(LA2) ⊆ SC , it follows that B \ {v} is not an (XC , Z ′)-bs in
GXC . By Lemma 36, B \ {v} is not an (X,Z)-bs in GX . Suppose now that v′ 6= v. By
hypothesis, (B \ {v}) \ {v′} is not an (XC , Z)-bs in GXC , and Z ∈ L2(v̄). As v /∈ Z, by
Lemma 37 B \ {v′} is not an (X,Z)-bs in GX .

Case 2. Let B with v /∈ B and B ` (X \ {v}, B0, rv(L1), rv(L2), fC , rv(S)), where
fC(v′) = f(v′) \ {v} for every v′ ∈ B0.

Property ii. Let us prove that B is an (X,Z)-bs in GX , for every Z ∈ L1 ∪ L2. Let
Z ∈ L1 ∪ L2. As v /∈ B and as B is an (XC , Z \ {v})-bs in GXC , Lemma 36 implies that B

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 31

is an (X,Z)-bs in GX .
Property iii. We now prove that B is not an (X,Z)-bs in GX , for every Z ∈ S. Let

Z ∈ S. As v /∈ B and as B is not an (XC , Z \ {v})-bs in GXC , Lemma 36 implies that B is
not an (X,Z)-bs in GX .

Property iva. We have to show that, for every v′ ∈ B \ B0, there exists Z ∈ L1 such
that B \ {v′} is not an (X,Z)-bs in GX . If B \B0 = ∅, then we have nothing to prove. Let
v′ ∈ B \B0. By hypothesis, there exists Z ∈ LC1 such that B \ {v′} is not an (XC , Z)-bs in
GXC . Let Z ′ ∈ L1 such that Z = Z ′ \ {v}. As v /∈ B \ {v′}, Lemma 36 implies that B \ {v′}
is not an (X,Z ′)-bs in GX .

Property ivb. We finally prove that, for every v′ ∈ B0, B \ {v′} is not an (X, f(x))-bs
in GX . Let v′ ∈ B0 and let Z = f(v′), where Z ∈ L2. Recall that fC(v′) = Z \ {v}. By
hypothesis, B \ {v′} is not an (XC , Z \ {v})-bs in GXC . As v /∈ B \ {v′}, Lemma 36 implies
that B \ {v′} is not an (X,Z)-bs in GX . 2

4.4 Forget node
Let us start with some preliminaries related to the notion of criticality.

I Definition 39. Let G be a graph, X ⊆ V (G), Z ⊆ X such that Z is an is, and v ∈ V (G).
We say that (X,Z) is
• v-critical in G if for every maximum (X,Z)-is I in G, v ∈ I,
• v̄-critical in G if for every maximum (X,Z)-is I in G, v /∈ I, and
• v-mixed in G if there exists a maximum (X,Z)-is I in G with v ∈ I and there exists a

maximum (X,Z)-is I ′ in G with v /∈ I.

Given v ∈ V (G) and a set R ⊆ 2X such that for each Z ∈ R, Z is an is, we denote

• R(v,X) = {Z ∈ R | (X,Z) is v-critical in GX},
• R(v̄,X) = {Z ∈ R | (X,Z) is v̄-critical in GX},
• R(∗v,X) = {Z ∈ R | (X,Z) is v-mixed in GX}, and
• av(R) = {Z ∪ {v} | Z ∈ R}.

I Lemma 40. Let G be a graph, X ⊆ V (G), and Z ⊆ X such that Z is an is and v ∈ V (G).
Deciding whether (X,Z) is v-critical in G, v̄-critical in G or v-mixed in G can be done in
time O∗(2tw(G)).

Proof: If v ∈ Z, then (X,Z) is by definition v-critical in G, and if v ∈ X \ Z then (X,Z) is
by definition v̄-critical G. Suppose now that v /∈ X. Then, observe that
• (X,Z) is v-critical in G if and only if α(X∪{v},Z)(G) < α(X,Z)(G),
• (X,Z) is v̄-critical in G if and only if α(X∪{v},Z∪{v})(G) < α(X,Z)(G), and
• (X,Z) is v-mixed in G if and only if α(X∪{v},Z∪{v})(G) = α(X∪{v},Z)(G) = α(X,Z)(G).
Let us now prove that, for every (X ′, Z ′) such that Z ′ ⊆ X ′ and Z ′ is an is, α(X′,Z′)(G) can be
computed in time O∗(2tw(G)). Indeed, observe that α(X′,Z′)(G) = |Z ′|+α(G \ (X ′ ∪N(Z ′))).
As tw(G \ (X ′ ∪N(Z ′))) ≤ tw(G′) and α(G) can be computed in time O∗(2tw(G)) [14], we
get the desired result. 2

Before proving Lemma 45 corresponding to the forget case, let us first prove the following
lemmas, where we assume that X ∈ B is a forget node and XC is the child of X with
XC = X ∪ {v}, for some vertex v ∈ XC .

I Lemma 41. Let I ⊆ V (G) such that v ∈ I and let Z ⊆ X such that Z is an is. The
following claims hold:

32 Parameterized complexity of computing maximum minimal blocking and hitting sets

• If I is a maximum (X,Z)-is in GX , then I is a maximum (XC , Z ∪ {v})-is in GXC .
• If (X,Z) is not v̄-critical in GX , then I is a maximum (X,Z)-is in GX if and only if I

is a maximum (XC , Z ∪ {v})-is in GXC .

Proof: For the first item, let I be a maximum (X,Z)-is in GX . As v ∈ I, I ∩XC = Z ∪ {v},
and I is also an (XC , Z ∪{v})-is in GXC . Let I ′ be a maximum (XC , Z ∪{v})-is in GXC . As
I ′ is also an (X,Z)-is in GX , |I| ≥ |I ′|, and thus I is a maximum (XC , Z ∪ {v})-is in GXC .

For the second item, the sufficiency is already proved in the first item. For the backward
implication, let I be a maximum (XC , Z∪{v})-is in GXC . Observe first that I is an (X,Z)-is
in GX . Let I ′ be a maximum (X,Z)-is in GX such that v ∈ I ′, which exists as (X,Z) is
not v̄-critical in GX . By the previous property, I ′ is a (maximum) (XC , Z ∪ {v})-is in GXC ,
implying |I| ≥ |I ′| and the desired result. 2

I Lemma 42. Let I ⊆ V (G) such that v /∈ I and let Z ⊆ X such that Z is an is. The
following claims hold:
• If I is a maximum (X,Z)-is in GX , then I is a maximum (XC , Z)-is in GXC .
• If (X,Z) is not v-critical in GX , then I is a maximum (X,Z)-is in GX if and only if I

is a maximum (XC , Z)-is in GXC .

Proof: For the first item, let I be a maximum (X,Z)-is in GX . As v /∈ I, I ∩ XC = Z,
hence I is also an (XC , Z)-is in GXC . Let I ′ be a maximum (XC , Z)-is in GXC . As I ′ is
also an (X,Z)-is in GX , |I| ≥ |I ′|, and thus I is a maximum (XC , Z)-is in GXC .

For the second item, again we only need to prove the backward implication. Let I be
a maximum (XC , Z)-is in GXC . Observe first that I is an (X,Z)-is in GX . Let I ′ be a
maximum (X,Z)-is in GX such that v /∈ I ′, which exists as (X,Z) is not v-critical in GX .
By the first item, I ′ is a (maximum) (XC , Z)-is in GXC , implying |I| ≥ |I ′| and the desired
result. 2

I Lemma 43. Let Z ⊆ X where Z is an is. The following claims hold:
• If (X,Z) is v-critical in GX , then for each B ⊆ V (GX), B is an (X,Z)-bs in GX if and

only if B is an (XC , Z ∪ {v})-bs in GXC .
• If (X,Z) is v̄-critical in GX , then for each B ⊆ V (GX), B is an (X,Z)-bs in GX if and

only if B is an (XC , Z)-bs in GXC .
• If (X,Z) is v-mixed in GX , then for each B ⊆ V (GX), B is an (X,Z)-bs in GX if and

only if B is an (XC , Z ∪ {v})-bs in GXC and B is an (XC , Z)-bs in GXC .

Proof: For the first item, let Z ⊆ X such that (X,Z) is v-critical in GX .
For the forward implication, suppose that B is an (X,Z)-bs in GX . Let I be a maximum

(XC , Z ∪ {v})-is in GXC . As v ∈ I and as (X,Z) is not v̄-critical in GX , by Lemma 41, I is
also a maximum (X,Z)-is in GX , implying that I ∩B 6= ∅.

For the backward implication, let B be an (XC , Z ∪ {v})-bs GXC . Let I be a maximum
(X,Z)-is in GX . As (X,Z) is v-critical in GX , we know that v ∈ I. By Lemma 41, I is also
a maximum (XC , Z ∪ {v})-is in GXC , implying that I ∩B 6= ∅.

For the second item, let Z ⊆ X such that (X,Z) is v̄-critical in GX .
For the forward implication, suppose that B is an (X,Z)-bs in GX . Let I be a maximum

(XC , Z)-is in GXC . As v /∈ I and as (X,Z) is not v-critical in GX , by Lemma 42, I is also a
maximum (X,Z)-is in GX , implying that I ∩B 6= ∅.

For the backward implication, let B be an (XC , Z)-bs GXC . Let I be a maximum
(X,Z)-is in GX . As (X,Z) is v̄-critical in GX , we know that v /∈ I. By Lemma 42, I is also
a maximum (XC , Z)-is in GXC , implying that I ∩B 6= ∅.

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 33

For the third item, let Z ⊆ X such that (X,Z) is v-mixed in GX .
For the forward implication, assume that B is an (X,Z)-bs in GX . Let I1 be a maximum

(XC , Z ∪ {v})-is in GXC and I2 be a maximum (XC , Z)-is in GXC . As (X,Z) is both not
v-critical and not v̄-critical in GX , by Lemmas 41 and 42 we now that both I1 and I2 are
maximum (X,Z)-is in GX , implying B ∩ I1 6= ∅ and B ∩ I2 6= ∅.

For the backward implication, let finally B be an (XC , Z ∪ {v})-bs in GXC and an
(XC , Z)-bs in GXC . Let I be a maximum (XC , Z)-is in GXC . If v ∈ I, by Lemma 41, I is
also a maximum (XC , Z ∪ {v})-is in GXC , implying I ∩B 6= ∅, and if v /∈ I, by Lemma 42,
I is also a maximum (XC , Z)-is in GXC , implying I ∩B 6= ∅ as well. 2

I Lemma 44. Let L ⊆ 2X where for each Z ∈ L, Z is an is. For every B ⊆ GX , B is
an (X,Z)-bs in GX for every Z ∈ L if and only if B is an (XC , Z)-bs in GXC for every
Z ∈ av(L(v,X)) ∪ L(v̄,X) ∪ av(L(∗v,X)) ∪ L(∗v,X).

Proof: For the forward implication, suppose that B is an (X,Z)-bs in GX , for every Z ∈ L.
Let Z ∈ av(L(v,X)) (resp. Z ∈ av(L(∗v,X))), implying that Z = Z ′ ∪ {v} with Z ′ ∈ L(v,X)

(resp. Z ′ ∈ L(∗v,X)). Observe that for every Z ∈ L, v /∈ Z, implying that v /∈ Z ′ and thus
that we also have Z ′ = Z \ {v}. This implies that (X,Z ′) is v-critical (resp. v-mixed)
in GX . By hypothesis, B is an (X,Z ′)-bs in GX , implying, as (X,Z ′) is v-critical (resp.
v-mixed) in GX , that B is an (XC , Z)-bs in GXC by Lemma 43. Let now Z ∈ L(v̄,X) (resp.
Z ∈ L(∗v,X)), implying that (X,Z) is v̄-critical (resp. v-mixed) in GX . By hypothesis, B is
an (X,Z)-bs in GX , implying, as (X,Z) is v̄-critical (resp. v-mixed) in GX , that B is an
(XC , Z)-bs in GXC by Lemma 43.

For the backward implication, suppose that B is an (XC , Z)-bs in GXC for every Z ∈
av(L(v,X)) ∪ L(v̄,X) ∪ av(L(∗v,X)) ∪ L(∗v,X). Let Z ∈ L. If Z ∈ L(v,X), then there exists
Z ′ ∈ av(L(v,X)) such that Z ′ = Z ∪ {v}. By hypothesis, B is an (XC , Z ′)-bs in GXC ,
implying, as (X,Z) is v-critical in GX , that B is an (X,Z)-bs in GX by Lemma 43. If
Z ∈ L(v̄,X), then by hypothesis, B is an (XC , Z)-bs in GXC , implying, as (X,Z) is v̄-critical
in GX , that B is an (X,Z)-bs in GX by Lemma 43. If Z ∈ L(∗v,X), then by hypothesis B is
an (XC , Z ∪ {v})-bs in GXC and B is an (XC , Z)-bs in GXC , implying, as (X,Z) is v-mixed
in GX , that B is an (X,Z)-bs in GX by Lemma 43. 2

We are now ready to state the main lemma of this section.

I Lemma 45. Let (X,B0,L1,L2, f,S) ∈ E where X ∈ B is a forget node and XC is the
child of X with XC = X ∪ {v}. For each B ⊆ V (GX), B ` (X,B0,L1,L2, f,S) if and only
if one of the following two cases holds:

Case 1: there exists Z∗ ∈ L1 such that
1. (X,Z∗) is not v̄-critical in GX ,
2. for each Z ∈ S, (X,Z) is not v-critical in GX ,
3. for each v′ ∈ B0, (X, f(v′)) is not v-critical in GX , and
4. B ` (X ∪ {v}, B0 ∪ {v},LC1 ,LC2 , fC ,SC), where

• LC1 = av(L(v,X)
1) ∪ L(v̄,X)

1 ∪ av(L(∗v,X)
1) ∪ L(∗v,X)

1 ,
• LC2 = av(L(v,X)

2) ∪ L(v̄,X)
2 ∪ av(L(∗v,X)

2) ∪ L(∗v,X)
2 ∪ {Z∗ ∪ {v}},

• fC : B0 ∪ {v} → LC2 is such that

fC(v′) =
{
Z∗ ∪ {v} , if v′ = v,

f(v′) , otherwise, and

34 Parameterized complexity of computing maximum minimal blocking and hitting sets

• SC = S.

Case 2: there exist SA,SB, and fC such that
1. S(∗v,X) = SA] SB and
2. B ` (X ∪ {v}, B0,LC1 ,LC2 , fC ,SC), where

• LC1 = av(L(v,X)
1) ∪ L(v̄,X)

1 ∪ av(L(∗v,X)
1) ∪ L(∗v,X)

1 ,
• LC2 = av(L(v,X)

2) ∪ L(v̄,X)
2 ∪ av(L(∗v,X)

2) ∪ L(∗v,X)
2 ,

• fC : B0 → LC2 is such that

fC(v′) =
{
f(v′) ∪ {v} , if f(v′) ∈ L(v,X)

2 ,

f(v′) , if f(v′) ∈ L(v̄,X)
2 ,

otherwise fC(v′) ∈ {f(v′), f(v′) ∪ {v}}, and
• SC = av(S(v,X)) ∪ S(v̄,X) ∪ av(SA) ∪ SB.

Proof: Observe first that in both cases, for every Z ∈ LC1 ∪LC2 ∪SC , Z is an is as required in
the definition of E . Indeed, for each Z ∈ L1 ∪L2 ∪ S, we only add Z ∪ {v} to LC1 ∪LC2 ∪ SC
when Z is not v̄-critical in GX , implying that Z ∪ {v} is an is.

For the forward implication, suppose thatB ⊆ V (GX) is such thatB ` (X,B0,L1,L2, f,S),
and let us distinguish two cases.

Suppose first that v ∈ B. In this case, we will prove that all statements corresponding
to Case 1 hold. Recall that X = XC \ {v} and B0 = B ∩ X. Thus v ∈ B \ B0. Since
B ` (X,B0,L1,L2, f,S), Property iva in Definition 26 implies that there exists Z∗ ∈ L1 such
that B \ {v} is not an (X,Z∗)-bs in GX , implying that there exists a maximum (X,Z∗)-is I∗
in GX such that I∗ ∩ (B \ {v}) = ∅. Moreover, v ∈ I∗ as otherwise, I∗ ∩B = ∅, contradicting
the fact that B is an (X,Z∗)-bs in GX . This implies Property 1 of Case 1, i.e. (X,Z∗) is
not v̄-critical in GX .

Let v′ ∈ B0, Z = f(v′), and B′ = B \ {v′}. As B ` (X,B0,L1,L2, f,S), Property ivb
implies that B′ is not an (X,Z)-bs in Gx. Thus, there exists a maximum (X,Z)-is I in GX
such that I ∩ B′ = ∅. As v ∈ B′, we deduce that (X,Z) is not v-critical in GX , implying
Property 3 of Case 1. Let us now prove Property 4 and along the proof we will verify that
Property 2 is also satisfied.

Thus, let us now check all properties of Definition 26 to prove that B ` (X ∪ {v}, B0 ∪
{v},LC1 ,LC2 , fC ,SC), where LC1 , LC2 ,fC , and SC are defined as in Case 1.

Property ii. Let us prove that B is an (XC , Z)-bs in GXC , for each Z ∈ LC1 ∪ LC2 . By
Lemma 44, for each Z ∈ LC1 ∪ (LC2 \ {Z∗ ∪ {v}}), we know that B is an (XC , Z)-bs in GXC .
Moreover, recall that Z∗ ∈ L1 and that B ` (X,B0,L1,L2, f,S). Thus, B is an (X,Z∗)-bs
in GX and, as (X,Z∗) is either v-critical or v-mixed in GX , this implies by Lemma 43 that
B is an (XC , Z∗ ∪ {v})-bs in GXC .

Property iii. We now prove that B is not an (XC , Z)-bs in GXC , for each Z ∈ SC = S.
Let Z ∈ S. As B ` (X,B0,L1,L2, f,S), B is not an (X,Z)-bs in GX . Since v ∈ B, it follows
that (X,Z) is not v-critical in GX , implying Property 2 of Case 1. If (X,Z) is v̄-critical in
GX , then by Lemma 43, we get that B is not an (XC , Z)-bs in GXC . If (X,Z) is v-mixed in
GX , since B is not an (X,Z)-bs in GX , by Lemma 43 we get that B is not an (XC , Z)-bs in
GXC or B is not an (XC , Z ∪ {v})-bs in GXC . The latter case is not possible as v ∈ B, and
thus we get the desired property.

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 35

Property iva. Let us prove that, for each v′ ∈ B \ (B0 ∪ {v}), there is Z ∈ LC1 such that
B \ {v′} is not an (XC , Z)-bs in GXC . Let v′ ∈ B \ (B0 ∪ {v}). As B ` (X,B0,L1,L2, f,S),
there exists Z ∈ L1 such that B′ = B \ {v′} is not an (X,Z)-bs in GX . Notice that as
v ∈ B′, (X,Z) is not v-critical in GX . If (X,Z) is v̄-critical in GX , then by Lemma 43, B′
is not an (XC , Z)-bs in GXC , and we are done as Z ∈ L(v̄,X)

1 ⊆ LC1 . If (X,Z) is v-mixed in
GX , then by Lemma 43, B′ is not an (XC , Z)-bs in GXC or B′ is not an (XC , Z ∪ {v})-bs
in GXC . Again, this latter case is not possible as v ∈ B′. Thus, we conclude the proof as
Z ∈ L(∗v,X)

1 ⊆ LC1 .
Property ivb. To finish this case, let us prove that for each v′ ∈ B0 ∪ {v}, B \ {v′} is

not an (XC , fC(v′))-bs in GXC . Let v′ ∈ BC0 = B0 ∪ {v}. Let B′ = B \ {v′}. Let us first
consider the case v′ = v. In this case, remind that fC(v′) = Z∗∪{v}, where, as chosen above,
Z∗ ∈ L1 such that B \{v} is not an (X,Z∗)-bs in GX . Then let us consider I∗ defined above,
i.e. a maximum (X,Z∗)-is in GX such that I∗ ∩ (B \ {v}) = ∅. As v ∈ I∗, according to
Lemma 41, I∗ is a maximum (XC , Z∗ ∪ {v})-is in GXC , and B′ ∩ I∗ = ∅. Suppose now that
v′ 6= v and remind that, in this case, fC(v′) = f(v′). Then, since B ` (X,B0,L1,L2, f,S)
and v′ ∈ B0, we have that B′ is not an (X,Z)-bs in GX , where Z = f(v′) ∈ L2. As v ∈ B′,
we deduce that (X,Z) is not v-critical in Gx. If (X,Z) is v-mixed in GX , then by Lemma 43,
B′ is not an (XC , Z)-bs in GXC or B′ is not an (XC , Z ∪ {v})-bs in GXC . This last case is
again not possible as v ∈ B′. Thus, we deduce that B′ is not an (XC , Z)-bs. If (X,Z) is
v̄-critical in GX , then by Lemma 43, we also get that B′ is not an (XC , Z)-bs in GXC .

Suppose now v /∈ B. We now prove that Case 2 of lemma’s statement holds. Since
B ` (X,B0,L1,L2, f,S), we have that, for each Z ∈ S(∗v,X), B is not an (X,Z)-bs in GX .
By Lemma 43 we get that either B is not an (XC , Z)-bs in GXC , in which case we add Z to
SB , and if it is not the case then B is not an (XC , Z ∪{v})-bs in GXC , in which case we add
Z to SA. It remains to define the function fC for v′ 6= v such that f(v′) ∈ L(∗v,X)

2 . Let v′ 6= v

such that f(v′) ∈ L(∗v,X)
2 , and let Z = f(v′). Since B ` (X,B0,L1,L2, f,S), B \ {v′} is not

an (X,Z)-bs in GX . By Lemma 43, as (X,Z) is mixed in GX , we get that either B \ {v′}
is not an (XC , Z)-bs in GXC , in which case we define fC(v′) = Z, and if it is not the case
then B \ {v′} is not an (XC , Z ∪ {v})-bs in GXC , in which case we define fC(v′) = Z ∪ {v}.
Let us now prove that B ` (XC , B0,LC1 ,LC2 , fC ,SC) where LC1 , LC2 , and SC are defined
as in the Case 2 of the lemma’s statement, by verifying that the required properties in
Definition 26 are satisfied. To prove Property ii, one should argue that B is an (XC , Z)-bs
in GXC , for each Z ∈ LC1 ∪ LC2 where LC1 = av(L(v,X)

1) ∪ L(v̄,X)
1 ∪ av(L(∗v,X)

1) ∪ L(∗v,X)
1 and

LC2 = av(L(v,X)
2) ∪ L(v̄,X)

2 ∪ av(L(∗v,X)
2) ∪ L(∗v,X)

2 . It is immediate using Lemma 44 and the
hypothesis that B ` (X,B0,L1,L2, f,S).

Property iii. Let us now prove that B is not an (XC , Z)-bs in GXC , for each Z ∈ SC =
av(S(v,X)) ∪ S(v̄,X) ∪ av(SA) ∪ av(SB). Let Z ∈ SC . If Z ∈ av(S(v,X)) then Z = Z ′ ∪ {v}
where Z ′ ∈ S(v,X). Since B ` (XC , B0,LC1 ,LC2 , fC ,SC), we know that B is not an (X,Z ′)-bs
in GX . As (X,Z ′) is v-critical in GX , by Lemma 43 we know that B is not an (XC , Z ′∪{v})-
bs in GXC . If Z ∈ S(v̄,X) then by the hypothesis B ` (XC , B0,LC1 ,LC2 , fC ,SC), we know
that B is not an (X,Z)-bs in GX . As (X,Z) is v̄-critical in GX , by Lemma 43 we know that
B is not an (XC , Z)-bs in GXC . If Z ∈ av(SA) ∪ SB , then by definition of SA and SB , B is
not an (XC , Z)-bs in GXC .

Property iva. We must now prove that, for each v′ ∈ B \ B0, there is Z ∈ LC1 =
av(L(v,X)

1) ∪ L(v̄,X)
1 ∪ av(L(∗v,X)

1) ∪ L(∗v,X)
1 such that B \ {v′} is not an (XC , Z)-bs in GXC .

Recall that v /∈ B and let v′ ∈ B \ (B0 ∪ {v}). As B ` (X,B0,L1,L2, f,S), there exists
Z ∈ L1 such that B′ = B \ {v′} is not an (X,Z)-bs in GX . By Lemma 44 with the list
L = {Z}, there exists Z ′ ∈ LC1 such that B′ is not an (XC , Z ′)-bs in GXC .

36 Parameterized complexity of computing maximum minimal blocking and hitting sets

Property ivb. Let us finally prove that, for each v′ ∈ BC0 = B0, B \ {v′} is not an
(XC , fC(v′))-bs in GXC . Let v′ ∈ BC0 . As v′ ∈ B0, by the hypothesis B ` (X,B0,L1,L2, f,S)
we know that B′ = B \ {v′} is not an (X,Z)-bs in GX , where Z = f(v′) with Z ∈ L2. If
(X,Z) is v̄-critical in GX , then by Lemma 43, we also get that B′ is not an (XC , Z)-bs in
GXC , and we are done as Z = fC(v′). If (X,Z) is v-critical in GX , then by Lemma 43, we
also get that B′ is not an (XC , Z ∪ {v})-bs in GXC , and we are done as Z ∪ {v} = fC(v′).
Finally, (X,Z) is v-mixed then Z ∈ L(∗v,X)

2 and by the definition of fC(v′) we get that B′ is
not an (XC , f(v′))-bs in GXC .

For the backward implication, let us prove that B ` (X,B0,L1,L2, f,S), by distinguishing
again both cases in the statement of the lemma.

Case 1. Suppose that there exist Z∗ ∈ L1 as required in Case 1. Property ii follows directly
from Lemma 44. Let us verify that the other properties of Definition 26 are also verified.

Property iii. Let us prove that B is not (X,Z)-bs in GX , for each Z ∈ S = SC . Let
Z ∈ S. By hypothesis, B ` (XC , BC0 ,LC1 ,LC2 , fC ,SC) and thus B is not an (XC , Z)-bs in
GXC . Consequently, there exists a maximum (XC , Z)-is I in GXC such that I ∩B = ∅. In
addition, since BC0 = B0 ∪ {v} ⊆ B, we have that v /∈ I. As (X,Z) is not v-critical in GX ,
we get by Lemma 42 that I is a maximum (X,Z)-is in GX .

Property iva. We now argue that, for each v′ ∈ B \B0, there is Z ∈ L1 such that B \ {v′}
is not an (X,Z)-bs in GX . Let v′ ∈ B \ B0. If v′ = v, then as v ∈ BC0 , by definition of
fC we get that B \ {v} is not an (XC , Z∗ ∪ {v})-bs in GXC . As (X,Z∗) is either v-critical
or v-mixed in GX , in both cases by Lemma 43 we get that B \ {v} is not an (X,Z∗)-bs
in GX . As by hypothesis Z∗ ∈ L1, this implies Property iva. Suppose now v′ 6= v. Since
B ` (XC , BC0 ,LC1 ,LC2 , fC ,SC), we know that there exists Z ∈ LC1 such that B \ {v′} is not
an (XC , Z)-bs in GXC . By Lemma 44, there exists Z ∈ L1 such that B \ {v′} is not an
(X,Z)-bs in GX .

Property ivb. Finally, we prove that for each v′ ∈ B0, B \ {v′} is not an (X, f(v′))-bs in
GX . Let v′ ∈ B0 and let Z = f(v′). Recall that B0 = B ∩X and thus v /∈ B0, implying that
v 6= v′. By definition, we thus have fC(v′) = f(v′). Since B ` (XC , BC0 ,LC1 ,LC2 , fC ,SC),
we know that B′ = B \ {v′} is not an (XC , Z)-bs in GXC . By Property 3, (X,Z) is not
v-critical in GX . As (X,Z) is v̄-critical or v-mixed in GX , then by Lemma 43, B′ is not an
(X,Z)-bs in GX .

Case 2. Suppose that there exist SA,SB , and fC as required in Case 2. Property ii follows
again directly from Lemma 44.

Property iii. Let us prove that B is not (X,Z)-bs in GX , for each Z ∈ S. Let Z ∈ S.
Recall that SC = av(S(v,X))∪S(v̄,X) ∪ av(SA)∪SB and that B ` (XC , B0,LC1 ,LC2 , fC ,SC)
as claimed in Case 2. If Z ∈ S(v,X), then B is not an (XC , Z ∪ {v})-bs in GXC , and by
Lemma 43, as (X,Z) is v-critical in GX , B is not an (X,Z)-bs in GX . If Z ∈ S(v̄,X), then B
is not an (XC , Z)-bs in GXC , and by Lemma 43, as (X,Z) is v̄-critical in GX , B is not an
(X,Z)-bs in GX . It remains to treat the case where Z ∈ S(∗v,X) = SA ∪ SB . In this case, if
Z ∈ SA then B is not an (XC , Z ∪ {v})-bs in GXC , or (Z ∈ SB) B is not an (XC , Z)-bs in
GXC . In both cases, as (X,Z) is v-mixed in GX , by Lemma 43 B is not an (X,Z)-bs in GX .

Property iva. We now show that, for each v′ ∈ B \B0, there is Z ∈ L1 such that B \ {v′}
is not an (X,Z)-bs in GX . Let v′ ∈ B \B0. Recall that, since B ` (XC , B0,LC1 ,LC2 , fC ,SC),
B∩XC = B0 ⊆ X and {v} = XC \X. As v /∈ B, we deduce v′ 6= v. By hypothesis, we know
that there exists Z ∈ LC1 such that B \ {v′} is not an (XC , Z)-bs in GXC . By Lemma 44,
there exists Z ∈ L1 such that B \ {v′} is not an (X,Z)-bs in GX .

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 37

Property ivb. Finally, we prove that for each v′ ∈ B0, B \ {v′} is not an (X, f(v′))-bs in
GX . Let v′ ∈ B0, Z = f(v′) and Z ′ = fC(v′). By hypothesis, we know that B′ = B \ {v′} is
not an (XC , Z ′)-bs in GXC . If Z ∈ L(v,X)

2 , then by definition of fC we have Z ′ = Z ∪ {v},
and by Lemma 43 we get that B′ is not an (X,Z)-bs in GX . If Z ∈ L(v̄,X)

2 , then by definition
of fC we have Z ′ = Z, and by Lemma 43 we get that B′ is not an (X,Z)-bs in GX . Finally,
if Z ∈ L(∗v,X)

2 , then by definition of fC we have Z ′ ∈ {Z,Z ∪ {v}}, and again by Lemma 43
we get that B′ is not an (X,Z)-bs in GX . 2

4.5 Putting pieces together
Let us now assume once again that the input graph G and the nice tree decomposition D
of G are provided, and let us describe a recursive algorithm A that solves problem Π. We
distinguish several cases as follows. In each case, namely join, introduce, or forget, we use
the notations introduced in the corresponding lemma, namely Lemma 32, Lemma 38, or
Lemma 45, respectively, and define Algorithm A as follows.

I Definition 46. Suppose we are given an instance I = (X,B0,L1,L2, f,S) ∈ E of problem
Π such that X is a join node with children XL = XR = X. For each collection P =
{LA1 ,LB1 ,LC1 ,LA2 ,LB2 ,LC2 } such that
L1 = LA1] LB1] LC1 and
L2 = LA2] LB2] LC2 ,

we denote by IL(P) = (XL, B0,LL1 ,LL2 , fL,SL) and IR(P) = (XR, B0, LR1 ,LR2 , fR,SR) as
defined by Lemma 32.

In the join case, Algorithm A enumerates all such collections, and returns A(IL(P)) ∪
A(IR(P)), where P maximizes |A(IL(P))|+ |A(IR(P))|.

I Definition 47. Suppose we are given an instance I = (X,B0,L1,L2, f,S) ∈ E of problem Π
such that X is an introduce node with child XC = X \{v}. For each collection P = {LA2 ,LB2 }
of L2 as required in Case 1 of Lemma 38, we denote by I1(P) the instance defined in Case 1
of Lemma 38, and we denote by I2 the instance defined in Case 2 of Lemma 38.

In the introduce case, if v ∈ B0 then Algorithm A enumerates all such collections and
returns {v} ∪ A(I1(P)), where P maximizes |A(I1(P))|, and if v /∈ B0 then Algorithm A
returns A(I2).

I Definition 48. Suppose we are given an instance I = (X,B0,L1,L2, f,S) ∈ E of problem
Π such that X is a forget node with child XC = X ∪ {v}. For each Z∗ ∈ L1 as required
in Case 1 of Lemma 45, we denote by I1(Z∗) the instance defined in Case 1 of Lemma 45,
and for each partition P = {SA,SB} of S(∗v,X) and function fC2 as required in Case 2 of
Lemma 45, we denote by I2(P, fC2) the instance defined in Case 2 of Lemma 45.

In the forget case, Algorithm A enumerates all sets Z∗ ∈ L1 as required in Case 1, and
computes B1 = A(I1(Z∗)) where Z∗ maximizes |I1(Z∗)|. Then, Algorithm A enumerates
all sets SA,SB, and functions fC2 as required in Case 2, and computes B2 = A(I2(P, fC2))
where P, fC2 maximizes |I2(P, fC2)|. Finally, Algorithm A returns the largest solution among
all B1 and B2.

In any of the three cases (join, forget, introduce), A returns maxx∈E A(x) for some
appropriate set E, and we point out that it may be the case that E = ∅, when none of
the enumerated parameters respect the required conditions of Lemma 32, Lemma 38, and
Lemma 45, and in this case Algorithm A returns −∞ instead of a solution. Concerning the
base case, we can always assume that the underlying tree decomposition has leaves where

38 Parameterized complexity of computing maximum minimal blocking and hitting sets

X = ∅. On such a leaf, ∅ is the only candidate solution, and thus A returns ∅ if it is a valid
solution, or −∞ otherwise.

I Lemma 49. A solves Π optimally: for every instance I ∈ E, if I is feasible then A(I)
returns an optimal solution. Otherwise, it returns −∞.

Proof: The proof is by induction on the number of remaining bags in GX in the provided
nice tree decomposition D. Let B be the solution returned by A(I), and let B∗ be an optimal
solution of I. We distinguish the different types of nodes in the nice tree decomposition D
of G. In the three types of nodes, if I is not feasible, then by Lemma 32, Lemma 38, and
Lemma 45, and by the inductive hypothesis, any of the recursive calls will output −∞, and
thus A(I) will return −∞ as well. We suppose now that I is feasible, and let B = A(I) and
let B∗ an optimal solution.

Join node. By Lemma 32, there exists a collection P∗ as defined in Definition 46 and
sets B∗L, B∗R such that B∗L ` IL(P∗) and B∗R ` IR(P∗). Let P be the collection chosen
by A. We have |B| = |A(IL(P))|+ |A(IL(P))| − |B0| ≥ |A(IL(P∗))|+ |A(IL(P∗))| − |B0| ≥
|B∗L|+ |B∗R| − |B0| = |B∗|. Moreover, by Lemma 32, B ` I.

Introduce node. If v ∈ B∗, then according to Case 1 of Lemma 38 there exists
a collection P∗ as defined in Definition 47 such that B∗ \ {v} ` I1(P∗). Let P be the
collection chosen by A. As in this case we have v ∈ B0, we have |B| = 1 + |A(I1(P))| ≥
1 + |A(I1(P∗))| ≥ 1 + |B∗ \ {v}| = |B∗|. Moreover, by Lemma 38, B ` I. If v /∈ B∗, then
according to Case 2 of Lemma 38, B∗ ` I2. As in this case we have v /∈ B0, we have
|B| = |A(I2)| ≥ |B∗|. Moreover, according to Lemma 38, B ` I.

Forget node. If v ∈ B∗, then according to Case 1 of Lemma 45 there exist Z∗∗ ∈ L1
such that B∗ ` I1(Z∗∗). Let Z∗ be the element chosen by A for the first case, and (P, fC2)
the elements chosen for the second case. We have |B| ≥ |A(I1(Z∗))| ≥ |A(I1(Z∗∗))| ≥ |B∗|.
If v /∈ B∗, then according to Case 2 of Lemma 45 there exist P∗ and f∗C2 such that
B∗ ` I2(P∗, f∗C2). We have |B| ≥ |A(I2(P, fC2))| ≥ |A(I2(P∗, f∗C2))| ≥ |B∗|. 2

I Lemma 50. Algorithm A runs in time O∗(2O(2t)), where t is the width of the given nice
tree decomposition of the input graph.

Proof: The time complexity of Algorithm A is O∗(x1 · x2), where x1 = |E| is the number of
possible inputs of Π and x2 is the maximum time necessary to compute A(I) for each I ∈ E .
We denote n = |V (G)|. From the definitions of the corresponding objects, it can be routinely
verified that x1 ≤ n · 2t · 2t · 22t · 22t · (2t)t · 2t ≤ 23t+2t+1+t2 = 2O(2t).

Let us now bound x2. To that end, let θ1 be an upper bound on the number of
enumerated subinstances made in any of the three cases (join, introduce, or forget) and let
by θ2 be an upper bound on the time complexity related to all operations like taking the
minimum, and verifying that each enumerated subinstance verifies required properties (like
for example, in Case 1 of Lemma 45). In the join case, the number of subinstances is at most
3|L1| · 3|L2| ≤ 32t+1 (to consider all LA1 ,LB1 ,LC1 ,LA2 ,LB2 ,LC2), and for each subinstance the
complexity is polynomial in n. In the introduce case, the number of subinstances is 22t + 1
(to consider all LA2), and for each subinstance the complexity is polynomial in n. In the forget
case, the number of subinstances is at most 22t + 22t · 22t (to consider all Z∗ ∈ L1 in Case 1
and all SA and fC in Case 2), and for each subinstance the complexity is in O∗(2t) as in
Case 1, for every Z ∈ S (resp. every v′ ∈ B0,) we must verify if (X,Z) (resp. (X, f(v′))) is
not v-critical in GX , and this verification can be done in time O∗(2t) according to Lemma 40.
All in all, we can choose θ1 = 32t+2 = 2O(2t), θ2 = O∗(2t), and the lemma follows. 2

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 39

As according to [6] we can determine whether tw(G) ≤ t in time O∗(tO(t3)), and con-
struct the corresponding (nice) tree decomposition of G in case of a positive answer, from
Proposition 29 and Lemma 50 the following theorem is now immediate.

I Theorem 51. The MMBS/tw problem is FPT. More precisely, it can be solved in time
O∗(2O(2tw(G))).

5 Further research

We presented a number of negative and positive results for the MMBS and MMHS problems.
Several interesting questions remain open. Concerning MMBS, even if it seems implausible
that the problem could be expressed in monadic second-order logic, it would be nice to
prove it formally. For that, one may try to use the framework introduced by van Bevern et
al. [27]. While it is easy to see that, if we consider the combined parameter tw + α, then the
MMBS problem can be expressed in monadic second-order logic, it is not clear that taking
the combined parameter tw + β helps. Simplifying the dynamic programming algorithm
behind Theorem 51 is also worth trying, in particular with the combined parameter tw + β.
Another direction is to either find more efficient FPT algorithms for parameters like feedback
vertex set, treedepth and vertex cover, or to consider the parameterization by cliquewidth.

Taking into account the motivation to study the MMBS problem discussed in Section 1
in the context of the kernelization of Vertex Cover, it would be interesting to study the
complexity of MMBS restricted to minor-free input graphs, such as planar graphs.

As for MMHS, we believe that the main challenge is trying to get a algorithm paramet-
erized by α + β running faster than O∗(2αβ) (see Theorem 24). Let us consider the case
α = 2, corresponding to the MMVC problem. The parameterized complexity of MMVC has
received some attention recently, with results concerning FPT algorithms in time O∗(2β) [20],
and even in time O∗(cβ) for c < 1.54 [8], FPT algorithms for structural parameterizations [28],
and kernelization [1]. This motivates the problem of trying to improve the running time
O∗(2αβ) of Theorem 24, for example by solving MMHS in time O∗(αβ), or even O∗(αO(β)).
Recall that the algorithm of Proposition 13 runs in time O∗(αβ) for fixed α, and that it
hides a term |V (H)|f(α) for some function f .

Achieving a running time of O∗(αβ) might be typically done by guessing, at each step,
only which vertex of a given hyperedge should be added to the solution. However, guessing
only a vertex v and applying recursion on a remaining instance (H′, β−1), where H′ is defined
by removing v and all hyperedges containing v, is not correct. Indeed, (H′, β − 1) being a
yes-instance, certified by a solution S′, does not imply that (H, β) is also a yes-instance, as
S′ ∪ {v} may not be minimal anymore. Thus, we believe that, in order to solve MMHS in
time O∗(αβ) or even O∗(αO(β)), a significantly new approach should be devised.

Acknowledgement. We would like to thank Mamadou Moustapha Kanté for helpful
suggestions concerning the non-expressibility of problems in monadic second-order logic.

Conflict of interest statement. We acknowledge that all the authors agreed to submit
the manuscript without any conflict of interest.

References
1 Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau. Kernelization of Maximum

Minimal Vertex Cover. CoRR, abs/2102.02484, 2021. To appear in the Proc. of the 16th
International Symposium on Parameterized and Exact Computation (IPEC 2021). arXiv:
2102.02484.

http://arxiv.org/abs/2102.02484
http://arxiv.org/abs/2102.02484

40 Parameterized complexity of computing maximum minimal blocking and hitting sets

2 Cristina Bazgan, Ljiljana Brankovic, Katrin Casel, Henning Fernau, Klaus Jansen, Kim-Manuel
Klein, Michael Lampis, Mathieu Liedloff, Jérôme Monnot, and Vangelis Th. Paschos. The
many facets of upper domination. Theoretical Computer Science, 717:2–25, 2018. doi:https:
//doi.org/10.1016/j.tcs.2017.05.042.

3 Tolson Bell, Suchakree Chueluecha, and Lutz Warnke. Note on sunflowers. Discrete Mathem-
atics, 344(7), 2021. doi:10.1016/j.disc.2021.112367.

4 Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984. URL:
https://www.elsevier.com/books/hypergraphs/berge/978-0-444-87489-4.

5 Thomas Bläsius, Tobias Friedrich, Julius Lischeid, Kitty Meeks, and Martin Schirneck. Ef-
ficiently enumerating hitting sets of hypergraphs arising in data profiling. In Proc. of the
21st Workshop on Algorithm Engineering and Experiments (ALENEX), pages 130–143, 2019.
doi:10.1137/1.9781611975499.11.

6 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

7 Edouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Emeric Tourniaire. Multi-
parameter analysis for local graph partitioning problems: Using greediness for parameterization.
Algorithmica, 71(3):566–580, 2015. doi:10.1007/s00453-014-9920-6.

8 Nicolas Boria, Federico Della Croce, and Vangelis Th. Paschos. On the max min vertex cover
problem. Discrete Applied Mathematics, 196:62–71, 2015. doi:10.1016/j.dam.2014.06.001.

9 Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Bridge-Depth Characterizes Which
Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel. In Proc. of the
47th International Colloquium on Automata, Languages, and Programming (ICALP), volume
168 of LIPIcs, pages 16:1–16:19, 2020. doi:10.4230/LIPIcs.ICALP.2020.16.

10 Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain
polynomial kernels beyond sparse graphs? Algorithmica, 81(10):4043–4068, 2019. doi:
10.1007/s00453-018-0468-8.

11 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006. doi:10.1016/j.jcss.2006.04.007.

12 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

13 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/knowledge/isbn/
item5758776/?site_locale=fr_FR.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

15 Peter Damaschke. Parameterized algorithms for double hypergraph dualization with rank
limitation and maximum minimal vertex cover. Discrete Optimization, 8(1):18–24, 2011.
doi:10.1016/j.disopt.2010.02.006.

16 Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 4th edition, 2012. URL:
http://diestel-graph-theory.com.

17 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

18 Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight
algorithms for pathwidth and sub-exponential approximation. CoRR, 2021. Accepted in the
12th International Conference on Algorithms and Complexity (CIAC). arXiv:2101.07550.

19 Michael R. Fellows, Lars Jaffke, Aliz Izabella Király, Frances A. Rosamond, and Mathias
Weller. What is known about vertex cover kernelization? In Adventures Between Lower Bounds
and Higher Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th
Birthday, volume 11011 of LNCS, pages 330–356, 2018. doi:10.1007/978-3-319-98355-4_19.

https://doi.org/https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/https://doi.org/10.1016/j.tcs.2017.05.042
https://doi.org/10.1016/j.disc.2021.112367
https://www.elsevier.com/books/hypergraphs/berge/978-0-444-87489-4
https://doi.org/10.1137/1.9781611975499.11
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1007/s00453-014-9920-6
https://doi.org/10.1016/j.dam.2014.06.001
https://doi.org/10.4230/LIPIcs.ICALP.2020.16
https://doi.org/10.1007/s00453-018-0468-8
https://doi.org/10.1007/s00453-018-0468-8
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/0890-5401(90)90043-H
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.disopt.2010.02.006
http://diestel-graph-theory.com
https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/2101.07550
https://doi.org/10.1007/978-3-319-98355-4_19

Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau 41

20 Henning Fernau. Parameterized algorithms: a graph-theoretic approach. Habilitationsschrift,
Universität Tübingen, 2005. URL: http://www.informatik.uni-trier.de/~fernau/papers/
habil.pdf.

21 Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Elimination Distances, Blocking Sets,
and Kernels for Vertex Cover. In Proc. of the 37th International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 154 of LIPIcs, pages 36:1–36:14, 2020. doi:
10.4230/LIPIcs.STACS.2020.36.

22 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

23 Bart M. P. Jansen and Hans L. Bodlaender. Vertex Cover Kernelization Revisited - Upper
and Lower Bounds for a Refined Parameter. Theory of Computing Systems, 53(2):263–299,
2013. doi:10.1007/s00224-012-9393-4.

24 Ton Kloks. Treewidth. Computations and Approximations. Springer-Verlag LNCS, 1994.
doi:10.1007/BFb0045375.

25 Chuan-Min Lee. Weighted maximum-clique transversal sets of graphs. ISRN Discrete Math-
ematics, 2011. doi:10.5402/2011/540834.

26 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae
Universitatis Carolinae, 015(2):307–309, 1974. URL: http://eudml.org/doc/16622.

27 René van Bevern, Rodney G. Downey, Michael R. Fellows, Serge Gaspers, and Frances A.
Rosamond. Myhill-Nerode Methods for Hypergraphs. Algorithmica, 73(4):696–729, 2015.
doi:10.1007/s00453-015-9977-x.

28 Meirav Zehavi. Maximum Minimal Vertex Cover Parameterized by Vertex Cover. SIAM
Journal on Discrete Mathematics, 31(4):2440–2456, 2017. doi:10.1137/16M109017X.

http://www.informatik.uni-trier.de/~fernau/papers/habil.pdf
http://www.informatik.uni-trier.de/~fernau/papers/habil.pdf
https://doi.org/10.4230/LIPIcs.STACS.2020.36
https://doi.org/10.4230/LIPIcs.STACS.2020.36
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1007/BFb0045375
https://doi.org/10.5402/2011/540834
http://eudml.org/doc/16622
https://doi.org/10.1007/s00453-015-9977-x
https://doi.org/10.1137/16M109017X

	Introduction
	Preliminaries
	Parameterization by and
	Hardness results
	Positive results

	MMBS parameterized by treewidth
	Preliminaries
	Join node
	Introduce node
	Forget node
	Putting pieces together

	Further research

