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SUMMARY
Novel kinematic architectures can be alternatives for designing energy efficient robotic systems.
In this work, the impact of kinematic redundancies in the energy consumption of a planar PKM,
the 3PRRR manipulator, is experimentally verified. Because of the presence of the kinematic
redundancies, the inverse kinematic problem presents infinity solutions. In this way, a redundancy
resolution scheme based on the Model Predictive Control technique is proposed and exploited.
It can be concluded that the energy consumption of the non-redundant parallel manipulator
3RRR for executing predefined tasks can be considerably reduced by the inclusion of kinematic
redundancies.

KEYWORDS: Parallel kinematic manipulators; Kinematic redundancy; Energy consumption; Model
Predictive control; Redundancy resolution.

1. Introduction
Due to their kinematic architecture, parallel kinematic manipulators (PKMs) are composed of lighter
moving parts. As a result, this architecture is a promising alternative for designing not only robotic
manipulators with improved dynamic performance1 but also energy efficient robotic systems.2 A
comparison between serial and parallel kinematic architectures for a three degrees-of-freedom (DOFs)
spatial manipulator has been done by ref. [2]. It could be concluded that for similar workspace and
actuators, the energy consumption of the PKM was up to 26% smaller than the consumption of the
serial manipulator. The main reason for this reduction is the fact that the mass of the moving parts of
the parallel manipulator is indeed significantly smaller.

Despite this interesting attribute, PKMs suffer from the presence of singularities in their
workspace.3 Due to the presence of these singularities, the workspace of PKMs is rather limited
imposing an important drawback. To overcome this, some researchers have explored the use of
redundancy for reducing the singularities’ regions.4–8 Besides the enlargement of the workspace
due to the reduction of the singularities’ regions, the addition of redundancy might also provide
higher accuracy,9 better motion/force transmissibility,10 improved dynamic performance,11,12 among
others. A recent review of redundant PKMs has discussed the impact of the use of redundancies
on the workspace enlargement, singularity elimination/avoidance, and improved joint-torque
distribution.13
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Fig. 1. Comparison between the end-effector’s pose of (a) the non-redundant manipulator 3RRR and (b) the
kinematically redundant manipulator 2RRR+PRRR.

According to the manipulator’s mobility, two main kinds of redundancy can be used: the kinematic
and the actuation redundancy.13 The number of actuators is higher than the DOFs of the manipulator’s
end-effector for both strategies. The terminology of redundant parallel manipulators is discussed in-
depth in ref. [14]. On the one hand, the actuation redundancy can be implemented by the actuation of
passive joints or by the inclusion of active kinematic chains.12–14 In this case, the inverse kinematic
problem presents a unique solution. On the other hand, the kinematic redundancy can be implemented
by the introduction of extra active joints in a kinematic chain.12–14 In this case, the inverse kinematic
problem presents infinite solutions. In other words, kinematically redundant PKMs present infinite
possible kinematic configurations for a single pose of the manipulator’s end-effector. Due to this
characteristic, redundancy resolution schemes can be exploited allowing the manipulator to avoid
singularities.15,16

For sake of illustration, Fig. 1 shows the planar 3RRR PKM and the kinematically redundant
planar 2RRR+PRRR PKM. The same end-effector’s pose for both manipulators is depicted. These
manipulators present three kinematic chains composed of active prismatic joints (P), illustrated by
the rectangular form, active revolute joints (R), illustrated by the grey circles, and passive revolute
joints (R), illustrated by the black circles. These kinematic chains are connected to the manipulator’s
end-effector, illustrated by a triangular form, which presents 3-DOFs. In this figure, the end-effector of
the 3RRR is at a singular position since the intersection points of the lines of action of each kinematic
chain are at the same location. Due to the introduction of an active prismatic joint, the end-effector of
the 2RRR+PRRR is not at a singular position demonstrating the capability of kinematically redundant
manipulators to avoid singularities.

Redundancy resolution schemes aid the designer to select a proper kinematic configuration,
e.g., a reasonable distance away from a singularity, among the infinite possibilities (as illustrated
in Fig. 1). These schemes can be posed as optimization problems that can be solved locally or
globally.15 Generally, local approaches formulate the problem by imposing kinematic constraints.
These constraints/relations can be formulated using gradient projection methods, Jacobian-based
strategies, among others.16 Whilst local approaches exploit local indexes, global approaches consider
the global manipulator’s performance. In this way, most global approaches seek to find the optimal
inputs for the active joints for a given trajectory of the end-effector (tracking problems). This can
be accomplished by defining a cost function.15 Some authors exploited cost functions related to
kinematic17,18 and dynamic4,12 performance indexes. In this manuscript, a Model Predictive Path-
Following Control scheme is proposed and exploited as a global redundancy resolution scheme. This
proposal is based on the Model Prediction Control (MPC) technique that have been employed for
tracking problems of industrial serial robots,19 for vibration reduction of a tower crane prototype,20

for trajectory planning of autonomous vehicles,21 among others. Regarding redundant PKMs, MPC
techniques have been exploited for deriving control strategies for redundantly actuated PKM.22–25

For instance, the technique has been used for deriving a force/position control scheme for a 5-DOF
redundant actuation parallel manipulator23 and for deriving an augmented PD control for a planar
2-DOF redundantly actuated PKM.24 In fact, one of the main contributions of this manuscript is the
proposal of a redundancy resolution scheme for kinematically redundant manipulators using MPC
technique.



Fig. 2. The 3PRRR prototype.

Recently,25 claimed that the presence of redundant actuators can yield energy savings. The
authors evaluated the energy loss of a 2-DOF kinematically redundant manipulator using numerical
results depicted on the workspace. Moreover, numerical studies of the impact of several levels of
kinematic redundancies on the required torque12 and on the energy consumption26 to perform a
predefined trajectory using global redundancy resolution schemes (tracking trajectory) demonstrate
that kinematic redundancy can be beneficial to the design of energy efficient manipulators. These
conclusions indicate that further investigations should be performed considering torque requirements
and energy consumption of kinematically redundant PKMs. In fact, no experimental results are
available in the literature.

In this manuscript, the energy consumption of planar kinematically redundant PKMs is
experimentally verified and compared using a MPC-based redundancy resolution scheme. The
objective of this comparison is to evaluate experimentally whether a planar PKM can benefit from
the use of one, two, or three levels of kinematic redundancy in terms of energy consumption. To that
end, different kinematic architectures, non-redundant and redundant ones, are compared. The 3PRRR
prototype, depicted in Fig. 2, presents three kinematic chains composed of one active prismatic joint
(P), one active revolute joint (R), and two passive revolute joints (RR). This versatile setup can be
exploited to study the non-redundant manipulator 3RRR by locking the prismatic joints and to study the
redundant manipulators PRRR+2RRR, 2PRRR+RRR, and 3PRRR by actuating the prismatic joints.
By actuating or locking the prismatic joints eight configurations can be experimentally investigated as
illustrated in Fig. 3. In this figure, the revolute joints are illustrated as circles and the prismatic joints
as rectangles. The passive prismatic joints are represented by black rectangular forms, the active
prismatic joints by white rectangular forms and the active revolute joints are represented by grey
circles. Considering these representations, the configuration R1 represents the non-redundant 3RRR
PKM (M = 0), the configurations R2–R4 represent the possible redundant PRRR+2RRR PKMs
(M = 1), the configurations R5-R7 represent the possible redundant 2PRRR+RRR PKMs (M = 2),
and the configuration R8 represents the 3PRRR PKM (M = 3), where M is the number of redundant
actuators. It is important to highlight that since the energy consumption is task-dependent, these
configurations represents different manipulators.

The rest of the manuscript is organized as it follows. Section 2 describes the inverse kinematic
model of the non-redundant and redundant manipulators. Section 3 details the redundancy resolution
scheme based on the MPC technique. The experimental campaign is described in Section 4, whilst
the experimental results are presented in Section 5. Conclusions are drawn in Section 6.
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Fig. 3. R1 (M = 0): the 3RRR manipulator, R2–R4 (M = 1): the PRRR+2RRR manipulators, R5–R7 (M = 2):
the 2PRRR+RRR manipulators and R8 (M = 3): the 3PRRR.
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Fig. 4. A single kinematic chain (a). End-effector (b).

2. The 3PRRR PKM’s Inverse Kinematic Model
The inverse kinematic model provides the mathematical expressions that relate the end-effector’s
pose, X = [xe ye α], with the joint coordinates, � = [θ1 θ2 θ3 δ1 δ2 δ3]. Those equations are
essential for planning the motion of robotic manipulators. Due to the 3PRRR architecture, the inverse
kinematic model can be formulated using a single kinematic chain represented by the sub-index i.
For this manipulator, the sub-index i can be 1, 2, or 3.

Figure 4 illustrates the kinematic chain i and the manipulator’s end-effector. The shape of the end-
effector is considered to be an equilateral triangle with altitude h. The geometric center of this triangle
is defined as the end-effector’s coordinates (xe, ye), while its angular position as the end-effector’s
coordinate α. The revolute joints are denoted by the points Bi (active), Ci (passive), and Di (passive).
The joint coordinates of these revolute joints are given by the angles θi, βi, and α, respectively. The
point Ai and the angle γi defines the localization of the prismatic joint. The joint coordinate of the
prismatic joint is given by the position δi. The lengths of the links, ‖BiCi‖ = l1 and ‖CiDi‖ = l2,
impose the kinematic constraints that are exploited to derive the inverse kinematic model hereafter.

With respect to the coordinate system O-xy, the position vector rDi can be written as

rDi = rCi + l2

[
cos βi

sin βi

]
=

[
xe

ye

]
+ h

[
cos(α + λi)
sin(α + λi)

]
, (1)

while the position vector rCi as

rCi = rBi + l1

[
cos θi

sin θi

]
, (2)



and the position vector rBi as

rBi = ai

[
cos λi

sin λi

]
+ δi

[
cos γi

sin γi

]
, (3)

where ai the distance between the Coordinate System O-xy and the point Ai.
The substitution of Eqs. (2) and (3) in Eq. (1) yields the following kinematic constraint:[

xe

ye

]
+ h

[
cos(α + λi)
sin(α + λi)

]
− ai

[
cos λi

sin λi

]
− δi

[
cos γi

sin γi

]
− l1

[
cos θi

sin θi

]
= l2

[
cos βi

sin βi

]
. (4)

Equation (4) can be rewritten using the definition of the vector norm and some simplifications as:∥∥∥∥
[
μi

ρi

]
− l1

[
cos θi

sin θi

]∥∥∥∥ = l2, (5)

where [
μi

ρi

]
=

[
xe

ye

]
+ h

[
cos(α + λi)
sin(α + λi)

]
− ai

[
cos λi

sin λi

]
− δi

[
cos γi

sin γi

]
. (6)

The relation defined by Eq. (5) can be simplified as

−2l1ρi sin θi − 2l1μi cos θi + μ2 + ρ2
i + l2

1 − l2
2 = 0. (7)

Using this relation, the joint coordinates of the active revolute joints, given by the angles θi, can be
calculated as follows:

θi = 2 tan−1
−E1i ±

√
E2

1i + E2
2i − E2

3i

E3i − E2i
, (8)

where E1i = −2l1ρi E2i = −2l1μi and E3i = μ2 + ρ2 + l2
1 − l2

2 . The signal choice in this equation
defines the working mode of the manipulator. This choice yields to eight possible working modes. In
this manuscript, the plus sign in Eq. (8) is the choice for all the kinematic chains of the manipulator,
as illustrated in Fig. 3.

Once the angles θi are known, the passive joint angles βi can be calculated as follows:

βi = tan−1 ρ − l1 sin θi

μ − l1 cos θi
. (9)

3. Redundancy Resolution Scheme
The aforementioned inverse kinematic modelling approach yields a set of three kinematic equations
(one for each kinematic chain). The inverse kinematic problem presents an unique solution for the
non-redundant 3RRR manipulator. In other words, for a given end-effector’s pose X = [xe ye α], the
active joint coordinates, � = [θ1 θ2 θ3 δ1 δ2 δ3], are completely defined since δ1 = 0, δ2 = 0
and δ3 = 0. This is not true for the redundant manipulators. In these cases, for a given end-effector’s
pose X, infinite solutions for the inverse kinematic problem can be found. The selection of a single
solution among them is refereed as redundancy resolution that can be solved locally or globally.

The global approaches for redundancy resolution scheme seek to determine the optimal inputs
for the redundant actuators for a given trajectory (tracking trajectory). In the literature, two main
approaches for treating this problem can be found: the pre-positioning and the ongoing positioning
approaches.4,12 For the pre-positioning approaches, the optimal values of the redundant actuators’
joint coordinates are kept constant during the task execution. Whilst, for the ongoing positioning
approaches, the optimal values of the redundant actuators’ coordinates may vary during the task
execution. It has been shown that the latter approaches may yield improved dynamic performance,12



Table I. Notation of input values of the PKMs under investigation.

Manipulator M �k

R1 0 [θ1,k θ2,k θ3,k 0 0 0]
R2 1 [θ1,k θ2,k θ3,k δ1 0 0]
R3 1 [θ1,k θ2,k θ3,k 0 δ2 0]
R4 1 [θ1,k θ2,k θ3,k 0 0 δ3]
R5 2 [θ1,k θ2,k θ3,k δ1 δ2 0]
R6 2 [θ1,k θ2,k θ3,k δ1 0 δ3]
R7 2 [θ1,k θ2,k θ3,k 0 δ2 δ3]
R8 3 [θ1,k θ2,k θ3,k δ1 δ2 δ3]

but its complexity increases largely. Due to this important drawback, a pre-positioning approach is
adopted hereafter. Due to the selection of this approach, the input values of the active prismatic joints
(the redundant actuators) are the same during the task execution. Table I shows the input values, �k ,
at the time step k for each PKM under investigation. The total number of time steps are denoted as K ,
yielding k = 1, . . . , K . The line over the symbols denotes that these input values are constant during
the task execution. This should be guaranteed by the optimization problem.

In this manuscript, a redundancy resolution scheme based on MPC technique is proposed and
solved globally. In general terms, the MPC technique is an iterative method that solves individual
optimization problems. These individual problems consider N future samples during the optimization
process. The value N is called Prediction Horizon. This process is repeated for every time step moving
the N future samples forward. Each individual optimization problem is going to be solved at every
time step, k, yielding K optimization problems that can be formulated as

minimize
ϑ∈R3N+3

1

2
ϑT Hϑ

subject to Aeq · ϑ = beq,

lb ≤ ϑ ≤ ub,

(10)

where the cost function is described by a quadratic function while the constraints by linear relations.
Due to these characteristics, these optimization problems can be classified as convex optimization
problems.

Considering the redundancy resolution scheme using MPC technique proposed in Eq. (10), the
decision variables, ϑ, for each optimization problem are related to 3N input values for each revolute
active joint at every step time and three input values for each prismatic active joint (redundant
actuators). In this way, the vector of the decision variables, ϑ ∈ R3N+3, can be described by

ϑ = [θ1,1 θ2,1 θ3,1︸ ︷︷ ︸
j=1

. . . θ1,N θ2,N θ3,N︸ ︷︷ ︸
j=N

δ1 δ2 δ3]T , (11)

where j refers to the sample time under evaluation. These decision variables are bounded by the
physical limitations of the prototype’s actuators. Their lower and upper bounds are described by the
vectors lb and ub, respectively. Moreover, these limitations are set to zero if the actuator is not active.
For instance, 0 ≤ δ1 ≤ 0 for the redundant R7 manipulator. The outcome of this optimization, the
inputs of the active joints, can be used in the experimental prototype in a straightforward manner as
described in the next section.

In each optimization problem, the equality constraint equations should guarantee the relation
between the reference (desired trajectory) and the active joints inputs � via the inverse kinematic
model for each time step k. These models are composed of nonlinear relations as denoted in Eq. (8). In
order to include these nonlinear relations in the optimization problem, (Aeq · ϑ = beq), they should be
linearized. This linearization is done by taking the first-order term of its Taylor expansion around the
time instant defined by the considered sample. The partial derivatives of the trigonometric relations



have been approximated by the method of central differences. In this way, the equality constraints
defined by the matrix Aeq ∈ R(3N+3)×(3N+3) and the vector beq ∈ R3N+3 guarantee the tracking of the
reference trajectory at the N future samples.

Finally, the cost functions for the redundant PKMs should be defined. Due to the nature of the cost
function, a quadratic function has been selected:

f (ϑ) = 1

2
ϑT Hϑ = 1

2

N∑
j=1

[
3∑

i=1

(θi,k−1 − θi,k )2 +
3∑

i=1

(δi)
2

]
. (12)

In fact, this cost function is composed of two terms. The first term,
∑3

i=1(θi,k−1 − θi,k )2, penalizes
the motion of the active revolute joints. The second term,

∑3
i=1(δi)2, penalizes the motion of the active

prismatic joints (redundant actuators). For both terms, the sub-index i indicates the kinematic chain
and the sub-index j the sample time to be considered in the MPC problem. These choices penalize
energy consumption by imposing minimal motion for performing the required task. Since the cost
functions should be written in a matrix form (see Eq. (10)), the matrix H must be defined accordingly.
Moreover, this matrix H should be positive semidefinite. For sake of illustration, HN=3 ∈ R12×12 can
be described by

HN=3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0

−1 0 0 2 0 0 −1 0 0 0 0 0
0 −1 0 0 2 0 0 −1 0 0 0 0
0 0 −1 0 0 2 0 0 −1 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

according to the cost function described by Eq. (12).
For each time step, k = 1 . . . K , the optimization problem described by Eq. (10) is solved and the

optimal values for the decision variables are found, ϑ∗. The input values for the active joints are found
as the optimal values of the decision variables for the actual time step under evaluation. In this way,
the input values for the active joints at the time step k can be defined by θ1,k = ϑ∗(1), θ2,k = ϑ∗(2),
θ3,k = ϑ∗(3), δ1 = ϑ∗(3N + 1), δ2 = ϑ∗(3N + 2), and δ3 = ϑ∗(3N + 3).

These convex optimization problems can be solved using the Interior Point Method.27 This
redundancy resolution scheme is exploited for planning the motion of the R2–R8 redundant
manipulators for executing two trajectories described in the following section.

4. Description of the Experimental Campaign
In this section, the prototype is described. This versatile prototype can be exploited for comparing the
energy consumption of the non-redundant (R1) and the redundant (R2-R8) PKMs during the execution
of predefined tasks. Two tasks are investigated in this work. The trajectory planning of these tasks and
the methodology for evaluating the energy consumption of the PKMs under study are also presented
in this section.

4.1. Prototype’s description
The prototype, depicted in Fig. 2, is actuated by six servomotors as illustrated by M1–M6 in Fig. 5.
These servomotors are composed of brushless Maxon EC60 flat motors, Maxon planetary gearhead
GP52C with a reduction rate of 3.5:1 and individual control boards Maxon EPOS2 50/5. In Fig. 5, the
motors are illustrated by M1–M6, the control boards by C1–C6, and the power suppliers by PS1–PS2.



Table II. Prototype’s geometrical parameters.

h(m) ai(m) γi(deg) λi(deg) l1(m) l2(m)

i = 1 59.7e-3 259.8e − 3 180 90 0.191 0.232
i = 2 59.7e-3 259.8e − 3 60 −30 0.191 0.232
i = 3 59.7e-3 259.8e − 3 300 210 0.191 0.232

USB CAN CAN CAN CAN CAN
PC C1 C2 C3 C4 C5 C6

M1 M2 M3 M4 M5 M6

PS1 PS2 PS3 PS4 PS5 PS6

Fig. 5. Communication scheme between the boards and the computer.

The nominal torque of these motors is 0.257 N.m @ 3580 rpm. Due to the reduction rate of the
planetary gearhead, the resulting available nominal torque of each set is 0.82 N.m @ 1200 rpm. The
nominal current and maximum voltage of the control boards are 5A and 50 VDC, respectively. The
motors M4–M6 drive the active prismatic joints. This linear motion is performed by a table system
with ball screw HIWIN KK60-10-C-E-600-A-1-F0-S3. The stroke range of this system is 600 mm
and its pitch is 10 mm.

The communication between the control boards is based on CAN Protocol. While the
communication of the control board C1 (master) and the computer, illustrated by PC in Fig. 5,
is via USB interface. A human–machine interface has been built in Matlab. In this environment,
the users can define the control strategies to be employed by the control boards. There are several
control strategies available in these boards (denoted as Modes). The experimental campaign described
hereafter exploited the Interpolated Position Mode. In this mode, the user provides the desired positions
and velocities at diverse time steps. This data is interpolated using splines by the board and is used as
a reference signal to the control strategies. Moreover, in this mode, linear position feedforward, and
position feedback control strategies are used to guarantee performance and robustness. The control
parameters, the feedforward and feedback gains, have been adjusted manually.

Finally, Table II shows the values of the physical parameters of the prototype depicted in Fig. 2.
Due to the manipulator’s geometry, the active revolute joints are bounded to the interval [−π, π] and
the active prismatic joints to the interval [−0.2, 0.2] (see Eq. (10)).

4.2. Trajectory planning
In an attempt to assess the impact of kinematic redundancy on the energy consumption of planar
PKMs, the energy consumption of the non-redundant and the redundant PKMs (R1–R8) shown in
Fig. 3 are compared. The energy consumption of these manipulators is evaluated during the execution
of two different tasks denoted as I and II in Fig. 6. The profile of both trajectories are defined by a
fifth degree polynomial function:

q(t ) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5, (14)

where t is time in seconds (s) and the coefficients a0 − a5 can be easily calculated by numerical
integration if the initial and final values of position, velocity, acceleration, and time are provided. The
use of a fifth-order polynomial function ensures that the trajectory of the end-effector is sufficiently
smooth to avoid large transients at the start and end of the tasks’ execution.

The trajectory I is a point-to-point task described by a horizontal straight line. The initial and
final end-effector’s poses for this task are X0 = [0.1, −0.05, 0] and X f = [0.1, 0.05, 0], respectively.
The translational quantities are given in meters (m) and the rotational quantity is given in radians
(rad). The initial and final values of the end-effector’s velocity and acceleration are null. Using these
conditions and the profile’s definition (Eq. (14)), the coordinates of the end-effector, (xeI, yeI, αI ), are



I II

Fig. 6. Tasks I and II.

described as follows:

xeI(t ) = −1 + 0t + 0t2 + 0.25t3 − 0.1875t4 + 0.0375t5, (15.1)

yeI(t ) = −0.05, (15.2)

αI(t ) = 0. (15.3)

The trajectory II is a circle centered in the point (0, 0) and the radius 0.1 m. The initial and final
end-effector’s pose for trajectory II are the same X0 = X f = [0.1, 0, 0]. Once again, the initial and
final values of velocity and acceleration are null. Using the same approach exploited for the planning
of trajectory I for the determination of trajectory II, the coordinates of the end-effector, (xeII, yeII, αII ),
can be described as follows:

xeII = 0.1 · cos(qII(t )), (16.1)

yeII = 0.1 · sin(qII(t )), (16.2)

αII(t ) = 0, (16.3)

where

qII(t ) = 0 + 0t + 0t2 + 7.854t3 − 5.8905t4 + 1.1781t5. (17)

The task execution time is requested to be T = 2s for both trajectories. The sampling time is
considered to be st = 0.004s yielding K = 500 time steps. In this way, k = 1, . . . , K , t (1) = 0 and
t (K ) = T = 2. Due to this, 500 optimization problems, as described by Eq. (10), have to be solved.
Each optimization problem is going to use N = 10 samples as prediction horizon.

4.3. Energy consumption evaluation
The redundancy resolution scheme provides the active actuators’ inputs, �k , for each time step, k. By
taking into account the reduction rate of the gearhead and the pitch of the linear guide, these inputs can
be used as reference signals to the actual prototype, �k = [φ1,k φ2,k φ3,k φ4,k φ5,k φ6,k]T . These
references signals can be used by the control strategies implemented at the control boards (C1–C6
in Fig. 2). Regarding the active revolute joints, the relation between these actuators’ inputs and the
references signals differs from the reduction rate, φi,k = 3.5θi,k , where i = 1 . . . 3 and k = 1 . . . 500.
Regarding the active prismatic joints, the relation between these actuators’ inputs and the reference
signals differs from the reduction rate and the pitch, φ(i+3) = 7πδi/0.01 for δi �= 0 otherwise φ(i+3) =
0, where i = 1 . . . 3 and k = 1 . . . 500.

Diverse discrete variables, such as actuators’ currents, can be acquired during a task execution.
Among them, the actuators’ individual currents, Ik = [I1,k . . . I6,k]T , and the actual actuators’ angular
positions, �k = [φ

1,k
. . . φ

6,k
]T , have been acquired, where k = 1 . . . 500. The required voltage, Vi,k ,
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Fig. 7. Total power consumption for the eight configurations regarding the execution of (a) trajectory I and (b)
trajectory II.

for driving each actuator at the time step k can be calculated by

Vi,k = Kb ·
φ

i,k
− φ

i,k−1

t (k) − t (k − 1)
+ L · Ii,k − Ii,k−1

t (k) − t (k − 1)
+ R · Ii,k, (18)

where Kb = 114 mNm/A is the actuator’s torque constant, L = 0.864 mH is the terminal inductance
and R = 1.1� is the terminal resistance. The time derivatives have been approximated due to the
discrete nature of the variables.

The energy consumption of each manipulator during the execution of any task, Etotal can be
calculated by taking the time integral of the electric power. Due to the discrete nature of the variables,
the definite integral has been approximated using the trapezoidal rule:

Etotal =
3+M∑
i=1

[
st

2

K∑
k=1

(Vi,k+1Ii,k+1 + Vi,kIi,k )

]
, (19)

where K = 500 and M is described in Table I. Since SI units are used, the actuators’ individual currents
and required voltage are given in ampere (A) and volts (V), respectively. In this way, the Etotal is given
in joule (J).

5. Results
A comparison between the total energy consumption of the non-redundant and redundant R1–R8
manipulators, illustrated in Fig. 3, is done considering the execution of the trajectories I and II,
illustrated in Fig. 6. These trajectories have been calculated according to the methodology described
in Section 4.2. The execution of such trajectories by the redundant manipulators requires the use of a
proper redundancy resolution scheme. In this work, the redundancy resolution scheme based on MPC
proposed in Section 3 is exploited. Figure 7 compares the total average consumed energy: (a) during
the experimental execution of trajectory I and (b) during the experimental execution of trajectory II.
Both trajectories have been experimentally performed five times for the average calculation. The data
are collected and the calculation of the total energy consumption (Eq. (19)) is carried out in an offline
mode.

In general, one can conclude that the amount of electrical power required by the actuators of
the redundant manipulators (R2–R8) have been less than or equal to the amount of electrical power



Fig. 8. Comparison between the experimental data during the execution of trajectory I: (a) Actuators’ currents
of the R1. (b) Actuators’ electrical power of the R1. (c) Actuators’ currents of the R8. (d) Actuators’ electrical
power of the R8.

required by the actuators of the non-redundant manipulator (R1). This conclusion can be drawn for
both trajectories. This indicates that the inclusion of the kinematic redundancies have been positive
regarding the consumption of electrical energy. In fact, the active prismatic joints of the redundant
manipulators can be moved to a proper configuration (reconfiguration capability). In this proper
configuration, the singularities are avoided during the motion yielding an important reduction of the
energy consumption. This fact demonstrates the potential of the kinematically redundant manipulators
regarding energy efficiency.

Regarding the energy consumption for the execution of the trajectory I, it can be concluded that
the redundant manipulators R2 (1 kinematic redundancy) and R6 (2 kinematic redundancies) have
considerably consumed smaller amounts of energy than the others. The fact that the redundant
manipulator R8 have consumed a greater amount of electrical power than the both R2 and R6
may be puzzling since previous numerical studies regarding the same PKMs have shown that
redundant manipulators have always been capable to enforce a reduction on power consumption.26

The authors believe that the main reason for this discrepancy is the fact that there is no way
to guarantee that the actuators and their assembles are in fact the same for all kinematic
chains.

Regarding the energy consumption for the execution of the trajectory II, it can be concluded that
only the redundant manipulators R3 (1 kinematic redundancy), R5/R7 (2 kinematic redundancies),
and R8 (3 kinematic redundancies) have consumed smaller amounts of electrical power than the
non-redundant one. Since the manipulator is not symmetric (due to the links’ configurations), the
power consumption of the manipulators R2, R3, and R4 (1 kinematic redundancy) for the execution
of the trajectory II (symmetric trajectory regarding the positions of linear guides) should not be the
same. This can be verified experimentally by observing that R3 have consumed a smaller amount
of electrical power than the manipulators R2 and R4. The same conclusions can be drawn regarding
the consumption of the manipulators R5, R6, and R7 (two kinematic redundancies). In fact, the
redundant actuator δ2 is the main responsible for the reduction of electrical consumption. This
conclusion can be drawn since this redundant actuator is active at the manipulators R3, R5, R7,
and R8.

For sake of completeness, the actuator’s currents and power consumption are depicted in Figs. 8
and 9 for the manipulators R1 and R8. Regarding the execution of the trajectory I (Fig. 8), one can
verify that the currents and the electrical power of the redundant manipulator have been considerably
lower than the data related to the non-redundant manipulator. The same cannot be verified during the
execution of trajectory II (Fig. 9). These results are in line with the data shown in Fig. 7, where the
reduction on the power consumption was about 50% for the trajectory I and 10% for the trajectory
II considering three levels of kinematic redundancy. In this way, one can conclude that the amount
of reduction on power consumption is dependent not only on the exploited kinematic redundancy (as
previously discussed), but also on the task to be executed.



Fig. 9. Comparison between the experimental data during the execution of trajectory II: (a) Actuators’ currents
of the R1. (b) Actuators’ electrical power of the R1. (c) Actuators’ currents of the R8. (d) Actuators’ electrical
power of the R8.

6. Conclusions
In this manuscript, the impact of kinematic redundancies in the energy consumption of a planar PKM
is experimentally assessed. The experimental campaign has been carried out using the redundant
3PRRR redundant. Up to three levels of kinematic redundancies can be evaluated using this prototype
by locking or actuating the prismatic joints yielding eight possible configurations. Because of the
presence of the kinematic redundancies, the inverse kinematic problem presents infinity solutions.
The selection of a solution among the possibilities was performed by a redundancy resolution scheme
based on the MPC technique. The average of the energy consumption of the eight configurations have
been experimentally measured.

It can be concluded that the energy consumption of the non-redundant parallel manipulator 3RRR
can be reduced by the inclusion of a proper kinematic redundancy scheme. This conclusion confirms
previous results based on numerical investigations. Nevertheless, the possible energy consumption
reduction is highly dependent on the task to be executed and on how the kinematic redundancies are
exploited.

In general, the potential of kinematically redundant manipulators regarding energy efficiency
should be carefully investigated. For instance, an important limitation in this study was the use of
the pre-positioning strategy for the redundant actuators. The use of different strategies could yield
improved results.
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