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Abstract—Logic locking has been a promising solution to many
hardware security threats, such as intellectual property infringe-
ment and overproduction. Due to the increased attention that
threats have received, many efficient specialized attacks against
logic locking have been introduced over the years. However, the
ability of an adversary to manipulate a locked netlist prior to
mounting an attack has not been investigated thoroughly. This
paper introduces a resynthesis-based strategy that utilizes the
strength of a commercial electronic design automation (EDA)
tool to reveal the vulnerabilities of a locked circuit. To do
so, in a pre-attack step, a locked netlist is resynthesized using
different synthesis parameters in a systematic way, leading to a
large number of functionally equivalent but structurally different
locked circuits. Then, under the oracle-less threat model, where
it is assumed that the adversary only possesses the locked circuit,
not the original circuit to query, a prominent attack is applied to
these generated netlists collectively, from which a large number
of key bits are deciphered. Nevertheless, this paper also describes
how the proposed oracle-less attack can be integrated with an
oracle-guided attack. The feasibility of the proposed approach
is demonstrated for several benchmarks, including remarkable
results for breaking a recently proposed provably secure logic
locking method and deciphering values of a large number of key
bits of the CSAW’19 circuits with very high accuracy.

Index Terms—Logic locking, resynthesis, EDA tools, oracle-less
and oracle-guided attacks.

I. INTRODUCTION

Due to the globalized integrated circuit (IC) supply chain,
serious security threats, such as hardware Trojans, piracy,
overbuilding, reverse engineering, and counterfeiting, have
emerged [1]. Many defense techniques, such as watermark-
ing [2], digital rights management [3], metering [4], and logic
locking [5], have been introduced over the years to deal
with these threats. Among those, logic locking stands out by
being a well-established technique and by offering protection
against a diverse array of adversaries [6]. Logic locking inserts
additional logic driven by key bits so that the circuit behaves
as expected only when the secret key is applied.

On the other hand, many efficient attacks have been in-
troduced to overcome the defenses built by logic locking [7].
However, the impact of an electronic design automation (EDA)
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tool on the manipulation of the locked netlist before per-
forming an attack has not been investigated thoroughly. In
this work, we explore if EDA tools can be used to make
a locked circuit vulnerable to existing logic locking attacks.
Thus, the main contributions of this work are three-fold:
(i) we introduce a resynthesis procedure that is a pre-attack
step, where functionally equivalent but structurally different
locked circuits are generated by resynthesizing the original
locked circuit using different optimization parameters and
delay constraints in order to create structural vulnerabilities
that can be exploited by existing attacks; (ii) we present an
oracle-less (OL) resynthesis-based attack, which applies the
prominent SCOPE attack [8] to these resynthesized circuits
and gathers all its solutions to discover the secret key; (iii) we
show that our OL attack can be combined with a traditional
oracle-guided (OG) attack for further improving the number of
correctly deciphered key bits. The last contribution is essential
since we consider circuits from the CSAW’19 contest – these
circuits compound the use of two logic locking techniques at
the same time.

The main finding of this work is that the use of many
resynthesized locked circuits enables us to discover values of
more key bits, and even the whole key, when compared to a
single attack mounted on the original locked netlist.

The remainder of this paper is organized as follows: Sec-
tion II presents the background concepts and related work.
The resynthesis process and the proposed attacks are described
in Section III. Experimental results are given in Section IV.
Finally, Section V concludes the paper.

II. BACKGROUND

A. Logic Locking and Threat Models

The procedure of logic locking is applied at the gate-level
in the IC design flow, as shown in Fig. 1. Note that the layout
of the locked circuit is sent to the foundry without revealing
the secret key. After the locked IC is produced and delivered
to the design house, the values of the secret key are stored in
a tamper-proof memory, before the functional IC is sent to the
market.

It is assumed that the gate-level netlist of the locked
circuit can be obtained directly by an untrusted foundry or
by reverse-engineering a functional IC obtained from the
open market. An adversary can also use the functional IC



Fig. 1. Conventional logic locking in the IC design flow (adapted from [6]).
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Fig. 2. SAT-resilient logic locking methods: (a) SFLT; (b) DFLT.

programmed with the secret key as an oracle to apply inputs
and observe outputs. Thus, in logic locking, there are generally
two threat models: OL and OG. In the OL threat model, only
the gate-level netlist of the locked circuit is available to the
adversary. The adversary has both the netlist of the locked
circuit and the functional IC in the OG threat model.

B. Related Work

After the introduction of random logic locking (RLL) using
XOR/XNOR gates in [9], earlier work focused on different
types of key gates, such as AND/OR, multiplexors, and look-up
tables, taking into account the hardware complexity of the
locked circuit [5]. However, the OG satisfiability (SAT)-based
attack [10] overcame all the defenses existing at that time.
Note that the SAT-based attack iteratively finds distinguishing
input patterns (DIPs) that rule out wrong keys. To thwart the
SAT-based attack and its variants, circuits are locked using a
point function that sets a limit on the number of wrong keys
which a DIP can eliminate, forcing these attacks to explore an
exponential number of queries [6], [11]–[14].

The SAT-resilient methods can be categorized into two
groups: single-flip locking technique (SFLT) and double-flip
locking technique (DFLT), as shown in Fig. 2. An SFLT
has only one critical point, which is responsible to corrupt
a protected output under a specific input pattern. Under this
category, SARLock [15] adds a comparator and a masking
circuit connected with the original netlist in a way that it
generates a corruption on one input pattern. Anti-SAT [11]
utilizes two complementary AND gate trees, whose output is
merged with the original circuit. CASLock [12] is based on
the same concept of Anti-SAT, however it uses both AND and
OR gates. SKG-Lock [14] uses decoy key bits and provides
a tunable output corruption. Note that SFLTs are susceptible
to removal attacks [16]–[18]. If an attacker can identify this
single critical point, he/she can split the design into a recovered
netlist (original) and the locking unit.

A DFLT has two critical points, one that connects the
original netlist with a perturbation unit and another one that
connects the output of the stripped circuit with the restore
unit. Under this category, stripped functionality logic locking
(SFLL) [6], [13] initially corrupts an output based on an input

combination in the perturbation unit and then, corrects this
output only when the secret key is applied in the restore
unit. Note that a removal attack becomes inefficient for a
DFLT since the original circuit is mixed with the perturbation
unit, even though it can easily identify the restore unit.
However, there exist efficient structural attacks developed for
DFLTs [19]–[22].

Alternative locking techniques have also been introduced.
In [23], a technique, which has more than two critical points,
called the multi-flip locking technique (MFLT), was proposed.
However, it leads to a significant increase in area, power
dissipation, and delay when compared to other techniques.
Compound logic locking techniques were proposed to over-
come the main drawback of a SAT-resilient technique, i.e.,
its low output corruptibility as can be observed in Fig. 2,
by locking a design using both low and high output corrupt-
ibility techniques, such as SFLL and RLL, respectively [24].
Recently, efficient attacks have also been introduced against
compound logic locking [25], [26].

Moreover, the OL attacks explore patterns in the structure
of a locked netlist using statistical analysis [8], [27], [28]. For
example, the SCOPE attack [8] is an unsupervised constant
propagation technique, which analyzes each key bit of the
locked design for critical features that can reveal its correct
value after it is assigned to logic 0 and 1 value. These critical
features include area, power dissipation, delay, and many
other circuit characteristics obtained by a synthesis tool. These
features are analyzed using linear regression and machine
learning based clustering.

III. PROPOSED RESYNTHESIS-BASED ATTACK

This section describes our resynthesis-based attack in detail.
We assume a scenario, where the design house is the only
trusted entity. An attacker has all possible reverse engineering,
synthesis, and computing tools and has an access to the gate-
level locked netlist and the functional IC. In this section,
we initially introduce the pre-attack stage, where the locked
circuit is resynthesized using different synthesis parameters,
leading to a large number of structurally different netlists
with the same functionality. Then, we present the OL attack
that utilizes these resynthesized netlists in order to find the
secret key. Finally, in order to handle the compound logic
locking efficiently, we present its modified version, where our
proposed OL attack cooperates with an OG attack.

A. The Pre-attack Step: Resynthesis of the Locked Netlist

The locked circuit is synthesized multiple times using a
different script each time, where the synthesis parameters are
explored in a systematic way. We use the following parameters
to increase the number of resynthesized locked circuits:



Synthesis Effort: In a synthesis tool, logic optimizations can
be applied with different efforts at different synthesis stages.
This flexibility enables a designer to explore the trade-off
between the quality of results and run time. The following ef-
forts are considered at the given synthesis stage: low, medium,
and high at generic transformations (syn_gen); low, medium,
and high at mapping (syn_map); and low, medium, high, and
extreme at optimization (syn_opt).

Delay Constraint: To meet performance targets, delay con-
straints are used to guide the synthesis tool. We initially
resynthesize the locked circuit without a delay constraint and
find the delay of its critical path, i.e., dcp. Then, in an interval
between 0 and dcp, d − 1 points, which are computed as
(dcp/d)i with 1 ≤ i ≤ d − 1, are set as delay constraints.
Note that d is set to 5 in order to generate a large number
of resynthesized circuits. Even though some delay constraints
are impossible to meet, the synthesis tool always generates a
netlist equivalent to the original one in terms of functionality.

Maximum Transition: The transition time of a net in a circuit
is defined as the longest time required for its driving pin to
change its logic value. The maximum transition value was
chosen to be 5%, 10%, and 15% of the delay constraint for all
the nets in the locked circuit to explore different resynthesized
circuits.

Key Constraints: To direct the synthesis tool to work in-
tensively on the paths that include the keyed logic, a delay
constraint, which is impossible to be satisfied, can also be
used. In this case, we force the delay between all key bits and
all primary outputs to be 1 ps.

Thus, the combination of parameters given above generates
3 × 3 × 4 × 5 × 3 × 2 = 1080 netlists. We eliminate the
resynthesized circuits with identical characteristics and keep
only the unique ones. Additionally, we prevent the use of
XOR/XNOR gates, which can be problematic for the SCOPE
attack, during technology mapping. Note that our resynthesis
methodology aims to generate different versions of the locked
circuit, making it more vulnerable to existing attacks. Thus,
any existing attack, either OL or OG, may potentially benefit
from this pre-attack strategy to discover the secret key. The
resynthesis process is automated for a commercial synthesis
tool in a Perl script. This script, which can be modified for
other synthesis tools, is available at https://github.com/Centre-
for-Hardware-Security/.

B. Attacks on the Resynthesized Netlists

Time-efficient attacks are chosen in order to handle a large
number of resynthesized circuits. In our OL resynthesis-based
attack, SCOPE [8] is used to predict the values of key bits. In
its modified version developed for compound logic locking,
a query attack is used to find the values of key bits in a
deterministic way.

1) Proposed OL Attack: SCOPE is applied to each resyn-
thesized locked circuit and a solution is found. Note that this
solution may return a logic 0, 1, or an unknown value for
a key bit. Then, the values of key bits deciphered for each
netlist are merged into a single solution that represents the

Fig. 3. (a) Majority circuit; (b) Locked majority circuit; (c) Constant
propagation on the locked majority circuit.

overall guess. To do so, for each key bit, ki with 1 ≤ i ≤ p,
where p denotes the number of key bits, we initially count the
number of solutions, where ki is deciphered as logic 0 and
1, denoted as dk0i and dk1i , respectively. Then, if dk0i > dk1i
or dk1i > dk0i , the value of ki is determined to be 0 or 1,
respectively. Otherwise, in the case of a tie, the value of ki is
decided to be unknown.

2) Proposed OG Attack: In order to handle a large number
of resynthesized netlists efficiently, we introduce a SAT-based
query attack, which can determine the actual values of indi-
vidual key bits. Note that traditional SAT-based attacks rather
attempt to find the whole secret key, which increases the
computational effort significantly. In this attack, we initially
find queries, i.e., values of inputs of the oracle circuit, using
two techniques. The first technique uses the ATPG tool Ata-
lanta [29] to find test patterns for the stuck-at-fault of each key
bit on the locked circuit and stores the values of the related
primary inputs as queries. The aim is to find input patterns
that can propagate each key bit to a primary output, making it
observable. The second technique finds queries randomly. The
aim is to find input patterns that may make multiple key bits
observable at primary outputs. In our experiments, we generate
a total of 2p queries, where p denotes the number of key bits.

Then, we describe the locked circuit in a conjunctive normal
form (CNF) formula C by expressing each gate in its CNF.
Each query is applied to the oracle and the values of primary
outputs are obtained. Then, the related input and output values
are assigned to the associated nets in the locked circuit, the
constant values of these nets are propagated, and the Boolean
equations including key bits are derived in a CNF formula E.
The SAT problem including the locked circuit in CNF, i.e.,
C, is augmented with these equations, i.e., C = C ∧ E. After
all the queries are considered, the SAT problem C is solved
using a SAT solver and the values of key bits are determined.
Note that the locked circuit with the found values of key bits
behaves exactly the same as the oracle under the given queries,
but not under all possible input values. Hence, these key values
are not guaranteed to be the values of the secret key.

However, the value found for a key bit can be proved if it is
indeed equal to the actual value of the related bit in the secret
key using the concept of proof by contradiction. To do so, for
each key bit, the complement of its found value is added into
C and the SAT solver is run. If there exists no solution to C,
i.e., the SAT problem is unsatisfiable, the value of the related
key bit is proven to be the one in the found solution.

As a simple example, consider the majority circuit in
Fig. 3(a) and suppose that it is locked using XOR/XNOR



TABLE I
DETAILS OF THE ISCAS’85 CIRCUITS.

Circuit Original Netlist Locked Netlist

p
Anti-SAT CASLock SFLL SKG-Lock

#in #out #gates #gates #gates #gates #gates
c2670 157 64 1193 64 1321 1320 1421 1401
c3540 50 22 1669 32 1733 1732 1783 1773
c5315 178 123 2307 64 2435 2434 2523 2514
c6288 32 32 2416 32 2480 2479 2531 2516
c7552 206 105 3512 64 3640 3639 3729 3713

gates as given in Fig. 3(b). Assume that a query is found as
abc = 000 and thus, the value of its output f is obtained as 0
using the oracle. After propagating these values on the locked
circuit as shown in Fig. 3(c), a Boolean equation k0∨k1 = 0,
i.e., k0 ∧ k1 in CNF, is obtained. In the SAT solution, the key
bit values are found as k0k1 = 01. Note that these are the
proven key values since a SAT solver guarantees that there
exists no solution to the SAT problem C, which is extended
by either k0 = 1, i.e., k0 in CNF, or k1 = 0, i.e., k1 in CNF,
due to a conflict with the found Boolean equation, i.e., k0∧k1
in CNF.

The query attack is run on all the resynthesized circuits and
the proven values of key bits in each netlist are combined into
a single solution. It is developed in Perl and is equipped with
the incremental SAT solver CaDiCaL [30]. It is also available
at https://github.com/Centre-for-Hardware-Security/.

Finally, the solution of the OG resynthesis-based attack is
determined after merging the solution of the SCOPE attack
over all resynthesized circuits into that of the query attack on
all resynthesized circuits without changing the proven values
of key bits.

IV. EXPERIMENTAL RESULTS

This section initially presents the results of the proposed
OL resynthesis-based attack on the ISCAS’85 circuits [31]
and then, those of the OG resynthesis-based attack on the
CSAW’19 circuits [24] including compound logic locking.

A. Results on the ISCAS’85 Circuits

As the first experiment set, five ISCAS’85 circuits were
considered. Table I presents their details. For our exper-
iments, these circuits were locked by the Anti-SAT [11],
CASlock [12], SFLL [6], and SKG-Lock [14] techniques.
Note that while Anti-SAT and SFLL were taken from the
NEOS tool [32], we implemented CASLock and SKG-Lock.
Table I also presents details of the locked circuits. Note that the
number of keys, i.e., p, was determined based on the number
of inputs and overhead of the locking technique, and circuit
characteristics, i.e., the number of inputs, outputs, and gates,
were taken from the gate-level netlist.

Observe from Table I that all logic locking techniques lead
to circuits with a number of gates close to each other, whereas
the one locked by SFLL has a slightly large number of gates.
Besides, the overhead on the number of gates in circuits
locked by SFLL varies from 4.7% to 19.1% when compared
to original circuits.

In the following subsections, we present the results of the
resynthesis process and OL resynthesis-based attack, analyze
the impact of synthesis parameters on the performance of
the resynthesis process and SCOPE attack, and introduce
improvements to the run-time of the resynthesis process.

1) Resynthesis of the Locked ISCAS’85 Circuits: The resyn-
thesis is performed by Cadence Genus with a commercial
65 nm standard cell library. Table II presents the resynthesis
results of locked circuits. In this table, unique denotes the
number of unique locked netlists out of 1080 generated netlists
and area, delay, and power stand respectively for the average
values of the total area in µm2, delay in the critical path
in ps, and total power dissipation in µW on the unique
locked netlists. Finally, time is the total run-time of the
resynthesis process. The resynthesized netlists were generated
on a computing server with Intel Xeon processing units at
3.9 GHz and a total of 1 TB memory.

Observe from Table II that the number of unique netlists is
less than half of the total number of generated netlists, i.e.,
540, except the c3540 circuit locked by SKG-Lock. Note that
Anti-SAT, CASLock, and SFLL lead to fewer unique netlists
when compared to SKG-Lock, which is mainly because the
logic added by these techniques is more compact than that
added by SKG-Lock, which uses a chain of AND gates. We
note that the synthesis tool consumes a large amount of time
to fulfill a delay constraint that is impossible to meet, such
as strict delay constraints and key constraints described in
Section III-A. Hence, the run-time of the resynthesis process
depends on the locked circuit and the logic locking technique,
and more importantly, if there exists enough room for the
synthesis tool to satisfy the constraints.

In order to illustrate the diversity of resynthesized netlists,
the c2670 circuit locked by SFLL is considered. Fig. 4 presents
the area, delay, and power dissipation of each unique netlist,
normalized by their average values given in Table II. Observe
that resynthesis generates circuits significantly different from
each other in terms of hardware complexity. The standard
deviation on area, delay, and power dissipation values of
all these netlists are computed as 1578, 235, and 4964,
respectively. Note also that in this figure, the netlists after
instance number 232 have a distinct profile, since they are
generated using key constraints described in Section III-A.

In order to illustrate the differences in the structure of
generated netlists, the c2670 circuit locked by SKG-Lock
is considered. Fig. 5 presents the graphs of two netlists
resynthesized using the same synthesis parameters, except for
the delay constraint. In this figure, red, green, and blue circles
denote the inputs, key bits, and outputs, respectively; the gray
triangles represent the gates. Observe that a small change in
the delay constraint can lead to a structurally different netlist,
where the difference between the number of gates and logic
levels is 599 and 12, respectively.

2) Attacks on the Locked ISCAS’85 Circuits: Table III
presents the results of the SCOPE attack on the original locked
netlists and those of OL resynthesis-based attack on the unique
locked netlists generated in the resynthesis process. In this



TABLE II
RESULTS OF RESYNTHESIZED LOCKED ISCAS’85 CIRCUITS.

Technique Details c2670 c3540 c5315 c6288 c7552

Anti-SAT

unique 480 537 464 498 439
area 2357 2803 4112 7265 5387
delay 504 818 663 2144 694
power 5518 4934 4297 9403 7479
time 17h14m51s 1d05h56m12s 1d09h56m22s 3d20h50m46s 1d16h01m13s

CASLock

unique 473 449 488 410 479
area 2359 3112 4173 7739 5337
delay 513 874 650 2146 676
power 5170 3304 3852 10693 6765
time 15h29m56s 1d11h02m52s 1d06h52m54s 4d03h12m29s 1d16h06m52s

SFLL

unique 468 484 477 523 504
area 2817 3444 4326 7646 5340
delay 481 870 697 2144 604
power 6189 6337 9053 12115 11320
time 13h13m23s 1d47m51s 21h57m07s 2d22h15m07s 22h40m29s

SKG-Lock

unique 521 541 507 527 521
area 2673 2773 4646 6293 4774
delay 936 986 782 2093 874
power 3881 3831 8160 7201 7822
time 22h22m01s 1d08h8m27s 1d03h56m15s 2d14h29m32s 1d04h19m
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Fig. 4. Normalized complexity of resynthesized netlists of the c2670 circuit locked by SFLL: (a) area; (b) delay; (c) power.

table, cdk and dk stand respectively for the number of correctly
deciphered key bits and the total number of deciphered key
bits and time is the total time required for the attack. The
attacks were also run on the same server used to resynthesize
the locked netlists.

Observe from Table III that the SCOPE attack is not entirely
successful on any of the original locked netlists. However, the
use of resynthesized netlists enables us to decipher the values
of a large number of key bits, and even the whole key, e.g.,
for the c2670 and c3540 circuits locked by SKG-Lock. Note
that the SCOPE attack can decipher almost all of the key bits
using the resynthesized netlists locked by SKG-Lock. While
the results on the netlists locked by SKG-Lock are all correct,
the ones on the netlists locked by Anti-SAT, CASLock, and
SFLL are slightly better than a random guess. The run-time
of the SCOPE attack and our resynthesis-based attack depends
mainly on the number of gates and keys in the locked design.

To find the SAT resiliency of resynthesized locked circuits,
the SAT-based attack of [10] was run on 541 netlists of the
c3540 circuit locked by SKG-Lock with a time limit of 2
days. This circuit was chosen since it has the smallest number
of key bits. Note that the SAT-based attack was not able to
find the secret key of any resynthesized locked netlists. This

experiment indicates that the resynthesis changes only the
structure of the circuit as shown in Fig. 5, but maintains its
SAT resiliency.

3) Redundant Synthesis Runs: Observe from Tables II
and III that the total run-time of the proposed attack is
dominated by the resynthesis process. However, it is possible
to reduce the time required to resynthesize the locked netlist
by removing redundant synthesis runs without sacrificing any
unique netlists. For example, it is observed that the high
value of the syn_gen parameter given in Section III-A can be
removed from the parameter list, since all possible synthesis
scripts including this parameter generate the same circuit
when this parameter is low or medium. Thus, the number of
generated circuits, i.e., 1080, reduces to 720.

4) Convergence on the Number of Deciphered Keys: It
is also observed that the number of key bits deciphered
by the SCOPE attack on all unique resynthesized netlists
can actually be obtained using a small number of netlists.
Fig. 6 presents the number of deciphered key bits along the
unique resynthesized netlists of the c2670 circuit locked by
SKG-Lock. Observe from this figure that although a large
number of unique netlists increases the quality of the SCOPE
attack, actually a small number of unique netlists, 147 in this



(a) (b)
Fig. 5. Graphs of resynthesized netlists generated using a difference in the delay constraint dc: (a) dc is 990 ps; (b) dc is 496 ps.

TABLE III
RESULTS OF OL ATTACKS ON THE LOCKED ISCAS’85 CIRCUITS.

Circuit
Anti-SAT CASLock SFLL SKG-Lock

SCOPE Resynthesis SCOPE Resynthesis SCOPE Resynthesis SCOPE Resynthesis
cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time cdk/dk time

c2670 0/0 4s 37/64 34m18s 0/0 4s 35/64 33m47s 0/0 4s 34/64 37m32s 32/32 4s 64/64 44m37s
c3540 0/0 3s 17/32 21m27s 0/0 3s 17/32 18m12s 0/0 2s 19/32 21m29s 17/17 2s 32/32 24m30s
c5315 0/0 5s 38/64 42m34s 0/0 5s 30/64 43m54s 0/0 5s 33/64 46m23s 32/32 5s 62/62 52m06s
c6288 0/0 3s 18/32 29m08s 0/0 3s 16/32 27m18s 0/0 3s 16/31 33m19s 16/16 3s 31/31 34m24s
c7552 0/0 6s 38/64 45m31s 0/0 6s 47/64 49m13s 0/0 6s 38/63 52m26s 32/32 6s 61/61 56m45s
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Fig. 6. Convergence on the number of deciphered keys over the number of
resynthesized netlists in the SCOPE attack.

case, is sufficient to achieve the same result as when all 521
unique netlists are considered. We note that a similar situation
was also observed on circuits locked by other techniques.

5) Promising Resynthesized Netlists: Moreover, it is ob-
served that the SCOPE attack is more successful on specific
resynthesized netlists. To find a set of synthesis parameters
that enables the SCOPE attack to decipher more key values,
we initially define two categories of netlists based on the slack
time of the design, i.e., the difference between the required
and arrived time in the critical path, as follows: i) netlists
with a slack value less than or equal to 0; ii) netlists with a
slack value greater than 0. The slack value of a design gives
indeed a rough idea of the effort put in by the synthesis tool;
for the netlists in the first category, the synthesis tool works
extremely hard to meet the delay constraint, trying many logic
transformations and optimization techniques.
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Fig. 7. Classification of resynthesized netlists based on their slack values on
promising solutions of SCOPE attack.

Then, the solutions of the SCOPE attack on all possible
1080 netlists are obtained and sorted based on the number of
deciphered key bits in descending order. The top 10% of these
sorted netlists are categorized based on their slack values.

Fig. 7 presents the results of this experiment on the circuits
locked by SKG-Lock. Observe that the netlists that enable the
SCOPE attack to decipher more key values generally have a
slack value less than or equal to 0. Thus, to generate such
circuits, one can easily add strict delay constraints or key
constraints as described in Section III-A. We note that a similar
result was also observed on resynthesized netlists locked by
other techniques.

6) Structural Analysis: In order to improve the performance
of the resynthesis process, the logic cone, which is the locking
technique is applied on, can be extracted and resynthesized.
Note that the output of this logic cone is a single primary



TABLE IV
RESULTS OF THE RESYNTHESIS PROCESS AND OL RESYNTHESIS-BASED

ATTACK ON ENTIRE CIRCUIT AND LOGIC CONE.

Circuit Entire Circuit Logic Cone
unique time cdk/dk unique time cdk/dk

c2670 468 13h13m23s 34/64 319 7h46m26s 34/64
c3540 484 1d47m51s 19/32 320 6h29m35s 16/32
c5315 477 21h57m14s 33/64 313 7h6m16s 32/64
c6288 523 2d22h15m7s 16/31 302 6h20m57s 19/32
c7552 504 22h40m29s 38/63 279 6h57m14s 38/63

TABLE V
DETAILS OF THE LOCKED CSAW’19 CIRCUITS.

Circuit Details Number of key bits
#in #out #gates RLL SFLL-rem Total

small 522 512 15995 40 40 80
medium 767 757 24008 60 60 120
large 1452 1445 36584 80 80 160
bonus 892 1746 23004 128 128 256

output, while its inputs are primary inputs, but not necessarily
all the primary inputs of the locked design. Thus, the run-
time of the resynthesis process can be decreased, since the
logic cone has a small number of inputs, outputs, and gates
when compared to the whole locked circuit.

Table IV presents details on the resynthesis process on entire
locked circuits and logic cones when the circuits locked by
SFLL are used. Observe that the resynthesis process on a
logic cone generates less number of unique designs and takes
significantly less time without a significant loss on the solution
quality when compared to the resynthesis process on the entire
circuit. We note that similar results were also observed on
circuits locked by other techniques.

B. Results on the CSAW’19 Circuits

As the second experiment set, we used the state-of-the-
art locked circuits from the CSAW’19 contest [24]. Details
of these circuits are given in Table V. Note that two logic
locking techniques – RLL [9] and SFLL-rem [13] – are applied
together to lock a circuit.

In the following two subsections, we present the results of
the resynthesis process and the resynthesis-based attack.

1) Resynthesis of the Locked CSAW’19 Circuits: Table VI
presents the resynthesis results of locked circuits. Observe that
the number of unique resynthesized netlists is larger than half
of the total number of generated netlists, i.e., 540. As the
hardware complexity of designs increases, the run-time of the
resynthesis process increases. We note that diverse netlists in
terms of complexity are obtained, e.g., the standard deviation
on area, delay, and power dissipation values of all the locked
netlists of the small circuit are computed as 8526, 1029, and
20074, respectively.

2) Attacks on the Locked CSAW’19 Circuits: Table VII
presents results of the attacks obtained, after they are applied
to the original locked netlist, denoted as OLN, and all unique
resynthesized netlists, denoted as URNs. In this table, prv
stands for the number of proven values of key bits. Note that
since the secret key is not publicly available, the cdk values
are omitted for the SCOPE and resynthesis-based attacks.

TABLE VI
RESULTS OF RESYNTHESIZED LOCKED CSAW’19 CIRCUITS.

Circuit unique area delay power time
small 557 18935 1631 23571 5d3h22m28s
medium 569 26080 1745 31284 6d12h24m16s
large 567 31348 1798 24610 5d21h42m10s
bonus 560 20643 1758 19090 4d14h44m29s

TABLE VII
RESULTS OF ATTACKS ON THE LOCKED CSAW’19 CIRCUITS.

Circuit-Netlist SCOPE Query Resynthesis
dk time prv time dk time

small - OLN 19 20s 39 1m21s 40 1m41s
small - URNs 77 4h10m42s 40 1d10h4m37s 79 1d14h15m19s
medium - OLN 32 41s 58 6m37s 59 7m18s
medium - URNs 117 8h33m56s 58 3d19h12m13s 120 4d3h46m9s
large - OLN 30 1m7s 79 6m19s 79 7m26s
large - URNs 15212h56m15s 80 3d2h52m11s 159 3d15h48m26s
bonus - OLN 64 1m46s 118 3m2s 120 4m48s
bonus - URNs 233 16h7m17s 1251d20h29m22s 252 2d12h36m39s

Observe from Table VII that the original SCOPE attack
could only decipher a small number of key bits, all of which
belong to RLL, and the query attack can prove the values of a
large number of key bits, all of which again belong to RLL, on
the original locked circuits. Thus, the resynthesis-based attack
could only decipher the RLL key bits on the original locked
circuits. However, the use of resynthesized circuits makes the
SCOPE attack decipher more key bits that also belong to
SFLL-rem and makes the query attack prove the values of
more key bits that belong to RLL. Thus, the resynthesis-based
attack could decipher almost all the values of the secret key,
proving almost all the values of the key bits of RLL. Note that
all the unknown key bits belong to SFLL-rem. Observe that
the run-time of attacks increases, as the number of gates and
key bits increases.

After the values of key bits of the CSAW’19 circuits were
determined, they were sent to the contest organizers for eval-
uation. Table VIII presents the results of the resynthesis-based
attack along with those of other techniques which participated
in the contest.

Observe from Table VIII that our proposed attack can
determine all the key bits of RLL correctly, even though there
are unproven key bits in the medium and bonus circuits as
shown in Table VII. This observation implies that the guesses
of the SCOPE attack on those key bits are actually correct.
Moreover, the proposed technique can decipher the key bits
of SFLL-rem with a number of deciphered key bits greater
than any other OL technique with high accuracy.

V. CONCLUSIONS

This work has shown that EDA tools can be used to generate
variants of locked circuits that may be vulnerable to existing
logic locking attacks and such circuits can be generated using
a specific set of synthesis parameters. It was shown that the
run-time of the proposed technique can be improved using
a small number of resynthesized netlists without diminishing
its solution quality. Experimental results clearly indicated that
the use of many resynthesized circuits enables existing attacks
to decipher values of a large number of key bits with high



TABLE VIII
RESULTS OF ATTACKS ON THE LOCKED CSAW’19 CIRCUITS.

Approach Attack Scenario
Circuit

small (40+40) medium (60+60) large (80+80) bonus (128+128)
RLL SFLL-rem RLL SFLL-rem RLL SFLL-rem RLL SFLL-rem

Key sensitization [33] OG 40/40 — 60/60 — 80/80 — — —
Hamming distance-based attack [24] OG 30/30 — 50/50 — 72/72 — — —
Automated analysis + SAT [24] OG 11/18 — 31/50 — 10/34 — — —
Sub-circuit SAT [24] OG 17/17 — 29/29 — — — — —
Redundancy-based [27] OL 28/28 4/12 35/35 23/28 45/45 0/51 66/66 8/27
Bit-flipping attack [34] OG 40/40 — 60/60 — 80/80 — — —
Topology guided attack [28] OL 15/32 — 19/50 — 36/73 — 75/108 —
Resynthesis-based attack OG 40/40 20/39 60/60 29/60 80/80 35/79 128/128 55/124

accuracy. Hence, the resynthesis of a locked circuit can be
utilized as a pre-attack step for many existing attacks in order
to improve their success rate. As future work, we plan to
consider other synthesis parameters, such as fanout, capaci-
tance limits, and wire loads, which enable synthesis tools to
generate different circuits. Also, we aim to incorporate other
commercial and open source EDA tools into the resynthesis
process to generate different unique netlists.
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