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PROPERTIES OF A TERNARY INFINITE WORD

James Currie1 , Pascal Ochem2 , Narad Rampersad1

and Jeffrey Shallit3,*

Abstract. We study the properties of the ternary infinite word

p = 012102101021012101021012 · · · ,

that is, the fixed point of the map h : 0 → 01, 1 → 21, 2 → 0. We determine its factor complexity,
critical exponent, and prove that it is 2-balanced. We compute its abelian complexity and determine
the lengths of its bispecial factors. Finally, we give a characterization of p in terms of avoided factors.

Mathematics Subject Classification. 11B85, 68R15, 03D05, 68Q45.

Received September 19, 2022. Accepted December 5, 2022.

1. Introduction

One of the themes of combinatorics on words is the study of particular infinite words with interesting
properties. For example, in one of the very earliest results in this area, Thue proved that the Thue-Morse
word

t = 0110100110010110 · · ·

avoids overlaps: factors of the form axaxa with a a single letter and x a possibly empty word [1, 22]. He also
proved that the word

vtm = 2102012101202102012021 · · · ,

avoids squares: factors of the form yy with y nonempty.
More generally, one can study other kinds of repetitions. We say that a finite word w = w[1..n] has period

p ≥ 1 if w[i] = w[i+ p] for 1 ≤ i ≤ n− p. The smallest period of a word w is called the period, and we write it
as per(w). The exponent of a finite word w, written exp(w) is defined to be |w|/ per(w). We say a word (finite
or infinite) is α-free if the exponent of all its nonempty factors is > α. We say a word is α+-free if the exponent
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of all its nonempty factors is ≥ α. The critical exponent of a finite or infinite word x is the supremum, over
all nonempty finite factors w of x, of exp(w); it is written ce(x). The critical exponent of a word can be either
rational or irrational. If it is rational, then it can either be attained by a particular finite factor, or not attained.
For example, the critical exponent of both t and vtm is 2, but it is attained in the former case and not attained
in the latter. If the critical exponent α is attained, we typically write it as α+. An overlap is a 2+ power, so the
Thue-Morse word is 2+-free.

The Fibonacci word

f = 010010100100101001010 · · ·

is the fixed point of the morphism 0 → 01, 1 → 0. Karhumäki proved [11] that f has no fourth powers (i.e.,
blocks of the form xxxx, with x nonempty), and Mignosi and Pirillo [12] proved that the critical exponent of f
is (5 +

√
5)/2.

Another aspect of infinite words that has been studied is balance. We say that a finite or infinite word x is
t-balanced if for all equal-length factors y, z of x, and all letters a, the inequality ||y|a − |z|a| ≤ t is satisfied. As
is well-known, the Fibonacci word f (and more generally, every Sturmian word) is 1-balanced [5, 13].

A third aspect is factor complexity, also called subword complexity. For an infinite word x, the factor com-
plexity function ρx(n) counts the number of distinct factors of length n in x. Morse and Hedlund [13] proved
that ρf (n) = n + 1 for all n ≥ 0. There is also the abelian analogue of factor complexity, where we count two
factors as the same if they are permutations of each other [17].

In this note we study various aspects of the infinite ternary word

p = 012102101021012101021012 · · · ,

fixed point of the map h sending 0→ 01, 1→ 21, 2→ 0. This word is not automatic (because, as we will see,
letters occur with irrational densities). It is not Sturmian (because it is over a 3-letter alphabet). Neither is it
episturmian [10], because its set of subwords is not closed under reversal: p contains 02, but avoids 20.

We determine its factor complexity, its critical exponent, and prove that it is 2-balanced. A novel aspect of
our work is that much of it is carried out using the Walnut theorem-prover [14, 20]. This software tool can prove
or disprove assertions phrased in first-order logic about automatic sequences and their generalizations. These
ideas were used previously to study the Tribonacci word [16], but the word p provides some new complications.
All the files required to carry out the computations are available at the last author’s website:

https://cs.uwaterloo.ca/∼shallit/papers.html.

The word p has been studied previously. For example, it is sequence A287072 in the OEIS. It also appears
implicitly in [3], where it is (up to renaming of the letters) the fixed point of the morphism c2c1. A very similar
word is the word G studied in [21, Sect. 3.2]. Indeed, the factors of p can be obtained from the factors of G by
reversal and applying the permutation (012). So G and p have the same critical exponent.

The results in this paper are applied to an avoidability problem in the companion paper [6].

2. A Pisot numeration system

The properties of p are intimately related to a particular numeration system P4, which we discuss now.
Consider the following linear recurrence:

X1 = 1, X2 = 2, X3 = 4, X4 = 7, and Xn = Xn−1 +Xn−2 +Xn−4 for n ≥ 0 .

Table 1 gives the first few terms of this recurrence: This is sequence A005251 in the OEIS. It is easy to verify
it also satisfies the simpler recurrence Xn = 2Xn−1 −Xn−2 +Xn−3 for n ≥ 4.

 https://cs.uwaterloo.ca/~shallit/papers.html
https://oeis.org/A287072
https://oeis.org/A005251
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Table 1. The recurrence Xn.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Xn 1 2 4 7 12 21 37 65 114 200 351 616 1081 1897

Table 2. Representations in the P4 numeration system.

n (n)P n (n)P
1 1 13 10001
2 10 14 10010
3 11 15 10011
4 100 16 10100
5 101 17 10101
6 110 18 10110
7 1000 19 11000
8 1001 20 11001
9 1010 21 100000
10 1011 22 100001
11 1100 23 100010
12 10000 24 100011

0

0

11
0

21

3

0
0

Figure 1. Automaton recognizing the valid representations.

We can consider representing natural numbers as a sum of the Xi, as follows: N =
∑

1≤i≤t eiXi, where
ei ∈ {0, 1}. If we impose the following two rules on such a representation, namely

(a) (ei, ei+1, ei+2, ei+3) 6= (1, 0, 1, 1); and
(b) (ei, ei+1, ei+2) 6= (1, 1, 1).

then this representation is unique, and can be written as a binary string (N)P := etet−1 · · · e2e1. For example,
Table 2 gives the first few representations of numbers in this numeration system:

These representations are, in fact, the ones resulting by applying the greedy algorithm, and the conditions
(a) and (b) follow from a theorem of Fraenkel [8].

A representation in this system P4 is valid if and only if it contains no occurrence of 111 or 1101. It follows
that the language of all valid representations is recognized by the automaton in Figure 1.

The characteristic polynomial of the recurrence is X4 −X3 −X2 − 1 = (X + 1)(X3 − 2X2 + X − 1). The
second term has one real zero, namely

β1 =
(100 + 12

√
69)1/3

6
+

2

3(100 + 12
√

69)1/3
+ 2/3

.
= 1.7548776662466927600495,

and two imaginary zeros that lie inside the unit circle. Therefore β1 is a Pisot number, and so, by the results
in [2, 9] we know that there is a finite automaton A recognizing the addition relation x + y = z, where x, y, z
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Figure 2. Incrementer in the numeration system.
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Figure 3. DFAO computing p in the numeration system.

are represented in the numeration system described above, with inputs in parallel and the shorter padded with
leading zeros. Furthermore, there is an algorithm to compute A for any Pisot number.

Instead of applying this algorithm to compute A, we took a different approach. Namely, we “guessed” the
adder using the Myhill-Nerode theorem, and then verified it using an incrementer constructed and verified by
hand. This incrementer computes the relation y = x + 1, and is illustrated in Figure 2. Here the inputs are x
and y in parallel, both represented in the numeration system P4.

Once we have the incrementer, the correctness of the adder can be verified as done in [15]. The adder has 64
states.

It turns out that the word p is automatic in this numeration system; this means it is computed by a
deterministic finite automaton with output (DFAO) taking the P4 representation of n as input and outputting
(in the last state reached) the value of p[n]. The DFAO computing it is depicted in Figure 3.

This can be verified as follows. Let h : 0 → 01, 1 → 21, 2 → 0, and let the automaton be represented by a
morphism ϕ : Σ→ Σ∗ encoding the transitions of the automaton, and a coding τ : Σ→ ∆ giving the outputs
for each state. Here the elements of Σ correspond to the state numbers of the automaton in Figure 3, except
that we code the states 10, 11, . . . , 19 by the capital letters A,B, . . . , J . Then we need to verify the following
identities:

τ(ϕn(0)) = hn(0) τ(ϕn(1)) = hn(1)

τ(ϕn(23)) = hn(21) τ(ϕn(45)) = hn(21)
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τ(ϕn(78)) = hn(21) τ(ϕn(9A)) = hn(02)

τ(ϕn(BC)) = hn(10) τ(ϕn(2DE3)) = hn(2101)

τ(ϕn(4FG8)) = hn(2101) τ(ϕn(HIA)) = hn(012)

τ(ϕn(JA)) = hn(12) τ(ϕn(6)) = hn(2),

where A = 10, B = 11, etc. This can be done by a tedious induction on n, which we omit. Just to demonstrate
one needed identity:

τ(ϕn(9A)) = τ(ϕn−1(0BC))

= τ(ϕn−1(0))τ(ϕn−1(BC))

= hn−1(0)hn−1(10)

= hn−1(010)

= hn(02),

as desired.

3. Factor complexity of p

In this section we prove that the factor complexity of p is 2n+ 1. This is also a consequence of more general
results of [3]. Also see [4].

There is a well-established computational method for determining factor complexity, as discussed in [18]. The
first step is to create an automaton that, given integers i, j, n as input, decides if p[i..i+n− 1] = p[j..j+n− 1].
Normally we would do this with the following Walnut command, where PI is a file containing the automaton in
Figure 3:

def pisotfaceq "?msd_pisot4 At (t<n) => PI[i+t]=PI[j+t]":

However, in this case, the attempt fails. Walnut tries to determinize an automaton with 37351 states, and fails
even with 5 Terabytes of storage and many hours of computation, so we need a different approach.

Instead, we use the approach discussed in [20, Sect. 6.3]. We “guess” an automaton for “pisotfaceq” using
the Myhill-Nerode theorem. States are labeled with prefixes of Pisot representations. Two states are guessed
to be the same if all suffixes of length ≤ 5 (representing 1 + 82 + · · ·+ 85 = 37449 words) give the same result.
This gives us an automaton with 1080 states that we can represent as a file called pisi.txt.

Next, we can use induction and Walnut together to prove that our guess is correct. We do this as follows:

eval zeros "?msd_pisot4 Ai,j $pisi(i,j,0)":

eval induc "?msd_pisot4 Ai,j,n ($pisi(i,j,n) & PI[i+n]=PI[j+n])

=> $pisi(i,j,n+1)":

Both of these return TRUE, so our guess is correct.
Next, we create a linear representation (v, ζ, w) for the subword complexity function, using the following

Walnut command:

eval pisotsc n "?msd_pisot4 Aj j<i => ~$pisi(i,j,n)":

This gives us a linear representation of rank 131. When we minimize it using a Maple program, we get this
linear representation of rank 16:

v = [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
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ζ(0) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
−1 0 1 0 −1 0 0 2 0 0 0 0 0 0 0 0
−2 0 2 0 −1 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
−4 0 3 0 −1 0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
−5 0 2 0 0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−8 0 3 0 0 0 0 6 0 0 0 0 0 0 0 0
−13 0 5 0 −1 0 0 10 0 0 0 0 0 0 0 0


ζ(1) =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


w =



1
3
5
7
9
11
13
15
17
21
27
31
37
49
55
87



0

0

11 20

3
0

41

0
0

Figure 4. DFAO computing orders of overlaps in p.

With all these tools at our disposal, we can now prove the desired result.

Theorem 3.1. The factor complexity of p is 2n+ 1.

Proof. It remains to show that the linear representation (v, ζ, w) computes the function 2n+ 1. To do this, we
compute a linear representation for 2n+ 1 using the following Walnut command:

eval c2n1 n "?msd_pisot4 i<2*n+1":

This gives us a linear representation (v′, ζ ′, w′) of rank 108. When we minimize it, we get exactly the same linear
representation (v, ζ, w). This shows that the subword complexity is indeed 2n+ 1.

4. Critical exponent of p

In this section we determine the critical exponent of p.

Theorem 4.1. The critical exponent of p is

γ + 1 = (8− β1 + 2β2
1)/5

.
= 2.480862716147236962394265321.

Here γ + 1 is the real zero of 5X3 − 26X2 + 43X − 23.

Proof. We use the strategy previously employed for the Tribonacci word [16].
Now that we have a DFAO for p, we can find all the periods corresponding to overlaps. We do this with the

following Walnut command.

def pisotlargepow "?msd_pisot4 Ei (n>=1) & At (t>=i & t<=i+n) => PI[t]=PI[t+n]":

This gives the automaton depicted in Figure 4. Constructing this automaton involved determinizing an NFA
with 10,859 states and minimizing a DFA with 13,114,119 states; the calculation needed 90 Gigs of storage and
1100 seconds of CPU time.

As you can see from inspecting it, the periods are given by the representations 1010∗ and 10000∗. We now
compute the maximal repetitions in p by looking only at the periods given above:
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Figure 5. DFAO computing maximal powers.

def maximalreps "?msd_pisot4 Ei

(PI[i+n] != PI[i+n+p]) & $pisotlargepow(p) &

(Aj (j<n & $pisotlargepow(p)) => PI[i+j] = PI[i+j+p])":

def highestpow "?msd_pisot4 (p>=1) & $pisotlargepow(p) &

$maximalreps(n,p) & (Am $maximalreps(m,p) => m <= n)":

This gives the automaton in Figure 5. It recognizes all pairs (n, p) such that n/p+ 1 is a maximal power in p
with period p, for the p given above. By inspection we see these are as follows:

[1, 1][1, 0][0, 1]

[1, 1][0, 0][1, 0]([0, 0][1, 0])∗[0, 0]

[1, 1][0, 0][1, 0]([0, 0][1, 0])∗[0, 0][0, 0]

[1, 0][0, 1][0, 0][0, 1]([1, 0][0, 0][0, 0][0, 0])∗[0, 0]

[1, 0][0, 1][0, 0][0, 1]([1, 0][0, 0][0, 0][0, 0])∗[0, 0][1, 0]

[1, 0][0, 1][0, 0][0, 1]([1, 0][0, 0][0, 0][0, 0])∗[0, 0][1, 0][1, 0]

[1, 0][0, 1][0, 0][0, 1]([1, 0][0, 0][0, 0][0, 0])∗[0, 0][1, 0][1, 0][0, 0]

These correspond to, respectively, exponents of

6/5

(
∑

1≤i≤n+2

X2i)/X2n+4, n ≥ 0

(
∑

1≤i≤n+2

X2i+1)/X2n+5, n ≥ 0

(
∑

1≤i≤n+1

X4i+1)/(X4n+4 +X4n+2), n ≥ 0

(1 +
∑

1≤i≤n+1

X4i+2)/(X4n+5 +X4n+3), n ≥ 0

(3 +
∑

1≤i≤n+1

X4i+3)/(X4n+6 +X4n+4), n ≥ 0

(6 +
∑

1≤i≤n+1

X4i+4)/(X4n+7 +X4n+5), n ≥ 0.
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It now remains to check that these expressions are all less than γ and the last six tend to γ from below. We
explain how to do this for the second expression; the others are similar.

First, by the standard theory of linear recurrences (see, e.g., [7]), we know that

Xn = α1β
n
1 + α2β

n
2 + α3β

n
3 ,

where β1, β2, β3 are the zeros of X3− 2X2 +X − 1, and β1
.
= 1.7548776662466927600495 is the unique real zero.

By solving the appropriate linear system, we find that α1 = (β2
1 +6β1 +3)/23 and α2 +α3 = (20−β2

1−6β1)/23 =
0.277875581696887158856 · · · < 1. Furthermore, |α2|+ |α3| = ((8β2

1 − 20β1 + 16)/23)1/2 < 1/2. Since |β2| = |β3|
and the product of the zeros is equal to the constant term of the defining polynomial, which is 1, we get
|β2|2β1 = 1, which gives |β2| =

√
1/β1 = β1 − 1 by the defining equation. It follows that

|Xn − α1β
n
1 | = |α2β

n
2 + α3β

n
3 | ≤ (|α2|+ |α3|)(β1 − 1)n < (β1 − 1)n.

Next, one can prove by induction (or using Walnut!) that

∑
1≤i≤n

X2i =
3X2n −X2n+1 + 2X2n+2 − 6

5
.

It follows that ∑
1≤i≤n

X2i ≤
3X2n −X2n+1 + 2X2n+2 − 6

5

≤ 3− β1 + 2β2
1

5
(α1β

2n
1 ) + 6(β1 − 1)2n − 6/5.

Dividing by X2n, we see that the quotient tends to γ from below, where γ =
3−β1+2β2

1

5 . Then γ+ 1 is the desired
critical exponent.

5. Synchronization and balance

We now show that the functions ci : n → |p[0..n − 1]|i are synchronized in this numeration system, for
i ∈ {0, 1, 2}. This means that there exists an automaton Ai taking n and x as inputs (in P4 representation) and
accepting if x = ci(n), for i = 0, 1, 2. For more information about synchronization, see [19].

To do so, we “guess” the automata for the ci using the Myhill-Nerode theorem and then verify our guesses
using Walnut. Here is the code for verification, where psynch0, psynch1, psynch2 are the guessed automata:

eval tmp0 "?msd_pisot4 An,x (($psynch0(n,x) & PI[n]=@0) => $psynch0(n+1,x+1))

& (($psynch0(n,x) & PI[n]!=@0) => $psynch0(n+1,x))":

eval tmp1 "?msd_pisot4 An,x (($psynch1(n,x) & PI[n]=@1) => $psynch1(n+1,x+1))

& (($psynch1(n,x) & PI[n]!=@1) => $psynch1(n+1,x))":

eval tmp2 "?msd_pisot4 An,x (($psynch2(n,x) & PI[n]=@2) => $psynch2(n+1,x+1))

& (($psynch2(n,x) & PI[n]!=@2) => $psynch2(n+1,x))":

and all of these return TRUE.
Next, we create synchronized automata for |p[i..i+ n− 1]|i:

def pcount0 "?msd_pisot4 Ex,y $psynch0(i,x) & $psynch0(i+n,y) & y=x+z":

# 1687 states

def pcount1 "?msd_pisot4 Ex,y $psynch1(i,x) & $psynch1(i+n,y) & y=x+z":

# 2626 states
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def pcount2 "?msd_pisot4 Ex,y $psynch2(i,x) & $psynch2(i+n,y) & y=x+z":

# 2773 states

We can now prove the following result.

Theorem 5.1. The word p is 2-balanced.

Proof. We use the following Walnut commands.

def twobalanced0 "?msd_pisot4 Ai,j,n,x,y ($pcount0(i,n,x) &

$pcount0(j,n,y)) => (y<=x+2 & x<=y+2)":

def twobalanced1 "?msd_pisot4 Ai,j,n,x,y ($pcount1(i,n,x) &

$pcount1(j,n,y)) => (y<=x+2 & x<=y+2)":

def twobalanced2 "?msd_pisot4 Ai,j,n,x,y ($pcount2(i,n,x) &

$pcount2(j,n,y)) => (y<=x+2 & x<=y+2)":

Walnut returns TRUE for all of these.

6. Abelian complexity

We can compute the abelian complexity of p with Walnut in much the same way that it was done for the
Tribonacci word in [16], with some minor modifications. For each n and i ∈ {0, 1, 2}, we compute the vector
ui(n) = minx |x|i, where the minimum is over all the length-n factors of p.

def min0 "?msd_pisot4 Ei $pcount0(i,n,x) & Aj,y $pcount0(j,n,y) => y>=x":

# 169 states

def min1 "?msd_pisot4 Ei $pcount1(i,n,x) & Aj,y $pcount1(j,n,y) => y>=x":

# 169 states

def min2 "?msd_pisot4 Ei $pcount2(i,n,x) & Aj,y $pcount2(j,n,y) => y>=x":

# 223 states

Once we have this, we can show that

ψ(p[i..i+ n− 1])− (u0(n), u1(n), u2(n)) ∈ {(0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2),

(0, 2, 0), (0, 2, 1), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 2, 0), (2, 0, 0), (2, 0, 1), (2, 1, 0)}

for i ≥ 0 and n ≥ 1, as follows:

def validtriples "?msd_pisot4 Ei,n,a,b,c $pcount0(i,n,a+x) & $min0(n,a) &

$pcount1(i,n,b+y) & $min1(n,b) & $pcount2(i,n,c+z) & $min2(n,c)":

Next, we can show that

{ψ(p[i..i+ n− 1])− (u0(n), u1(n), u2(n)) : i ≥ 0}

is one of the following 18 possible sets:

S1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
S2 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
S3 = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (2, 0, 0)}
S4 = {(0, 0, 2), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
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S5 = {(0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0)}
S6 = {(0, 0, 2), (0, 1, 1), (1, 0, 1), (1, 1, 0), (2, 0, 0)}
S7 = {(0, 1, 2), (1, 0, 2), (1, 1, 1), (2, 0, 1), (2, 1, 0)}
S8 = {(0, 2, 1), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}
S9 = {(0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0)}
S10 = {(0, 0, 2), (0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0)}
S11 = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0)}
S12 = {(0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}
S13 = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (2, 0, 1), (2, 1, 0)}
S14 = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 1, 0)}
S15 = {(0, 1, 2), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}
S16 = {(0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}
S17 = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1)}
S18 = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}.

Theorem 6.1. There is a P4-automaton of 144 states that, on input a P4 representation of n, computes the
number of distinct length-n factors of p, up to abelian equivalence.

Proof. To create the automaton, use the following Walnut code:

def a001 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x) & $min0(n,x) &

$pcount1(i,n,y) & $min1(n,y)& $pcount2(i,n,z+1) & $min2(n,z)":

#6 states

def a002 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x) & $min0(n,x) &

$pcount1(i,n,y) & $min1(n,y) & $pcount2(i,n,z+2) & $min2(n,z)":

#125 states

def a010 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x) & $min0(n,x) &

$pcount1(i,n,y+1) & $min1(n,y) & $pcount2(i,n,z) & $min2(n,z)":

#6 states

def a011 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x) & $min0(n,x) &

$pcount1(i,n,y+1) & $min1(n,y) & $pcount2(i,n,z+1) & $min2(n,z)":

# 132 states

def a012 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x) & $min0(n,x) &

$pcount1(i,n,y+1) & $min1(n,y) & $pcount2(i,n,z+2) & $min2(n,z)":

# 129 states

def a020 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x) & $min0(n,x) &

$pcount1(i,n,y+2) & $min1(n,y) & $pcount2(i,n,z) & $min2(n,z)":

#126 states

def a021 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x) & $min0(n,x) &

$pcount1(i,n,y+2) & $min1(n,y) & $pcount2(i,n,z+1) & $min2(n,z)":

#131 states
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def a100 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+1) & $min0(n,x) &

$pcount1(i,n,y) & $min1(n,y) & $pcount2(i,n,z) & $min2(n,z)":

# 6 states

def a101 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+1) & $min0(n,x) &

$pcount1(i,n,y) & $min1(n,y) & $pcount2(i,n,z+1) & $min2(n,z)":

# 132 states

def a102 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+1) & $min0(n,x) &

$pcount1(i,n,y) & $min1(n,y) & $pcount2(i,n,z+2) & $min2(n,z)":

# 127 states

def a110 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+1) & $min0(n,x) &

$pcount1(i,n,y+1) & $min1(n,y) & $pcount2(i,n,z) & $min2(n,z)":

# 132 states

def a111 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+1) & $min0(n,x) &

$pcount1(i,n,y+1) & $min1(n,y) & $pcount2(i,n,z+1) & $min2(n,z)":

# 131 states

def a120 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+1) & $min0(n,x) &

$pcount1(i,n,y+2) & $min1(n,y) & $pcount2(i,n,z) & $min2(n,z)":

# 134 states

def a200 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+2) & $min0(n,x) &

$pcount1(i,n,y) & $min1(n,y) & $pcount2(i,n,z) & $min2(n,z)":

# 110 states

def a201 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+2) & $min0(n,x) &

$pcount1(i,n,y) & $min1(n,y) & $pcount2(i,n,z+1) & $min2(n,z)":

# 131 states

def a210 "?msd_pisot4 Ei,x,y,z $pcount0(i,n,x+2) & $min0(n,x) &

$pcount1(i,n,y+1) & $min1(n,y) & $pcount2(i,n,z) & $min2(n,z)":

# 127 states

def num1 "?msd_pisot4 $a001(n) & ~$a002(n) & $a010(n) & ~$a011(n) & ~$a012(n) &

~$a020(n) & ~$a021(n) & $a100(n) & ~$a101(n) & ~$a102(n) & ~$a110(n) &

~$a111(n) & ~$a120(n) & ~$a200(n) & ~$a201(n) & ~$a210(n)":

def num2 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & $a011(n) & ~$a012(n) &

~$a020(n) & ~$a021(n) & ~$a100(n) & $a101(n) & ~$a102(n) & $a110(n) &

~$a111(n) & ~$a120(n) & ~$a200(n) & ~$a201(n) & ~$a210(n)":

def num3 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & $a011(n) & ~$a012(n) &

~$a020(n) & ~$a021(n) & ~$a100(n) & $a101(n) & ~$a102(n) & $a110(n) &

~$a111(n) & ~$a120(n) & $a200(n) & ~$a201(n) & ~$a210(n)":

def num4 "?msd_pisot4 ~$a001(n) & $a002(n) & ~$a010(n) & $a011(n) & ~$a012(n) &
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~$a020(n) & ~$a021(n) & ~$a100(n) & $a101(n) & ~$a102(n) & $a110(n) &

~$a111(n) & ~$a120(n) & ~$a200(n) & ~$a201(n) & ~$a210(n)":

def num5 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & $a011(n) & ~$a012(n) &

$a020(n) & ~$a021(n) & ~$a100(n) & $a101(n) & ~$a102(n) & $a110(n) &

~$a111(n) & ~$a120(n) & ~$a200(n) & ~$a201(n) & ~$a210(n)":

def num6 "?msd_pisot4 ~$a001(n) & $a002(n) & ~$a010(n) & $a011(n) & ~$a012(n) &

~$a020(n) & ~$a021(n) & ~$a100(n) & $a101(n) & ~$a102(n) & $a110(n) &

~$a111(n) & ~$a120(n) & $a200(n) & ~$a201(n) & ~$a210(n)":

def num7 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & $a012(n) &

~$a020(n) & ~$a021(n) & ~$a100(n) & ~$a101(n) & $a102(n) & ~$a110(n) &

$a111(n) & ~$a120(n) & ~$a200(n) & $a201(n) & $a210(n)":

def num8 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & ~$a012(n) &

~$a020(n) & $a021(n) & ~$a100(n) & ~$a101(n) & ~$a102(n) & ~$a110(n) &

$a111(n) & $a120(n) & ~$a200(n) & $a201(n) & $a210(n)":

def num9 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & $a011(n) & ~$a012(n) &

$a020(n) & ~$a021(n) & ~$a100(n) & $a101(n) & ~$a102(n) & $a110(n) &

~$a111(n) & ~$a120(n) & $a200(n) & ~$a201(n) & ~$a210(n)":

def num10 "?msd_pisot4 ~$a001(n) & $a002(n) & ~$a010(n) & $a011(n) & ~$a012(n) &

$a020(n) & ~$a021(n) & ~$a100(n) & $a101(n) & ~$a102(n) & $a110(n) &

~$a111(n) & ~$a120(n) & ~$a200(n) & ~$a201(n) & ~$a210(n)":

def num11 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & $a012(n) &

~$a020(n) & $a021(n) & ~$a100(n) & ~$a101(n) & $a102(n) & ~$a110(n) &

$a111(n) & $a120(n) & ~$a200(n) & ~$a201(n) & ~$a210(n)":

def num12 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & $a012(n) &

~$a020(n) & $a021(n) & ~$a100(n) & ~$a101(n) & ~$a102(n) & ~$a110(n) &

$a111(n) & $a120(n) & ~$a200(n) & $a201(n) & $a210(n)":

def num13 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & $a012(n) &

~$a020(n) & $a021(n) & ~$a100(n) & ~$a101(n) & $a102(n) & ~$a110(n) &

$a111(n) & ~$a120(n) & ~$a200(n) & $a201(n) & $a210(n)":

def num14 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & $a012(n) &

~$a020(n) & $a021(n) & ~$a100(n) & ~$a101(n) & $a102(n) & ~$a110(n) &

$a111(n) & $a120(n) & ~$a200(n) & ~$a201(n) & $a210(n)":

def num15 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & $a012(n) &

~$a020(n) & ~$a021(n) & ~$a100(n) & ~$a101(n) & $a102(n) & ~$a110(n) &

$a111(n) & $a120(n) & ~$a200(n) & $a201(n) & $a210(n)":

def num16 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & ~$a012(n) &

~$a020(n) & $a021(n) & ~$a100(n) & ~$a101(n) & $a102(n) & ~$a110(n) &

$a111(n) & $a120(n) & ~$a200(n) & $a201(n) & $a210(n)":
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def num17 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & $a012(n) &

~$a020(n) & $a021(n) & ~$a100(n) & ~$a101(n) & $a102(n) & ~$a110(n) &

$a111(n) & $a120(n) & ~$a200(n) & $a201(n) & ~$a210(n)":

def num18 "?msd_pisot4 ~$a001(n) & ~$a002(n) & ~$a010(n) & ~$a011(n) & $a012(n) &

~$a020(n) & $a021(n) & ~$a100(n) & ~$a101(n) & $a102(n) & ~$a110(n) &

$a111(n) & $a120(n) & ~$a200(n) & $a201(n) & $a210(n)":

eval coverall "?msd_pisot4 An (n>=1) => ($num1(n)|$num2(n)|$num3(n)|$num4(n)|$num5(n)|

$num6(n)|$num7(n)|$num8(n)|$num9(n)|$num10(n)|$num11(n)|$num12(n)|

$num13(n)|$num14(n)|$num15(n)|$num16(n)|$num17(n)|$num18(n))":

combine pab num1 num2 num3 num4 num5 num6 num7 num8 num9 num10 num11 num12

num13 num14 num15 num16 num17 num18:

morphism abc "0->1 1->3 2->3 3->4 4->4 5->4 6->5 7->5 8->5 9->5 10->5 11->5

12->6 13->6 14->6 15->6 16->6 17->6 18->7":

image BC3 abc pab:

Corollary 6.2. The abelian complexity of p, for n ≥ 1, lies in {3, 4, 5, 6, 7}. Each possibility occurs infinitely
often.

7. Palindromes

Theorem 7.1. The only palindromes occurring in p are

{0, 1, 2, 121, 101, 010, 01210, 21012, 1012101}.

Proof. It suffices to list all the factors of length ≤ 9, since any longer palindrome would have these as factors.
We can be sure we have examined all of them, by Theorem 3.1.

8. Bispecial factors

We say a factor w of an infinite word x is right-special (resp., left-special) if there exist two distinct letters
a, b such that wa and wb (resp., aw and bw) are both factors of x. A word w is bispecial if it is both right- and
left-special.

We can determine the lengths of bispecial factors occurring in p.

def pisotrightspec "?msd_pisot4 Ej $pisi(i,j,n) & PI[i+n]!=PI[j+n]":

def pisotleftspec "?msd_pisot4 Ej $pisi(i,j,n) & PI[i-1]!=PI[j-1]":

def pisotbispec "?msd_pisot4 $pisotrightspec(i,n) & $pisotleftspec(i,n)":

def pisotbispeclen "?msd_pisot4 Ei $pisotbispec(i,n)":

The result is displayed in Figure 6.

Theorem 8.1. The word p has a bispecial factor of length n iff

(n)P ∈ {1, 11, 110} ∪ (10)+{ε, 0} ∪ (1000)+{0, 01, 011, 0110}.
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Figure 6. Automaton recognizing lengths of bispecial factors in p.

9. Letter density

In this section we obtain the letter densities of p. We know from [3] that the densities exist, and therefore it
suffices to determine them on prefixes of the form hn(0).

Theorem 9.1.

– The density of 0 is 1/β2
1
.
= 0.324717957244746;

– The density of 1 is 1/β2
1 + 1/β4

1
.
= 0.430159709001946734;

– The density of 2 is 1/β3
1 + 1/β5

1
.
= 0.2451223337533.

Proof. An easy induction gives ψ(|hn(0)|) = (Xn−1, Xn−1 +Xn−3, Xn−2 +Xn−4), from which the desired result
follows immediately.

Remark 9.2. These densities were also given in [4] for a slightly different morphism with the same incidence
matrix.

10. Recurrence and appearance

Let x be an infinite word. The recurrence function R(n) is defined to be the smallest positive integer m such
that every occurrence of a length-n factor x is followed by another occurrence of the same word at distance at
most R(n). We now compute it for the word p.

Theorem 10.1. Define the sequences (Bi) and (Ci) as follows:

B2i+3 = [1(01)i10]P

B2i+4 = [1(01)i100]P

C4i+2 = [10(0010)i]P

C4i+3 = [10(0010)i0]P

C4i+4 = [10(0010)i00]P

C4i+5 = [10(0010)i001]P
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for i ≥ 0. Then

R(n) =



5, if n = 1;

12, if n = 2;

16, if n = 3;

21, if n = 4;

28, if n = 5;

Xi+4, if Bi ≤ n ≤ Ci+1 for i ≥ 3;

Xi+4 +Xi+2, if Ci+1 < n < Bi+1 for i ≥ 3.

Proof. We use the following Walnut code to compute R.

def poccur "?msd_pisot4 Ai Ej j>i & j<=i+x & $pisi(i,j,n)":

def precur "?msd_pisot4 $poccur(n,x) & ~$poccur(n,x-1)":

reg pix msd_pisot4 "0*10*":

def precB "?msd_pisot4 Ex $pix(x) & $precur(n,x) & ~$precur(n-1,x)":

def precC "?msd_pisot4 Ex $pix(x) & $precur(n,x) & ~$precur(n+1,x)":

Corollary 10.2. We have R(n) ≤ ξn for ξ = (2β2
1 − β1 + 2)

.
= 6.40431358.

The appearance function A(n) is defined to be the smallest positive integer m such that every occurrence of
a length-n factor x begins at a position ≤ m. We now compute it for the word p.

Theorem 10.3. Define the sequences (Bn) and (Cn) as in Theorem 10.1. We have

A(n) =



2, if n = 1;

4, if n = 2;

7, if n = 3;

11, if n = 4;

13, if n = 5;

X2i+4 − 1, if B2i+1 < n ≤ C2i+2 for i ≥ 1;

C2i+4, if C2i+2 < n < B2i+2 for i ≥ 1;

X2i+5 − 1, if B2i+2 ≤ n ≤ C2i+3 for i ≥ 1;

C2i+5, if C2i+3 < n ≤ B2i+3 for i ≥ 1.

Corollary 10.4. We have A(n) ≤ ζn for ζ = (2β2
1 − 2β1 + 1)

.
= 3.6494359.

11. Characterization of factors

In this section, we give a useful definition of p by forbidden factors. We thank Lucas Mol for his work on
this result.

Theorem 11.1. Every bi-infinite ternary cube-free word avoiding

F = {00, 11, 22, 20, 212, 0101, 02102, 121012, 01021010, 21021012102}

has the same set of factors as p.
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Proof. First, we check that p is cube-free by Theorem 4.1 and contains no factor in F .
Let w be a bi-infinite ternary cube-free word avoiding F . Since w avoids {00, 11, 22, 20, 212}, the only factors

of w of the form 0z0 with z ∈ {1, 2}∗ are 010, 01210, 0210. So w ∈ {01, 0121, 021}ω and thus w ∈ {01, 21, 0}ω.
So we write w = h(v) where h is the morphism 0→ 01, 1→ 21, 2→ 0.

Now it suffices to show that L contains v too. Since w is cube-free, its pre-image v is also cube-free.
To show that v avoids F , we consider every f ∈ F and we show by contradiction that f is not a factor of v.

(a) if v contains 00, then h(00) = 0101 ∈ F .
(b) if v contains 11, then h(11) = 2121 contains 212 ∈ F .
(c) if v contains 22, then h(22) = 00 ∈ F .
(d) if v contains 20, then h(20) = 001 contains 00 ∈ F .
(e) if v contains 212, then v contains 2121 by (c) and (d).

h(2121) = 021021 contains 02102 ∈ F .
(f) if v contains 0101, then h(0101) = 01210121 contains 121012 ∈ F .
(g) if v contains 02102, then h(02102) = 01021010 ∈ F .
(h) if v contains 121012, then v contains 1210121 by (c) and (d).

h(1210121) = 210210121021 contains 21021012102 ∈ F .
(i) if v contains 01021010, then v contains 010210102 by (a) and (f).

v contains 0102101021 by (c) and (d).
v contains 01021010210 by (b) and (e).
v contains 010210102101 by (a) and (g).
v contains 1010210102101 by (a) and (d).
v contains 21010210102101 by (f) and (b).
v contains 210102101021012 by (b) and to avoid (21010)3.
v contains 1210102101021012 by (c) and to avoid (02101)3.
h(1210102101021012) = 2102101210102101210102101210 = 2(102101210)3.

(j) if v contains 21021012102, then v contains 121021012102 by (g) and (c).
v contains 0121021012102 by (a) and (e).
v contains 10121021012102 by (a) and (d).
v contains 210121021012102 by (f) and (b).
v contains 0210121021012102 by (h) and (c).
v contains 10210121021012102 by (a) and (d).
v contains 102101210210121021 by (c) and (d).
v contains 1021012102101210210 by (b) and (e).
v contains 10210121021012102101 by (a) and (g).
v contains 102101210210121021010 by (b) and to avoid (1021012)3.
h(102101210210121021010) = 2101021012102101021012102101021012101 = (210102101210)31.

Acknowledgements. We thank Arseny Shur for reminding us about the relevance of the paper [21]. We are very grateful
to Lucas Mol for providing the proof of Theorem 11.1. Finally, we thank the referee for several helpful suggestions.

References

[1] J. Berstel, Axel Thue’s Papers on Repetitions in Words: a Translation. Number 20 in Publications du Laboratoire de
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