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Abstract
A 2-distance k-coloring of a graph is a proper k-coloring of the vertices where vertices at distance at

most 2 cannot share the same color. We prove the existence of a 2-distance (∆ + 2)-coloring for graphs with
maximum average degree less than 8

3 (resp. 14
5 ) and maximum degree ∆ ≥ 6 (resp. ∆ ≥ 10). As a corollary,

every planar graph with girth at least 8 (resp. 7) and maximum degree ∆ ≥ 6 (resp. ∆ ≥ 10) admits a
2-distance (∆ + 2)-coloring.

1 Introduction
A k-coloring of the vertices of a graph G = (V,E) is a map φ : V → {1, 2, . . . , k}. A k-coloring φ is a proper
coloring, if and only if, for all edge xy ∈ E, φ(x) 6= φ(y). In other words, no two adjacent vertices share the
same color. The chromatic number of G, denoted by χ(G), is the smallest integer k such that G has a proper
k-coloring. A generalization of k-coloring is k-list-coloring. A graph G is L-list colorable if for a given list
assignment L = {L(v) : v ∈ V (G)} there is a proper coloring φ of G such that for all v ∈ V (G), φ(v) ∈ L(v). If
G is L-list colorable for every list assignment L with |L(v)| ≥ k for all v ∈ V (G), then G is said to be k-choosable
or k-list-colorable. The list chromatic number of a graph G is the smallest integer k such that G is k-choosable.
List coloring can be very different from usual coloring as there exist graphs with a small chromatic number and
an arbitrarily large list chromatic number.

In 1969, Kramer and Kramer introduced the notion of 2-distance coloring [19, 20]. This notion generalizes the
“proper” constraint (that does not allow two adjacent vertices to have the same color) in the following way: a
2-distance k-coloring is such that no pair of vertices at distance at most 2 have the same color. The 2-distance
chromatic number of G, denoted by χ2(G), is the smallest integer k such that G has a 2-distance k-coloring.
Similarly to proper k-list-coloring, one can also define 2-distance k-list-coloring and a 2-distance list chromatic
number.

For all v ∈ V , we denote dG(v) the degree of v in G and by ∆(G) = maxv∈V dG(v) the maximum degree of
a graph G. For brevity, when it is clear from the context, we will use ∆ (resp. d(v)) instead of ∆(G) (resp.
dG(v)). One can observe that, for any graph G, ∆ + 1 ≤ χ2(G) ≤ ∆2 + 1. The lower bound is trivial since, in
a 2-distance coloring, every neighbor of a vertex v with degree ∆, and v itself must have a different color. As
for the upper bound, a greedy algorithm shows that χ2(G) ≤ ∆2 + 1. Moreover, that upper bound is tight for
some graphs, for example, Moore graphs of type (∆, 2), which are graphs where all vertices have degree ∆, are
at distance at most two from each other, and the total number of vertices is ∆2 + 1. See Figure 1.

By nature, 2-distance colorings and the 2-distance chromatic number of a graph depend a lot on the number of
vertices in the neighborhood of every vertex. More precisely, the “sparser” a graph is, the lower its 2-distance
chromatic number will be. One way to quantify the sparsity of a graph is through its maximum average degree.
The average degree ad of a graph G = (V,E) is defined by ad(G) = 2|E|

|V | . The maximum average degree mad(G)
is the maximum, over all subgraphs H of G, of ad(H). Another way to measure the sparsity is through the girth,
i.e. the length of a shortest cycle. We denote g(G) the girth of G. Intuitively, the higher the girth of a graph
is, the sparser it gets. These two measures can actually be linked directly in the case of planar graphs.

A graph is planar if one can draw its vertices with points on the plane, and edges with curves intersecting
only at its endpoints. When G is a planar graph, Wegner conjectured in 1977 that χ2(G) becomes linear in
∆(G):
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(i) The Moore graph of type (2,2):
the odd cycle C5.

1

2

34

5
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89
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(ii) The Moore graph of type (3,2):
the Petersen graph.

(iii) The Moore graph of type (7,2):
the Hoffman-Singleton graph.

Figure 1. Examples of Moore graphs for which χ2 = ∆2 + 1.

Conjecture 1 (Wegner [27]). Let G be a planar graph with maximum degree ∆. Then,

χ2(G) ≤


7, if ∆ ≤ 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,⌊ 3∆

2
⌋

+ 1, if ∆ ≥ 8.

The upper bound for the case where ∆ ≥ 8 is tight (see Figure 2(i)). Recently, the case ∆ ≤ 3 was proved by
Thomassen [26], and by Hartke et al. [16] independently. For ∆ ≥ 8, Havet et al. [17] proved that the bound is
3
2∆(1 + o(1)), where o(1) is as ∆ → ∞ (this bound holds for 2-distance list-colorings). Conjecture 1 is known
to be true for some subfamilies of planar graphs, for example K4-minor free graphs [25].

b∆
2 c − 1 vertices d∆

2 e vertices

b∆
2 c vertices

(i) A graph with girth 3 and χ2 = b 3∆
2 c+ 1.

b∆
2 c − 1 vertices d∆

2 e vertices

b∆
2 c vertices

(ii) A graph with girth 4 and χ2 = b 3∆
2 c − 1.

Figure 2. Graphs with χ2 ≈ 3
2∆.

Wegner’s conjecture motivated extensive researches on 2-distance chromatic number of sparse graphs, either of
planar graphs with high girth or of graphs with upper bounded maximum average degree which are directly
linked due to Proposition 2.

Proposition 2 (Folklore). For every planar graph G, (mad(G)− 2)(g(G)− 2) < 4.

As a consequence, any theorem with an upper bound on mad(G) can be translated to a theorem with a lower
bound on g(G) under the condition that G is planar. Many results have taken the following form: every graph G
of mad(G) < m0 and ∆(G) ≥ ∆0 satisfies χ2(G) ≤ ∆(G) + c(m0,∆0) where c(m0,∆0) is a constant depending
only on m0 and ∆0. Due to Proposition 2, as a corollary, the same results on planar graphs of girth g ≥ g0(m0)
where g0 depends on m0 follow. Table 1 shows all known such results, up to our knowledge, on the 2-distance
chromatic number of planar graphs with fixed girth, either proven directly for planar graphs with high girth or
came as a corollary of a result on graphs with bounded maximum average degree.
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g0

χ2(G) ∆ + 1 ∆ + 2 ∆ + 3 ∆ + 4 ∆ + 5 ∆ + 6 ∆ + 7 ∆ + 8

3 ∆ = 3 [26, 16]
4
5 ∆ ≥ 107 [1]2 ∆ ≥ 339 [14] ∆ ≥ 312 [13] ∆ ≥ 15 [8]1 ∆ ≥ 12 [7]2 ∆ 6= 7, 8 [13] all ∆ [12]
6 ∆ ≥ 17 [3]5 ∆ ≥ 9 [7]2 all ∆ [9]
7 ∆ ≥ 16 [18]2 ∆ ≥ 103 ∆ ≥ 6 [21]4 ∆ = 4 [10]4
8 ∆ ≥ 9 [24]1 ∆ ≥ 63 ∆ ≥ 4 [21]4
9 ∆ ≥ 7 [23]5 ∆ = 5 [6]4 ∆ = 3 [11]2
10 ∆ ≥ 6 [18]2
11 ∆ = 4 [10]4
12 ∆ = 5 [18]2 ∆ = 3 [5]2
13
14 ∆ ≥ 4 [2]5
. . .
21 ∆ = 3[22]

Table 1. The latest results with a coefficient 1 before ∆ in the upper bound of χ2.

For example, the result from line “7” and column “∆ + 1” from Table 1 reads as follows : “every planar graph
G of girth at least 7 and of ∆ at least 16 satisfies χ2(G) ≤ ∆ + 1”. The crossed out cases in the first column
correspond to the fact that, for g0 ≤ 6, there are planar graphs G with χ2(G) = ∆ + 2 for arbitrarily large
∆ [4, 15]. The lack of results for g = 4 is due to the fact that the graph in Figure 2(ii) has girth 4, and
χ2 = b 3∆

2 c − 1 for all ∆.

We are interested in the case χ2(G) ≤ ∆ + 2. In particular, we were looking for the smallest integer ∆0 such
that every graph with maximum degree ∆ ≥ ∆0 and mad < 8

3 (resp. mad < 14
5 ) can be 2-distance colored with

∆ + 2 colors. That family contains planar graphs with ∆ ≥ ∆0 and girth at least 8 (resp. 7).

Our main results are the following:

Theorem 3. If G is a graph with mad(G) ≤ 8
3 , then G is 2-distance (∆(G) + 2)-colorable for ∆(G) ≥ 6.

Theorem 4. If G is a graph with mad(G) ≤ 14
5 , then G is 2-distance (∆(G) + 2)-colorable for ∆(G) ≥ 10.

For planar graphs, we obtain the following corollaries:

Corollary 5. If G is a graph with g(G) ≥ 8, then G is 2-distance (∆(G) + 2)-colorable for ∆(G) ≥ 6.

Corollary 6. If G is a graph with g(G) ≥ 7, then G is 2-distance (∆(G) + 2)-colorable for ∆(G) ≥ 10.

We will prove Theorems 3 and 4 respectively in Sections 2 and 3 using the same scheme.

2 Proof of Theorem 3
Notations and drawing conventions. For v ∈ V (G), the 2-distance neighborhood of v, denoted N∗G(v), is
the set of 2-distance neighbors of v, which are vertices at distance at most two from v, not including v. We
also denote d∗G(v) = |N∗G(v)|. We will drop the subscript and the argument when it is clear from the context.
Also for conciseness, from now on, when we say “to color” a vertex, it means to color such vertex differently
from all of its colored neighbors at distance at most two. Similarly, any considered coloring will be a 2-distance
coloring. We say that a vertex u “sees” a vertex v if v ∈ N∗G(u). We also say that u “sees a color” c if there
exists v ∈ N∗G(u) such that v is colored c.

Some more notations:

• A d-vertex (d+-vertex, d−-vertex) is a vertex of degree d (at least d, at most d). A (d↔ e)-vertex is a
vertex of degree between d and e included.

• A k-path (k+-path, k−-path) is a path of length k+ 1 (at least k+ 1, at most k+ 1) where the k internal
vertices are 2-vertices. The endvertices of a k-path are 3+-vertices.

• A (k1, k2, . . . , kd)-vertex is a d-vertex incident to d different paths, where the ith path is a ki-path for all
1 ≤ i ≤ d.

1Corollaries of more general colorings of planar graphs.
2Corollaries of 2-distance list-colorings of planar graphs.
3 Our results.
4Corollaries of 2-distance list-colorings of graphs with a bounded maximum average degree.
5Corollaries of 2-distance colorings of graphs with a bounded maximum average degree.
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As a drawing convention for the rest of the figures, black vertices will have a fixed degree, which is represented,
and white vertices may have a higher degree than what is drawn. Also, we will represented the lower bound
on the number of available colors next to each not yet colored vertex in a subgraph H of G when G − H is
colored.

Let G1 be a counterexample to Theorem 3 with the fewest number of vertices. Graph G1 has maximum degree
∆ ≥ 6 and mad(G) < 8

3 . The purpose of the proof is to prove that G1 cannot exist. In the following we will
study the structural properties of G1. We will then apply a discharging procedure.

2.1 Structural properties of G1

Lemma 7. Graph G1 is connected.

Proof. Otherwise a component of G1 would be a smaller counterexample.

Lemma 8. The minimum degree of G1 is at least 2.

Proof. By Lemma 7, the minimum degree is at least 1. If G1 contains a degree 1 vertex v, then we can simply
remove v and 2-distance color the resulting graph, which is possible by minimality of G1. Then, we add v back
and color it (at most ∆ constraints and ∆ + 2 colors).

Lemma 9. Graph G1 has no 3+-paths.

Proof. Suppose G1 contains a 3+-path v0v1v2v3 . . . vk with k ≥ 4. We color H = G1−{v1, v2, v3} by minimality
of G1, then we finish by coloring v1, v3, and v2 in this order, which is possible since they have at least respectively
2, 2, and ∆ ≥ 6 available colors left after the coloring of H.

Lemma 10. A 2-path has two distinct endvertices and both have degree ∆.

Proof. Suppose that G1 contains a 2-path v0v1v2v3.

If v0 = v3, then we color G1 − {v1, v2} by minimality of G1 and extend the coloring to G1 by coloring greedily
v1 and v2 who has 3 available colors each.

Now, suppose that v0 6= v3, and that d(v3) ≤ ∆ − 1. We color G1 − {v1, v2} by minimality of G1 and extend
the coloring to G1 by coloring v1 then v2, which is possible since they have respectively 1 and 2 available colors
left. Thus, d(v3) = ∆ and the same holds for d(v0) by symmetry.

v0 v1

2

v2

6

v3

2

v4

(i) A 3+-path.

v0

v1
3

v2
3

(ii) A 2-path where both endvertices
are the same.

v0 v1

1

v2

2
(∆− 1)−

v3

(iii) A 2-path incident to a (∆ − 1)−-
vertex.

Figure 3.

Lemma 11. Graph G1 has no cycles consisting of 2-paths.

Proof. Suppose that G1 contains a cycle consisting of k 2-paths (see Figure 4). We remove all vertices v3i+1 and
v3i+2 for 0 ≤ i ≤ k−1. Consider a coloring of the resulting graph. It is then possible to color v1, v2, v4, . . . , v3k−1
since each of them has at least two choices of colors (as d(v0) = d(v3) = · · · = d(v3(k−1)) = ∆ due to Lemma 10)
and by 2-choosability of even cycles.

4



v3

v0

v2 2

v1 2

2 2

v3j

2

2

v3(j+1)v3k−1

2 2

Figure 4. A cycle consisting of consecutive 2-paths.

Lemma 12. Consider a (1, 1, 1)-vertex u. The other endvertices of the 1-paths incident to u are all distincts
and are ∆-vertices.

Proof. Suppose there exists a (1, 1, 1)-vertex u with three 2-neighbors u1, u2, and u3. Let vi be the other
endvertex of uuivi for 1 ≤ i ≤ 3.

First, suppose by contradiction that v1 = v2 (and possibly = v3). We color G1 − {u, u1, u2, u3} by minimality
of G1. Then, we color u3, u1, u2, and u in this order, which is possible since they have at least respectively 2,
3, 3, and ∆ ≥ 6 colors. So, v1, v2, and v3 are all distinct.

Now, suppose w.l.o.g. that d(v1) ≤ ∆− 1 by contradiction. We color G1 − {u, u1, u2, u3} by minimality of G1.
Then, we color u3, u2, u1, and u in this order. So, d(v1) = d(v2) = d(v3) = ∆.

v1 = v2

u1

3

u

6

u3

2

v3

u2

3

(i) A (1, 1, 1)-vertex that sees only two vertices at distance
2.

(∆− 1)−
v1

u1

3

u

5

u3

2

v3

u2 2

v2

(ii) A (1, 1, 1)-vertex that sees a (∆−1)−-vertex at distance
2.

Figure 5.

Definition 13 ((1, 1, 1)-paths). We call v0v1v2v3v4 a (1, 1, 1)-path when v0 and v4 are ∆-vertices, v1 and v3
are 2-vertices, and v2 is a (1, 1, 1)-vertex.

Lemma 14. Graph G1 has no cycles consisting of (1, 1, 1)-paths.

Proof. Suppose that G contains a cycle consisting of k (1, 1, 1)-paths (see Figure 6). We remove all vertices
v4i+1, v4i+2, v4i+3 for 0 ≤ i ≤ k − 1. Consider a coloring of the resulting graph. We color v1, v3, v5, . . . , v4k−1
since each of them has at least two choices of colors (as d(v0) = d(v4) = · · · = d(v4(k−1)) = ∆ due to Lemma 12)
and by 2-choosability of even cycles. Finally, it is easy to color greedily v2, v6, . . . , v4k−2 since they each have
at most six forbidden colors.
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v4

v0

v3
2

v2
∆− 2

v1
2

2 2

v4j

v4j+1
2
v4j+2

∆− 2

v4j+3
2

v4(j+1)v4k−1

2 2

Figure 6. A cycle consisting of consecutive (1, 1, 1)-paths.

Lemma 15. A (1, 1, 0)-vertex with a (3↔∆− 3)-neighbor shares its 2-neighbors with ∆-vertices.

Proof. Suppose that there exists a (1, 1, 0)-vertex u with a (3↔ ∆ − 3)-neighbor. Let u1 and u2 be its 2-
neighbors. Let v 6= u be the other neighbor of u1. Suppose w.l.o.g. that d(v) ≤ ∆ − 1 by contradiction. We
color G1 − {u, u1, u2} by minimality of G1. Then, we color u2, u1, and u in this order, which is possible since
they have at least respectively 1, 2, and 3 colors as we have ∆ + 2 colors.

(∆− 1)−
v u1

2

u

3

u2

1

3↔∆− 3

Figure 7. A (1, 1, 0)-vertex with a (3↔∆− 3)-neighbor that shares a 2-neighbor with a (∆− 1)−-vertex.

Lemma 16. A ∆-vertex u cannot be incident to a 2-path, a (1, 1, 1)-path, and ∆ − 2 other 1+-paths uuivi

(1 ≤ i ≤ ∆− 2) where each vi is a 3−-vertex.

Proof. Let uu∆−1v∆−1 /∈ {uuivi|1 ≤ i ≤ ∆− 2} be a 1-path where v∆−1 is a (1, 1, 1)-vertex. Let uu∆u
′
∆v∆ be

a 2-path incident to u where uu∆u
′
∆ /∈ {uuivi|1 ≤ i ≤ ∆− 1}. Observe that v∆−1 /∈ {vi|1 ≤ i ≤ ∆− 2} due to

Lemma 12 and v∆ /∈ {vi|1 ≤ i ≤ ∆− 2} due to Lemma 10.

Let H = u ∪ NG(u) ∪ {u′∆}. We color G −H by minimality of G and we uncolor v∆−1. Let L(x) be the list
of remaining colors for a vertex x ∈ H ∪ {v∆−1}. Observe that |L(u)| ≥ ∆ + 2 − (∆ − 2) ≥ 4, |L(u′∆)| ≥ 2
(since d(v∆) = ∆ by Lemma 10), |L(v∆−1)| ≥ ∆− 2 ≥ 4, |L(ui)| ≥ ∆− 1 (since d(vi) ≤ 3) for 1 ≤ i ≤ ∆− 2,
|L(u∆−1)| ≥ ∆, and |L(u∆)| ≥ ∆ + 1. We remove the extra colors from L(u′∆) so that |L(u′∆)| = 2. We color u
with a color that is not in L(u′∆), then u1, u2, . . . , u∆, v∆−1, and u′∆ in this order. Observe that when vi = vj

for 1 ≤ i ≤ j ≤ ∆−2, then |L(ui)| ≥ ∆ and |L(uj)| ≥ ∆ so the order in our coloring still hold. Thus, we obtain
a valid coloring of G, which is a contradiction.

v∆−1

4

u∆−1

∆

u

4

u∆

∆ + 1

u′∆

2

v∆

u1

∆− 1. . .

3−
v1

u∆−2
∆− 1

3−
v∆−2

Figure 8. A ∆-vertex incident to a 2-path, a (1, 1, 1)-path, and ∆− 2 other 1+-paths with 3-endvertices.
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2.2 Discharging rules
Definition 17 (2-path sponsors). Consider the set of 2-paths in G. By Lemma 10, the endvertices of every
2-paths are ∆-vertices and by Lemma 11, the graph induced by the edges of all the 2-paths of G is a forest F .
For each tree of F , we choose one ∆-vertex as an arbitrary root. Each 2-path is assigned a unique sponsor
which is the ∆-endvertex that is further away from the root. See Figure 9.

∆ ∆

root

∆

∆ ∆∆

sponsor

Figure 9. The sponsor assignment in a tree consisting of 2-paths.

Definition 18 ((1, 1, 1)-path sponsors). Consider the set of (1, 1, 1)-paths in G. By Lemma 12, the endvertices
of every (1, 1, 1)-paths are ∆-vertices and by Lemma 14, the graph induced by the edges of all the (1, 1, 1)-paths
of G is a forest F . For each tree of F , we choose one ∆-vertex as an arbitrary root. Each (1, 1, 1)-vertex v is
assigned two sponsors which are the ∆-vertices that are grandsons of v. See Figure 10.

∆

root

∆∆
sponsor

∆

∆

∆

∆

Figure 10. The sponsor assignment in a tree consisting of (1, 1, 1)-paths.

Since we have mad(G1) < 8
3 , we must have ∑

v∈V (G1)

(3d(v)− 8) < 0 (1)

We assign to each vertex v the charge µ(v) = 3d(v) − 8. To prove the non-existence of G1, we will re-
distribute the charges preserving their sum and obtaining a non-negative total charge, which will contradict
Equation (1).

R0 (see Figure 11): Every 3+-vertex gives 1 to each 2-neighbor on an incident 1-path.

R1 (see Figure 12): Let u be incident to a 2-path P = uu1u2v.

(i) If u is not P ’s sponsor, then u gives 3
2 to u1.

(ii) If u is P ’s sponsor, then u gives 2 to u1 and 1
2 to u2.

R2 (see Figure 13): Every 4+-vertex gives 1 to each 3-neighbor.

R3 (see Figure 14): Let uvw be a 1-path.

(i) If u is a ∆-vertex, w is a (1, 1, 1)-vertex, and u is w’s sponsor, then u gives 1 to w.

(ii) If u is a ∆-vertex and w is a (1, 1, 0)-vertex, then u gives 1
2 to w.

7



3+3+
11

Figure 11. R0.

∆

non-sponsor

∆

sponsor

3
2

(i)

∆

non-sponsor

∆

sponsor
2

1
2

(ii) 2-path sponsor.

Figure 12. R1.

34+

1

Figure 13. R2.

∆

non-sponsor

w
v ∆

u

∆
sponsors

1

1
(i) (1, 1, 1)-path sponsor.

∆

u
v w 3+

3+

1
2

(ii)

Figure 14. R3.

2.3 Verifying that charges on each vertex are non-negative
Let µ∗ be the assigned charges after the discharging procedure. In what follows, we prove that:

∀u ∈ V (G1), µ∗(u) ≥ 0.

Let u ∈ V (G1).

Case 1: If d(u) = 2, then recall that µ(u) = 3 · 2− 8 = −2.
There are no 3+-paths due to Lemma 9 so u must lie on a 1-path or a 2-path.

If u is on a 1-path, then it has two 3+-neighbors which give it 1 each by R0. Thus,

µ∗(u) = −2 + 2 · 1 = 0.

If u is on a 2-path, then it either receives 2 from an adjacent sponsor by R1(ii), or it receives 3
2 + 1

2 = 2 from
an adjacent non-sponsor ∆-neighbor and a distance 2 sponsor respectively by R1(i) and R1(ii). Thus,

µ∗(u) = −2 + 2 = 0.

Case 2: If d(u) = 3, then recall that µ(u) = 3 · 3− 8 = 1.
Observe that u only gives charge away by R0 (charge 1 to each 2-neighbor).

If u is a (1, 1, 1)-vertex, then the other endvertices of the 1-paths incident to u are all ∆-vertices due to Lemma 12.
Moreover, by Definition 18, u has two sponsors which give it 1 each by R3(i). Hence,

µ∗(u) = 1− 3 · 1 + 2 · 1 = 0.

If u is a (1, 1, 0)-vertex with a 4+-neighbor, then it receives 1 from its neighbor by R2. Thus,

µ∗(u) = 1− 2 · 1 + 1 = 0.

If u is a (1, 1, 0)-vertex with a 3-neighbor (3 ≤ ∆ − 3 since ∆ ≥ 6), then it receives 1
2 by R3(ii) from each of

the other endvertices of its incident 1-paths due to Lemma 15. Thus,

µ∗(u) = 1− 2 · 1 + 2 · 1
2 = 0.

If u is a (1−, 0, 0)-vertex, then
µ∗(u) ≥ 1− 1 = 0.

Case 3: If 4 ≤ d(u) ≤ ∆− 1, then u only gives away at most 1 to each neighbor by R0 or R2. Thus,

µ∗(u) ≥ 3d(u)− 8− d(u) ≥ 2 · 4− 8 = 0.

Case 4: If d(u) = ∆, then we distinguish the following cases.

8



• If u is neither a 2-path sponsor nor a (1, 1, 1)-path sponsor, then observe that u gives away at most 3
2

along an incident path by R1(i), a combination of R0 and R3(i), or less by R2. So at worst,

µ∗(u) ≥ 3∆− 8− 3
2∆ ≥ 3

2 · 6− 8 = 1.

• If u is a 2-path sponsor but not a (1, 1, 1)-path sponsor, then u gives 2 + 1
2 = 5

2 to its unique sponsored
incident 2-path by R1(ii). For the other incident paths, it gives at most 3

2 like above. So,

µ∗(u) ≥ 3∆− 8− 5
2 −

3
2(∆− 1) ≥ 3

2 · 6− 8− 5
2 + 3

2 = 0.

• If u is a (1, 1, 1)-path sponsor but not a 2-path sponsor, then u gives 1 + 1 = 2 to the unique incident
(1, 1, 1)-path containing its assigned (1, 1, 1)-vertex v: 1 to the 2-neighbor by R0 and 1 to v by R3(i).
Once again, u gives at most 3

2 to the other incident paths. So,

µ∗(u) ≥ 3∆− 8− 2− 3
2(∆− 1) ≥ 3

2 · 6− 8− 2 + 3
2 = 1

2 .

• If u is both a 2-path sponsor and a (1, 1, 1)-path sponsor, then u gives 5
2 to its unique sponsored 2-path

and 2 to its unique assigned (1, 1, 1)-vertex like above.

Now, let us consider the other ∆− 2 paths incident to u. Observe that when u gives 3
2 along an incident

path either by R1(i) or by a combination of R0 and R3(ii), that path must be a 1+-path where the
vertex at distance 2 from u is a 3−-vertex. Due to Lemma 16, u never has to give 3

2 to each of the ∆− 2
paths. As a result, there exists one path to which u gives at most 1. So at worst,

µ∗(u) ≥ 3∆− 8− 5
2 − 2− 1− 3

2(∆− 3) ≥ 3
2 · 6− 8− 5

2 − 2− 1 + 9
2 = 0.

We obtain a non-negative amount of charge on each vertex, which is impossible since the total amount of charge
is negative. As such, G1 cannot exist. That concludes the proof of Theorem 3.

3 Proof of Theorem 4
We will reuse similar notations to Section 2. Let G2 be a counterexample to Theorem 4 with the fewest number
of vertices. Graph G2 has maximum degree ∆ ≥ 10 and mad < 14

5 . The purpose of the proof is to prove that
G2 cannot exist.

3.1 Structural properties of G2

Observe that the proofs of Lemmas 7 to 12 and 14 to 16 only rely on the facts that we have a minimal counter-
example, two more colors than the maximum degree, and that ∆ was large enough (∆(G1) ≥ 6). All of these
still hold for G2 (∆(G2) ≥ 10). Thus, we also have the following.

Lemma 19. Graph G2 is connected.

Lemma 20. The minimum degree of G2 is at least 2.

Lemma 21. Graph G2 has no 3+-paths.

Lemma 22. A 2-path has two distinct endvertices and both have degree ∆.

Lemma 23. Graph G2 has no cycles consisting of 2-paths.

Lemma 24. Consider a (1, 1, 1)-vertex u. The other endvertices of the 1-paths incident to u are all distincts
and are ∆-vertices.

Lemma 25. Graph G2 has no cycles consisting of (1, 1, 1)-paths.

Lemma 26. A (1, 1, 0)-vertex with a (3↔∆− 3)-neighbor shares its 2-neighbors with ∆-vertices.

Lemma 27. A ∆-vertex u cannot be incident to a 2-path, a (1, 1, 1)-path, and ∆ − 2 other 1+-paths uuivi

(1 ≤ i ≤ ∆− 2) where each vi is a 3−-vertex.

We will show some more reducible configurations.
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Lemma 28. A (1, 0, 0)-vertex with two (3↔4)-neighbors shares its 2-neighbor with a ∆-vertex.

Proof. Suppose by contradiction that there exists a (1, 0, 0)-vertex u with two (3↔4)-neighbors u1, u2, and let
uvw be the 1-path incident to u, where d(w) ≤ ∆− 1. We color G2−{v} by minimality of G2, then we uncolor
u. Since we have ∆ + 2 ≥ 12 colors and d∗(u) = d(u1) + d(u2) + 2 ≤ 4 + 4 + 2 = 10, we can always color u last.
Finally, v has at least one available color. Thus, we obtain a valid coloring of G2, which is a contradiction.

3↔4

u1
u

2

v

1
(∆− 1)−

w

3↔4

u2

Figure 15. A (1, 0, 0)-vertex with two (3↔4)-neighbor that shares a 2-neighbor with a (∆− 1)−-vertex.

Lemma 29. Consider the four other endvertices of the 1-paths incident to a (1, 1, 1, 1)-vertex. At most one of
them is a (∆− 2)−-vertex.

Proof. Suppose by contradiction that we have a (1, 1, 1, 1)-vertex u incident to four 1-paths uuivi for 1 ≤ i ≤ 4,
where v1 and v2 are (∆− 2)−-vertices. We color G2 − {u, u1, u2, u3, u4} by minimality of G2. Then, it suffices
to color u3, u4, u1, u2, and u in this order, which is possible since they have at least respectively 2, 2, 4, 4, and
8 available colors as we have ∆ + 2 colors and ∆ ≥ 10.

(∆− 2)−
v1

u1

4

u

8

u2

4
(∆− 2)−

v2

u3

2

v3

u4

2

v4

Figure 16. A (1, 1, 1, 1)-vertex that sees two (∆− 2)−-vertex at distance 2.

3.2 Discharging rules
Since we have mad(G2) < 14

5 , we must have ∑
v∈V (G2)

(5d(v)− 14) < 0 (2)

We assign to each vertex v the charge µ(v) = 5d(v)− 14. To prove the non-existence of G2, we will redistribute
the charges preserving their sum and obtaining a positive total charge, which will contradict Equation (2).

Observe that Definitions 17 and 18 also hold for G2 thanks to Lemmas 23 and 25.

We apply the following discharging rules:

R0 (see Figure 17): Every 3+-vertex gives 2 to each 2-neighbor on an incident 1-path.

R1 (see Figure 18): Let u be incident to a 2-path P = uu1u2v.

(i) If u is not P ’s sponsor, then u gives 7
2 to u1.

(ii) If u is P ’s sponsor, then u gives 4 to u1 and 1
2 to u2.

R2 (see Figure 19):

(i) Every (5↔7)-vertex gives 1 to each 3-neighbor.
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(ii) Every 8+-vertex gives 3 to each 3-neighbor.

R3 (see Figure 20): Let uvw be a 1-path.

(i) If u is a ∆-vertex, w is a (1, 1, 1)-vertex, and u is w’s sponsor, then u gives 2 to w.

(ii) If u is a ∆-vertex, w is a (1, 1, 1)-vertex, and u is not w’s sponsor, then u gives 1 to w.

(iii) If u is a ∆-vertex and w is a (1, 1−, 0)-vertex, then u gives 3
2 to w.

(iv) If u is a 9+-vertex and w is a 4-vertex, then u gives 2
3 to w.

3+3+
22

Figure 17. R0.

∆

non-sponsor

∆

sponsor

7
2

(i)

∆

non-sponsor

∆

sponsor
4

1
2

(ii) 2-path sponsor.

Figure 18. R1.

35↔7

1

(i)

38+

3

(ii)

Figure 19. R2.

∆

non-sponsor

w
v ∆

u

∆
sponsors

2

2
(i) (1, 1, 1)-path sponsor.

∆

non-sponsor

u
v w ∆

∆
sponsors

1

(ii)

∆

u
v w 2+

3+

3
2

(iii)

4

w

9+

u
v

2
3

(iv)

Figure 20. R3.

3.3 Verifying that charges on each vertex are non-negative
Let µ∗ be the assigned charges after the discharging procedure. In what follows, we prove that:

∀u ∈ V (G2), µ∗(u) ≥ 0.

Let u ∈ V (G2).

Case 1: If d(u) = 2, then recall that µ(u) = 5 · 2− 14 = −4.
Recall that there exists no 3+-path due to Lemma 21. So, u must lie on a 1-path or a 2-path.

If u is on a 1-path, then it has two 3+-neighbors which give it 2 each by R0. Thus,

µ∗(u) = −4 + 2 · 2 = 0.

If u is on a 2-path, then u receives 4 from an adjacent sponsor by R1(ii), or it receives 7
2 + 1

2 = 4 from an
adjacent non-sponsor and a distance 2 sponsor respectively by R1(i) and R1(ii). Thus,

µ∗(u) = −4 + 4 = 0.
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Case 2: If d(u) = 3, then recall that µ(u) = 5 · 3− 14 = 1.
Observe that u only gives charge away by R0 (charge 2 to each 2-neighbor).

If u is a (1, 1, 1)-vertex, then the other endvertices of the 1-paths incident to u are all ∆-vertices due to Lemma 24.
As a result, u receives 2 from each of its two sponsors and 1 from the non-sponsor ∆-vertex by R3(i) and R3(ii).
Hence,

µ∗(u) = 1− 3 · 2 + 2 · 2 + 1 = 0.

If u is a (1, 1, 0)-vertex with a 8+-neighbor, then it receives 3 from its 8+-neighbor by R2(ii). Thus,

µ∗(u) = 1− 2 · 2 + 3 = 0.

If u is a (1, 1, 0)-vertex with an 7−-neighbor (7 ≤ ∆− 3 since ∆ ≥ 10), then it receives 3
2 by R3(iii) from each

of the other endvertices of its incident 1-paths due to Lemma 26. Thus,

µ∗(u) = 1− 2 · 2 + 2 · 3
2 = 0.

If u is a (1, 0, 0)-vertex with a 5+-neighbor, then it receives at least 1 from that neighbor by R2. Thus,

µ∗(u) ≥ 1− 2 + 1 = 0.

If u is a (1, 0, 0)-vertex with two (3↔4)-neighbors, then it receives 3
2 by R3(i) from the other endvertex of its

incident 1-path due to Lemma 28. So,
µ∗(u) = 1− 2 + 3

2 = 1
2 .

If u is a (0, 0, 0)-vertex, then
µ∗(u) = µ(u) = 1.

Case 3: If d(u) = 4, then recall that µ(u) = 5 · 4− 14 = 6.
Observe that u only gives charge by R0 (charge 2 to each 2-neighbor).

If u is a (1, 1, 1, 1)-vertex, then at least three of the four other endvertices of the 1-paths incident to u are
(∆ − 1)+-vertices (which are 9+-vertices since ∆ ≥ 10) due to Lemma 29. As a result, u receives 2

3 from each
of the 9+-endvertex by R3(iv). Hence,

µ∗(u) ≥ 6− 4 · 2 + 3 · 2
3 = 0.

If u is a (1−, 1−, 1−, 0)-vertex, then
µ∗(u) ≥ 6− 3 · 2 = 0.

Case 3: If 5 ≤ d(u) ≤ 7, then u can give 2 to each 2-neighbor by R0 or 1 to each 3-neighbor by R2(i). Thus,
at worst we get

µ∗(u) ≥ 5d(u)− 14− 2d(u) ≥ 3 · 5− 14 = 1.

Case 4: If 8 ≤ d(u) ≤ ∆ − 1, then u gives at most 3 along each incident path by R2(ii). Thus, at worst we
get

µ∗(u) ≥ 5d(u)− 14− 3d(u) ≥ 2 · 8− 14 = 2.

Case 5: If d(u) = ∆, then we distinguish the following cases.

• If u is neither a 2-path sponsor nor a (1, 1, 1)-path sponsor, then observe that u gives away at most 7
2

along an incident path by R1(i) or a combination of R0 and R3(iii). So at worst,

µ∗(u) ≥ 5∆− 14− 7
2∆ ≥ 3

2 · 10− 14 = 1.

• If u is a 2-path sponsor but not a (1, 1, 1)-path sponsor, then u gives 4 + 1
2 = 9

2 to its unique sponsored
incident 2-path by R1(ii). For the other incident paths, it gives at most 7

2 like above. So,

µ∗(u) ≥ 5∆− 14− 9
2 −

7
2(∆− 1) ≥ 3

2 · 10− 14− 9
2 + 7

2 = 0.
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• If u is a (1, 1, 1)-path sponsor but not a 2-path sponsor, then u gives 2 + 2 = 4 to the unique incident
(1, 1, 1)-path containing its assigned (1, 1, 1)-vertex v: 1 to the 2-neighbor by R0 and 1 to v by R3(i).
Once again, u gives at most 7

2 to the other incident paths. So,

µ∗(u) ≥ 5∆− 14− 4− 7
2(∆− 1) ≥ 3

2 · 10− 14− 4 + 7
2 = 1

2 .

• If u is both a 2-path sponsor and a (1, 1, 1)-path sponsor, then u gives 9
2 to its unique sponsored 2-path

and 4 to its unique assigned (1, 1, 1)-vertex like above.

Now, let us consider the other ∆− 2 paths incident to u. Observe that when u gives 7
2 along an incident

path either by R1(i) or by a combination of R0 and R3(iii), that path must be a 1+-path where the
vertex at distance 2 from u is a 3−-vertex. Due to Lemma 27, u never has to give 7

2 to each of the ∆− 2
paths. As a result, there exists one path to which u gives at most 3. So at worst,

µ∗(u) ≥ 5∆− 14− 9
2 − 4− 3− 7

2(∆− 3) ≥ 3
2 · 10− 14− 9

2 − 4− 3 + 21
2 = 0.

We obtain a non-negative amount of charge on each vertex, which is impossible since the total amount of charge
is negative. As such, G2 cannot exist. That concludes the proof of Theorem 4.
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