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Kinematic redundancy may be an efficient way to im-
prove the performance of parallel manipulators. Neverthe-
less, the inverse kinematic problem of this kind of manip-
ulator presents infinite solutions. The selection of a single
kinematic configuration among a set of many possible ones
is denoted as redundancy resolution. Whilst several redun-
dancy resolution strategies have been proposed for planning
the motion of redundant serial manipulators, suitable propos-
als for parallel manipulators are seldom. Redundancy reso-
lution can be treated as an optimization problem that can be
solved locally or globally. Gradient projection methods have
been successfully employed to solve it locally. For global
strategies, these methods may be computationally demand-
ing and mathematically complex. The main objective of this
work is to exploit the use of Differential Dynamic Program-
ming (DDP) for decreasing the computational demand and
mathematical complexity of a global optimization based on
the gradient projection method for redundancy resolution.
The outcome of the proposed method is the optimal inputs
for the active joints for a given trajectory of the end-effector
considering the input limitations and different cost functions.
Using the proposed method, the performance of a redundant
3PRRR manipulator is investigated numerically and experi-
mentally. The results demonstrate the capability and versa-
tility of the strategy.

∗Corresponding author.

1 Introduction
Due to their kinematic architecture, parallel kinematic

machines (PKMs) possibly present higher stiffness [1],
higher dynamic performance [2, 3] and higher accuracy [4]
compared to serial ones. Whilst these characteristics may be
interesting for industrial applications, PKMs suffer from im-
portant drawbacks such as the presence of singularities [5,6],
the limited workspace [6], the complex control strategies’ re-
quirements [7–10], among other issues.

A strategy for dealing with the presence of singularities
and workspace limitations is the introduction of an extra ac-
tive joint in an active kinematic chain [11, 12]. This strategy
is denoted as kinematic redundancy. The kinematically re-
dundant parallel manipulators present higher mobility than
required for the desired task allowing the avoidance of sin-
gularities and obstacles [13], enlarging the usable workspace
[6,14]. In addition, kinematically redundant parallel manipu-
lator might present higher accuracy [15], better motion/force
transmissibility [16], improved dynamic performance [2, 3],
enhanced energy efficiency [17] and optimized manipulabil-
ity [18] compared to the non-redundant ones.

Figure 1 depicts the kinematically redundant planar par-
allel manipulator 3PRRR built at São Carlos School of En-
gineering at University of São Paulo. This manipulator
presents three kinematic chains composed of one active pris-
matic joint (P), one active revolute joint (R) and two passive
revolute joints (RR). This versatile setup can be exploited
to study the non-redundant manipulator 3RRR by locking
the prismatic joints and to study the redundant manipulators
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Fig. 1: 3PRRR: the kinematically redundant planar paral-
lel manipulator built at São Carlos School of Engineering at
University of São Paulo

PRRR+2RRR, 2PRRR+RRR and 3PRRR by actuating the
prismatic joints.

Due to the kinematic redundancies, the inverse kine-
matic problem presents infinite solutions [19]. In other
words, there are infinite possible active joint inputs for a sin-
gle end-effector’s pose. As posed in [11], the problem of
selecting a single configuration among a set of many possi-
ble ones when dealing with inverse kinematics of redundant
manipulators can be denoted as redundancy resolution. Re-
dundancy resolution can be treated as an optimization prob-
lem that can be solved locally or globally [11]. The former
approaches address the problem by considering kinematic re-
lations between the inputs of the active joints and the outputs
of the end-effector (the end-effector’s pose). These relations
can be formulated using gradient projection methods, Jaco-
bian based strategies, among others [19]. They can be im-
plemented online and are able to take into account varying
constraints and/or moving obstacles. The latter approaches
seek to find optimal inputs for the active joints for a given
trajectory of the end-effector. These methods, also denoted
as tracking problems [11], aim to optimize a cost function
along the entire pre-defined trajectory.

Redundancy resolution has been extensively exploited
for redundant serial manipulators [20–22]. For instance,
a global approach has been successfully implemented to a
seven-DOF serial manipulator in [11]. Using a multi-criteria
optimization and the Fast Non-Dominated Sorting Genetic
Algorithm (see NSGA-II at [23]), Marcos, Machado and
Azevedo-Perdicolis [24] have numerically studied the redun-
dancy resolution of the planar serial RRRR robot. A local ap-
proach has been exploited in [25] to resolve the human arm
redundancy. Moreover, Kim et al. [25] have employed this
approach for controlling an upper limb 7-DOF wearable ex-
oskeleton robot. Recently, Minami, Matsuno and Yanou [26]
have used global optimization algorithms to design and con-
trol a redundant serial robot using the concept of dynamic
reconfiguration manipulability.

Regarding PKMs, the use of kinematic redundancy and
redundancy resolution have also been treated in some works.
Among them, Kotlarski et al. [27] and Thanh et al. [28] have
proposed optimization strategies to deal with the redundant
input for the PRRR+2RRR, a redundant manipulator with
a single level of kinematic redundancy, using a global re-
dundancy resolution approach. Extra levels of redundancies
have been numerically treated in [12] and [3]. On the one
hand, Cha, Lasky and Velinsky [12] have resolved the in-
puts of the redundant actuators of the 3PRRR using a lo-
cal redundancy resolution approach. For that, these authors
have posed an optimization problem that maximizes the ab-
solute value of the determinant of the Jacobian matrix that
corresponds to a forward kinematic singularity. On the other
hand, Fontes and da Silva [3] have studied the impact of
extra levels of redundancies in the dynamic performance of
the 3PRRR via a global redundancy resolution approach and
dynamic indexes depicted in the workspace. For that, an
optimization problem was posed minimizing the maximum
required torque to perform a pre-defined trajectory. In or-
der to improve the force capabilities and to avoid singulari-
ties, Boudreau and Nokleby [29] have numerically exploited
kinetostatic analysis to plan the motion of the redundant ac-
tuators of the 3PRPR via a local optimization problem. De-
spite numerical evidences that the use of extra levels of kine-
matic redundancies can satisfactorily improve the dynamic
performance and enlarge the workspace [3], experimental
studies are scarce.

Redundancy resolution for manipulators with several
levels of kinematic redundancy is generally formulated as a
cumbersome optimization problem. This is particularly true
for PKMs due to the complexity of the kinematic relations.
Due to this fact, most attempts to tackle this problem are
based on global approaches that seek the optimal parameters
for a polynomial description of the trajectory [3, 27]. More-
over, this approach lacks versatility due to this description.

In this manuscript, a simple, yet versatile, global redun-
dancy resolution approach is proposed. Global approaches
are know to be expensive computationally [19]. To tackled
this issue, a gradient projection method is firstly employed
for deriving an optimal global motion. The outcome of this
strategy may demand unrealistic input values by imposing
high acceleration values. To overcome this issue, Differen-
tial Dynamic Programming (DDP) [30] is used to minimize
the difference between the practical global motion from the
optimal global motion while acceleration values are kept lim-
ited. The proposed approach is versatile, being a good option
for redundancy resolution of manipulators with several levels
of kinematic redundancy.

This manuscript is organized as follows. Section 2 de-
scribes the proposed motion planning strategy. The proposed
strategy is exploited for the motion planning of the redundant
manipulator 3PRRR (see Fig. 1) in Section 3. Numerical and
experimental results are discussed in Section 4. Finally, con-
clusions are drawn in Section 5.
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2 Motion Planning Strategy
The proposed redundancy resolution strategy is based on

the use of the outcome of the gradient projection method as
an optimal global motion. Whilst gradient projection meth-
ods work well for local approaches, unrealistic input val-
ues can be derived if this method is exploited for global ap-
proaches. This issue is tackled by using the DDP to mini-
mize the difference between this optimal global motion and
a practical one by a proper selection of the weighting terms
of the optimization.

A similar approach has been proposed in [31] for redun-
dant serial manipulators using DDP. In this case, Guigue et
al. [31] considers two cost functions, the joint speed norm
and the aerodynamic interference. PKMs present different
challenges from the ones faced in [31]. In this way, different
cost functions are proposed and evaluated hereafter.

2.1 Redundancy Resolution
On the one hand, the direct kinematic problem seeks

to find the task space trajectory x(t) for a given joint space
trajectory, x(t) = f (q(t)). On the other hand, the inverse
kinematic problem seeks the joint space trajectory q(t) that
solves x(t) = f (q(t)). For a kinematically redundant manip-
ulator, the inverse kinematic problem presents infinite solu-
tions. Strategies for selecting a solution for this problem may
consider different aspects such as: energy consumption, sin-
gularity avoidance, among others. These strategies may be
posed as optimization problems. This is the case of gradient
projection methods that have been revised in [19].

Considering a kinematically redundant manipulator
with N degrees-of-freedom and M joints, a relation between
the joints’ velocities, q̇ ∈ RM , and end-effector’s velocities,
ẋ ∈ RN can be derived. This relation can be formulated as:

q̇ = J†(q) ẋ, (1)

where J† ∈RM×N is the Moore-Penrose pseudoinverse of the
Jacobian matrix. This approach minimizes the norm of the
joint velocities, due to the properties of J†. Nevertheless,
this solution may yield joint space trajectories near singu-
larity regions. The reason for this relies on the fact that the
joint velocities are only minimized locally. This important
drawback can be tackled by modifying the aforementioned
relation [19]:

q̇ = J†(q) ẋ+
(

I−J† J
)

q̇0, (2)

where q̇0 ∈ RN is an arbitrary joint velocity vector. The
element

(
I−J† J

)
projects any vector into the null space.

Therefore, the second parcel of eq. 2 is a vector with compo-
nents of a general q̇0 which does not produce motion into the
task space. Choosing a cost function H(q), this optimization
problem can be solved using the gradient projection method
yielding q̇0 = ∇H(q). This procedure finds a joint space
trajectory q(t) which produces the demanded task space tra-
jectory x(t) optimizing joint velocities q̇ (eq. 1) and the cost

function H(q). In this way, using this strategy, joint veloci-
ties will be optimized under the perspective of H(q), which
may be any differentiable function.

Equations 1 and 2 solve the optimization problem lo-
cally. Nevertheless, many applications in robotics present a
previously known task space trajectory, x(t). For a global
optimization strategy, optimal control theory, dynamic pro-
gramming and calculus of variations have been exploited
[20–22]. In this case, the optimization problem would seek
the minimization of a cost function H(q) for the entire task.
This approach is known to require more complex mathemat-
ical tools as the Pontryagin’s Maximum Principle [21, 32] or
Bellman’s Optimality Principle [33].

2.2 Differential Dynamic Programming
The use of DDP for trajectory planning taking into ac-

count input limitations has been employed in [34], among
others. Redundancy resolution brings other challenges to tra-
jectory planning problems. The main objective of this work
is to exploit the use of DDP for decreasing the computational
demand and mathematical complexity of a global optimiza-
tion based on the gradient projection method for redundancy
resolution.

It is widely known that the main objective of the DDP
is the optimization of the sum of cost functions of a multi-
stage problem. In this work, DDP is exploited to minimize
the tracking error and accelerations for a given trajectory per-
formed by a kinematically redundant PKM. The use of DDP
for trajectory planning requires the discretization of the func-
tion that described the trajectory to be planned. In this way,
the trajectory can be described as a discrete function ζζζ(k)
over discrete time instants tk = t(k) where k = 0 . . .n− 1.
In this work, this trajectory should follow a given reference
ζζζr(k). During this motion, the tracking error, ζζζr(k)− ζζζ(k),
and the acceleration values, a(k) should be minimized. The
cost function of this multiobjective optimization problem at
the time instant tk may be stated as

l(ζζζ(k),a(k)) = cr ‖ζζζr(k)−ζζζ(k)‖2
+ ca a(k)T a(k), (3)

where cr and ca are weighting factors that attribute the rele-
vance among the tracking error and the acceleration values,
respectively. The acceleration values, a(k), are the second
order finite approximation of ζζζ(k).

This optimization procedure should guarantee that at the
end of the movement, the manipulator presents null velocity
and acceleration. In order to satisfy this requirement, a final
cost function for the final instant tn is stated penalizing these
non-null values:

l f (ζζζ(n),v(n),a(n)) = cr ‖ζζζr(n)−ζζζ(n)‖2
+ ...

...+ c f v v(n)T v(n)+ c f a a(n)T a(n),
(4)

where v(k) is the finite difference approximation of the first
order derivative of ζζζ(k). The constants c f v and c f a should
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have high values in order to guarantee negligible values of
v(n) and a(n).

One can see that the input variables, ζζζ(k), v(k) and a(k),
are related by finite difference approximations. As a result,
the argument of the optimization can be described by the Jerk
vector j(k), that can be described by the third order finite
approximation of ζζζ(k). The remaining functions are inte-
grated numerically based on their initial values ζζζ(0), v(0)
and a(0). Using this approach, the acceleration values are
considered to be state variables. Moreover, the DDP’s no-
tation requires the definition of state variables and inputs.
In this way, the state variables can be described by the vec-
tor xk = [ζζζ(k)T v(k)T a(k)T ]T , and the inputs by the vector
uk = j(k).

Using Euler integration, the state xk+1 can be described
by a linear combination of the state vector xk and the input
vector uk:

xk+1 = f(xk,uk) = Akxk +Bkuk, (5)

where f is a vector function, Ak is the state matrix and Bk is
the input matrix. Collecting the input vectors at every time
instant in the matrix U = {u0, ...,un−1}, the total cost func-
tion J(U,x0) can be defined over the entire trajectory by the
summation of the cost function defined by each time instant:

J(U,x0) = l f (xn)+
n−1

∑
k=0

l(xk). (6)

In other words, if the initial state vector x0 and the input
vectors U = {u0, ...,un−1} are available, not only the state
vector x can be calculated through numerical integration but
also the total cost J can be obtained. This process is called
Forward Pass [30].

An optimization problem considering the variables U
and x0 may be prohibitive due to its dimension. The Prin-
ciple of Optimality [30] indicates that this problem can be
divided into sub-problems at each time instant. Considering
Up = {up, ...,un−1} as sub-set of U containing its last n− p
vectors, a partial cost Jp(Up,xp) can be calculated as

Jp(Up,xp) = l f (xn)+
n−1

∑
k=p

l(xk). (7)

The function Vp can be defined as the minimum Jp possible
for a given xp. This function, that is also known as cost-to-
go function, can be described by the following optimization
problem:

Vp(xp) = min
Up

{
l f (xn)+

n−1

∑
k=p

l(xk)

}
. (8)

Thanks to the Principle of Optimality [30], if the following
value of the Vp+1 is already calculated, the value of Vp can

be easily found:

Vp(xp) = min
Up

{
l(xp)+Vp+1

(
f(xp,up)

)}
. (9)

Using this strategy, the procedure starts by the calculation
of Vn(xn) = l f (xn). Then, at every stage p, the procedure
seeks up that minimize Vp. This process is called Backward
Pass. Since l, l f and f are quadratic functions of state and in-
put vectors, these optimization sub-problems can be solved
using Sequential Quadratic Programming (SQP) [35], for in-
stance. At every stage p, the outcome of this procedure is the
minimization of the cost function by finding the optimal jerk
vector (the input vector up) and the derivation of the state
vector by considering the optimal jerk vector and the former
velocities and positions (see Eq. 5).

2.3 Global Optimization
The gradient projection method is an efficient local strat-

egy for redundancy resolution [19]. This advantage can also
be exploited for proposing a global and versatile strategy.
Considering a kinematically redundant planar manipulator
with Nr redundant actuators, the vector qr ∈ RNr can be de-
fined containing the redundant joint inputs (angular or trans-
lational displacements). The time derivative of the input val-
ues of the redundant actuators, q̇r, are selected to be the arbi-
trary joint velocity vector, q̇0 in Eq. 2. In this way, these val-
ues can be derived through the gradient projection method:

q̇r = q̇0 = ∇H(qr) (10)

where H is a cost function that considers relevant aspects of
the studied manipulator.

For a given cost function H, the input values of the
redundant actuators, q̇r, are calculated using the Gradient
Projection Method. This approach would require the best
pose of the redundant manipulator for every instant. This
requirement could demand unfeasible accelerations and in-
put torques. To overcome this issue, the DDP is exploited
in order to attain reasonable joint inputs by a proper selec-
tion of the weighting factors of Eqs. 3 and 4. In order to do
so, the input values of the redundant actuators q̇r are used as
reference for the redundant actuators and a numerical investi-
gation is carried out for assessing the maximum acceleration
values. The DDP demands the discretization of these val-
ues. This discretization yields the reference ζζζr in the DDP’s
scheme (see Eqs. 3 and 4).

The outcome of the DDP is the actual input values of the
redundant actuators, ζζζ. The proposed scheme is considered
versatile since the designer can exploit the weighting factors
of Eqs. 3 and 4 to limit the manipulator’s accelerations. This
limitation would impact the tracking performance of the ma-
nipulator.

Once determined, the input values of the redundant ac-
tuators ζζζ can be used for the derivation of the input values of
all actuators ΘΘΘ, non-redundant and redundant ones. This can
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be done since the kinematic model presents a unique solution
for a given configuration of the redundant actuators ζζζ and a
given end-effector’s pose X.

3 The Case Study: 3PRRR
The proposed methodology is applied for the derivation

of the inputs for the redundant actuators of a kinematically
redundant planar parallel manipulator, the 3PRRR. In order
to do so, the kinematic model and the cost function should
be fully derived. These steps are described in this section.
Firstly, the experimental setup is described in Section 3.1.
Secondly, the kinematic model is derived in Section 3.2. Fi-
nally, the definition of the cost function is addressed. Regard-
ing PKMs, different aspects should be considered to build
such cost function, such as manipulability, rigidity, dynamic
isotropy, among others [36]. In this work, the cost function
H (see Eq. 10) is defined as a weighted sum of distinct cost
functions in order to consider some important design trade-
offs of PKMs.

3.1 Setup Description
The proposed redundancy resolution approach is applied

on a 3PRRR, a planar parallel robot with 3 kinematic chains
actuated by six servomotors depicted in Fig. 1. Each kine-
matic chain includes an active prismatic joint and an active
revolute joint. The actuation of the prismatic joints allow the
manipulator’s reconfiguration. The actuation of the prismatic
and revolute joints is performed by brushless Maxon EC60
flat motors. The nominal torque of these motors is 0.257N.m
@ 3580rpm. These motors are coupled with Maxon plan-
etary gearhead GP52C with a reduction rate of 3.5:1. The
resulting available nominal torque of the set is 0.82N.m @
1200rpm. The linear motion is performed by three table sys-
tems with ball screw HIWIN KK60-10-C-E-600-A-1-F0-S3.
Their stroke range is 600mm and their pitch is 10mm. Each
motor is controlled by an individual controller board Maxon
EPOS2 50/5. The nominal current and maximum voltage of
these boards are 5A and 50 VDC, respectively. The com-
munication between the boards is via CAN protocol and the
communication with the computer is via USB port.

Several control strategies, denoted as Modes, are avail-
able in these boards. The experimental campaign described
hereafter exploited the Interpolated Position Mode. In this
mode, the user provides the desired positions and velocities
at diverse time instants. This data is interpolated through
splines by the board and is used as a reference signal to
the control strategies. Moreover, in this mode, linear posi-
tion feedforward and position feedback control strategies are
used to guarantee performance and robustness. The control
parameters, the feedforward and feedback gains, have been
adjusted manually.

Figure 2 shows a schematic representation of the planar
manipulator, depicting the kinematic parameters. On the one
hand, as aforementioned the manipulator presents six actu-
ators, the active revolute joints θi and the active prismatic
joints ζi where i represents each kinematic chain (i = 1 . . .3).

On the other hand, the end-effector presents three DOFs de-
scribed by the coordinates x, y and α. The revolute joints Bi
and Ci are passive ones. The lengths of links AiBi and BiCi
are, respectively, l2 and l3. The angles γi represent the orien-
tation of each prismatic joint. The orientation of the link BiCi
is βi. The length h is the distance between the centroid of the
end-effector and the point Ci. A coordinate system O− (x,y)
is defined at the center of the manipulator. The distance be-
tween the origin of this coordinate system and the center of
any prismatic actuator is a. Regarding the prototype dimen-
sions, the numerical values of h, a, l2 and l3 are presented in
Table 1. These values have also been used in the numerical
evaluation.

Table 1: Dimensions of the prototype

h a l2 l3

59.7 mm 259.8 mm 191.0 mm 232.0 mm

3.2 Kinematic Model
In this subsection, the inverse kinematic models of the

manipulators under study are fully derived. Moreover, the Ja-
cobian matrix of this manipulator is also described. The out-
come of the modelling procedure is exploited by the redun-
dancy resolution approach proposed in this work. The kine-
matic parameters are depicted in Fig. 2 and have been previ-
ously described. The modeling approach can be exploited for
the derivation of the kinematic models for the non-redundant
3RRR manipulator and the redundant 2RRR+PRRR (Nr =
1), RRR+2PRRR (Nr = 2) and 3PRRR (Nr = 3) manipula-
tors.

3.2.1 Inverse Kinematics
The Inverse Kinematic Model (IKM) of a robotic ma-

nipulator attempts to calculate the active joints’ positions ΘΘΘ

for a given end-effector’s position X = [x,y,α]T . The IKM of
the non-redundant manipulator relates the three active joints’
positions ΘΘΘ = [θ1,θ2,θ3] with the end-effector’s position. In
this case, the solution of this problem is unique. The IKMs of
the redundant manipulators attempt to correlate Nr +3 active
joints’ positions ΘΘΘ = [θ1,θ2,θ3,ζ1, . . . ,ζNr ]

T with the end-
effector’s position, where Nr is the number of redundant ac-
tuators. Due to the presence of kinematic redundancies, the
IKM presents infinite solutions of ΘΘΘ for a given X.

In this manuscript, a redundancy resolution scheme (see
Section 2) is proposed for the definition of the inputs of
redundant actuators, the inputs of active prismatic joints
ζζζ = [ζ1, . . . ,ζNr ]

T . In this way, for given X and ζζζ, the inverse
kinematic problem described hereafter aims to determine the
input values θ1, θ2 and θ3.

To do so, the geometrical relation regarding the length of
the link BiCi of the kinematic chain i can be imposed (details
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Fig. 2: Schematic representation of a 3PRRR

can be found in [2, 3]):

||rCi − rBi ||
2 =

∥∥∥∥[ρxi− l2 cosθi
ρyi− l2 sinθi

]∥∥∥∥2

= l2
3 , (11)

where rBi and rCi are the position vectors of the points Bi
and Ci, respectively. Moreover, ρxi and ρyi can be defined as

[
ρxi
ρyi

]
=

[
x
y

]
+h
[

cos(α+ γi± π/2)
sin(α+ γi± π/2)

]
− ...

...+ζi

[
cosγi
sinγi

]
−a
[

cos(γi± π/2)
sin(γi± π/2)

]
.

(12)

The signal of the term ±π/2 is defined in function of the
direction of the increment of ζi. For the specific case of Fig.
2, this sign is positive and the angle is γi +

π/2.
Expanding the norm in Eq. 11, one can define the terms

e1i, e2i and e3i as

(−2.l2.ρyi)︸ ︷︷ ︸
e1i

sinθi +(−2.l2.ρxi)︸ ︷︷ ︸
e2i

cosθi + ...

...+ρ
2
xi +ρ

2
yi + l2

2 − l2
3︸ ︷︷ ︸

e3i

= 0.
(13)

The transcendental Eq. 13 may be solved using the Weier-
strass substitution:

θi = 2tan−1

−ei1±
√

e2
i1 + e2

i2− e2
i3

ei3− ei2

 . (14)

Once θi is known, βi can also be determined by the following
expression:

βi = tan−1
(

ρyi− l2 sinθi

ρxi− l2 cosθi

)
. (15)

3.2.2 Jacobian Matrix
Relevant information can be obtained by evaluating the

Jacobian matrix of a manipulator at a given pose. This ma-
trix can be determined by taking the time-derivative of the
geometrical constraint described by Eqs. 11 and 13. For
each kinematic chain i, this derivation leads to the following
relation (details can be found in [2, 3]):

ẋ [l3 cosβi]︸ ︷︷ ︸
ai,1

+ẏ [l3 sinβi]︸ ︷︷ ︸
ai,2

+α̇ [l3 hsin(βi− γi−α± π/2)]︸ ︷︷ ︸
ai,3

=

= θ̇i [l2 l3 sin(βi−θi)]︸ ︷︷ ︸
bi,i

+ζ̇i [l3 cos(βi− γi)]︸ ︷︷ ︸
bi,m+3

,
(16)
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where m = 1 . . .Nr, according to the number of redundant ac-
tuators. The Jacobian matrix, J, can be found by the matricial
relation:

Ẋ = A−1BΘ̇ΘΘ = JΘ̇ΘΘ. (17)

where A = (ai, j) ∈ R3×3 and X = [x,y,α]T ∈ R3×1.
For the non-redundant 3RRR manipulator, ΘΘΘ =

[θ1,θ2,θ3] ∈ R3×1, B = diag(bi,i) ∈ R3×3 and J =
A−1B ∈ R3×3. For the redundant manipulators, ΘΘΘ =
[θ1,θ2,θ3,ζ1, . . . ,ζNr ]

T ∈ R3+Nr×1, B ∈ R3×3+Nr is defined
by

B =

b1,1 0 0 b1,4 . . . 0

0 b2,2 0
...

. . . 0
0 0 b3,3 0 0 b3,m+3

 , (18)

where m = 1 . . .Nr and J = A−1B ∈ R3×3+Nr .
Several kind of singularities can occur if the matrices A

or B are not full rank. Near singularity regions, the Jacobian
matrix J becomes ill-conditioned. In this work, a major con-
cern is when the matrix A is singular. In this case, displace-
ments of X can happen even when the actuators are locked,
yielding a loss of the manipulator’s rigidity.

3.3 Definition of the cost function H(ζζζ)

The cost function H(ζζζ), Eq. 10, for a given pose X of the
end-effector should measure how convenient the positions of
redundant actuators ζζζ are. This measure may include ma-
nipulability, rigidity, dynamic isotropy, among others [36].
In this way, the definition of H(ζζζ) is dependent not only on
the design requirements but also on the manipulator under
study. This function can be defined as a weighted sum of
several cost functions considering different aspects.

This work proposes the use of three cost functions for
redundancy resolution of the redundant 3PRRR manipulator.
Firstly, singularity regions are avoided by the evaluation of
the singular values of the Jacobian matrix, J (see 17). This
is considered by the cost function H1(ζζζ). Secondly, the lim-
its of the manipulator’s workspace should be included. This
can be done by imposing geometrical constraints. These con-
straints should impose upper and lower limits on the distance
of the points Ai and Ci and on the redundant actuators’ posi-
tion ζi for each kinematic chain i. This constrained optimiza-
tion problem can be written as an unconstrained optimiza-
tion problem by using penalty methods [35]. The uncon-
strained problem is posed by the addition of penalty terms
in the objective function. These penalty terms present high
values when the constraint is violated. In this way, two cost
functions are introduced to include the limitations of the ma-
nipulator’s workspace. The constraint on the distance of the
points Ai and Ci is described by the cost function H2(ζζζ) and
the constraint on the value of ζi is described by the cost func-
tion H3(ζζζ). These functions are discussed hereafter.

3.3.1 Singular Value Decomposition of J
As discussed in Section 3.2.2, singularities have to be

avoided. Figure 3 illustrates the 3RRR manipulator in two
distinct configurations: (A) a non-singular configuration and
(B) a singular configuration. Since the links BiCi are attached
by passive revolute joints, they are only capable of transmit-
ting forces through their lines of action, depicted by dashed
lines in Fig. 3. Torque can be supported by the manipulator
only if the intersections of the lines of action do not lie at
the same point. If they lie at the same point as depicted in
Fig. 3(B), no torque can be supported and the mechanism
looses rigidity. Other singular configuration happens when
the distal links are parallel and cannot sustain a force that is
perpendicular to the links. For sake of brevity, this kind of
singularity is not illustrated in this manuscript.

Fig. 3: 3RRR: (A) non-singular configuration and (B) singu-
lar configuration, which mitigates mechanism rigidity

Regions near to singular positions present ill-
conditioned Jacobian matrices. In this way, a good
strategy to avoid such regions is to evaluate the condition
number of the Jacobian matrix and plan the motion in such a
way that this number is as small as possible.

The Jacobian matrix of the redundant 3PRRR manipu-
lator presents three singular values, σ1(J)� σ2(J)� σ3(J).
For this case study, σ2(J) and σ3(J) are close to each other
as illustrated in Fig. 4. In order to consider this particularity,
the proposed cost function to evaluate the singular values of
the Jacobian matrix includes the three singular values in the
following manner:

H1(ζζζ) =−
σ1
(
J(ζζζ)

)
σ2
(
J(ζζζ)

)
σ3
(
J(ζζζ)

) . (19)

The proposed strategy consists of attempting to maxi-
mize H1 values since the gradient of the cost function is ex-
ploited for redundancy resolution (see Eq. 10). As a conse-
quence, σ1, σ2 and σ3 are required to attain values as close to
each other as possible. This approach avoids ill-conditioned
Jacobian matrices.

3.3.2 Distance between Ai and Ci
The limits of the manipulator’s workspace should

also be considered for a successful redundancy resolution
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Fig. 4: Illustration of persistent interchange between σ2 and
σ3

scheme. Kinematic constraints can be imposed by analysing
the position vector rAiCi . The norm of this vector should be
higher than |l2− l3| (the angle between the links is null) and
smaller than l2 + l3 (the angle between the links is 180o). In
this way, a geometrical inequality constraint can be imposed:

|l2− l3|6 ‖rAiCi‖6 l2 + l3. (20)

The use of such an inequality constraint is not straightfor-
ward regarding the proposed approach based on gradient pro-
jection. To overcome this issue, a cost function is defined via
the introduction of penalty terms [35]. In order to do so, the
strategy is to minimize the difference between a reference
norm and the actual norm. The reference norm is considered
to be lt =

√
l2
2 + l2

3 . Using this strategy, kinematic configura-
tions where the angles θi and βi are perpendicular are sought
since they satisfy the constraint described by Eq. 20. In this
way, the following cost function is proposed:

H2(ζζζ) =−
3

∑
i=1

(
lt −‖rACi‖

)2
. (21)

This cost function is maximized when ‖rACi‖ is equal to lt .

3.3.3 Limiting the amplitude of ζζζ

Finally, the limitation on the redundant actuators’ posi-
tion ζi for each kinematic chain i should be taken into ac-
count. This can be stated as −ζmax 6 ζi 6 ζmax (for this
specific prototype ζmax = 249.2 mm). The following cost
function is proposed to include these constraints in the re-
dundancy resolution scheme:

H3(ζζζ) =
3

∑
i=1

(
1

ζi−ζmax
− 1

ζi +ζmax

)
. (22)

One can realize that (ζi→−ζ+max)⇒ (H3→−∞) and (ζi→
ζ−max)⇒ (H3→−∞). As a result, as ζi approaches to its lim-
its, H3 tends to −∞, forcing ∇H to the other direction. This
proposal keeps the constraints −ζmax 6 ζi 6 ζmax satisfied.

3.3.4 Final cost function
In this work, the proposed final cost function H(ζζζ) is the

weighted sum of previously discussed cost functions. Thus,

H(ζζζ) =
3

∑
k=1

ck Hk(ζζζ), (23)

where each Hk has been already defined and ck is the weight-
ing term of each cost function Hk, where k = 1, . . . ,3.

The study of the physical meaning of these weighting
terms enables one to tune their values appropriately via sim-
ulations. For instance, the constant c3 defines how the con-
straint on the position of the redundant actuators is imposed.
The upper and lower limits are satisfied for any value of
c3 > 0. Nevertheless, a numerical study clarifying how H3
varies according to the c3 can be valuable. Figure 5 shows
this relation. On the one hand, low values of c3 will require
abrupt movements of the actuators. On the other hand, high
values of c3 promote smoother movements.

\

max
-

max
-

max
-

max
+

c3

c

Fig. 5: The influence of c3 over H3

4 Results
The proposed redundancy resolution strategy has been

exploited for the motion planning of a 3PRRR manipulator.
The selected trajectory is a pick-and-place task illustrated in
Fig. 6. Firstly, the manipulator leaves the 1st pose (x1,y1,α1)
and reaches the 2nd pose (x2,y2,α2) in 1s. Secondly, the
manipulator leaves the 2nd pose (x2,y2,α2) and reaches the
3rd one (x3,y3,α3) in 1s. The motion total duration should be
2s. At these reference poses, the velocities and accelerations
should be null. The pose vector is described by polynomials
of 5th degree for each interval of the motion. The coefficients
of the polynomials can be found by solving definite integrals.

4.1 Singularities of the non-redundant 3RRR manipu-
lator

During this pick-and-place task, the non-redundant ma-
nipulator 3RRR (ζζζ = 0) reaches singular configurations
twice. Since this manipulator is not capable of avoiding sin-
gularities, it looses rigidity and it becomes sensitive to dis-
turbances. A dynamic model of the 3RRR has been used for
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evaluating the reference tracking capabilities of this manip-
ulator during this pick-and-place task under a torque distur-
bance. The complete description of this dynamic model can
be found in [2, 3]. Simulations have been carried out for a
constant disturbance torque of -0.05 N.m applied to the end-
effector during the pick-and-place task. Figure 7 illustrates
the final reference pose (demanded) and the actual final pose
calculated via numerical simulations. One can conclude that
the non-redundant manipulator 3RRR was unable to reach
the final pose under the considered disturbance.

Fig. 6: Pick-and-place task: reference poses

Fig. 7: Numerical results: comparison between the reference
and actual poses of the non-redundant manipulator’s end-
effector under torque disturbance (-0.05 N.m)

Experimental tests have also been performed using the
prototype described in Section 3.1. In order to evaluate the
non-redundant 3RRR manipulator, the active translational
joints (linear actuators) have been locked at the center of
the linear guide. In this way, only the rotational actuators
could be activated. The same pick-and-place task, depicted
in Fig. 6, was performed under no load disturbance. Figure
8 shows two pictures of the prototype comparing the refer-
ence final pose and the actual final pose after performing the

pick-and-place task. One can conclude that, once again, the
non-redundant manipulator 3RRR was unable to reach the fi-
nal pose experimentally due to the presence of singularities
in the task’s region.

Fig. 8: Experimental results: comparison between (A) the
reference final pose and (B) the actual final pose of the non-
redundant manipulator under no load disturbance

4.2 Reconfiguration capabilities of the redundant
3PRRR

In this manuscript, extra levels of kinematic redundan-
cies and a redundancy resolution scheme based on DDP
are investigated in order to enhance the performance of a 3
degrees-of-freedom planar PKM. In this way, the kinemati-
cally redundant manipulator 3PRRR is exploited numerically
and experimentally.

As previously described, a reference motion is obtained
integrating eq. 10, with H(qr) defined in eq. 23. The output
of this step is qr, which presents proper positions for each
instant separately, but may demand unrealistic accelerations.
These input values for the redundant actuators are discretized
yielding the reference ζζζr. This reference can be used in Eqs.
3 and 4. The outcome of the DDP’s scheme is the motion
of the manipulator according to the weighting terms of eqs.
3 and 4. These terms can be selected in such a way that
the acceleration values are realistic according to the proto-
type and the tracking errors are acceptable. The numerical
and experimental results described in this manuscript have
been obtained using the weighting terms presented in Table
2. The tuning of the cost function weights was performed
via extensive numerical simulations according to the design
requirements of the manipulator under study.

Table 2: Weighting terms

c1 c2 c3 cr ca c f v c f a

0.75 75 0.025 2000 0.1 300 1016

The time step of the DDP’s scheme has been selected to
be 2 ms, resulting in 103 sub-problems during the 2 s task.
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Each sub-problem has been solved using SQP [35]. The
termination tolerance on the function value, the global cost
function J (eq. 6), has been defined as 10−10. These param-
eters have been able to assure high precision for the global
optimization problem.

The numerical evaluation of the reference tracking ca-
pabilities of redundant manipulator 3PRRR has been per-
formed using a dynamic model. This model is fully de-
scribed in [3]. Using this model, the pick-and-place task,
depicted in Fig. 6, is numerically executed considering a
constant disturbance torque of -1.30 N.m applied to the end-
effector. Figure 9 shows the numerical comparison between
the reference and actual pose of the redundant manipula-
tor’s end-effector. One can conclude that since the redun-
dant manipulator has been capable of avoiding the singular-
ities’ regions, the manipulator’s rigidity has been kept and
the load disturbance has little impact on the manipulator’s
performance. It can be concluded that the redundant manip-
ulator is less sensitive to load disturbances if an appropriate
redundancy resolution scheme is selected.

Fig. 9: Numerical comparison between the reference and ac-
tual pose of the redundant manipulator’s end-effector under
torque disturbance (-1.30 N.m): (A) the end-effector’s orien-
tation and (B) the end-effector’s translational positions

Experimental tests for evaluating the redundant 3PRRR
manipulator have also been performed using the same pick-
and-place task under no load disturbance. Figure 10 shows
the experimental comparison between the reference and ac-
tual pose of the redundant manipulator’s end-effector. It can
be concluded that the redundant manipulator, exploiting the
proposed redundancy resolution scheme, has been capable of
tracking this reference due to its capability of avoiding sin-
gularities.

Fig. 10: Experimental comparison between the reference and
actual pose of the redundant manipulator’s end-effector un-
der no torque disturbance: (A) the end-effector’s orientation
and (B) the end-effector’s translational positions

4.3 Consequences of a proper redundancy resolution
scheme

An important consequence of the proposed strategy is
the reduction of required maximum torques to perform the
required pick-and-place task. Due to its higher rigidity, the
actuators of the redundant manipulator are capable of keep-
ing lower current values. A comparison between the required
currents of the active revolute joints of the 3RRR and the
3PRRR to perform the pick-and-place task is shown in Fig.
11. The values are considerably reduced for the required
pick-and-place task. This result indicates that redundant
PKMs can be more energy efficient if proper redundancy res-
olution schemes are exploited.

The proposed redundancy resolution scheme applied for
the motion planning of the 3PRRR to perform the given
pick-and-place task was solved using MATLAB installed in
a desktop computer with a Intel Processor i5 2.90 GHz. The
scheme took about 1.5s indicating that further considerations
should be made for improving the computational effort.

5 Conclusions
In this manuscript, a redundancy resolution strategy for

kinematically redundant PKMs is proposed. This strategy
exploits a Gradient Projection Method for deriving an op-
timal motion of the redundant actuators. Since this mo-
tion may require unrealistic acceleration values, a Differen-
tial Dynamic Programming strategy is employed to address
the trade-off between acceleration values and tracking per-
formance.

The proposed strategy has been exploited for the redun-
dancy resolution of the redundant 3PRRR planar manipula-
tor. Due to its kinematic architecture, appropriate cost func-
tions have been selected for employing the Gradient projec-
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Fig. 11: Active revolute joints’ currents: (A) 3RRR and (B)
3PRRR

tion Methods. These cost functions guarantee the avoidance
of the singularity regions and the imposition of the geomet-
rical constraints.

Numerical and experimental results have been obtained
using the proposed strategy validating the proposal. Using
the redundancy resolution scheme, singularity regions have
been avoided and the required torques have been reduced.

The methodology seems to be versatile since different
cost functions and weighting factors can be selected by the
designer.

Alternative approaches for the proposal can be investi-
gated in future research. For instance, the direct use of DDP
and the proposal of constraints limiting jerk and accelera-
tion values or the use of iterative Linear Quadratic Gaussian
(iLQG) could yield improved results. Moreover, the impact
of redundancies in the dynamic performance and/or energy
consumption of PKMs should also be further addressed.
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