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Further Extensions of the Grötzsch Theorem

Hoang La∗, Borut Lužar†, Kenny Štorgel†,

October 6, 2021

Abstract
The Grötzsch Theorem states that every triangle-free planar graph admits a

proper 3-coloring. Among many of its generalizations, the one of Grünbaum and
Aksenov, giving 3-colorability of planar graphs with at most three triangles, is per-
haps the most known. A lot of attention was also given to extending 3-colorings
of subgraphs to the whole graph. In this paper, we consider 3-colorings of planar
graphs with at most one triangle. Particularly, we show that precoloring of any two
non-adjacent vertices and precoloring of a face of length at most 4 can be extended
to a 3-coloring of the graph. Additionally, we show that for every vertex of degree
at most 3, a precoloring of its neighborhood with the same color extends to a 3-
coloring of the graph. The latter result implies an affirmative answer to a conjecture
on adynamic coloring. All the presented results are tight.

Keywords: Grötzsch Theorem, planar graph, 3-coloring, precoloring extension, one triangle

1 Introduction
A proper coloring of a graph G is an assignment of colors to its vertices such that adjacent
vertices are assigned distinct colors. For an integer k, a graph is k-colorable if it admits a
proper coloring with at most k colors; the smallest such k is called the chromatic number
of G, denoted by χ(G).

The Four Color Theorem [5, 6] states that the chromatic number of any planar graph
is at most 4, but determining which graphs achieve the equality is an NP-complete prob-
lem [14]. Consequently, searching for properties of (planar) graphs that guarantee 3-
colorability is a very vibrant field (see, e.g., [7] for a survey). It turns out that tri-
angles play an important role in this decision problem; indeed, a cornerstone theorem of
Grötzsch [21] states that every triangle-free planar graph is 3-colorable. Consequently, the
focus in the field turned to investigating ways in which triangles can appear in 3-colorable
planar graphs. For example, for any plane triangulation, Heawood [24] established a nec-
essary and sufficient condition by showing that it is 3-colorable if and only if all of its
vertices have even degrees (see [15, 19, 26] for generalizations of this statement).
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We may also allow triangles in general planar graphs and still retain 3-colorability:
Havel [23] conjectured that a 3-colorable planar graph may contain arbitrarily many
triangles as long as they are sufficiently far apart and Steinberg [29] conjectured that every
planar graph without cycles of length 4 and 5 is 3-colorable. While Havel’s conjecture
has been proved by Dvořák, Kráľ, and Thomas [18], Steinberg’s conjecture has been
refuted by Cohen-Addad et al. [13]. Currently the best result of a similar flavor is due to
Borodin et al. [9], stating that every planar graph without cycles of length 5 and 7, and
without adjacent triangles is 3-colorable. On the other hand, there are 3-colorable planar
graphs that may have close triangles (even incident) and have no short cycles forbidden:
as proved in [16], every planar graph obtained as a subgraph of the medial graph of a
bipartite plane graph is 3-colorable (in fact, 3-choosable).

Another direction of research is focused on planar graphs with small number of tri-
angles. Grünbaum [22] noticed that a planar graph may contain three triangles and
still retain 3-colorability. His original proof was incorrect and a corrected version was
published by Aksenov [1].

Theorem 1.1 ([1]). Every planar graph with at most three triangles is 3-colorable.

Shorter proofs of this result were given by Borodin [11] and Borodin et al. [10]. The
authors of the latter used the following result on 4-critical graphs due to Kostochka and
Yancey [27].

Theorem 1.2 ([27]). If G is a 4-critical graph on n vertices, then

|E(G)| ≥ 5n− 2

3
.

Theorem 1.2 is a restricted version of a more general theorem from [28], which describes
k-critical graphs and was used in [8] to characterize all planar 4-critical graphs with exactly
four triangles; we present these two results in Section 2.

Along with a short proof of Theorem 1.1, using Theorem 1.2, the authors of [10] pre-
sented short proofs of several other extensions of the Grötzsch Theorem, which guarantee
3-colorability of graphs being close to triangle-free planar graphs. In particular, they
extended a result from [25] stating that a triangle-free planar graph with an additional
vertex of degree 3 is also 3-colorable.

Theorem 1.3 ([10, 25]). Let G be a triangle-free planar graph and let H be a graph such
that G = H − v for some vertex v of degree 4 of H. Then H is 3-colorable.

They also gave a short proof of a precoloring extension result of Aksenov, Borodin,
and Glebov [3].

Theorem 1.4 ([3, 10]). Let G be a triangle-free planar graph. Then each coloring of any
two non-adjacent vertices can be extended to a 3-coloring of G.

Note that Theorem 1.4 extends the result of Aksenov [2] and Jensen and Thomassen [25]
that a graph obtained from a triangle-free planar graph by adding one edge is 3-colorable.

From Theorems 1.3 and 1.4 one can derive another precoloring extension result.
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Theorem 1.5 ([10]). Let G be a triangle-free planar graph and let f be a face of G of
length at most 5. Then each 3-coloring of f can be extended to a 3-coloring of G.

On the other hand, if the face f has length k with k ≥ 6, then not every precoloring
of its vertices can be extended to a 3-coloring of G. The cases when k = 6, 7, 8, 9 were
completely characterized in [20], [4], [17], and [12], respectively. Moreover, precoloring
faces in planar graph of girth at least 5 have also been studied (see, e.g., [12] for more
details).

In this paper, we introduce new results about 3-colorability of planar graphs with
small number of triangles and some precolored vertices. First, we extend Theorem 1.4 to
planar graphs with at most one triangle.

Theorem 1.6. Let G be a planar graph with at most one triangle. Then each coloring of
any two non-adjacent vertices can be extended to a 3-coloring of G.

The result is tight in terms of the number of precolored vertices and in terms of the
number of triangles; for example, the precolorings of graphs depicted in Figure 1 cannot
be extended to a 3-coloring of the whole graph.

1

2

3

(a)

1 2

(b)

Figure 1: Not every precoloring of three vertices can be extended to a
3-coloring of a planar graph with at most one triangle (example (a)), nor
can be every precoloring of two vertices in a planar graph with two triangles
(example (b)).

As a corollary of Theorem 1.6, we obtain a theorem similar to Theorem 1.3 for planar
graphs with at most one triangle.

Theorem 1.7. Let G be a planar graph with at most one triangle and let H be a graph
such that G = H − v for some vertex v of degree at most 3 in H, which is adjacent with
at most two vertices of the triangle in G if it exists. Then H is 3-colorable.

Proof. Let N(v) = {v1, v2, v3}. Without loss of generality, we may assume that v1 and v2
are not adjacent. Then, by Theorem 1.6, we can color v1 and v2 with the same color and
so the three vertices in N(v) will be colored with at most two colors, which means there
is an available color for coloring v.
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Again, the result is tight in terms of the number of precolored vertices and in terms of
the number of triangles (see Figure 2 for examples), as well as in terms of the number of
neighbors of v on the triangle. Clearly, connecting v with all three vertices of the triangle
would result in a subgraph isomorphic to K4.

(a) (b)

Figure 2: Not every graph obtained from a planar graph with at most
one triangle by adding a 4-vertex is 3-colorable (example (a)), nor is a
graph obtained from a planar graph with two triangles by adding a 3-vertex
(example (b)). The added vertex is depicted with an empty disk in both
cases.

Extending precolorings of small faces in planar graphs with one triangle is more re-
stricted. We prove an analogue of Theorem 1.5 for faces of length at most 4.

Theorem 1.8. Let G be a planar graph with at most one triangle and let f be a face of
G of length at most 4. Then each 3-coloring of f can be extended to a 3-coloring of G.

On the other hand, a precoloring of a 5-face in a planar graph with one triangle cannot
always be extended to a 3-coloring of the whole graph; see example in Figure 3.

1

2

1

2

3

Figure 3: Precoloring of the outer 5-face which cannot be extended to a
3-coloring of the graph.

The result about extending a precoloring of an 8-cycle from [17] (as remarked in [12])
implies the following.
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Theorem 1.9 ([17]). Let G be a triangle-free planar graph and let v be a vertex of degree
at most 4 in G. Then there exists a 3-coloring of G where all neighbors of v are colored
with the same color.

A similar result to Theorem 1.9 about coloring three neighbors of a vertex of an
arbitrary degree can be obtained as a corollary of Theorem 1.3.

Corollary 1.10. Let G be a triangle-free planar graph and let v1, v2, and v3 be distinct
vertices with a common neighbor v. Then there exists a 3-coloring of G where v1, v2, and
v3 are colored with the same color.

Proof. By Theorem 1.3, the graph obtained from G by adding a 4-vertex x adjacent to
v, v1, v2, and v3 is 3-colorable. In its coloring, the vertices v1, v2, and v3 are colored with
the same color, since they must all be colored differently from v and x, which receive two
distinct colors.

We prove a somewhat weaker result for the case of planar graphs with one triangle.
Let K ′4 be the graph obtained from K4 by subdividing once the three edges incident with
a vertex v (see Figure 4). We call a graph K ′4-free if it does not contain K ′4 as a subgraph
in such a way that the vertex v of K ′4 has degree 3 also in G. It is easy to see that the
vertices in the neighborhood of v cannot be colored with a same color.

v

Figure 4: A planar graph with at most one triangle with a vertex v of
degree 3 having an independent neighborhood N(v) for which there is no
3-coloring such that all vertices in N(v) receive the same color.

Theorem 1.11. Let G be a K ′4-free planar graph with at most one triangle. Then, for
every vertex of degree at most 3 with an independent neighborhood, a precoloring of its
neighbors with the same color can be extended to a 3-coloring of G.

Theorem 1.11 is tight in terms of the degree of a vertex and in terms of the number
of triangles (see examples in Figure 5).

2 Preliminaries
In this section we present the terminology and the auxiliary results that we are using in
the proofs of our theorems.

5



1

1

1

1

v

(a)

1 1v

(b)

Figure 5: Precoloring of the neighborhood of a 4-vertex v in a K ′4-free
planar graph G with one triangle cannot always be extended to a 3-coloring
of G (example (a)). Similarly, precoloring of the neighborhood of a 2-vertex
v in a planar graph G with two triangles cannot always be extended to a
3-coloring of G (example (b)).

Note that we only consider simple graphs, i.e., loopless graphs without parallel edges;
thus, whenever we perform identification of vertices in our proofs, we discard eventual
parallel edges.

For a graph G, we denote the number of its vertices and edges by nG and mG, respec-
tively. If G is a plane graph, i.e., a planar graph embedded in the plane, we denote the set
of its faces by F (G) and their number by fG; in particular, the number of faces of length
k is denoted by fk,G or simply fk if G is evident from the context. The length of a face α
is denoted by `(α). A vertex of degree k (resp., at least k) is called a k-vertex (resp., a
k+-vertex), and similarly, a face of length k is called a k-face.

We denote the graph obtained from a graph G by deleting a vertex v (resp., an edge e)
by G− v (resp., G− e). A graph is k-critical, if χ(G) = k and for any x ∈ V (G)∪E(G),
χ(G− x) < k. A subgraph of G induced by a set of vertices U is denoted by G[U ].

For a given cycle C in a plane embedding of a graph G, we define int(C) to be the
graph induced by the vertices lying strictly in the interior of C. Similarly, ext(C) is the
graph induced by the vertices lying strictly in the exterior of C. A separating cycle is a
cycle C such that int(C) 6= ∅ and ext(C) 6= ∅.

The following lemma is a crucial tool in the proofs, where we use minimality of coun-
terexamples; see, e.g., [10] for its proof.

Lemma 2.1 (Lemma 10, Borodin). Let G be a plane graph and F = v1v2v3v4 be a 4-face
in G such that v1v3, v2v4 /∈ E(G). Let Gi be obtained from G by identifying vi and vi+2

where i ∈ {1, 2}. If the number of triangles increases in both G1 and G2, then there exists
a triangle vivi+1z for some z ∈ V (G) and i ∈ {1, 2, 3, 4}. Moreover, G contains vertices x
and y not in F such that vi+1zxvi+3 and vizyvi+2 are paths in G (indices are modulo 4).

In the case of planar graphs with one triangle, we can use the following simpler state-
ment of Lemma 2.1.

6



v1v2

v3 v4

xy

z

Figure 6: The configuration in Lemma 2.1 in the case of a graph with one
triangle.

Corollary 2.2. Let G be a plane graph with at most one triangle and let α be any 4-face
of G. Then, at least one of the following holds:
(a) α is adjacent to a triangle, or
(b) for at least one pair of opposite vertices of α, we can identify them without creating

any new triangles.

Theorem 1.1 settles 3-colorability of planar graphs with at most three triangles. The
smallest example of a planar graph with four triangles that is not 3-colorable is the com-
plete graph K4. Plane 4-critical graphs with exactly four triangles have been completely
characterized by Borodin et al. [8]. In their proofs, they used the following result of
Kostochka and Yancey [28], which is a stronger version of Theorem 1.2.

Theorem 2.3 ([28]). If G is a 4-critical graph, then

mG ≥
5nG − 2

3
.

Moreover, the equality is achieved if and only if G is a 4-Ore graph.

Here, a graph is k-Ore if it is obtained from a set of copies of Kk by a sequence of
DHGO-compositions, where a DHGO-composition O(G1, G2) of graphs G1 and G2 is the
graph obtained through the sequence of the following steps: delete some edge xy from
G1, split a vertex z of G2 into non-isolated vertices z1 and z2, and identify x with z1 and
y with z2.

By a Pl4,4f -graph we denote a planar graph with exactly four triangles and no 4-faces.
A correlation between 4-Ore graphs and Pl4,4f -graphs was given in [8].

Theorem 2.4 ([8]). Every 4-Ore graph has at least four triangles. Moreover, a 4-Ore
graph has exactly four triangles if and only if it is a Pl4,4f -graph.

3 Proofs of Theorems 1.6, 1.8, and 1.11
We prove Theorem 1.6 in two steps. First, we consider the case when the two precolored
vertices receive distinct colors, which is equivalent to the statement of Theorem 3.1.
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Theorem 3.1. Let G be a planar graph with at most one triangle and let H be a graph
such that G = H − e for some edge e of H. Then H is 3-colorable.

Proof. We prove the theorem by contradiction. Suppose that H is a counterexample
minimizing the number of vertices plus the number of edges and let G be a plane graph
with at most one triangle such that G = H − e for some edge e of H. Note that since
G is planar and contains at most one triangle, it is 3-colorable by Theorem 1.1. By
Theorem 1.4, we may assume that G contains exactly one triangle T . Moreover, by the
minimality, H is 4-critical.

We consider five cases regarding 4-faces in G.

Case 1: G has at most two 4-faces. By the Handshaking Lemma, we have

2mG =
∑

α∈F (G)

`(α) ≥ 3 + 4 · f4,G + 5 · (fG − (1 + f4,G)) = 5fG − 2− f4,G

(in the calculation, we assume that T is a face, otherwise the lower bound on the number
of edges would be even higher). Then, 5fG ≤ 2mG + 4 and by applying the Euler’s
Formula and observing that nH = nG and mH = mG + 1, we infer that

10 = 5nG − 5mG + 5fG ≤ 5nG − 3mG + 4 = 5nH − 3(mH − 1) + 4 .

Thus,

mH ≤
5nH − 3

3
,

a contradiction to Theorem 1.2.

Case 2: G has a 4-face α = v1v2v3v4 such that at most one vertex of α is incident with T
and at most one vertex of e is incident with α. Let Gi be the graph obtained from G by
identifying vi and vi+2, where i ∈ {1, 2}. By the assumption and Corollary 2.2, we may
assume, without loss of generality, that G1 contains T as the unique triangle. Note that
the graph H1 obtained from H by identifying v1 and v3 contains e and is thus 3-colorable
by the minimality. Thus, we can extend the coloring of H1 to the coloring of H in which
v1 and v3 receive the same color, a contradiction.

Case 3: G has a 4-face α = v1v2v3v4 such that at most one vertex of α is incident with T
and both vertices of e are incident with α. We may assume, without loss of generality,
that e = v1v3. Let G2 be the graph obtained from G by identifying v2 and v4. Note that
if the number of triangles does not increase in G2, then we can continue as in Case 2.

Therefore, by Lemma 2.1, there exist vertices x, z ∈ V (G) such that xv4, xz, zv2 ∈
E(G). Consequently, no 4-face of G, other than α, can contain both vertices v1 and v3
due to planarity.

Due to Cases 1 and 2, and the fact that α contains both vertices of e, there exists
a 4-face α′ = v′1v

′
2v
′
3v
′
4 such that α′ contains two vertices of T , say v′1 and v′2 (note that

the two vertices incident with T are not opposite in α′, otherwise there would be another
triangle in G), with z′ being the third vertex of T . Let G′i be the graph obtained from G
by identifying v′i and v′i+2, where i ∈ {1, 2}. Again, if the number of triangles does not
increase in G′1 or G′2, then we can color H with 3-colors.
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It follows that there exist vertices x′, y′ ∈ V (G) such that x′z′, x′v′4, y′z′, and y′v′3 ∈
E(G). Suppose that at least one of C1 = z′v′2v

′
3y
′ or C2 = z′v′1v

′
4x
′ is a 4-face, say C1.

By our observation above, C1 does not contain both vertices of e. Let G′ be the graph
obtained from G by identifying v′2 and y′. Note that the number of triangles in G′ does not
increase. Let H ′ be the graph obtained from G′ by adding the edge e. By the minimality,
we can color H ′ with 3 colors and extend the coloring to a coloring of H, in which y′ and
v′2 receive the same color, a contradiction.

Thus, we may assume that both C1 and C2 are separating 4-cycles. Note that if
the vertices of α (and thus also the endvertices of e) belong to the vertex set V1 =
V (ext(C1)) ∪ V (C1), then H[V1] contains both T and e. Therefore, we can color H[V1]
by the minimality and extend the coloring of C1 to a coloring of H[V (int(C1)) ∪ V (C1)]
by Theorem 1.5. We use an analogous argument for C2 in the case when the vertices of
α belong to the graph induced by the vertex set V (int(C1)) ∪ V (C1), which implies that
the vertices of α belong to the vertex set V (ext(C2)) ∪ V (C2). Thus, H is 3-colorable, a
contradiction.

Case 4: G has a 4-face α = v1v2v3v4 such that exactly two of its vertices, say v1 and
v2, are incident with T , and at most one vertex of the edge e is incident with α. Let z
be the third vertex of T . Using similar arguments as in the previous cases, we infer that
there exist vertices x, y ∈ V (G) such that xz, xv4, yz, and yv3 ∈ E(G).

Suppose that C1 = zv2v3y is a 4-face. If e 6= v2y, then consider the graph G′ obtained
from G by identifying v2 and y. Note that the number of triangles in G′ does not increase.
Let H ′ be the graph obtained from G′ by adding the edge e. By the minimality, we can
color H ′ with 3-colors and extend the coloring to a coloring of H, in which y and v2 receive
the same color, a contradiction. Therefore, e = v2y. But then, either C2 = zv1v4x is a
4-face, in which case we can apply the same procedure on v1 and x as we did on v2 and
y, or C2 is a separating 4-cycle. However, since both V (T ) and V (e) belong to the vertex
set V1 = V (ext(C2)) ∪ V (C2), we can complete the coloring in a similar manner as in the
last paragraph of Case 3, a contradiction.

Thus, by symmetry, both C1 and C2 are separating 4-cycles. Moreover, each of C1 and
C2 contains exactly one vertex of e in its interior. Furthermore, T is a 3-face, otherwise
we can color H[V (ext(T )) ∪ V (T )] by the minimality, and then extend the coloring to
the interior of T by Theorem 1.5. Additionally, due to Case 1, there exists a 4-face
α′ = v′1v

′
2v
′
3v
′
4 in G, distinct from α. If identifying either v′1 and v′3, or v′2 and v′4 results

in a graph with one triangle, namely T , then by the minimality, it is 3-colorable and the
coloring can be extended to H. Therefore, by the fact that G has only one triangle and
Lemma 2.1, two vertices of α′ are incident with T , say v′1 = v1 and v′2 = z (meaning that
at least one of v′3 and v′4 is in V (int(C2)), see Figure 7) and there are vertices x′ and y′ in
G such that x′v′4, x′v2, y′v′3, and y′v2 ∈ E(G). This is not possible due to the planarity of
G, a contradiction.

Case 5: G has at least three 4-faces and each of them is incident with two vertices of T
and both vertices of e. Let α = v1v2v3v4 be such a face and let T = v1v2z. Without
loss of generality, we may assume that e = v1v3. Let G2 be the graph obtained from G
by identifying v2 and v4. If the number of triangles does not increase in G2, then we are

9



v1 = v′1

v2 = z′

v3 v4

y x

z = v′2

v′3

v′4

e

Figure 7: The 4-faces α and α′ in the last part of Case 4.

done. Thus, by Lemma 2.1, there exists a vertex x ∈ V (G) such that xz, xv4 ∈ E(G).
Note that by the assumptions, C = zv1v4x is not a 4-face, since it is incident to exactly
one vertex of e. Therefore, C is a separating 4-cycle. But then, the vertices of both T and
e are contained in the vertex set V1 = V (ext(C))∪V (C). Let V2 = V (int(C))∪V (C). By
the minimality, we can color G[V1] and extend the coloring of C to the coloring of G[V2]
by Theorem 1.5, a contradiction.

Since no 4-face can be incident with all three vertices of T , the proof is completed.

In the second step of proving Theorem 1.6, we show that any two non-adjacent vertices
in a planar graph with one triangle can be colored with the same color.

Theorem 3.2. Let G be a planar graph with at most one triangle. Then each coloring of
any two non-adjacent vertices with the same color can be extended to a 3-coloring of G.

Proof. We prove the theorem by contradiction. Suppose that a counterexample G is a
plane graph with the minimum number of vertices. By Theorem 1.4, we may also assume
that G contains exactly one triangle T . Let u and v be two non-adjacent vertices of G.

Let H be the graph obtained from G by identifying the vertices u and v. Clearly,
nG = nH +1 and mG = mH . By the minimality, H is 4-critical. To reach a contradiction,
we only need to prove that H is 3-colorable, which implies that there exists a 3-coloring
of G in which u and v receive the same color.

We consider three cases regarding 4-faces in G.

Case 1: G has no 4-faces. By the Handshaking Lemma, we have

2mG =
∑

α∈F (G)

`(α) ≥ 3 + 5 · (fG − 1) = 5fG − 2 .

Then, 5fG ≤ 2mG + 2 and by applying the Euler’s Formula, we infer that

10 = 5nG − 5mG + 5fG ≤ 5nG − 3mG + 2 = 5nH + 5− 3mH + 2 .

Thus,

mH ≤
5nH − 3

3
,

10



a contradiction to Theorem 1.2.

Case 2: G has exactly one 4-face. Similarly as in Case 1, we can compute that
5fG ≤ 2mG + 3 and by applying Euler’s Formula, we infer that

mH ≤
5nH − 2

3
.

In the case when mH < 5nH−2
3

, we obtain a contradiction to Theorem 1.2, and therefore,
H has exactly 5nH−2

3
edges.

Let α = v1v2v3v4 be the 4-face in G and let Gi be the graph obtained from G by
identifying vi and vi+2, where i ∈ {1, 2}.

Suppose first that the number of triangles does not increase in G1 or G2, say G1. In
the case {u, v} 6= {v1, v3}, we identify v1 and v3 in H to obtain the graph H1. By the
minimality, we can color H1 with 3 colors and extend the coloring to a coloring of H, and
therefore also to G, a contradiction. Hence, we may assume that {u, v} = {v1, v3}. In
this case, H is a planar graph with exactly one triangle. Thus, by Theorem 1.1, there
exists a 3-coloring of H, and therefore also of G, a contradiction.

We may thus assume that the number of triangles increases in both G1 and G2. By
Lemma 2.1, without loss of generality, we may assume that there exist vertices x, y, z ∈
V (G) such that zv1, zv2, xz, xv4, yz, and yv3 ∈ E(G), where zv1v2 is T . Since G contains
exactly one 4-face, it follows that both C1 = zv1v4x and C2 = zv2v3y are separating
4-cycles.

Note that if both u and v belong to the subgraph of G induced by the vertex set
V1 = V (ext(C1))∪V (C1), then we can color G[V1] by the minimality and use Theorem 1.5
to extend the coloring of C1 to the coloring of the interior of C1. By symmetry, we may
thus assume, without loss of generality, that u ∈ V (int(C1)) and v ∈ V (int(C2)).

Since mH = 5n−2
3

, by Theorems 2.3 and 2.4, we infer that H must have at least 5
triangles. Therefore, since G has exactly one triangle, it follows that by identifying u and
v, we create at least four new triangles. We will prove that this cannot happen.

First, observe that no new triangle can contain vertices x or y, since that would imply
the existence of another triangle, distinct from T , in G. Next, observe that u is adjacent
with at most one of the vertices v1 and v4, and v is adjacent with at most one of the
vertices v2 and v3. Thus, at most one new triangle can be formed using the edges v1v2
or v3v4, and so there must exist at least three triangles in H which contain the vertex z
and either u or v, say u, is adjacent to z. Therefore, there exist at least three vertices
w1, w2, w3 ∈ V (G) such that w1, w2, w3 ∈ V (int(C2)). Moreover, each of them is adjacent
to z and v (see Figure 8). Consider now the 4-cycle C = zw1vw2. Since G contains
exactly one 4-face, it follows that C is a separating 4-cycle. Furthermore, the exterior
of C together with the vertices of C contains both u and v, as well as T . Thus, by the
minimality, we can color G[V (ext(C)) ∪ V (C)] and extend the 3-coloring of the vertices
of C to a 3-coloring of H by Theorem 1.5.

Case 3: G has at least two 4-faces. Let α = v1v2v3v4 be a 4-face and let Gi be the
graph obtained from G by identifying vi and vi+2, where i ∈ {1, 2}. Since G contains
exactly one triangle, by Corollary 2.2, either, without loss of generality, v1v2 is an edge of
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v1v2

v3 v4

x
y

z

u

v

w1
w2

w3

Figure 8: The vertices in G comprising triangles in H in the last part of
Case 2.

T or we can identify v1 and v3 or v2 and v4 without creating any new triangles. Suppose
first that v1v2 is not an edge of T ; say that G1 has at most one triangle. Then, in the case
{u, v} 6= {v1, v3}, we identify v1 and v3 in H to obtain the graph H1. By the minimality,
we can color H1 with 3 colors and extend the coloring to a coloring of H, and therefore
also to G, a contradiction. Hence, we may assume that {u, v} = {v1, v3}. In this case,
H is a planar graph with exactly one triangle. Thus, by Theorem 1.1, there exists a
3-coloring of H, and therefore also of G, a contradiction.

Thus, we may assume that T = v1v2z, with z being distinct from v3 and v4, and that
in both G1 and G2 the number of triangles is at least 2. Therefore, by Lemma 2.1, there
exist vertices x, y ∈ V (G) such that xz, xv4, yz, and yv3 ∈ E(G).

Suppose that C1 = zv1v4x is a 4-face. Then, due to planarity of G, in the graph G′
obtained by identifying v1 and z, no new triangle is created. Thus, by the minimality, we
can color G′ and infer 3-colorability of G in a similar manner as above, a contradiction.

Therefore, by symmetry, we may assume that both C1 and C2 = zv2v3y are separating
4-cycles. Note that if both u and v belong to the vertex set V1 = V (ext(C1)) ∪ V (C1)
(resp., V2 = V (ext(C2)) ∪ V (C2)), then, by the minimality, we can color the graph H1

(resp., H2) obtained from G[V1] (resp., G[V2]) by identifying u and v and extend the
coloring to a coloring of H by Theorem 1.5, hence also obtaining a 3-colorability of G.

Thus, we may assume, without loss of generality, that u ∈ int(C1) and v ∈ int(C2).
Now, consider a 4-face α′ = v′1v

′
2v
′
3v
′
4. If α′ satisfies the property (b) of Corollary 2.2,

then we proceed as above to obtain a contradiction. Therefore, α′ is incident with T
and, by planarity of G, the vertices of α′ are all contained in V (int(T )) ∪ V (T ). But
then, both u and v belong to the exterior of T and we can color, by the minimality, the
graph obtained from G[V (ext(T )∪ V (T ))] by identifying u and v. Finally, we extend the
obtained coloring to a coloring of H by Theorem 1.5. Hence, from the coloring of H, we
again obtain 3-colorability of G, a contradiction. This completes the proof.

Theorems 3.1 and 3.2 combined settle Theorem 1.6. Next, we prove Theorem 1.8.

Proof of Theorem 1.8. Let G be a planar graph with at most one triangle and let f be a
precolored face of length at most 4.

12



Suppose first that f is of length 3. Since there is only one coloring of f (up to a
permutation of colors), the result follows from Theorem 1.1.

Thus, we may assume that f = v1v2v3v4 is a 4-face. Suppose that the precoloring of f
uses all three colors. Then, two non-adjacent vertices of f , say v1 and v3, receive distinct
colors and the other two vertices are colored with the third. Note that the same coloring
of f (up to a permutation of colors) can be obtained by adding an edge between v1 and
v3. The obtained graph is 3-colorable by Theorem 3.1.

Therefore, we may assume that the vertices of f are precolored with two colors. We
proceed by contradiction. Let G be a plane graph with at most one triangle such that
a precoloring of some 4-face f with two colors cannot be extended to a 3-coloring of G.
Moreover, let G be the smallest such graph in terms of the vertices. Clearly, G has exactly
one triangle T , otherwise the precoloring can be extended by Theorem 1.5.

Let Gi be the graph obtained from G by identifying vi and vi+2, where i ∈ {1, 2}. If
the number of triangles does not increase in G1 or G2, say G1, then there is a 3-coloring
of G1, guaranteed by Theorem 1.6, which induces a 3-coloring of G such that the vertices
of f are colored with two colors.

Thus, by Lemma 2.1, without loss of generality, we may assume that there exist
vertices x, y, z ∈ V (G) such that zv1, zv2, xz, xv4, yz, and yv3 ∈ E(G), where T = zv1v2.
Observe that coloring of f forces also the colors on x, y, and z (see Figure 9).

v1v2

v3 v4

y x

z

1

1

1

2

2
2

3

Figure 9: The coloring of f forces the colors of x, y, and z.

Let C1 = zv1v4x and C2 = zv2v3y. Suppose that at least one of C1 or C2, say C1, is
a separating 4-cycle. Then, by the minimality, the coloring of f extends to a 3-coloring
of G[V (ext(C1)) ∪ V (C1)]. Since the obtained coloring of C1 extends to a 3-coloring of
G[V (int(C1)) ∪ V (C1)] by Theorem 1.5, we obtain a 3-coloring of G, a contradiction.

Thus, we may assume that both C1 and C2 are 4-faces in G. In a similar manner
as above, we infer that T must be a 3-face. But then, the precoloring of the 5-cycle
C3 = v3v4xzy given in Figure 9 extends to a 3-coloring of G[V (ext(C3) ∪ V (C3))] (which
might as well be an empty graph) by Theorem 1.5 and we color the two vertices in the
interior of C3 as in Figure 9, hence obtaining a 3-coloring of G, a contradiction. This
completes the proof.

We conclude this section with a proof of Theorem 1.11.
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Proof of Theorem 1.11. We prove the theorem by contradiction. Let G be a minimal
counterexample to the theorem, i.e., G is a K ′4-free planar graph with at most one triangle
and the minimum number of vertices such that there is a vertex u of degree at most 3
with an independent neighborhood, such that precoloring the vertices in N(u) with a
same color does not extend to a 3-coloring of G.

First, observe that by Theorem 1.3, G has exactly one triangle T , and by Theorem 1.6,
u is a 3-vertex. Let N [u] = {u, u1, u2, u3} and let H be the graph obtained by identifying
N [u] into a vertex w. Let α1, α2, and α3 be the three faces incident to u in G that contain
respectively {u1, u2}, {u2, u3}, and {u1, u3}. Furthermore, let α′1, α′2, and α′3 be the faces
incident to w in H corresponding to α1, α2, and α3.

Clearly, every 3-coloring ofH induces a 3-coloring of G with u1, u2, and u3 colored with
a same color, while u can be colored with either of the remaining two colors. Additionally,
since G is a planar graph, H is also a planar graph and by the minimality of G, H is
4-critical. Observe also that nG = nH + 3, mG = mH + 3, and fG = fH .

Now, we prove two structural properties of H.

Claim 1. H has no separating triangles.

Proof. Suppose the contrary and let C be a separating triangle in H. First, suppose that
C is the triangle of G. Without loss of generality, we may assume that w ∈ V (int(C)).
By the minimality, there is a 3-coloring of H[V (int(C))∪V (C)], and by Theorem 1.1, we
can extend it to a 3-coloring of H, since H[V (ext(C)) ∪ V (C)] has exactly one triangle,
a contradiction.

Therefore, we may assume that C 6= T . In that case, C has been created from a
5-cycle CG after we identified N [u] into w and thus w ∈ V (C). Since C 6= T , we may
assume, without loss of generality, that H[V (int(C)) ∪ V (C)] contains α′1 but not α′2 or
α′3 (see Figure 10).

u

u1

u2 u3
α2

α3α1

CG

Figure 10: A separating 5-cycle in G containing α1.

By the minimality, there is a 3-coloring φ of H[V (ext(C)) ∪ V (C)]. Now, we show
that we can extend φ to the interior of C. Let H1 = H[V (int(C)) ∪ V (C)]. We proceed
by induction on the number of separating triangles in H1. First, recall that all separating
triangles in H1 are incident to w; more precisely, they were obtained from 5-cycles in G
containing {u1, x, u2}.
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Suppose that H1 = H[V (int(C)) ∪ V (C)] has no separating triangle. Then it has at
most three triangles: C as its outer face, possibly α′1, and possibly T . Therefore, H1 is a
planar graph with at most three triangles and thus 3-colorable by Theorem 1.1.

So, we may assume that H1 has at least one separating triangle; we select a separating
triangle C ′ such that all separating triangles in H1 are contained in H ′1 = H1[V (int(C ′))∪
V (C ′)]. Then, by induction, there is a 3-coloring φ′ of H ′1. Finally, using the colorings
φ and φ′, we can complete the coloring of H by coloring H[V (H1) \ V (int(C ′))] using
Theorem 1.1 and an eventual permutation of colors in φ′, a contradiction. �

Claim 2. If H has a separating 4-cycle, then both its interior and exterior must contain
w or a triangle.

Proof. Suppose the contrary and let C be a separating 4-cycle ofH such thatH[V (int(C))∪
V (C)] is a triangle-free planar graph that does not contain w. By the minimality, there
is a 3-coloring φ of H[V (ext(C))∪V (C)]. By Theorem 1.5, we can extend φ to the whole
graph H, a contradiction. �

Now, we are ready to finish the proof by considering three cases regarding 4-faces of
G.

Case 1: G has no 4-faces. By the Handshaking Lemma, we have 2mG ≥ 5fG − 2 and
so 2mH + 6 ≥ 5fH − 2. Then, 5fH ≤ 2mH + 8 and by applying the Euler’s Formula on
G, we infer that

mH ≤
5nH − 2

3
.

Since H is 4-critical, by Theorem 2.3, we have that mH = 5nH−2
3

and that H is a 4-Ore
graph. Moreover, since H does not have separating triangles by Claim 1, there are at
most four triangles in H (T and the faces α′1, α′2, and α′3). Thus, by Theorem 1.1, H has
exactly four triangles and by Theorem 2.4, H is a Pl4,4f -graph. Recall that three of the
triangles are incident to the same vertex w. The only Pl4,4f -graph for which this is true
is K4 [8, Theorem 4]. However, to obtain K4, all three neighbors of u in G must be of
degree 2, meaning that G must be K ′4, a contradiction.

Case 2: G has a 4-face that is incident to u. As a result, after identifying u and
its neighbors, H has at most three triangles by Claim 1. Therefore, H is 3-colorable by
Theorem 1.1.

Case 3: G has a 4-face α = v1v2v3v4 and α is not incident to u. The edges v1v3 and
v2v4 are not present in G, otherwise G would have at least two triangles. Moreover, if
u is adjacent to two (opposite) vertices of α, say v1 = u1 and v3 = u3, then, by Case 2,
neither C1 = uv1v2v3 nor C2 = uv1v4v3 is a 4-face. Moreover, without loss of generality,
we may assume that u2 ∈ V (ext(C1)). However, by the minimality, there is a 3-coloring
of G[V (ext(C1))∪ V (C1)], and it can easily be extended to the whole G by Theorem 1.8.
Therefore, at most one of the vertices of α is adjacent to u.

Let Gi be the graph obtained from G by identifying vi and vi+2, where i ∈ {1, 2}.
Suppose that the only triangle in G1 is T . Then, by the minimality, the graph H1
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obtained by identifying the vertices v1 and v3 in H is 3-colorable. Clearly, its coloring can
be extended to H and thus also to G, a contradiction.

Therefore, by symmetry, we may assume that in G1 and G2 the number of trian-
gles increases. It follows by Lemma 2.1 that there are vertices x, y, and z such that
v1z, v2z, xz, xv4, yz, yv3 ∈ E(G), where T = v1v2z. If one of C1 = zv1v4x and C2 = zv2v3y
is a 4-face, it has the same properties as α and two of its vertices are incident with T .
But that is not possible due to planarity.

Thus, C1 and C2 are separating 4-cycles of G. Since, at most one of them can contain
u 6= z (by definition, u is not incident with a triangle), the other one remains a separating
4-cycle of H, which does not contain T nor w, a contradiction to Claim 2. This completes
the proof.

4 Conclusion
One motivation for the research presented in this paper was a conjecture on adynamic
coloring of planar graphs with one triangle. An adynamic coloring is a proper vertex
coloring of a graph G such that for at least one 2+-vertex all of its neighbors are colored
with a same color. Clearly, to admit such a coloring, G must have at least one 2+vertex
v with an independent neighborhood, i.e., v is not incident to a triangle. This is also a
sufficient condition.

In [30], it was proved that every triangle-free planar graph admits an adynamic 3-
coloring (note that this fact is also a corollary of Theorem 1.3). On the other hand, there
are planar graphs with two triangles that need 4 colors (see, e.g., the graph in Figure 5(b)).
Regarding planar graphs with one triangle, Šurimová et al. [30] conjectured that they are
3-colorable as soon as they contain a 2+-vertex with an independent neighborhood. Using
the results of this paper, we are able to answer the conjecture in affirmative.

Theorem 4.1. Every planar graph with at most one triangle and a 2+-vertex with an
independent neighborhood is adynamically 3-colorable.

Proof. We again proceed by contradiction. Let G be a minimum counterexample in terms
of the number of vertices with some fixed embedding. By Theorem 1.3, G has exactly
one triangle T . Suppose first that there is a 2-vertex v in G and let N(v) = {v1, v2}. The
graph G′ obtained by splitting v into two adjacent vertices both connected to v1 and v2
is planar with at most three triangles and thus 3-colorable by Theorem 1.1. Its coloring
induces a coloring of G in which v1 and v2 receive the same color, a contradiction.

Therefore, δ(G) ≥ 3. Moreover, by the Handshaking Lemma and the Euler’s Formula,
there are at least nine 3-vertices in G, and so at least six 3-vertices are not incident with
T . Hence, by Theorem 1.11, G contains a subgraph D isomorphic to K ′4. Since δ(G) ≥ 3,
there is a 5-face α of D that is not a face in G.

The graph induced by the interior of α in G and V (α) is a triangle-free plane graph,
which we can 3-color adynamically. This coloring gives us a coloring of the vertices of α
and fixes also the color of the vertex of T that is not incident with α. It remains to color
(eventual) interiors of the other two 5-faces of D in G and the interior of T . All can be
colored by Theorem 1.5. This completes the proof.
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Regarding other results in this paper, there are a number of possibilities for further
work. For example, similar results for planar graphs with two triangles and three triangles
would be interesing.

Problem 4.2. Characterize planar graphs with two (resp., three) triangles, in which pre-
coloring of any two non-adjacent vertices extends to a 3-coloring of the graph.

Also, one could investigate in more details precoloring extensions from larger indepen-
dent sets.

Problem 4.3. Characterize planar graphs with one triangle, in which precoloring of any
three non-adjacent vertices extends to a 3-coloring of the graph.

Additionally, Problem 4.3 could be extended to determining the properties of triples of
non-adjacent vertices whose precoloring does not extend to the whole graph; particularly,
which colorings of them.

We showed that a precoloring of a 5-face in a planar graph G with one triangle cannot
always be extended to a 3-coloring of G. So it is natural to ask for a characterization
similar to characterizations for faces of lengths 6 to 9 in triangle-free planar graphs.

Problem 4.4. Characterize planar graphs with one triangle, in which precoloring of a
5-face (resp., k-face for any k ≥ 6) extends to a 3-coloring of the graph.
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