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Probabilistic Analysis of LLL-based Decoder of
Interleaved Chinese Remainder Codes

Matteo Abbondati, Antoine Afflatet, Eleonora Guerrini and Romain Lebreton
LIRMM, U. Montpellier, CNRS

Montpellier, France, FR

Abstract— To date, Li et al. have presented the only decoder
for Interleaved Chinese Remainder (ICR) codes [1]. The core of
their ICR decoder is to find a short vector in a lattice using the
LLL algorithm [2]. However, their analysis of the decoding failure
is partially heuristic. In this work, we present a new analysis of
their LLL-based decoder that gives a proved upper bound on its
decoding failure probability. 1

I. INTRODUCTION

Chinese Remainder Codes (CR codes) have been introduced
for their theoretical and practical aspects. For instance, Goldre-
ich et al. have shown their interest in secret sharing protocols
[3]. CR codes are the integer counterpart of Reed-Solomon
codes. They share similar correction capability and decoders.

Interleaving techniques are used to improve the unique
decoding radius of a given code at the price of possible
decoding failure. The most famous example is the case of
Interleaved Reed Solomon (IRS) codes, which can be decoded
asymptotically up to the Shannon bound with efficient (poly-
nomial) decoders for almost all errors [4]. One can find in
the literature a decoder for Interleaved Chinese Remainder
codes that works in a similar way [1]. In both cases, the
decoder tries to simultaneously correct ℓ codewords and build
a system of linear equations, seeking for solutions satisfying
some size constraints. The general idea of interleaved codes
is that increasing ℓ means increasing the number of errors we
can correct. But correcting beyond half the minimum distance
of the code can lead to decoding failure. Thus, we will focus
on the decoding failure probability with respect to the number
of the errors we can correct.

The main difference between the polynomial decoder of
IRS codes and the integer decoder of ICR codes is that the
problem of finding the smallest degree solution becomes the
problem of finding the shortest non-zero vector in a lattice,
which is an NP-hard problem [5]. In the original paper of [1],
the authors present the idea of using LLL for the decoding
of ICR codes. However, the proof of the correctness of their
decoder is justified by heuristic arguments. Note that the use of
LLL already appeared in earlier work for the power decoding
of CR codes [6].

In this paper, we prove an upper-bound on the decoding
failure probability of the LLL-based decoder. Our main result
expresses precisely the decoding failure of the algorithm in
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terms of its error correction capability (see Theorem 3.5). We
consider this as a first step towards possible extensions of ICR
codes to rational codes, and application to the design of a fault-
tolerant integer linear system solver, similarly to the existing
work in the polynomial case [7], [8].

The paper is structured as follows: in Section II we rephrase
the presentation of Chinese Remainder codes and their de-
coder, in such a way that can be easily extended to ICR codes.
Section III introduces ICR codes, describes their decoder and
states our main result on the decoder correctness. We deal
with the decoding failure analysis in Section IV. In Section
V, we discuss our decoding failure probability on an example
of code parameters.

II. CHINESE REMAINDER CODES

We start by recalling the CR codes and their decoding up
to unique decoding radius.

We will denote Zm the set of integers modulo m. The
remainder of the Euclidean division of k by m is denoted
indifferently [k]m or (k rem m).

Definition 2.1 (Chinese Remainder Codes): Let n be a
positive integer, p1 < p2 < · · · < pn be a list P of n
distinct prime numbers. Let N :=

∏n
i=1

pi be their products,
and K :=

∏k
i=1 pi for a parameter 1 ≤ k ≤ n. The Chinese

remainder code CR(P ;n,K) is a polyalphabetic code in the
ambient space Zp1 × · · · × Zpn of size N defined by

CR(P ;n,K) = {([C]p1 , . . . , [C]pn) s.t. C ∈ N and C < K}.

We notice that if k = n our code does not have any correction
capability, thus in what follows we will always tacitly assume
that k < n.

Throughout this paper, we will denote with C a code
CR(P ;n,K). For the transmission of a codeword c over
a noisy channel, we write the received word r = c + e,
where e ∈ Zp1 × · · · × Zpn is the error vector. According
to the Chinese remainder theorem, we can associate a unique
R ∈ ZN to any word r = (r1, . . . , rn) ∈ Zp1 ×· · ·×Zpn . For
the sake of simplicity, we will mostly take the point of view
that the ambient space is ZN .

The Chinese Remainder codes, being polyalphabetic, leads
us to the introduction of the weighted Hamming distance in
order to take into account the various alphabets.

Definition 2.2 (Weighted Hamming distance): Let R1, R2 ∈
ZN , we define the error support ER1,R2

between R1 and
R2 as the subset of indices i such that R1 ̸= R2 mod pi.



The error locator ΛR1,R2
:=
∏
i∈ER1,R2

pi is the product of
the corresponding primes. Its complement is the truth locator
YR1,R2

:= N/ΛR1,R2
=
∏
i/∈ER1,R2

pi. Finally, the weighted
Hamming distance between R1 and R2 is defined as

d(R1, R2) = log(ΛR1,R2
) =

∑
i∈ER1,R2

log(pi).

In this paper, the logarithms are in base 2 by convention.

A. Decoding up to the unique decoding radius

We can now recall the minimum distance of a CR code and
the classical decoder up to unique decoding radius.

Lemma 2.3 (Distance of a CR code): The minimal distance
d(C) of a CR(P ;n,K) code C satisfies d(C) > log(NK ).

Proof: For any C1, C2 ∈ C with 0 ≤ C1 ≤ C2 < K, we
have that C := C2−C1 belongs to C and d(C1, C2) = d(0, C).
Now d(0, C) = log(Λ0,C) = log(N/Y0,C). Since Y0,C divides
C and C < K, then we have d(C1, C2) = d(0, C) > log(NK ).
This inequality holds for any pair of codewords C1, C2, which
implies that d(C) > log(NK ) as stated.

For the rest of this section, let us fix a codeword C ∈ C
and consider a received word R ∈ ZN such that

d(C,R) ≤ du := log(N/K)/2 = log(
√
N/K). (1)

We will use the simplified notations E := EC,R, Y := YC,R
and Λ := ΛC,R for the rest of this section.

Since du < d(C)/2, unique decoding is possible ; we restate
in Algorithm 1 the unique decoding algorithm described by
Goldreich et al. [6], which is reminiscent of the Berlekamp-
Welch decoder for Reed-Solomon codes [9].

Let E = R − C ∈ ZN be the corresponding error. The
truth locator Y divides E because E = R − C = 0 mod pi
for all i /∈ E . Therefore, N = ΛY divides ΛE, which gives
ΛR = ΛE + ΛC = ΛC mod N . In order to decode, one
considers the following linearized equation in the unknowns
(φ,ψ)

φR = ψ mod N, (2)

which admits (Λ,ΛC) as a solution. Note that this solution is
small: Λ ≤

√
N/K so that ΛC <

√
NK. Therefore, (Λ,ΛC)

actually belongs to

SR =

{
(φ,ψ) ∈ Z2 φR = ψ mod N

0 ≤ φ ≤
√
N/K, 0 ≤ ψ <

√
NK

}
.

Finding a non-zero element in SR is a classical computer
algebra problem named rational reconstruction (see e.g. [10,
Section 5.10]). Using such a rational reconstruction algorithm,
we can prove that Algorithm 1 is a decoder of CR codes.

Theorem 2.4: Algorithm 1 is correct, meaning that if R is
within distance du = log

(√
N
K

)
of a codeword C, then it

returns C. Conversely, if Algorithm 1 returns C, then C is a
codeword such that d(C,R) ≤ du.

As a consequence, Algorithm 1 returns "decoding failure"
if and only if there is no codeword within distance du of R.

Proof: Let us first assume that there exists a codeword
C such that d(C,R) ≤ du. Let us show that the elements

Algorithm 1: Chinese Remainder codes decoder
Input: a code CR(P ;n,K) and a received word

R ∈ ZN
Output: a codeword C such that d(C,R) ≤ log

(√
N
K

)
or "decoding failure"

1 Compute (φ,ψ) ∈ SR by rational reconstruction
2 if φ divides ψ and 0 ≤ ψ/φ < K then
3 return C := ψ/φ
4 else
5 return "decoding failure"

of SR are unique as rationals, meaning that if (φ,ψ) and
(φ′, ψ′) ∈ SR \ {(0, 0)}, then ψ/φ = ψ′/φ′. Indeed, combin-
ing the equations φR = ψ mod N and φ′R = ψ′ mod N , we
obtain φ′ψ = φψ′ mod N . We know that 0 ≤ φ′ψ < N and
0 ≤ φψ′ < N , so φ′ψ = φψ′.

We have already seen that (Λ,ΛC) ∈ SR. So the rational
reconstruction (φ,ψ) ∈ SR \ {(0, 0)} computed by Algo-
rithm 1 verifies that ψ/φ = C. In particular, φ divides ψ,
0 ≤ ψ/φ < K and Algorithm 1 returns C.

Next, we assume that Algorithm 1 returns C := ψ/φ with
(φ,ψ) ∈ SR\{(0, 0)} and 0 ≤ ψ/φ < K. This last inequality
tells us that C is a codeword. Moreover, (φ,ψ) ∈ SR implies
that φ(R − C) = 0 mod N . So for any i ∈ EC,R, pi|φ(R −
C) but pi ∤ (R − C), since ri ̸= ci. This implies that pi|φ.
Altogether, we get that ΛC,R divides φ. Since (φ,ψ) ∈ SR,
we have that 0 ≤ φ ≤

√
N/K and we can conclude that

d(C,R) = log(ΛC,R) ≤ log(φ) ≤ du.

III. INTERLEAVED CHINESE REMAINDER CODES

Interleaving is a well-known encoding method giving effi-
cient decoders for correcting a large amount of errors.

Definition 3.1 (Interleaved Chinese Remainder codes): Con-
sider a CR code C := CR(P ;n,K). A homogeneous in-
terleaved Chinese remainder code ICR(P ;n,K) is defined
as the set of matrices C = (ci,j)1≤i≤n

1≤j≤ℓ
where C∗,j :=

(c1,j , . . . , cn,j) ∈ C are codewords in the ambient space
Zp1 × · · · × Zpn for any j = 1, . . . , ℓ.

As with the CR codes, we can use the Chinese remainder
theorem to see the ambient space as (ZN )ℓ. Therefore, we will
write any received word R as a vector R = (R1, . . . , Rℓ) ∈
(ZN )ℓ. In particular, we can write R = C + E for an error
E ∈ (ZN )ℓ. We will now adapt the distance to ICR codes.

Definition 3.2 (Weighted Hamming distance for ICR codes):
Let R,R′ ∈ (ZN )ℓ, we define the error support ER,R′ as
the union ∪ℓj=1ERj ,R′

j
of error supports of CR codewords Rj

and R′
j . In other words, the error support is the set of row

indices i such that the corresponding rows differ Ri,∗ ̸= R′
i,∗.

The error locator ΛR,R′ :=
∏
i∈ER,R′ pi is the product

of the corresponding primes. Its complement is the truth
locator YR,R′ := N/ΛR,R′ . The weighted Hamming distance
between R and R′ is defined as d(R,R′) := log(ΛR,R′).



In order to decode ICR codes, we can set the following key
equations similarly to CR codes:

φRj = ψj mod N for all 1 ≤ j ≤ ℓ. (3)

Note that vC := (Λ,ΛC1, . . . ,ΛCℓ) is a solution where Λ :=
ΛC,R.

One could decode an ICR code by solving each one of
Equations (3) separately using Algorithm 1. However, by
solving the equations in this way, one can only decode below
the unique decoding capacity du introduced in Equation (1).
In order to decode beyond this quantity we consider a collab-
orative decoder that simultaneously decodes the ℓ codewords.

We follow the setting of Li et al. [1], which propose an
approach similar to the simultaneous decoder of Interleaving
Reed Solomon codes in [11]. Reed Solomon codes can be
viewed as the polynomial version of CR codes, and IRS
decoding can be performed finding a polynomial vector of
small row-degree of a Fq[x]−module. Intuitively, since for
CR codes we have Theorem 2.4, we can transpose this to the
interleaved case, dealing with the problem of finding a vector
of integers of small size in a lattice (i.e. a Z−module).

The solutions of Equations (3) form a lattice. Recall
that the lattice generated by f1, . . . ,fn is defined as
L := {

∑
1≤i≤n kif i : k1, . . . , kn ∈ Z} where n ∈ N

and f1, . . . ,fn ∈ Rn. From Equations (3), there exist
m1, . . . ,mℓ ∈ Z such that (φ,ψ1, . . . , ψℓ) = (φ,φR1 +
m1N, . . . , φRℓ + mℓN). So the set of solutions of Equa-
tions (3) is the lattice L generated by the rows of the following
matrix (

1 R
0 N · Idℓ

)
∈ Z(ℓ+1)×(ℓ+1). (4)

In particular, vC ∈ L.

A. Decoding using a short vector

As for decoding CR codes, the target solution vC has
small size, so we redefine SR as a subset of solutions of
Equations (3) with size constraints

SR =

{
(φ,ψ1, . . . , ψℓ) ∈ Zℓ+1 φRi = ψi mod N

|φ| ≤ 2τ , |ψi| < 2τK

}
for some distance parameter τ that we will soon discuss.
Then, decoding ICR codes can be reduced to the problem
of finding the shortest non-zero vector of a lattice, which
is proved NP-hard [5]. Thus, we deal with a well-known
approximation algorithm, named LLL [2]. Given a lattice L,
the LLL algorithm finds, in polynomial time, a vector vs such
that ||vs||2 ≤ γ||λ1(L)||2, where λ1(L) is the shortest non-
zero vector of the lattice and γ ≥ 1 is the approximation
constant of LLL. It is proved that LLL always outputs a γ-
approximation of the shortest vector for the value γ =

√
2
ℓ

(our lattice has dimension ℓ + 1). Note that experiments on
LLL and its variants show that it achieves γ ≈ 1.02ℓ+1 on
average [12].

Remark that the output of LLL has constraints on the 2-
norm || . ||2. However, a short vector for the 2-norm may
not belong to SR for a small τ . In order to make the

two notions of size match, we need to introduce a scaling
operator σK : Qℓ+1 → Qℓ+1 such that σK((v0, v1, . . . , vℓ)) =
(v0K, v1, . . . , vℓ). We can then define L̄ := σK(L) and
vs := σ−1

K (v̄s), where v̄s := LLL(L̄) is a short vector. We can
now prove our result, which requires the following condition
on R.

Constraint 1: There exists a codeword C such that
γ
√
ℓ+ 1ΛC,R ≤ 2τ .

This constraint is equivalent to d(C,R) ≤ τ − log(γ
√
ℓ+ 1).

Lemma 3.3: Assuming Constraint 1, we have that vs ∈ SR.
Proof: Let v̄C := σK(vC) belongs to L̄. Because LLL

computes a γ-approximation of the shortest vector, we have
||v̄s||2 ≤ γ||λ1(L̄)||2 ≤ γ||v̄C ||2 ≤ γ

√
ℓ+ 1ΛK, where

λ1(L̄) is the actual shortest non-zero vector of L̄. Note that
v̄s ∈ L̄ implies vs ∈ L. Moreover, ||v̄s||∞ ≤ ||v̄s||2 <
γ
√
ℓ+ 1ΛK ≤ 2τK using Constraint 1. So if we denote

vs = (φ,ψ1, . . . , ψℓ), then |φ| ≤ 2τ and |ψj | < 2τK for
1 ≤ j ≤ ℓ. Altogether, we have proved that vs ∈ SR.

Note that, assuming Constraint 1, we also have that vC =
(Λ,ΛC1, . . . ,ΛCℓ) belongs to SR. We have now all the
ingredients to present our slightly modified version of the ICR
codes decoder of [1].

Algorithm 2: Interleaved CR codes decoder
Input: ICR(P ;n,K), received word R, parameter τ
Output: A codeword C s.t. d(C,R) ≤ τ or

”decoding failure”

1 Let L̄ be the scaled lattice
2 Compute a short vector v̄s := LLL(L̄)
3 Unscale the vector: vs = (φ,ψ1, . . . , ψℓ) := σ−1

K (v̄s)
4 if (|φ| ≤ 2τ ) and (φ divides all the (ψj)j=1,...,ℓ) and

(0 ≤ ψj/φ < K for all 1 ≤ j ≤ ℓ) then
5 return (C1, . . . , Cℓ) := (ψ1/φ, . . . , ψℓ/φ)
6 else
7 return "decoding failure"
8 end

Compared to Theorem 2.4 on CR codes, only one impli-
cation in the correctness of Algorithm 2 is always true (see
upcoming Lemma 3.4). The other implication will be proba-
bilistic; we will discuss it in the forthcoming Section III-B.

Lemma 3.4: If Algorithm 2 returns C on input R and
parameter τ , then C is a codeword of ICR(P ;n,K) such
that d(C,R) ≤ τ .

Proof: C is a codeword of ICR(P ;n,K) because the
algorithm has verified that 0 ≤ Cj = ψj/φ < K. Now,
since φ divides all the ψj , we have that (φ,ψ1, . . . , ψℓ) =
(φ,φC1, . . . , φCℓ) so that φRj = φCj mod N for all j. In
particular, pi|φ(Rj − Cj) for all i and j. However, for all
i ∈ EC,R, there exists j such that pi ∤ (Rj − Cj), which
implies that pi|φ. As a consequence, ΛC,R|φ. Considering
that |φ| ≤ 2τ , we can conclude that d(C,R) = log ΛC,R ≤
logφ ≤ τ .



B. Distribution of random received word

The decoder described in Algorithm 2 must occasionally
fail, since it tries to uniquely decode the received word
above the unique decoding capacity. In order to analyze our
algorithm, we consider a random received word R. Similarly
to the literature on IRS [4], [13], [14], the distribution DC,Er

of
R is related to a codeword C and a support for random errors
Er ⊆ {1, . . . , n}. Then, the distribution DC,Er is obtained
by taking R = C + E with E as follows: if i /∈ Er, then
Ei,∗ := (ei,j)1≤j≤ℓ is the zero vector. If i ∈ Er, then the
ℓ entries of Ei,∗ are mutually independent random variables
following the uniform distribution on Zpi , which we will
denote as Ei,∗ ∼ U⊥⊥((Zpi)ℓ).

Let Yr :=
∏
i/∈Er

pi (resp. Λr :=
∏
i∈Er

pi) be the truth
locator (resp. error locator) associated to Er. If we use the
point of view where R,C,E all belong to (ZN )ℓ, then the
distribution DC,Er

can be rephrased as taking R = C + E
with E = Yr ·E′ and E′ ∼ U⊥⊥((ZΛr )

ℓ).
Theorem 3.5 (Main result): Given an ICR code C with

parameters N,K, ℓ, and the approximation constant γ of LLL,
set

dmax :=
ℓ

ℓ+ 1

[
log(N/K)− log(6γ

√
ℓ+ 1)

]
. (5)

Choose a decoding distance bound dt < dmax, and set the
parameter τt := dt+log(γ

√
ℓ+ 1) in Algorithm 2. Consider a

random received word R ∼ DC,Er , for some codeword C ∈ C
and error support Er such that log Λr ≤ dt.

Then, Algorithm 2 on random input R outputs the center
codeword C of the distribution DC,Er

, with a probability of
failure Pf upper-bounded by

Pf ≤ 2−(ℓ+1)(dmax−dt) + exp

(
n

pℓ−1
1

)
− 1.

In other words, Theorem 3.5 states that Algorithm 2 can
decode almost all received word R within distance dt < dmax.

IV. ICR DECODER ANALYSIS

In this section, we analyze the correctness of Algorithm 2.
For this matter, we will discuss the probability of the event
SR ⊆ ZvC . When this result is verified, then vs is colinear to
vC and Algorithm 2 succeeds.

Throughout this section, we work under the assumptions of
Theorem 3.5. In particular, we will consider the error model
defined in Section III-B, i.e. that R is drawn at random from
the distribution DC,Er with log ΛEr ≤ dt. For the analysis, we
set τ ← τt in SR, where τt is defined in Theorem 3.5.

A. Decoding failure probability

In order to have that the decoding algorithm succeeds, we
will ensure that

SR ⊆ (Λ,ΛC1, . . . ,ΛCℓ)Z. (6)

Recall that Λ is a short notation for ΛC,R, and also E := EC,R,
Y := YC,R. To study the condition (6), we need to introduce
the set

SE′ :=
{
φ ∈ ZΛr

∣∣ |φE′
i crem Λr| ≤ 2τt+1KΛr/N

}

where e crem m denotes the central remainder of e modulo
m, that is the unique representative of e mod m in the range
{−⌈m2 ⌉+1, . . . , ⌊m2 ⌋}. The central remainder has the property
of being the representative with the smallest absolute value.

We need a new constraint to prove the following Lemma.
Constraint 2: 2τt+1K ≤ N ,
Lemma 4.1: Assume that Constraint 2 is verified. Then the

inclusion SE′ ⊆ Λ(ZΛr ) implies SR ⊆ (Λ,ΛC1, . . . ,ΛCℓ)Z.
Proof: Let (φ,ψ1, . . . , ψℓ) ∈ SR then

φEi = φ(Ri − Ci) = ψi − φCi mod N. (7)

Since R comes from the distribution DC,Er related to the
error support Er, we have that E ⊆ Er, Λ|Λr, and so Yr|Y .
Since Y |Ei, we conclude that Yr|Ei. Since Yr|N as well, we
obtain that ψi = φCi mod Yr. We can define the integer ψ′

i :=
ψi−φCi

Yr
, obtaining the bound |ψ′

i| ≤
|ψi|+|φCi|

Yr
< 2τt+1K

N Λr
which, thanks to Constraint 2, leads to

|ψ′
i| < Λr. (8)

Dividing every term in the equation (7) by Yr we obtain

φE′
i = ψ′

i mod Λr. (9)

Thus, φ mod Λr belongs to SE′ , and thanks to the hypothesis,
there exists a such that φ = aΛ. Since Λ|φ and Y |Ei,
we obtain that Λr = (ΛY )/Yr divides φE′

i = (φEi)/Yr.
Therefore, using Equation (9), we get ψ′

i = 0 mod Λr and the
inequality (8) implies that ψ′

i = 0.
Thus, we have that ψi = φCi = aΛCi, and we conclude

that (φ,ψ1 . . . , ψℓ) ∈ (Λ,ΛC1, . . . ,ΛCℓ)Z.
Thanks to the previous lemma, we can compute an upper

bound for the failure probability Pf of the decoding algorithm.
Indeed, if Algorithm 2 fails, then necessarily the vector vs
obtained from LLL is not colinear to vC . Since vs ∈ SR, this
can happen only if SR ⊈ vCZ. The previous lemma can be
restated as

SR ⊈ vCZ⇒ SE′ ⊈ Λ(ZΛr
)⇒ SE′ ̸= {0}.

Thus, we can say that the decoding failure probability Pf of
Algorithm 2 satisfies Pf ≤ P(SE′ ̸= {0}). In order to analyze
this probability, we introduce the notations B := 2τt+1K

N Λr
and gφ = gcd(φ,Λr) for φ ∈ ZΛr .

Lemma 4.2: Given E′ ∼ U⊥⊥((ZΛr
)ℓ), then

P(SE′ ̸= {0}) ≤ 1

Λℓr

Λr−1∑
φ=1

(
2

⌊
B

gφ

⌋
gφ + gφ

)ℓ
.

Proof: We will denote Z̸=0
Λr

:= ZΛr
\ {0}.

P(SE′ ̸= {0}) = P

 ⋃
φ∈Z̸=0

Λr

ℓ⋂
i=1

{|φE′
i crem Λr| ≤ B}


≤
∑
φ∈Z̸=0

Λr

P

(
ℓ⋂
i=1

{|φE′
i crem Λr| ≤ B}

)
.



Since the random variables {E′
i}ℓi=1 are mutually independent

and share the same distribution, the multiples {φE′
i}ℓi=1 are

also mutually independent for every φ ∈ Z̸=0
Λr

. So, we can
write

P(SE′ ̸= {0}) ≤
Λr−1∑
φ=1

(P(|φU crem Λr| ≤ B))
ℓ

with U ∼ U(ZΛr
) being a uniform random variable on ZΛr

.
The distribution of φU is uniform on the orbit Oφ of φ

Oφ =

{
0, φ, 2φ, . . . ,

(
Λr
gφ
− 1

)
φ

}
⊆ ZΛr

.

Since for every φ ∈ Z̸=0
Λr

there exists a unique unit (invertible
element) u ∈ Z∗

Λr
such that φ = gφu and u is a generator of

ZΛr
, i.e. uZΛr

= ZΛr
, we can conclude that the orbit Oφ is

equal to the orbit Ogφ . Therefore φU ∼ U(Ogφ).

P(|φU crem Λr| ≤ B) =
#{y ∈ Ogφ s.t. |y crem Λr| ≤ B}

#Ogφ

≤
2#{1 ≤ s ≤ Λr

gφ
− 1 | gφs ≤ B}+ 1

Λr

gφ

=
gφ

(
2⌊ Bgφ ⌋+ 1

)
Λr

.

The inequality comes from the fact that, within the orbit
Ogφ , we count the remainders crem Λr which are less than
or equal to B by doubling the number of remainders modΛr
between 1 and B and we add 1 to include zero. This latter
way of counting can yield a higher result when B > Λr

2 .
We can obtain an explicit upper bound of the above formula

for the failure probability in terms of the parameters of the
code and of the error model.

Lemma 4.3:

P(SE′ ̸= {0}) ≤
(
3
2τt+1K

N

)ℓ
Λr + exp

(
n

pℓ−1
1

)
− 1. (10)

Proof: Thanks to the previous lemma, we need to obtain

an upper bound for the sum 1
Λℓ

r

∑Λr−1
φ=1

(
2
⌊
B
gφ

⌋
gφ + gφ

)ℓ
. As

the sum is over all the elements φ ∈ Z̸=0
Λr

but the generic term
depends only on gφ = gcd(φ,Λr), we can regroup the terms
of the sum based on their gcd’s with Λr. For every given
divisor d < Λr of Λr, the number of φ ∈ Z̸=0

Λr
with gφ = d is

equal to ϕ
(
Λr

d

)
, where ϕ is the Euler’s totient function. This is

because {φ ∈ ZΛr
| gφ = d} = d(ZΛr/d)

∗ whose cardinality
is ϕ

(
Λr

d

)
. Thus we can write

Λr−1∑
φ=1

(
2

⌊
B

gφ

⌋
gφ + gφ

)ℓ
=
∑
d|Λr

d ̸=Λr

ϕ

(
Λr
d

)(
2

⌊
B

d

⌋
d+ d

)ℓ
.

Now we distinguish two cases: if d > B then ⌊Bd ⌋ = 0
and the generic term of the sum reduces to ϕ

(
Λr

d

)
(d)ℓ, while

when d ≤ B we upper bound the generic term of the sum
with ϕ

(
Λr

d

)
(3B)

ℓ. As we do not have direct control on the
average number of divisors which are either in the first or in
the second class, we will upper-bound the sum by a double

sum considering both classes at the same time. Thus, our sum
is upper bounded by the following:

1

Λℓr

∑
d|Λr

d̸=Λr

ϕ

(
Λr
d

)(
(3B)ℓ + dℓ

)

=

(
3B

Λr

)ℓ ∑
d|Λr

d̸=Λr

ϕ

(
Λr
d

)
+

1

Λℓr

∑
d|Λr

d ̸=Λr

ϕ

(
Λr
d

)
dℓ

≤
(
3B

Λr

)ℓ
Λr +

1

Λℓ−1
r

∑
d|Λr

d̸=Λr

dℓ−1.

Studying the second sum, we recognize the divisor
sum function σℓ−1(Λr) :=

∑
d|Λr

dℓ−1. Observing that
this arithmetic function is multiplicative, i.e. σk(ab) =
σk(a)σk(b) if gcd(a, b) = 1, we can write

1

Λℓ−1
r

∑
d|Λr

dℓ−1 =

∏
i∈Er

σℓ−1(pi)∏
i∈Er

pℓ−1
i

=
∏
i∈Er

1 + pℓ−1
i

pℓ−1
i

=
∏
i∈Er

(
1 +

1

pℓ−1
i

)
≤
(
1 +

1

pℓ−1
1

)|Er|

where in the last inequality we used that p1 < p2 < · · · < pn.
Now to conclude we observe that(

1 +
1

pℓ−1
1

)|Er|

= exp

(
|Er| ln

(
1 +

1

pℓ−1
1

))
≤ exp

(
|Er|

1

pℓ−1
1

)
≤ exp

(
n

pℓ−1
1

)
where we used that ln(1 + x) ≤ x for every x ∈ R.

B. Proof of the main Theorem

Proof of Theorem 3.5: We consider the execution of
Algorithm 2 with the input parameter τt and for a random
received word R. Let us first verify that our choice of
parameters satisfy Constraint 1, so that vs ∈ SR. Indeed,
Λ ≤ Λr ≤ 2dt = 2τt/(γ

√
ℓ+ 1).

Next, we need to verify Constraint 2 so that we can apply
Lemma 4.1, and deduce that the probability of failure of
Algorithm 2 is upper-bounded by PE′(SE′ ̸= {0}). So let
us prove that 2τt+1K/N ≤ 1. Note first that

2τt+1K/N = 2(2dtγ
√
ℓ+ 1)K/N

≤ 2dmax(2γ
√
ℓ+ 1K/N)

=
(
6γ
√
ℓ+ 1K/N

)−ℓ/(ℓ+1)

(2γ
√
ℓ+ 1K/N)

=

(
2K

N

γ
√
ℓ+ 1

3ℓ

)1/(ℓ+1)

.

We can assume 2K ≤ N since we took k < n after
Definition 2.1. Moreover, the approximation constant γ of
LLL always satisfies γ ≤

√
2
ℓ
. So, it is not hard to be

convinced that γℓ
√
ℓ+ 1 ≤

√
2
ℓ√
ℓ+ 1 ≤ 3ℓ for every ℓ ∈ N.

Altogether, we have proved 2τt+1K/N ≤ 1 and Constraint 2.



At this point, we can apply Lemma 4.3 to get an upper-
bound on the failure probability. It remains to prove that(
3 2τt+1K

N

)ℓ
Λr ≤ 2−(ℓ+1)(dmax−dt). Since 2−dmax(ℓ+1) =

(6Kγ
√
ℓ+ 1/N)ℓ, the previous inequality is equivalent to

Λr2
τtℓ ≤ 2dt(ℓ+1)(γ

√
ℓ+ 1)ℓ, which is verified since 2τt =

2dtγ
√
ℓ+ 1 and Λr ≤ 2dt .

V. DISCUSSION ON THE FAILURE PROBABILITY

Here we plot the upper bound on the failure probability

UPf
(dt) := 2−(ℓ+1)(dmax−dt) +

(
exp
(
n/pℓ−1

1

)
− 1
)

(11)

from Theorem 3.5 as a function of the distance.

0 20 40 60 80
dt

2-41

2-35

2-29

2-23

2-17

2-11

2-5

U
f

du dmaxdb

We used a logarithmic scale on the y-axis. This represents
the situation in which we use n = 50 primes for the ICR code
and each of them has about 25 bits. The other parameters used
for the code are k = 45 and ℓ = 3.

The graph exhibits a clear asymptotic behavior of the failure
probability, which becomes predominant for distances less
than a corner distance db.

This corner distance corresponds to the distance in which
the first term in (11) is equal to the constant term of UPf

, i.e.
db is such that 2−(ℓ+1)(dmax−db) = exp

(
n/pℓ−1

1

)
− 1.

We recognize three regions of interest:

1) dt ≤ du =
√
N/K: For small distances we used a

dashed line because the failure probability would be
zero if we execute the CR decoder of Algorithm 1
componentwise on the ICR codewords.

2) du < dt ≤ db: Within this regime of distances, the
failure probability of our decoder stagnates with the
same value as in db:

Pf ≤ UPf
(dt) ≤ UPf

(db) ≤ 2

(
exp

(
n

pℓ−1
1

)
− 1

)
.

3) db < dt < dmax: For this regime of distances the
upper bound on the failure probability behaves like
2−(ℓ+1)(dmax−dt). It increases exponentially and reaches
the value 1 approximately when dt = dmax.
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