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2-distance (∆ + 2)-coloring of sparse graphs

A 2-distance k-coloring of a graph is a proper k-coloring of the vertices where vertices at distance at most 2 cannot share the same color. We prove the existence of a 2-distance (∆ + 2)-coloring for graphs with maximum average degree less than 8 3 (resp. 14 5 ) and maximum degree ∆ ≥ 6 (resp. ∆ ≥ 10). As a corollary, every planar graph with girth at least 8 (resp. 7) and maximum degree ∆ ≥ 6 (resp. ∆ ≥ 10) admits a 2-distance (∆ + 2)-coloring.

Introduction

A k-coloring of the vertices of a graph G = (V, E) is a map φ : V → {1, 2, . . . , k}. A k-coloring φ is a proper coloring, if and only if, for all edge xy ∈ E, φ(x) = φ(y). In other words, no two adjacent vertices share the same color. The chromatic number of G, denoted by χ(G), is the smallest integer k such that G has a proper k-coloring. A generalization of k-coloring is k-list-coloring. A graph G is L-list colorable if for a given list assignment L = {L(v) : v ∈ V (G)} there is a proper coloring φ of G such that for all v ∈ V (G), φ(v) ∈ L(v). If G is L-list colorable for every list assignment L with |L(v)| ≥ k for all v ∈ V (G), then G is said to be k-choosable or k-list-colorable. The list chromatic number of a graph G is the smallest integer k such that G is k-choosable. List coloring can be very different from usual coloring as there exist graphs with a small chromatic number and an arbitrarily large list chromatic number.

In 1969, Kramer and Kramer introduced the notion of 2-distance coloring [START_REF] Kramer | Ein Färbungsproblem der Knotenpunkte eines Graphen bezüglich der Distanz p[END_REF][START_REF] Kramer | Un problème de coloration des sommets d'un graphe[END_REF]. This notion generalizes the "proper" constraint (that does not allow two adjacent vertices to have the same color) in the following way: a 2-distance k-coloring is such that no pair of vertices at distance at most 2 have the same color. The 2-distance chromatic number of G, denoted by χ 2 (G), is the smallest integer k such that G has a 2-distance k-coloring. Similarly to proper k-list-coloring, one can also define 2-distance k-list-coloring and a 2-distance list chromatic number.

For all v ∈ V , we denote d G (v) the degree of v in G and by ∆(G) = max v∈V d G (v) the maximum degree of a graph G. For brevity, when it is clear from the context, we will use ∆ (resp. d(v)) instead of ∆(G) (resp. d G (v)). One can observe that, for any graph G, ∆ + 1 ≤ χ 2 (G) ≤ ∆ 2 + 1. The lower bound is trivial since, in a 2-distance coloring, every neighbor of a vertex v with degree ∆, and v itself must have a different color. As for the upper bound, a greedy algorithm shows that χ 2 (G) ≤ ∆ 2 + 1. Moreover, that upper bound is tight for some graphs, for example, Moore graphs of type (∆, 2), which are graphs where all vertices have degree ∆, are at distance at most two from each other, and the total number of vertices is ∆ 2 + 1. See Figure 1.

By nature, 2-distance colorings and the 2-distance chromatic number of a graph depend a lot on the number of vertices in the neighborhood of every vertex. More precisely, the "sparser" a graph is, the lower its 2-distance chromatic number will be. One way to quantify the sparsity of a graph is through its maximum average degree. The average degree ad of a graph G = (V, E) is defined by ad(G) = 2|E|

|V | . The maximum average degree mad(G) is the maximum, over all subgraphs H of G, of ad(H). Another way to measure the sparsity is through the girth, i.e. the length of a shortest cycle. We denote g(G) the girth of G. Intuitively, the higher the girth of a graph is, the sparser it gets. These two measures can actually be linked directly in the case of planar graphs.

A graph is planar if one can draw its vertices with points on the plane, and edges with curves intersecting only at its endpoints. When G is a planar graph, Wegner conjectured in 1977 that χ 2 (G) becomes linear in ∆(G): Conjecture 1 (Wegner [27]). Let G be a planar graph with maximum degree ∆. Then,

χ 2 (G) ≤    7, if ∆ ≤ 3, ∆ + 5, if 4 ≤ ∆ ≤ 7, 3∆ 2 + 1, if ∆ ≥ 8.
The upper bound for the case where ∆ ≥ 8 is tight (see Figure 2(i)). Recently, the case ∆ ≤ 3 was proved by Thomassen [START_REF] Thomassen | The square of a planar cubic graph is 7-colorable[END_REF], and by Hartke et al. [START_REF] Hartke | The chromatic number of the square of subcubic planar graphs[END_REF] independently. For ∆ ≥ 8, Havet et al. [START_REF] Havet | List colouring squares of planar graphs[END_REF] proved that the bound is

3 2 ∆(1 + o(1)
), where o( 1) is as ∆ → ∞ (this bound holds for 2-distance list-colorings). Conjecture 1 is known to be true for some subfamilies of planar graphs, for example K 4 -minor free graphs [START_REF] Lih | Coloring the square of a K 4 -minor free graph[END_REF]. Wegner's conjecture motivated extensive researches on 2-distance chromatic number of sparse graphs, either of planar graphs with high girth or of graphs with upper bounded maximum average degree which are directly linked due to Proposition 2.

Proposition 2 (Folklore). For every planar graph G, (mad

(G) -2)(g(G) -2) < 4.
As a consequence, any theorem with an upper bound on mad(G) can be translated to a theorem with a lower bound on g(G) under the condition that G is planar. Many results have taken the following form: every graph G of mad(G) < m 0 and ∆(G) ≥ ∆ 0 satisfies χ 2 (G) ≤ ∆(G) + c(m 0 , ∆ 0 ) where c(m 0 , ∆ 0 ) is a constant depending only on m 0 and ∆ 0 . Due to Proposition 2, as a corollary, the same results on planar graphs of girth g ≥ g 0 (m 0 ) where g 0 depends on m 0 follow. Table 1 shows all known such results, up to our knowledge, on the 2-distance chromatic number of planar graphs with fixed girth, either proven directly for planar graphs with high girth or came as a corollary of a result on graphs with bounded maximum average degree. Table 1. The latest results with a coefficient 1 before ∆ in the upper bound of χ 2 .

For example, the result from line "7" and column "∆ + 1" from Table 1 reads as follows : "every planar graph G of girth at least 7 and of ∆ at least 16 satisfies χ 2 (G) ≤ ∆ + 1". The crossed out cases in the first column correspond to the fact that, for g 0 ≤ 6, there are planar graphs G with χ 2 (G) = ∆ + 2 for arbitrarily large ∆ [START_REF] Borodin | Sufficient conditions for the 2-distance (∆ + 1)-colorability of plane graphs[END_REF][START_REF] Dvořák | Coloring squares of planar graphs with girth six[END_REF]. The lack of results for g = 4 is due to the fact that the graph in Figure 2(ii) has girth 4, and

χ 2 = 3∆ 2 -1 for all ∆.
We are interested in the case χ 2 (G) ≤ ∆ + 2. In particular, we were looking for the smallest integer ∆ 0 such that every graph with maximum degree ∆ ≥ ∆ 0 and mad < 8 3 (resp. mad < 14 5 ) can be 2-distance colored with ∆ + 2 colors. That family contains planar graphs with ∆ ≥ ∆ 0 and girth at least 8 (resp. 7).

Our main results are the following:

Theorem 3. If G is a graph with mad(G) ≤ 8 3 , then G is 2-distance (∆(G) + 2)-colorable for ∆(G) ≥ 6. Theorem 4. If G is a graph with mad(G) ≤ 14 5 , then G is 2-distance (∆(G) + 2)-colorable for ∆(G) ≥ 10.
For planar graphs, we obtain the following corollaries:

Corollary 5. If G is a graph with g(G) ≥ 8, then G is 2-distance (∆(G) + 2)-colorable for ∆(G) ≥ 6. Corollary 6. If G is a graph with g(G) ≥ 7, then G is 2-distance (∆(G) + 2)-colorable for ∆(G) ≥ 10.
We will prove Theorems 3 and 4 respectively in Sections 2 and 3 using the same scheme.

Proof of Theorem 3

Notations and drawing conventions.

For v ∈ V (G), the 2-distance neighborhood of v, denoted N * G (v)
, is the set of 2-distance neighbors of v, which are vertices at distance at most two from v, not including v. We also denote

d * G (v) = |N * G (v)|.
We will drop the subscript and the argument when it is clear from the context. Also for conciseness, from now on, when we say "to color" a vertex, it means to color such vertex differently from all of its colored neighbors at distance at most two. Similarly, any considered coloring will be a 2-distance coloring. We say that a vertex u "sees" a vertex v if v ∈ N * G (u). We also say that u "sees a color" c if there exists v ∈ N * G (u) such that v is colored c. Some more notations:

• A d-vertex (d + -vertex, d --vertex) is a vertex of degree d (at least d, at most d). A (d ↔ e)-vertex is a
vertex of degree between d and e included.

• A k-path (k + -path, k --path) is a path of length k + 1 (at least k + 1, at most k + 1) where the k internal vertices are 2-vertices. The endvertices of a k-path are 3 + -vertices.

• A (k 1 , k 2 , . . . , k d )-vertex is a d-vertex incident to d different paths, where the i th path is a k i -path for all 1 ≤ i ≤ d.
As a drawing convention for the rest of the figures, black vertices will have a fixed degree, which is represented, and white vertices may have a higher degree than what is drawn. Also, we will represented the lower bound on the number of available colors next to each not yet colored vertex in a subgraph H of G when G -H is colored.

Let G 1 be a counterexample to Theorem 3 with the fewest number of vertices. Graph G 1 has maximum degree ∆ ≥ 6 and mad(G) < 8 3 . The purpose of the proof is to prove that G 1 cannot exist. In the following we will study the structural properties of G 1 . We will then apply a discharging procedure.

Structural properties of

G 1 Lemma 7. Graph G 1 is connected.
Proof. Otherwise a component of G 1 would be a smaller counterexample. Lemma 8. The minimum degree of G 1 is at least 2.

Proof. By Lemma 7, the minimum degree is at least 1. If G 1 contains a degree 1 vertex v, then we can simply remove v and 2-distance color the resulting graph, which is possible by minimality of G 1 . Then, we add v back and color it (at most ∆ constraints and ∆ + 2 colors).

Lemma 9. Graph G 1 has no 3 + -paths. Proof. Suppose G 1 contains a 3 + -path v 0 v 1 v 2 v 3 . . . v k with k ≥ 4. We color H = G 1 -{v 1 , v 2 , v 3 } by minimality of G 1 ,
then we finish by coloring v 1 , v 3 , and v 2 in this order, which is possible since they have at least respectively 2, 2, and ∆ ≥ 6 available colors left after the coloring of H. Lemma 10. A 2-path has two distinct endvertices and both have degree ∆.

Proof. Suppose that G 1 contains a 2-path v 0 v 1 v 2 v 3 . If v 0 = v 3 , then we color G 1 -{v 1 , v 2 }
by minimality of G 1 and extend the coloring to G 1 by coloring greedily v 1 and v 2 who has 3 available colors each. Now, suppose that v 0 = v 3 , and that d(v 3 ) ≤ ∆ -1. We color G 1 -{v 1 , v 2 } by minimality of G 1 and extend the coloring to G 1 by coloring v 1 then v 2 , which is possible since they have respectively 1 and 2 available colors left. Thus, d(v 3 ) = ∆ and the same holds for d(v 0 ) by symmetry.

v 0 v 1 2 v 2 6 v 3 2 v 4 (i) A 3 + -path. v 0 v 1 3 v 2 3
(ii) A 2-path where both endvertices are the same.

v 0 v 1 1 v 2 2 (∆ -1) - v 3 (iii) A 2-path incident to a (∆ -1) -- vertex.
Figure 3.

Lemma 11.

Graph G 1 has no cycles consisting of 2-paths.

Proof. Suppose that G 1 contains a cycle consisting of k 2-paths (see Figure 4). We remove all vertices v 3i+1 and v 3i+2 for 0 ≤ i ≤ k -1. Consider a coloring of the resulting graph. It is then possible to color v 1 , v 2 , v 4 , . . . , v 3k-1 since each of them has at least two choices of colors (as

d(v 0 ) = d(v 3 ) = • • • = d(v 3(k-1) ) = ∆ due to Lemma 10)
and by 2-choosability of even cycles. Proof. Suppose there exists a (1, 1, 1)-vertex u with three 2-neighbors u 1 , u 2 , and u 3 . Let v i be the other endvertex of

v 3 v 0 v 2 2 v 1 2 2 2 v 3j 2 2 v 3(j+1) v 3k-1
uu i v i for 1 ≤ i ≤ 3.
First, suppose by contradiction that v 1 = v 2 (and possibly = v 3 ). We color G 1 -{u, u 1 , u 2 , u 3 } by minimality of G 1 . Then, we color u 3 , u 1 , u 2 , and u in this order, which is possible since they have at least respectively 2, 3, 3, and ∆ ≥ 6 colors. So, v 1 , v 2 , and v 3 are all distinct. Now, suppose w.l.o.g. that d(v 1 ) ≤ ∆ -1 by contradiction. We color

G 1 -{u, u 1 , u 2 , u 3 } by minimality of G 1 .
Then, we color u 3 , u 2 , u 1 , and u in this order. So,

d(v 1 ) = d(v 2 ) = d(v 3 ) = ∆. v 1 = v 2 u 1 3 u 6 u 3 2 v 3 u 2

3

(i) A (1, 1, 1)-vertex that sees only two vertices at distance 2.

(∆ -1) -

v 1 u 1 3 u 5 u 3 2 v 3 u 2 2 v 2
(ii) A (1, 1, 1)-vertex that sees a (∆-1) --vertex at distance 2.

Figure 5.

Definition 13 ((1, 1, 1)-paths). We call v 0 v 1 v 2 v 3 v 4 a (1, 1, 1)-path when v 0 and v 4 are ∆-vertices, v 1 and v 3 are 2-vertices, and v 2 is a (1, 1, 1)-vertex.

Lemma 14.

Graph G 1 has no cycles consisting of (1, 1, 1)-paths.

Proof. Suppose that G contains a cycle consisting of k (1, 1, 1)-paths (see Figure 6). We remove all vertices v 4i+1 , v 4i+2 , v 4i+3 for 0 ≤ i ≤ k -1. Consider a coloring of the resulting graph. We color v 1 , v 3 , v 5 , . . . , v 4k-1 since each of them has at least two choices of colors (as

d(v 0 ) = d(v 4 ) = • • • = d(v 4(k-1) ) = ∆ due to Lemma 12)
and by 2-choosability of even cycles. Finally, it is easy to color greedily v 2 , v 6 , . . . , v 4k-2 since they each have at most six forbidden colors. Proof. Suppose that there exists a (1, 1, 0)-vertex u with a (3 ↔ ∆ -3)-neighbor. Let u 1 and u 2 be its 2neighbors. Let v = u be the other neighbor of u 1 . Suppose w.l.o.g. that d(v) ≤ ∆ -1 by contradiction. We color G 1 -{u, u 1 , u 2 } by minimality of G 1 . Then, we color u 2 , u 1 , and u in this order, which is possible since they have at least respectively 1, 2, and 3 colors as we have ∆ + 2 colors. 

v 4 v 0 v 3 2 v 2 ∆ -2 v 1 2 2 2 v 4j v 4j+1 2 v 4j+2 ∆ -2 v 4j+3 2 v 4(j+1) v 4k-1
(∆ -1) - v u 1 2 u 3 u 2 1 3 ↔ ∆ -3
uu i v i (1 ≤ i ≤ ∆ -2) where each v i is a 3 --vertex. Proof. Let uu ∆-1 v ∆-1 / ∈ {uu i v i |1 ≤ i ≤ ∆ -2} be a 1-path where v ∆-1 is a (1, 1, 1)-vertex. Let uu ∆ u ∆ v ∆ be a 2-path incident to u where uu ∆ u ∆ / ∈ {uu i v i |1 ≤ i ≤ ∆ -1}. Observe that v ∆-1 / ∈ {v i |1 ≤ i ≤ ∆ -2} due to Lemma 12 and v ∆ / ∈ {v i |1 ≤ i ≤ ∆ -2} due to Lemma 10. Let H = u ∪ N G (u) ∪ {u ∆ }.
We color G -H by minimality of G and we uncolor v ∆-1 . Let L(x) be the list of remaining colors for a vertex

x ∈ H ∪ {v ∆-1 }. Observe that |L(u)| ≥ ∆ + 2 -(∆ -2) ≥ 4, |L(u ∆ )| ≥ 2 (since d(v ∆ ) = ∆ by Lemma 10), |L(v ∆-1 )| ≥ ∆ -2 ≥ 4, |L(u i )| ≥ ∆ -1 (since d(v i ) ≤ 3) for 1 ≤ i ≤ ∆ -2, |L(u ∆-1 )| ≥ ∆, and |L(u ∆ )| ≥ ∆ + 1.
We remove the extra colors from L(u ∆ ) so that |L(u ∆ )| = 2. We color u with a color that is not in L(u ∆ ), then u 1 , u 2 , . . . , u ∆ , v ∆-1 , and u ∆ in this order. Observe that when

v i = v j for 1 ≤ i ≤ j ≤ ∆ -2, then |L(u i )| ≥ ∆ and |L(u j )| ≥ ∆
so the order in our coloring still hold. Thus, we obtain a valid coloring of G, which is a contradiction.

v ∆-1 4 u ∆-1 ∆ u 4 u ∆ ∆ + 1 u ∆ 2 v ∆ u 1 ∆ -1 . . . 3 - v 1 u ∆-2 ∆ -1 3 - v ∆-2
Figure 8. A ∆-vertex incident to a 2-path, a (1, 1, 1)-path, and ∆ -2 other 1 + -paths with 3-endvertices.

Discharging rules

Definition 17 (2-path sponsors). Consider the set of 2-paths in G. By Lemma 10, the endvertices of every 2-paths are ∆-vertices and by Lemma 11, the graph induced by the edges of all the 2-paths of G is a forest F. For each tree of F, we choose one ∆-vertex as an arbitrary root. Each 2-path is assigned a unique sponsor which is the ∆-endvertex that is further away from the root. See Figure 9. Definition 18 ((1, 1, 1)-path sponsors). Consider the set of (1, 1, 1)-paths in G. By Lemma 12, the endvertices of every (1, 1, 1)-paths are ∆-vertices and by Lemma 14, the graph induced by the edges of all the (1, 1, 1)-paths of G is a forest F. For each tree of F, we choose one ∆-vertex as an arbitrary root. Each (1, 1, 1)-vertex v is assigned two sponsors which are the ∆-vertices that are grandsons of v. See Figure 10. 10. The sponsor assignment in a tree consisting of (1, 1, 1)-paths.

∆ root ∆ ∆ sponsor ∆ ∆ ∆ ∆ Figure
Since we have mad(G 1 ) < 8 3 , we must have

v∈V (G1) (3d(v) -8) < 0 (1) 
We assign to each vertex v the charge µ(v) = 3d(v) -8. To prove the non-existence of G 1 , we will redistribute the charges preserving their sum and obtaining a non-negative total charge, which will contradict Equation (1). R0 (see Figure 11): Every 3 + -vertex gives 1 to each 2-neighbor on an incident 1-path.

R1 (see Figure 12): Let u be incident to a 2-path P = uu 1 u 2 v.

(i) If u is not P 's sponsor, then u gives 3 2 to u 1 . (ii) If u is P 's sponsor, then u gives 2 to u 1 and 1 2 to u 2 . R2 (see Figure 13): Every 4 + -vertex gives 1 to each 3-neighbor. R3 (see Figure 14): Let uvw be a 1-path.

(i) If u is a ∆-vertex, w is a (1, 1, 1)-vertex, and u is w's sponsor, then u gives 1 to w.

(ii) If u is a ∆-vertex and w is a (1, 1, 0)-vertex, then u gives 1 2 to w. 

w v ∆ u ∆ sponsors 1 1 (i) (1, 1, 1)-path sponsor. ∆ u v w 3 + 3 + 1 2 
(ii)

Figure 14. R3.

Verifying that charges on each vertex are non-negative

Let µ * be the assigned charges after the procedure. In what follows, we prove that:

∀u ∈ V (G 1 ), µ * (u) ≥ 0. Let u ∈ V (G 1 ). Case 1: If d(u) = 2, then recall that µ(u) = 3 • 2 -8 = -2.
There are no 3 + -paths due to Lemma 9 so u must lie on a 1-path or a 2-path.

If u is on a 1-path, then it has two 3 + -neighbors which give it 1 each by R0. Thus,

µ * (u) = -2 + 2 • 1 = 0.
If u is on a 2-path, then it either receives 2 from an adjacent sponsor by R1(ii), or it receives 3 2 + 1 2 = 2 from an adjacent non-sponsor ∆-neighbor and a distance 2 sponsor respectively by R1(i) and R1(ii). Thus,

µ * (u) = -2 + 2 = 0. Case 2: If d(u) = 3, then recall that µ(u) = 3 • 3 -8 = 1.
Observe that u only gives charge away by R0 (charge 1 to each 2-neighbor).

If u is a (1, 1, 1)-vertex, then the other endvertices of the 1-paths incident to u are all ∆-vertices due to Lemma 12. Moreover, by Definition 18, u has two sponsors which give it 1 each by R3(i). Hence,

µ * (u) = 1 -3 • 1 + 2 • 1 = 0.
If u is a (1, 1, 0)-vertex with a 4 + -neighbor, then it receives 1 from its neighbor by R2. Thus,

µ * (u) = 1 -2 • 1 + 1 = 0.
If u is a (1, 1, 0)-vertex with a 3-neighbor (3 ≤ ∆ -3 since ∆ ≥ 6), then it receives 1 2 by R3(ii) from each of the other endvertices of its incident 1-paths due to Lemma 15. Thus, • If u is neither a 2-path sponsor nor a (1, 1, 1)-path sponsor, then observe that u gives away at most 3 2 along an incident path by R1(i), a combination of R0 and R3(i), or less by R2. So at worst,

µ * (u) = 1 -2 • 1 + 2 • 1 2 = 0. If u is a (1 -, 0, 0)-vertex, then µ * (u) ≥ 1 -1 = 0.
µ * (u) ≥ 3∆ -8 - 3 2 ∆ ≥ 3 2 • 6 -8 = 1.
• If u is a 2-path sponsor but not a (1, 1, 1)-path sponsor, then u gives 2 + 1 2 = 5 2 to its unique sponsored incident 2-path by R1(ii). For the other incident paths, it gives at most 3 2 like above. So,

µ * (u) ≥ 3∆ -8 - 5 2 - 3 2 (∆ -1) ≥ 3 2 • 6 -8 - 5 2 + 3 2 = 0.
• If u is a (1, 1, 1)-path sponsor but not a 2-path sponsor, then u gives 1 + 1 = 2 to the unique incident (1, 1, 1)-path containing its assigned (1, 1, 1)-vertex v: 1 to the 2-neighbor by R0 and 1 to v by R3(i).

Once again, u gives at most 3 2 to the other incident paths. So,

µ * (u) ≥ 3∆ -8 -2 - 2 (∆ -1) ≥ 3 2 • 6 -8 -2 + 3 2 = 1 2 .
• If u is both a 2-path sponsor and a (1, 1, 1)-path sponsor, then u gives 5 2 to its unique sponsored 2-path and 2 to its unique assigned (1, 1, 1)-vertex like above. Now, let us consider the other ∆ -2 paths incident to u. Observe that when u gives 3 2 along an incident path either by R1(i) or by a combination of R0 and R3(ii), that path must be a 1 + -path where the vertex at distance 2 from u is a 3 --vertex. Due to Lemma 16, u never has to give 3 2 to each of the ∆ -2 paths. As a result, there exists one path to which u gives at most 1. So at worst,

µ * (u) ≥ 3∆ -8 - 5 2 -2 -1 - 3 2 (∆ -3) ≥ 3 2 • 6 -8 - 5 2 -2 -1 + 9 2 = 0.
We obtain a non-negative amount of charge on each vertex, which is impossible since the total amount of charge is negative. As such, G 1 cannot exist. That concludes the proof of Theorem 3.

Lemma 28. A (1, 0, 0)-vertex with two (3 ↔ 4)-neighbors shares its 2-neighbor with a ∆-vertex.

Proof. Suppose by contradiction that there exists a (1, 0, 0)-vertex u with two (3 ↔ 4)-neighbors u 1 , u 2 , and let uvw be the 

(∆ -2) - v 1 u 1 4 u 8 u 2 4 (∆ -2) - v 2 u 3 2 v 3 u 4 2 v 4
Figure 16. A (1, 1, 1, 1)-vertex that sees two (∆ -2) --vertex at distance 2.

Discharging rules

Since we have mad(G 2 ) < 14 5 , we must have

v∈V (G2) (5d(v) -14) < 0 (2) 
We assign to each vertex v the charge µ(v) = 5d(v) -14. To prove the non-existence of G 2 , we will redistribute the charges preserving their sum and obtaining a positive total charge, which will contradict Equation (2).

Observe that Definitions 17 and 18 also hold for G 2 thanks to Lemmas 23 and 25.

We apply the following discharging rules: R0 (see Figure 17): Every 3 + -vertex gives 2 to each 2-neighbor on an incident 1-path.

R1 (see Figure 18): Let u be incident to a 2-path P = uu 1 u 2 v.

(i) If u is not P 's sponsor, then u gives 7 2 to u 1 . (ii) If u is P 's sponsor, then u gives 4 to u 1 and 1 2 to u 2 . R2 (see Figure 19): (i) Every (5 ↔ 7)-vertex gives 1 to each 3-neighbor.

• If u is a (1, 1, 1)-path sponsor but not a 2-path sponsor, then u gives 2 + 2 = 4 to the unique incident (1, 1, 1)-path containing its assigned (1, 1, 1)-vertex v: 1 to the 2-neighbor by R0 and 1 to v by R3(i).

Once again, u gives at most 7 2 to the other incident paths. So, µ * (u) ≥ 5∆ -14 -4 -7 2 (∆ -1) ≥ 3 2

• 10 -14 -4 + 7 2 = 1 2 .

• If u is both a 2-path sponsor and a (1, 1, 1)-path sponsor, then u gives 9 2 to its unique sponsored 2-path and 4 to its unique assigned (1, 1, 1)-vertex like above. Now, let us consider the other ∆ -2 paths incident to u. Observe that when u gives 7 2 along an incident path either by R1(i) or by a combination of R0 and R3(iii), that path must be a 1 + -path where the vertex at distance 2 from u is a 3 --vertex. Due to Lemma 27, u never has to give 7 2 to each of the ∆ -2 paths. As a result, there exists one path to which u gives at most 3. So at worst, µ * (u) ≥ 5∆ -14 - We obtain a non-negative amount of charge on each vertex, which is impossible since the total amount of charge is negative. As such, G 2 cannot exist. That concludes the proof of Theorem 4.

  The Moore graph of type (2,2): the odd cycle C5.

  The Moore graph of type (3,2): the Petersen graph. (iii) The Moore graph of type (7,2): the Hoffman-Singleton graph.
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2 2 Figure 4 .Lemma 12 .

 22412 Figure 4. A cycle consisting of consecutive 2-paths.

2 2 Figure 6 .

 226 Figure 6. A cycle consisting of consecutive (1, 1, 1)-paths.
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 7 Figure 7. A (1, 1, 0)-vertex with a (3 ↔ ∆ -3)-neighbor that shares a 2-neighbor with a (∆ -1) --vertex.
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 9 Figure 9. The sponsor assignment in a tree consisting of 2-paths.
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Case 3 :Case 4 :

 34 [START_REF] Borodin | Sufficient conditions for the 2-distance (∆ + 1)-colorability of plane graphs[END_REF] ≤ d(u) ≤ ∆ -1, then u only gives away at most 1 to each neighbor by R0 or R2. Thus,µ * (u) ≥ 3d(u) -8 -d(u) ≥ 2 • 4 -8 = 0. If d(u) = ∆,then we distinguish the following cases.

  1-path incident to u, where d(w) ≤ ∆ -1. We color G 2 -{v} by minimality of G 2 , then we uncolor u. Since we have ∆ + 2 ≥ 12 colors and d * (u) = d(u 1 ) + d(u 2 ) + 2 ≤ 4 + 4 + 2 = 10, we can always color u last. Finally, v has at least one available color. Thus, we obtain a valid coloring of G 2 , which is a contradiction. Consider the four other endvertices of the 1-paths incident to a (1, 1, 1, 1)-vertex. At most one of them is a (∆ -2) --vertex.Proof. Suppose by contradiction that we have a (1, 1, 1, 1)-vertex u incident to four 1-paths uu i v i for 1 ≤ i ≤ 4, where v 1 and v 2 are (∆ -2) --vertices. We color G 2 -{u, u 1 , u 2 , u 3 , u 4 } by minimality of G 2 . Then, it suffices to color u 3 , u 4 , u 1 , u 2 , and u in this order, which is possible since they have at least respectively 2, 2, 4, 4, and 8 available colors as we have ∆ + 2 colors and ∆ ≥ 10.

		u 2		
		3 ↔ 4		
	3 ↔ 4 u 1	u	v	(∆ -1) -w
		2	1	
	Figure 15. A (1, 0, 0)-vertex with two (3 ↔ 4)-neighbor that shares a 2-neighbor with a (∆ -1) --vertex.
	Lemma 29.			
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Proof of Theorem 4

We will reuse similar notations to Section 2. Let G 2 be a counterexample to Theorem 4 with the fewest number of vertices. Graph G 2 has maximum degree ∆ ≥ 10 and mad < 14 5 . The purpose of the proof is to prove that G 2 cannot exist.

Structural properties of G 2

Observe that the proofs of Lemmas 7 to 12 and 14 to 16 only rely on the facts that we have a minimal counterexample, two more colors than the maximum degree, and that ∆ was large enough (∆(G 1 ) ≥ 6). All of these still hold for G 2 (∆(G 2 ) ≥ 10). Thus, we also have the following. 

We will show some more reducible configurations.

(ii) Every 8 + -vertex gives 3 to each 3-neighbor. R3 (see Figure 20): Let uvw be a 1-path.

(i) If u is a ∆-vertex, w is a (1, 1, 1)-vertex, and u is w's sponsor, then u gives 2 to w.

(ii) If u is a ∆-vertex, w is a (1, 1, 1)-vertex, and u is not w's sponsor, then u gives 1 to w.

(iii) If u is a ∆-vertex and w is a (1, 1 -, 0)-vertex, then u gives 3 2 to w. (iv) If u is a 9 + -vertex and w is a 4-vertex, then u gives 2 3 to w. 

Verifying that charges on each vertex are non-negative

Let µ * be the assigned charges after the discharging procedure. In what follows, we prove that:

Recall that there exists no 3 + -path due to Lemma 21. So, u must lie on a 1-path or a 2-path.

If u is on a 1-path, then it has two 3 + -neighbors which give it 2 each by R0. Thus,

If u is on a 2-path, then u receives 4 from an adjacent sponsor by R1(ii), or it receives 7 2 + 1 2 = 4 from an adjacent non-sponsor and a distance 2 sponsor respectively by R1(i) and R1(ii). Thus,

Observe that u only gives charge away by R0 (charge 2 to each 2-neighbor).

If u is a (1, 1, 1)-vertex, then the other endvertices of the 1-paths incident to u are all ∆-vertices due to Lemma 24. As a result, u receives 2 from each of its two sponsors and 1 from the non-sponsor ∆-vertex by R3(i) and R3(ii). Hence,

If u is a (1, 1, 0)-vertex with a 8 + -neighbor, then it receives 3 from its 8 + -neighbor by R2(ii). Thus,

If u is a (1, 1, 0)-vertex with an 7 --neighbor (7 ≤ ∆ -3 since ∆ ≥ 10), then it receives 3 2 by R3(iii) from each of the other endvertices of its incident 1-paths due to Lemma 26. Thus,

If u is a (1, 0, 0)-vertex with a 5 + -neighbor, then it receives at least 1 from that neighbor by R2. Thus,

If u is a (1, 0, 0)-vertex with two (3 ↔ 4)-neighbors, then it receives 3 2 by R3(i) from the other endvertex of its incident 1-path due to Lemma 28. So,

Observe that u only gives charge by R0 (charge 2 to each 2-neighbor).

If u is a (1, 1, 1, 1)-vertex, then at least three of the four other endvertices of the 1-paths incident to u are (∆ -1) + -vertices (which are 9 + -vertices since ∆ ≥ 10) due to Lemma 29. As a result, u receives 2 3 from each of the 9 + -endvertex by R3(iv). Hence, • If u is a 2-path sponsor but not a (1, 1, 1)-path sponsor, then u gives 4 + 1 2 = 9 2 to its unique sponsored incident 2-path by R1(ii). For the other incident paths, it gives at most