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Abstract

Cable-driven parallel robots distinguish themselves from other robot types through their large workspace and high dynamic capa-
bilities. Investigations show that with purely kinematic control schemes, the theoretical workspace of such robots cannot be fully
realized in practice. Current control methods usually rely on complex models whose parameters are difficult to determine with
the required precision or feedback from expensive sensors that can measure the actual platform pose. This work presents a force
control method that enables high dynamic capabilities within a large workspace for redundantly-constrained cable-driven parallel
robots in practice, without the aforementioned drawbacks. The new method modifies the cable forces within the nullspace of the
robot’s structure matrix to keep them within their feasible limits and as close as possible to a desired level without changing the
platform’s pose. In simulation, it achieves similar performance as a state-of-the-art model predictive control method, with 79% less
computational effort. Experiments show that it can quickly reject disturbances and is significantly better at keeping the cable forces
within their limits on highly dynamic trajectories than a purely kinematic control scheme.

Keywords:
cable-driven parallel robots, force control, redundancy resolution, wrench-feasible workspace

1. Introduction

Cable-Driven Parallel Robots (CDPRs) belong to a family of
parallel robots in which cables replace rigid links that hold the
platform. The position and orientation of most CDPRs’ plat-
forms are controlled by varying the lengths of their cables. A
common way to do this is coiling them onto winches [1]. Since
this works well even for long cables, which represent relatively
lightweight links, CDPRs can have a large workspace, high dy-
namic performance, and a good payload-to-weight ratio. These
benefits set them apart from other types of robots. Another dif-
ference is that the portion of a CDPR’s workspace accessible in
practice not only depends on its geometric parameters but also
on the cable force distribution induced by the controller. The
cable forces must be kept between a lower and an upper limit
to prevent malfunctioning or damaging the robot due to exces-
sive forces or coiling errors. The wrench-feasible workspace of
a CDPR is defined as the set of platform positions and orien-
tations (this tuple is called the platform pose hereafter) where
its wrench equilibrium can be satisfied for a given set of exter-
nal wrenches using cables forces within predefined limits [2].
CDPRs with more cables than degrees-of-freedom of their plat-
form are classified as redundantly-constrained CDPRs [3]. For
such CDPRs, finding feasible cable force distributions is an un-
derdetermined problem with multiple solutions.

Email address: marc.fabritius@ipa.fraunhofer.de (Marc
Fabritius )

Laser
Tracker

Target

Platform

ai

Figure 1: IPAnema Mini CDPR and Laser Tracker

An example from this group of CDPRs is the IPAnema Mini [1,
page 398]. It is used to conduct the simulations and experiments
in this work and is depicted in Figure 1.
In practice, CDPRs often cannot fully access their theoretical
wrench-feasible workspace. This can be caused by errors in
the model parameters or unmodelled effects like cable creep,
preventing CDPR controllers from obtaining a feasible force
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distribution, even though one exists.
This makes designing controllers for CDPRs challenging, as it
requires weighing between two main objectives: guaranteeing
the feasibility of the cable force distribution or controlling the
platform pose. For controlling the platform pose, the different
methods found in CDPR literature can be broadly divided into
two main strategies: control in the operational space (i.e. the
platform pose) and control in the joint space (i.e. the cables’
lengths). For control strategies in the operational space, the er-
ror between the actual and desired platform pose is used as input
to the controller. Its output is applied to the platform through
separate force controllers for each joint. Multiple works com-
bine this control architecture with different types of controllers
such as PID [4], adaptive dual-space controllers [5], H∞ con-
trollers [6], sliding-mode controllers [7, 8, 9], or exact lineariza-
tion techniques [10].
To enable control in the operational space, the actual platform
pose must be measured by means of cameras [11, 6, 12, 13],
lasers [14, 10], or estimated from the effective cable lengths
processed through the forward kinematic model of the robot as
in [15, 16, 4, 17, 18, 19, 20].
Joint space controllers map the desired platform pose into the
joint space using an inverse kinematic model. The resulting
commands are fed to controllers that move the winches accord-
ingly and receive feedback on the actual joint positions from
their encoders. Some control approaches used in the joint space
include proportional-differential controllers [21], wave-based
control [22], impedance control [23], synchronization [24] and
adaptive control [5]. Due to the constantly changing payloads
applied to each winch and the non-linear dynamics of CDPRs,
feed-forward linearization of the non-linear terms in the dy-
namic model, is a common technique used in the joint space
control of CDPRs (e.g. [25, 26, 27, 24, 28]).
Most of the previously mentioned approaches perform dynamic
control of the torque generated by the winches. Some of them
rely on the knowledge of the dynamic models of the CDPR’s
platform and winches to perform some compensations through
dynamic inversion or feed-forward linearization techniques.
Alternatively, servomotors can be used in many applications, as
they provide robust and high-performance motor position con-
trol. In such settings, the dynamics of the actuators can be ig-
nored as the motors can reliably control the cable lengths in the
joint space. This simplifies the control scheme of CDPRs, as
only an inverse kinematic model has to be implemented.
A drawback of this simple approach is that it cannot explicitly
control the cable forces. Its ability to access a CDPR’s entire
wrench-feasible workspace in practice is therefore often lim-
ited. This phenomenon and a possible solution are discussed in
the authors’ prior work [29].
Regardless of whether the position control is performed in the
operational or in the joint space, the cable forces have to be kept
within their limits. A common approach for redundantly re-
strained CDPRs is to employ hybrid position-force controllers.
Hereby, feasible force distributions are obtained through redun-
dancy resolution techniques based on the robot’s structure ma-
trix and its nullspace (e.g. [26, 30, 4, 31, 32, 21]). The obtained
force distribution is then employed along with a dynamic con-

trol strategy to control the platform position and guarantee cable
force feasibility simultaneously. Due to the non-linear nature of
the underlying mathematical problem, most of these approaches
employ iterative algorithms as in [33, 34, 35] and some of them
[26, 16, 35, 36] are only able to deal with CDPRs with a max-
imum degree of redundancy of two. Mattioni et al. resolve the
redundancy of CDPR by splitting their cables into two sets that
are position and force controlled, respectively [37]. The choice
of this partition is based on a force sensitivity index to minimize
the errors in the cable force distribution.
Santos et al. introduce model predictive control (MPC) methods
that compute the set of desired cable tensions as the solution of
an optimal control problem considering a dynamic model of the
CDPR [19, 20]. The goal of their controllers is to minimize a
combination of the error in the platform pose, the variation of
the cable forces, and their norm. The feasibility of the result-
ing cable forces is formulated as an explicit constraint to the
optimization problem.
All previously discussed control methods from the literature,
which achieve high performance, either rely on the direct feed-
back of the platform pose or use complex models, which de-
pend on the knowledge of various model parameters. The draw-
backs of these approaches are that suitable sensors are often
prohibitively expensive, complex models have high computa-
tional costs, and their parameters can be difficult to measure
with the required precision or may be subject to change in prac-
tice, e.g. the cables’ stiffness or the platform’s mass.
In prior research leading up to this work, [29], a novel force
correction method for redundantly-constrained CDPRs, which
does not require knowledge of any cable or platform weight pa-
rameters, is presented. It relies on servomotors for control in the
joint space and modifies the cable forces within the nullspace
of the CDPR’s structure matrix to keep them inside their lim-
its. A systematic study of its performance throughout the static
workspace of the IPAnema 3 CDPR [1, page 395] shows that
the method can significantly extend the workspace portion that
can be accessed in practice when compared to a kinematic con-
trol method.
This work introduces a further development of this method,
which additionally aims to keep the cable forces close to a spec-
ified level. This new feature could be used to adjust the stiffness
of the platform. A new practical tuning procedure enables the
method to achieve a high performance in disturbance rejection
and on dynamic trajectories. The new method is compared to
the MPC approach from [20] in simulation and to a purely kine-
matic controller in experiments on the IPAnema Mini CDPR.
These comparisons cover the full range of the CDPR’s dynamic
capabilities, showing its ability to reject disturbances and its be-
havior on three trajectories for various velocities.
The rest of this work is organized as follows. Section 2 intro-
duces the notation and a dynamic model of CDPRs. The new
control method and a practical tuning procedure are presented
in Section 3. In Section 4, it is evaluated through simulations
and experiments and compared to state-of-the-art controllers in
terms of disturbance rejection and on dynamic trajectories with
various platform velocities. Finally, the conclusion and outlook
are given in Section 5.
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2. Notation and Modelling of CDPR

Let m denote the number of cables and n the degrees-of-
freedom of a CDPR. Each cable i ∈ {1, ...,m} of a CDPR origi-
nates from a proximal anchor point ai ∈ R3, given in the fixed
robot coordinate system K0, and connects to a distal anchor
point on the moving platform, which is denoted as bi ∈ R3 in
the platform coordinate system Kp. The CDPR’s n degrees-of-
freedom usually consist of its platform position r ∈ R3 and ro-
tation matrix R ∈ SO(3) expressing its orientation for n = 6. As
a tuple, they are called the pose (r, R) ∈ SE(3) of the platform
and determine the mapping between the coordinate systemsK0
and Kp. The location of bi can be expressed in K0 as r + Rbi.
The state of the platform within its n = 6 degrees-of-freedom
is parameterized by a vector x ∈ R6, whose first three compo-
nents are the platform position r and the remaining three are a
parameterization of the rotation matrix R.
The cables of the CDPR are assumed to be straight lines, and
their mass is neglected. Their lengths are collected in the vector
l =

[
l1 · · · lm

]
∈ Rm. For each cable i ∈ {1, ...,m}, the vector

connecting its endpoints di ∈ R3, its direction ui ∈ R3 and
length li ∈ R are calculated as

di = ai − r − Rbi , ui =
di

∥di∥
, li = ∥di∥ . (1)

Figure 2 shows the relationships of these vectors. Elements in
the platform coordinate system Kp are colored blue.

Kp

bi

K0

di

ui

ai

r +
R

b i

r

Figure 2: Illustration of the vectors associated with cable i

The cable directions ui are used to assemble the structure ma-
trix AT ∈ Rn×m of the CDPR. Each column AT

i of this matrix
encapsulates the direction in which the i-th cable exerts a force
and moment on the platform

AT
i =

[
ui

Rbi×ui

]
∈ R6. (2)

The vector of cable forces f =
[
f1 · · · fm

]
∈ Rm, which pull

on the platform, is multiplied with AT to formulate the wrench
equilibrium equation

AT f + g = 0 . (3)

The platform’s wrench due to gravity is denoted as g ∈ R6.
Cable force distributions f are called feasible if they satisfy the
wrench equilibrium in Equation (3) and the predefined limits

fmin ≤ fi ≤ fmax for all i ∈ {1, ...,m} . (4)

The upper limit fmax is usually imposed by the capabilities of
the CDPR’s motors and winches. The lower limit fmin > 0
is chosen sufficiently large to prevent cable sagging or coiling
errors on the winches.
Redundantly-constrained CDPRs (m > n) are usually designed
such that the structure matrix AT has full rank n within the de-
sired workspace. As a result, the linear system in Equation (3)
is underdetermined and has infinitely many solutions f ∗ which
can be split into two components [2]

f ∗ = −AT+ g + Nα . (5)

The first term −AT+g is the least-squares solution, which is
calculated using the pseudo-inverse AT+ of the structure ma-
trix. The second term Nα represents the position α ∈ R(m−n)

of the solution f ∗ within an arbitrary basis N ∈ Rm×(m−n) for
the nullspace of the structure matrix. By definition, any value
of α fulfills the wrench equilibrium in Equation (3), but only
those α that also satisfy Equation (4) are considered feasible.
This property is exploited by the new force control method pre-
sented in Section 3.

2.1. Dynamic Model
To validate the proposed control approach in simulation, a dy-
namic CDPR model is constructed by augmenting the wrench
equilibrium from Equation (3). The platform’s Newton–Euler
equation of motion is given by

Mẍ + Cẋ = AT f + g , (6)

where M ∈ R6×6 is the inertia matrix of the platform, that is
multiplied by its acceleration ẍ. The matrix C ∈ R6×6 repre-
sents the influence of Coriolis and centripetal forces.
The cables are modeled as a Kelvin–Voigt material. This dy-
namic model is often used for the cables of CDPRs, as it of-
fers a good representation of their short-term dynamics [38,
page 159]. The model consists of a linear spring and a damp-
ing element arranged in parallel. The force fi in each cable
i ∈ {1, ...,m} is calculated as a function of the cable length
li from Equation (1), the rotational positions of the motors
θ ∈ Rm, and their derivatives

fi = kc

(
li

rwθi
− 1

)
+ η

l̇i
rwθ̇i
. (7)

Hereby, kc is the stiffness of the spring, η is the viscosity of the
damping element, and rw is the effective radius of the winch.
The torque τ ∈ Rm generated by the winches is calculated based
on their rotational state θ and the cable forces f

τ = J θ̈ + νθ̇ + rw f . (8)

The dynamic properties of the winches are captured in the diag-
onal inertia and viscous friction matrices J, ν ∈ Rm×m, respec-
tively.
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3. Force Control in the Nullspace

The presented force control in the nullspace (FCN) for
redundantly-constrained CDPRs is designed as an add-on to
a simple control scheme based on an inverse kinematic model
(IK). The latter calculates desired cable lengths l corresponding
to the desired platform pose (r, R). In the joint space, built-in
controllers of the servomotors that drive the CDPR’s winches
are responsible for reaching these desired cable lengths.
When the FCN method is activated, it adds offsets ∆l to the
desired cable lengths l before they are passed to the servomo-
tors in the winches. The goals of the FCN method, in order of
increasing priority, are:

1. The cable forces f should be kept as close as possible to
the force level fref , which can be freely chosen within the
limits from Equation (4).

2. The cable forces f should be within the limits of Equa-
tion (4).

3. The platform pose (r, R) should not be altered.

Figure 3 shows the structure of the proposed method as a block
diagram. All blocks are repeatedly executed by the control sys-
tem of the CDPR.

AT

IK l CDPR+

Nullspace
Calculation

Force
Correction PID Offset

Calculation

f

fref

(r, R)

NN

α β

∆l

Nold

Z−1

f

Figure 3: Structure of the Proposed Force Control Method

The FCN method first calculates a basis N for the nullspace of
the structure matrix AT. This basis is then used for the calcu-
lation of α and the offsets ∆l in order to satisfy the third goal
of the FCN method. The desired force correction α is calcu-
lated within the nullspace basis N in pursuit of the first two
goals of the FCN method. The proportional-integral-derivative
(PID) controller tries to move α to zero by means of its output
β, which is also interpreted as a position in the nullspace. This
output is translated to cable length offsets ∆l, which are added
to the cable lengths l calculated by the inverse kinematic.
The following sections explain the function of the blocks in Fig-
ure 3 in detail.

3.1. Inverse Kinematics
The inverse kinematic block IK maps the desired platform pose
(r, R) to corresponding cable lengths l. It uses the pulley
kinematic model developed in [39], which is applicable to the
IPAnema Mini CDPR. The cables are considered to be straight
lines originating from pulleys pivoting around proximal anchor
points ai. Their elasticity and weight are neglected. The model

also calculates the structure matrix AT at the current platform
pose and passes it to the nullspace calculation block.

3.2. Nullspace Calculation

The nullspace calculation block computes a nullspace basis N
for the structure matrix AT, which is a continuous function of
the pose (r, R). The essential property of continuity is not guar-
anteed when using standard nullspace calculation algorithms,
as the calculated basis can be arbitrarily oriented within the
nullspace. This free choice on behalf of the algorithm can intro-
duce discontinuous jumps when the parameters of AT change.
The necessary steps to ensure continuity are described as pseu-
docode in Algorithm 1.

Algorithm 1: Nullspace Calculation

Input: structure matrix AT ∈ Rn×m,
previous nullspace basis Nold ∈ Rm×(m−n)

1 Ñ = Nullspace
(
AT

)
∈ Rm×(m−n)

2 U,Σ,V = SVD
(
ÑTNold

)
3 N = ÑUV

Output: continuous nullspace basis N

The algorithm receives the nullspace basis from the previous
cycle Nold as an input from the delay block which is labeled
Z−1 in Figure 3. In Line 1, a nullspace basis of AT is calcu-
lated. To remove possible discontinuities in the basis’ orienta-
tion, a coordinate transformation between the nullspace basis
from the previous cycle Nold and the current one Ñ is calcu-
lated. If the nullspace itself changes between two executions
of Algorithm 1, the transformation ÑTNold is not an orthogo-
nal matrix and has singular values smaller than 1. Applying
N = ÑÑTNold would avoid discontinuities in N, but the result-
ing matrix is not an orthonormal basis of the nullspace as the
norms of its column vectors would be smaller than 1. To cor-
rect this, Algorithm 1 instead uses the nearest orthogonal matrix
of this transformation. This approximation is calculated using
the singular value decomposition UΣV = ÑTNold in Line 2.
In practice, the nullspace changes only in small steps between
two executions of Algorithm 1, even when the platform is mov-
ing at a high velocity. Therefore, all singular values of ÑTNold
are always close to 1 and UV is a sufficiently close orthogonal
approximation of UV ≈ ÑTNold.
The matrix N, as calculated in Line 3, is an orthonormal basis
of the nullspace and a continuous function of the platform pose
(r, R).

3.3. Force Correction

The force correction block in Figure 3 calculates the desired
change in the cable forces in order to achieve the three goals of
the FCN method. To address the first goal, the cable forces f
are shifted

f̂ = f − fref1 , (9)
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such that the objective can be stated as f̂ = 0. Hereby, 1 ∈ Rm

denotes the vector whose components are all 1. To move to-
wards its first goal, the FCN method changes the cable force in
the direction ∆ f with

∆ f = − f̂ . (10)

If the forces are not within their limits from Equation (4),
achieving this state becomes a higher priority than the force
level fref . The direction of the force changes ∆ f is subsequently
skewed towards the cable which violates its limits the most.
This shift between the first two goals is implemented by raising
the vector f̂ to the power p ≥ 1 while preserving its sign

f̂ p =

[
sign

(
f̂1

) ∣∣∣∣ f̂1

∣∣∣∣p · · · sign
(

f̂m

) ∣∣∣∣ f̂m

∣∣∣∣p]T
. (11)

The power p ∈ R is a function of the largest cable force limit
violation

p = 1 + pscale ·max


0,

max
i=1,...,m

( fi − fmax) ,

max
i=1,...,m

( fmin − fi)

 . (12)

The slope parameter pscale determines how quickly the con-
troller changes its priority from the first to the second objective
when cable forces start to violate their limits. While the vector
from Equation (11) determines the direction in which the ca-
ble forces are changed, the magnitude of this change is scaled
linearly with the distance ∥ f̂ ∥ from fref . Finally, the desired
change of the cable forces ∆ f can be calculated as

∆ f = −

∥∥∥∥ f̂
∥∥∥∥∥∥∥∥ f̂ p
∥∥∥∥ f̂ p. (13)

Notice that if the second goal is satisfied, p = 1 according to
Equation (12) and the force changes ∆ f from Equations (10)
and (13) are the same. Therefore, an explicit distinction be-
tween the cases p > 1 and p = 1 is not necessary.
To gain a better understanding for the behavior of Equa-
tion (13), ∆ f is visualized in Figure 4 as a vector field for the
two-dimensional case with m = 2. Hereby, fref is set to be the
average of the force limits. This visualization shows how ∆ f is
a continuous function of the cable forces f .
To satisfy the third goal of not altering the platform pose (r, R),
the desired force change ∆ f is projected onto the nullspace of
the structure matrix AT at the current pose

α = NT∆ f . (14)

The resulting vector α ∈ R(m−n) is the position of the desired
force changes within the nullspace basis N ∈ Rm×(m−n).
The previously described steps of the force correction block are
summarized in Algorithm 2 as pseudocode.

3.4. PID Controller

The PID block in Figure 3 contains a proportional-integral-
derivative controller, whose goal is to drive α ∈ R(m−n) to zero

fmin fref fmax

fmin

fref

fmax

Figure 4: Two-Dimensional Visualization of ∆ f ∈ R2 for All Cable Forces
f ∈ R2

Algorithm 2: Force Correction
Input: cable forces f ∈ Rm, force level fref ,

nullspace basis N ∈ Rm×(m−n)

1 f̂ = f − fref1

2 p = 1 + pscale ·max


0,

max
i=1,...,m

( fi − fmax) ,

max
i=1,...,m

( fmin − fi)


3 ∆ f = −

∥∥∥∥ f̂
∥∥∥∥∥∥∥∥ f̂ p
∥∥∥∥ f̂ p

4 α = NT∆ f

Output: desired nullspace position α
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by adjusting its output β ∈ R(m−n). The controller has a diago-
nal structure and takes the form R (s) = R (s) I in the Laplace
domain. Hereby, I ∈ R(m−n)×(m−n) denotes an identity matrix
and R(s) is the transfer function

R(s) = Kp +
Ki

s
+ Kd s , (15)

where the proportional Kp, integral Ki, and derivative Kd gains
are chosen using the following procedure.
The FCN method’s first goal of bringing all cable forces as close
to fref as possible also implies that their average f moves to this
level. For a fixed platform pose (r, R), and only for controller
tuning purposes, let us consider all blocks from Figure 3 as
a single-input single-output time-invariant linear system M(s)
with the input fref and output f . This is assumed to be equiv-
alent to a simple unity-feedback system with fref being the set-
point variable and f the controlled variable yielding

M(s) =
R(s)G(s)

1 + R(s)G(s)
(16)

where R(s) represents the PID controller and G(s) is the collec-
tion of all other blocks in Figure 3. The first step in tuning the
controller is to approximate the transfer function M(s) based
on its time response. To obtain this data, the controller is re-
stricted to contain only a proportional term R(s) = Kp with an
appropriate value such that f exhibits several oscillations af-
ter a step increase of fref . Although the dynamics of CDPRs
are known to be highly non-linear, modeling M(s) as a linear
system allows using a black box identification technique [40],
which simplifies the tuning procedure. From the identified sys-
tem M(s), which includes the proportional controller, the trans-
fer function G(s) can be calculated using Equation (16). The
well-known frequency response tuning technique is employed
to obtain a PID controller R(s), yielding an open loop trans-
fer function H(s) = R(s)G(s) with desired properties. Based
on definitions from [41, page 464], the following relationships
are established for the system’s gain crossover frequency ωgc,
phase crossover frequency ωpc, phase margin ϕm, and gain mar-
gin Kg

ℜ
{
R

(
jωgc

)}
= Kp , (17)

ℑ
{
R

(
jωgc

)}
= Kdωgc −

Ki

ωgc
. (18)

Hereby, R( jωgc) = −e jϕm/G( jωgc) is the value of the controller
in the frequency domain. While the value of Kp is determined
by Equation (17), one degree of freedom remains for Kd and Ki

whose relationship is established in Equation (18). This can be
resolved by setting a convenient value for the pair (Kg, ωpc).

3.5. Offset Calculation

The offset calculation block in Figure 3 translates the nullspace
position β ∈ R(m−n) into cable length offsets ∆l ∈ Rm. It as-
sumes that the cables behave similarly to linear springs when
changes in the cable forces Nβ are converted to changes in the

cable lengths. The stiffness of the cables is assumed to be pro-
portional to their lengths l divided by a specific stiffness con-
stant kc that depends on the cables’ material and diameter. The
cable length offsets ∆l ∈ Rm are calculated as

∆l =
1
kc

diag (l) Nβ , (19)

where diag (l) is the diagonal matrix whose entries are the com-
ponents of l. The assumptions underlying Equation (19) are
simplifications and might not be true in practice. Nevertheless,
this equation provides a sufficient approximation of the cables’
behavior for the FCN method to work as shown in Section 4.
Modeling errors concerning the cables’ behavior and elasticity
(e.g. a wrong value of kc) can be compensated in practice by
tuning the gains of the controller.

3.6. CDPR
The CDPR block in Figure 3 represents the robot’s behavior
which follows the commanded cable lengths l + ∆l using the
servomotors in its winches. The resulting cable forces f are
measured and passed to the force correction block. For the pur-
pose of tuning the PID controller as described in Section 3.4,
the average cable force f ∈ R is calculated and provided as an
output

f =
1
m

m∑
i=1

fi . (20)

4. Evaluation in Simulations and Experiments

The simulations and experiments in this work are performed
with the IPAnema Mini at Fraunhofer IPA [1, page 398]. It is
a redundantly-constrained CDPR with m = 8 cables and n = 6
degrees-of-freedom, which is shown in Figure 1. Its geometry
parameters ai and bi are listed in Table 1.

Table 1: IPAnema Mini Geometry

i ai [mm] bi [mm]

1 [ 500.0 − 377.5 447] [ 22 − 40 − 82.5]

2 [−500.0 − 378.0 447] [−22 − 40 − 82.5]

3 [−500.0 378.0 447] [−22 40 − 82.5]

4 [ 500.0 377.5 447] [ 22 40 − 82.5]

5 [ 531.5 − 344.5 − 447] [ 22 − 40 82.5]

6 [−531.5 − 344.5 − 447] [−22 − 40 82.5]

7 [−531.5 344.5 − 447] [−22 40 82.5]

8 [ 531.5 344.5 − 447] [ 22 40 82.5]

The IPAnema Mini uses Dyneema cables with a diameter of
1.5 mm and a specific stiffness of kc = 28500 N [1, page 398].
The viscosity of the cables in the dynamic simulation model
Section 2.1 is set to η = 200 N. The winches are dimensioned
for cable forces of up to 40 N. For the purpose of this work,
the cable force limits are set to fmin = 10 N and fmax = 25 N.
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Figure 5: Visualization of the IPAnema Mini with its wrench-feasible workspace (red) and trajectory endpoints r1, r2, r3 from two perspectives.

These restrictive limits are purposefully chosen to investigate
the behavior of the control methods when the platform leaves
the wrench-feasible workspace defined by these limits. The
IPAnema Mini’s platform weighs 0.25 kg. Its control system
is based on the TwinCAT 3.1 software by Beckhoff and runs
on a programmable logic control (PLC) with a cycle time of 1
millisecond.
For the experiments in Section 4.3, the platform’s position is
measured with a Leica AT960 laser tracker and a target as
shown in Figure 1. This laser tracker can measure the tar-
get’s position with an absolute accuracy of ±

(
15 µm + 6 µmm

)
,

which decreases by 6 µm per meter distance from the target.
For the static experiments in this work, the laser tracker was
placed three meters away from the center of the workspace of
the IPAnema Mini, which implies an absolute measurement ac-
curacy of ±33 µm. The sampling rate of these measurements is
1000 Hz.
The experiments and simulations in this work are conducted at
three different platform positions and on three linear trajectories
dispersed throughout the IPAnema Mini’s workspace.
The trajectories start at the origin r0 = 0 in the fixed coordinate
system K0, in the center of the frame, and end at the points

r1 =

180 mm
140 mm
100 mm

 , r2 =

180 mm
0 mm
0 mm

 , r3 =

−140 mm
150 mm
−35 mm

 . (21)

The platform orientation remains the same R = I ∈ SO(3) for
all simulations and experiments.
Figure 5 shows renderings of the IPAnema Mini and these tra-
jectories from two perspectives created with the open-source
CDPR simulation software WireX [42]. The volume of its static
wrench-feasible workspace is depicted in red. It is calculated
for the force limits from Equation (4), using the force distri-
bution method from [43]. The platform wrench g = −AT f ,

used for this computation, is calculated from the measured ca-
ble forces f at the position r0.
Figure 5 shows that the point r2 lies within this workspace,
while r1 and r3 do not. On the straight lines from r0 through
the points r1, r2, r3, the workspace ends after 155 mm, 182 mm,
127 mm, respectively.
The following sections discuss the tuning of the FCN controller
for the IPAnema Mini and its comparison to state-of-the-art
controllers in simulation and experiments.

4.1. Controller Tuning

The PID controller within the FCN method is tuned according
to the procedure from Section 3.4. The parameter pscale, which
controls how quickly the FCN method shifts between its first
two goals, is set to pscale = 2. This choice is a compromise
between how quickly the controller can shift its priorities and
its robustness at the borders of the workspace.
The design values used for the tuning are ωgc = 17.6 rad/s and
ϕm = 80◦. The value of ωgc is selected such that the controlled
system is 14 times faster than the open-loop system, based on
the approximate formula ωgc ≈ π/ts, where ts is the system’s
settling time. This is a compromise between the speed and ro-
bustness of the controller. Experiments show that larger values
of ωgc cause the system to be unstable at the borders of the
workspace when p > 1.
A value of Ki = 14.3 is selected as a trade-off between speed
and stability, yielding values of Kg = 15.2 dB and ωpc =

194 rad/s. The resulting values for the remaining controller
gains by means of Equations (17) and (18) are Kp = 0.206 and
Kd = 0.0063.

4.2. Comparison to a MPC Method

The MPC method introduced by Santos et al. [20] is a state-
of-the-art CDPR control method capable of pursuing multiple
objectives at once. Following an optimal control approach, it
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Figure 6: Simulation of the FCN and MPC Methods on the Third Trajectory with a Velocity of 1 m/s

specifies a quadratic program that minimizes a weighted sum
of the CDPR’s pose error, variation of its cable forces, and
their norm ∥ f∥. The feasibility of the cable forces from Equa-
tion (4) is mandated as an explicit constraint to the optimiza-
tion problem. Therefore, the CDPR always remains within
the wrench-feasible workspace, even when the commanded tra-
jectory leaves it. This is a significant difference to the FCN
method, which always follows the commanded trajectory even
when the force limits are violated. To ensure a fair comparison
between these methods within the wrench-feasible workspace
of the CDPR, the third objective of the MPC method is altered
to minimize ∥ f̂∥ as defined in Equation (9) instead of ∥ f∥.
This comparison is performed in simulation instead of exper-
iments since implementing the MPC method on the IPAnema
Mini CDPR would be very laborious, requiring the implemen-
tation of complex numerical solvers within its PLC. Further-
more, it is easier to ensure a fair comparison between the meth-
ods when using the dynamic model of the IPAnema Mini from
Section 2.1 in MATLAB Simulink.
Simulations show that the methods behave similarly on all three
trajectories from Figure 5. Therefore, only the third trajectory
is analyzed in detail for a velocity of 1 m/s.
Figure 6 shows the evolution of the cable forces f , force limit
violations p, and deviations from the nominal trajectory of the
FCN and MPC methods over time, during and after this trajec-
tory. The dotted vertical lines indicate the acceleration and de-
celeration phases of the trajectory. Between the first two verti-
cal lines, the CDPR moves with a constant platform velocity of
1 m/s. The first plots show that both controllers produce similar
cable forces during the trajectory. The FCN method is slightly
better at keeping them closer to their desired level fref , which
can be observed from the cable force averages f , that are shown
as thick lines. The second plot shows that the FCN method can

also keep the cable forces feasible (i.e. p = 1) slightly longer
than the MPC method. In terms of platform position error, the
FCN is better than the MPC method due to the different priori-
ties of the two methods and the fact that the FCN method only
alters the cable forces within the nullspace. Once the trajectory
has ended after 0.23 seconds, the MPC method moves the plat-
form to a position where it can find feasible cable forces again.
The computation times of the FCN and MPC methods during
these simulations, performed in MATLAB Simulink, are mea-
sured and averaged over 50 executions. The FCN method is
79% faster than the MPC method. This significant difference
in computational costs could be exploited to run the FCN con-
troller at faster cycle times than MPC, enabling it to react more
quickly to changes in the cable forces.

4.3. Disturbance Rejection

The ability of the FCN method to reject disturbances in the
cable forces is evaluated in experiments at the center r0, near
the border r2, and outside r1 of the wrench-feasible workspace
shown in Figure 5.
For each pose, the same experiment is conducted with the IK
and the FCN method. The platform is moved to one of the
poses, and the cable forces settle into a stationary state. A mass
of w = 2.916 kg is manually placed on the platform. After the
system reaches a new disturbed stationary state, the additional
weight is removed again. In these experiments, the robot shows
qualitatively the same behavior at all three positions. Therefore,
it is only analyzed in detail for r0 in Figure 7.
The force distribution plot shows the cable forces and their av-
erages (thick lines) for the FCN and IK methods. The aver-
age of the FCN method shows its reaction to the disturbance.
For the first 200 ms, it decreases similar to the IK method, but
then it increases and stabilizes slightly above the desired level
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fref = 17.5 N. After around four seconds, the weight is removed
from the platform and the cable forces return to their previous
levels.
The plots of the controller’s input and output magnitudes show
how quickly the FCN method reacts to the disturbance of the
weight being placed on the platform. It takes around one sec-
ond before the controller regains its desired state of ∥α∥ = 0
after the weight is placed on the platform. When it is removed
again, this only takes half a second. This difference might be
caused by the fact that the weight is manually placed and re-
moved from the platform. Thus, the resulting wrench acting
on the platform does not change instantaneously as the weight
transitions between the hands of the experimenter and the plat-
form. While the weight is resting on the platform, the magni-
tude of the controller output ∥β∥ slowly increases to counteract
creep effects in the cables.
The platform displacement plot shows the relative change in the
platform position ∆r as measured by the laser tracker. We ob-
serve an identical behavior in ∆r for both methods. This shows
that the FCN method does not influence the stiffness of the plat-
form at r0, as it does not significantly change the cable forces.
The fourth plot shows the relative changes in the first three com-
ponents of the platform’s gravity gxyz ∈ R3 due to the weight.
This force is calculated based on the cables’ measured forces f
and directions ui from Equation (1)

gxyz = −

m∑
i=1

ui fi . (22)

Its plot shows an identical behavior for both methods. This
is expected, as the force corrections of the FCN method are
designed to be inside the nullspace of the structure matrix AT.
The experimental results at all three platform positions from
Equation (21) are summarized in Table 2. For each position
and control method, the columns f and f w contain the average
cable force in the stationary state before and after the weight
is placed on the platform, respectively. In all cases, the FCN
method brings the average force closer to the desired level fref
when compared to the IK method. This effect is stronger at
the positions near the border r2 or outside r1 of the workspace.
The columns p and pw show the force limit violation defined
in Equation (12) for the stationary states before and after the
weight is placed on the platform. For r1 and r2, the FCN
method significantly reduces the value of p relative to the IK
method. The column ∥∆r∥ contains the total deviation of the
platform’s position due to the weight. This deviation depends
on the stiffness of the platform, which in turn depends on the ca-
ble forces and their average level f . A high cable force average
implies a high stiffness of the platform and therefore reduces
the deviation ∥∆r∥ induced by the weight.
The experiments in this section show that the FCN method can
quickly reject disturbances and keeps the cable forces close to
their desired level fref . By adjusting this level, the FCN method
could be used to indirectly modify the stiffness of the platform.

4.4. Workspace Investigation
The behavior of the IK and FCN methods is evaluated on the
three trajectories presented in Figure 5 for the platform veloci-

ties 1/3 m/s, 2/3 m/s, and 1 m/s. The behavior is also investi-
gated in the static workspace, i.e. at velocity 0 m/s. To measure
this, the three trajectories are discretized into 50 poses, where
measurements are taken after the CDPR has reached a station-
ary state. On each dynamic trajectory, the platform quickly
accelerates from its resting position at r0 to reach one of the
three previously mentioned velocities. It travels with this con-
stant velocity for the majority of the trajectory until it decel-
erates to stop at r1, r2, or r3. The length of the acceleration
and deceleration phases of the trajectories increases for higher
velocities, with a maximum of 13.55 mm necessary for reach-
ing 1 m/s. Hereby, the platform experiences a maximal accel-
eration of 27 m/s2, reaching the limits of the IPAnema Mini’s
capabilities.
Figure 8 shows the influence of the platform’s velocities on the
average cable force f , force limit violation measure p, and the
magnitudes of the controller’s input ∥α∥ and output ∥β∥. These
values are plotted as a function of the distance along the three
trajectories. After the platform stops at the endpoint of each
trajectory, the values are recorded for an additional second to
show how they reach a stationary state.
Comparing the two methods for the same velocity shows that
the FCN method can keep f closer to the desired level fref and
p closer to 1 than the IK method. For the velocities 1/3 m/s,
2/3 m/s, and 1 m/s, the behavior of the IK method is almost
identical, and only differs in the static experiments. The behav-
ior of the FCN method changes with increasing velocities as its
objectives become more challenging and its distance to them
increases. After the platform stops at the end of the trajectories,
the FCN method brings f and p to a stationary state which is
independent of the platform’s previous velocity.
The plots of p in Figure 8 show how much of the IPAnema
Mini’s workspace is accessible to the controllers in prac-
tice. Similar to the observations in the prior work [29] on
the IPAnema 3 CDPR, the static experiments show a good
correspondence between the extent of the wrench-feasible
workspace shown in Figure 5 and the portion of the trajecto-
ries in Figure 8 where p = 1 for the FCN method. On the
first and third trajectories, the accessible workspace of the FCN
method in the static case ends 26 mm before and 5 mm after the
wrench-feasible workspace, respectively. The second trajectory
is contained within the wrench-feasible workspace and the ac-
cessible one of the FCN method in the static experiments.
With increasing velocities, only smaller portions of the trajec-
tories are within the accessible workspace of the controllers.
Nevertheless, the FCN significantly decreases the force limit
violation p compared to the IK method.
The plots of the magnitudes of the FCN method’s controller
input ∥α∥ look similar for the velocities 1/3 m/s, 2/3 m/s and
1 m/s. Once the platform stops at the end of each trajectory,
it takes around half a second until the FCN method brings the
controller input to its desired state ∥α∥ = 0. In the static ex-
periments, ∥α∥ = 0 at every point of the trajectories because the
measurements are recorded once the CDPR reaches a stationary
state.
The plots of the magnitude of the controller output ∥β∥ show
that it steadily increases along the trajectories. This increase is
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Table 2: Static Experiments Results

Position Method f [N] f w [N] p pw ∥∆r∥ [mm]

r0
IK 17.32 16.87 1.0 1.0 0.312

FCN 17.49 17.89 1.0 1.0 0.313

r1
IK 12.66 13.14 15.37 19.57 0.954

FCN 14.76 15.47 6.1 15.87 0.427

r2
IK 28.68 27.84 27.48 33.96 0.316

FCN 16.83 17.1 1.0 5.36 0.355
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Figure 8: Behavior of the IPAnema Mini for Various Velocities During and After the Three Trajectories
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quicker for slower velocities as the controller has more time to
work towards its objectives.

5. Conclusion and Outlook

This work presents a force control method for redundantly-
constrained CDPRs that can keep the cable forces within their
limits and close to a specified force level. It does not require
knowledge of model parameters that are difficult to measure
or might change during the operation of a CDPR. The perfor-
mance of the new method is evaluated when disturbances are
applied to the cable forces and on different trajectories with
platform velocities of up to 1 m/s on the IPAnema Mini CDPR.
In simulations, the method shows similar behavior in the cable
forces as a state-of-the-art MPC method while being simpler
and requiring 79% less computational effort.
The experiments in this work show that the new method can
quickly react to disturbances and can significantly improve the
feasibility of the cable forces, especially for high platform ve-
locities, compared to a purely kinematic control method.
Future research could investigate the behavior of this method on
CDPRs with different geometric properties or sagging cables
to analyze its performance and applicability for redundantly-
constrained CDPRs in general. The implications of modifying
the desired force level fref during the operation of the new con-
trol method could also be analyzed with regard to the CDPR’s
stiffness.
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