L Aksoy

F Almeida
email: felipe.almeida@taltech.ee.

J Raik

S Pagliarini
email: samuel.pagliarini@taltech.ee.

Q.-L Nguyen

M.-L Flottes
email: marie-lise.flottes@lirmm.fr.

S Dupuis

Hybrid Protection of Digital FIR Filters Levent Aksoy, Member, IEEE, Quang-Linh Nguyen, Student Member, IEEE, Felipe Almeida, Jaan Raik, Member, IEEE, Marie-Lise Flottes, Member, IEEE, Sophie Dupuis, Member, IEEE, and Samuel Pagliarini, Member, IEEE Abstract-A digital Finite Impulse Response (FIR) filter is a ubiquitous block in digital signal processing applications and its behavior is determined by its coefficients. To protect filter coefficients from an adversary, efficient obfuscation techniques have been proposed, either by hiding them behind decoys or replacing them by key bits. In this article, we initially introduce a query attack that can discover the secret key of such obfuscated FIR filters, which could not be broken by existing prominent attacks. Then, we propose a first of its kind hybrid technique, including both hardware obfuscation and logic locking using a point function for the protection of parallel direct and transposed forms of digital FIR filters. Experimental results show that the hybrid protection technique can lead to FIR filters with higher security while maintaining the hardware complexity competitive or superior to those locked by prominent logic locking methods. It is also shown that the protected multiplier blocks and FIR filters are resilient to existing attacks. The results on different forms and realizations of FIR filters show that the parallel direct form FIR filter has a promising potential for a secure design.

Index Terms-hardware obfuscation, logic locking, oracle-less and oracle-guided attacks, constant multiplications, FIR filters, direct and transposed forms.

I. INTRODUCTION

Due to the increase in the design complexity of Integrated Circuits (ICs) and the rising costs of chip fabrication at advanced technology nodes, the IC supply chain has become heavily specialized and globalized [1]. Design houses have been combining their Intellectual Properties (IPs) with many others purchased from third-parties and resorting to untrusted foundries for fabrication. Although such globalization reduces the overall cost of producing an IC, it leads to serious security threats -especially for IPs -such as piracy, overuse, modification, and reverse engineering [START_REF] Amir | Comparative Analysis of Hardware Obfuscation for IP Protection[END_REF]. Over the years, IP protection has received a significant amount of interest and efficient methods, including watermarking [START_REF] Kahng | Watermarking Techniques for Intellectual Property Protection[END_REF], digital rights management [START_REF] Alkabani | Remote Activation of ICs for Piracy Prevention and Digital Right Management[END_REF], metering [START_REF] Koushanfar | Provably Secure Active IC Metering Techniques for Piracy Avoidance and Digital Rights Management[END_REF], and hardware obfuscation [START_REF] Hoque | Hardware Obfuscation and Logic Locking: A Tutorial Introduction[END_REF], have been introduced. Among these techniques, only hardware obfuscation can prevent IP theft, while the others are useful to prove the IP owner and reveal the IP owner's rights during a litigation process. Hardware obfuscation aims to make the design less clear and hard to understand for an adversary, by hiding the design content using structural transformations, locking the design functionality using additional logic with key bits, and exploiting camouflaged gates [START_REF] Hoque | Hardware Obfuscation and Logic Locking: A Tutorial Introduction[END_REF].

Digital filtering is frequently used in Digital Signal Processing (DSP) applications and Finite Impulse Response (FIR) filters are generally preferred due to their stability and linear phase property [START_REF] Wanhammar | DSP Integrated Circuits[END_REF]. Since filter coefficients determine the filter behavior, they are actually an IP and need protection from reverse engineering by an adversary. Although there exist many efficient high-level and behavioral obfuscation methods proposed for protecting IPs [START_REF] Muttaki | HLock: Locking IPs at the High-Level Language[END_REF]- [START_REF] Chakraborty | RTL Hardware IP Protection Using Key-Based Control and Data Flow Obfuscation[END_REF], digital FIR filters require specialized obfuscation techniques, since they should behave according to their specifications, such as passband and stopband frequencies and ripples [START_REF] Yu | Optimization of Linear Phase FIR Filters in Dynamically Expanding Subexpression Space[END_REF]. However, there exist only a limited number of techniques proposed to obfuscate DSP circuits and especially, digital filters [START_REF] Lao | Obfuscating DSP Circuits via High-Level Transformations[END_REF]- [START_REF] Aksoy | Hardware Obfuscation of Digital FIR Filters[END_REF]. The technique of [START_REF] Lao | Obfuscating DSP Circuits via High-Level Transformations[END_REF] generates the desired filter and also its obfuscated versions, grouped in two categories as meaningful and unmeaningful in terms of filter behavior, using high-level transformations, and combines these realizations using a key-based finite state machine and a reconfigurator. To make the reverse engineering of coefficients harder for an end-user, adding input and output noises was proposed in [START_REF] Bottegal | Preserving Privacy of Finite Impulse Response Systems[END_REF]. Recently, we introduced a hardware obfuscation technique that hides the filter coefficients behind decoys [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF], [START_REF] Aksoy | Hardware Obfuscation of Digital FIR Filters[END_REF]. In [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF], decoys can be selected based on their Hamming distance to reduce the hardware complexity or chosen randomly to increase the corruption at the filter output. Since an obfuscated FIR filter may still generate the desired behavior under a wrong key in [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF], decoys are selected in such a way that the obfuscated filter presents the desired behavior only when the secret key is provided in [START_REF] Aksoy | Hardware Obfuscation of Digital FIR Filters[END_REF]. To do so, the lower and upper bounds of each filter coefficient are found and decoys are selected beyond these bounds. In [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF], [START_REF] Aksoy | Hardware Obfuscation of Digital FIR Filters[END_REF], the folded design of an FIR filter is considered as a case study and its Time-Multiplexed Constant Multiplication (TMCM) block is obfuscated at Register-Transfer Level (RTL).

In this article, we initially introduce the query attack, which can discover the original filter coefficients hidden behind decoys [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF], [START_REF] Aksoy | Hardware Obfuscation of Digital FIR Filters[END_REF] or replaced by key bits [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF]. Then, we propose a hybrid technique, which includes both hardware obfuscation and logic locking, for the protection of digital FIR filters. To do so, first, we describe a defense technique that obfuscates the multiplier blocks of parallel direct and transposed forms of an FIR filter, i.e., Constant Array Vector Multiplication (CAVM) and Multiple Constant Multiplication (MCM), respectively, using decoys. We also present their hardware-efficient realizations with and without multipliers. Second, we enhance this obfuscation technique by locking the obfuscated design using a point function to make the protected design resilient to wellknown attacks and by thwarting the query attack to determine the secret key. The hybrid protection technique works at RTL and can be easily adapted to any application including constant multiplications, such as image and video processing and neural networks. The main contributions of this article are as follows:

• Query attack developed for breaking designs generated by constant obfuscation techniques; • Secure hybrid technique, consisting of hardware obfuscation and logic locking, developed for the protection of FIR filters with different forms and realizations; • Comprehensive results on obfuscation and logic locking of FIR filters in terms of hardware complexity, attack resiliency, and filter behavior. Experimental results clearly show that the proposed hybrid protection technique leads to FIR filter designs with higher security and competitive hardware complexity when compared to previously proposed hardware obfuscation and logic locking methods. As an interesting outcome of this work, we show that the parallel direct form filter has better resiliency properties than other FIR filter forms and realizations.

The remainder of this article is organized as follows: Section II presents background concepts. The query attack is described in Section III and the hybrid protection method is introduced in Section IV. Experimental results are presented in Section V. Further discussions on how other techniques may identify the original filter coefficients are given in Section VI. Finally, Section VII concludes the article.

II. BACKGROUND

This section initially presents frequently used notations and then, gives details on digital FIR filters and multiplierless constant multiplications. Finally, it summarizes related work.

A. Notations

B. Digital FIR Filters

The FIR filter output Y (j) is given as

n-1 i=0 c i • X(j -i),
where n is the filter length, c i is the i th filter coefficient, and X(j -i) is the i th previous filter input with 0 ≤ i ≤ n -1. Fig. 1 shows the parallel and folded realizations of an FIR filter. Note that the filter output is obtained in a single clock

C. Multiplierless Design of Constant Multiplications

Multiplication of constant(s) by variable(s) is a ubiquitous and crucial operation in many DSP applications. Among others presented in [START_REF] Aksoy | A Tutorial on Multiplierless Design of FIR Filters: Algorithms and Architectures[END_REF], the CAVM, MCM, and TMCM blocks can be used in the design of a filter, as shown in Fig. 1. They are defined as follows:

1) The CAVM operation implements the multiplication of a 1 × n constant array C by an n × 1 input vector

X, i.e., Y = i c i X i with 1 ≤ i ≤ n. 2) The MCM operation computes the multiplication of a set of n constants C by a single variable X, i.e., Y i = c i X with 1 ≤ i ≤ n.
3) The TMCM operation realizes the multiplication of a constant selected from a set of n constants C by a single variable X at a time, i.e., Y = c i X with 1 ≤ i ≤ n. Since the constants are determined beforehand, these constant multiplications can be realized using addition, subtraction, and shift operations under the shift-adds architecture. Note that parallel shifts can be implemented virtually for free in hardware using only wires. A straightforward shift-adds design technique, called the Digit-Based Recoding (DBR) [START_REF] Ercegovac | Digital Arithmetic[END_REF], can realize constant multiplications in two steps: i) define the constants under a particular number representation, e.g., binary; ii) for the nonzero digits in the representation of constants, shift the input variables according to digit positions Fig. 2. Realizations of the CAVM (a-c), MCM (d-f), and TMCM (g-h) blocks including constants 57 and 81: (a) using multipliers; (b) the DBR method [START_REF] Ercegovac | Digital Arithmetic[END_REF]; (c) the method of [START_REF] Aksoy | ECHO: A Novel Method for the Multiplierless Design of Constant Array Vector Multiplication[END_REF]; (d) using multipliers; (e) the DBR method [START_REF] Ercegovac | Digital Arithmetic[END_REF]; (f) the method of [START_REF] Aksoy | Search Algorithms for the Multiple Constant Multiplications Problem: Exact and Approximate[END_REF]; (g) using a multiplier; (h) the method of [START_REF] Aksoy | Multiplierless Design of Folded DSP Blocks[END_REF]. Fig. 3. Conventional logic locking and proposed hybrid protection technique in the IC design flow (adapted from [START_REF] Yasin | Provably-Secure Logic Locking: From Theory To Practice[END_REF]). and add/subtract the shifted variables with respect to digit values. Furthermore, the number of operations can be reduced by maximizing the sharing of common subexpressions among constant multiplications [START_REF] Aksoy | ECHO: A Novel Method for the Multiplierless Design of Constant Array Vector Multiplication[END_REF]- [START_REF] Aksoy | Multiplierless Design of Folded DSP Blocks[END_REF], [START_REF] Voronenko | Multiplierless Multiple Constant Multiplication[END_REF], [START_REF] Tummeltshammer | Time-Multiplexed Multiple-Constant Multiplication[END_REF].

As a simple example, consider the CAVM, MCM, and TMCM blocks realizing constant multiplications, where C includes 57 = (111001) bin and 81 = (1010001) bin . These constant multiplications are shown in Fig. 2. Note that the adder/subtractor shown in Fig. 2(h) behaves as an adder or a subtractor when its select input is 0 or 1, respectively. Observe from Figs. 2(b)-(c) and (e)-(f) that the sharing of common subexpressions can lead to a significant reduction under the shift-adds architecture in terms of the number of operations with respect to the DBR method.

D. Related Work

Hardware obfuscation can take place at different stages in the IC design flow, e.g., high-level synthesis [START_REF] Pilato | TAO: Techniques for Algorithm-Level Obfuscation during High-Level Synthesis[END_REF], RTL [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF], gate-level [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], and layout level [START_REF] Rajendran | Security Analysis of Integrated Circuit Camouflaging[END_REF]. In hardware obfuscation, locking the design functionality is a common practice. Fig. 3 presents conventional logic locking applied at gate-level in the IC design flow. Note that after the layout of the locked netlist is shipped to the foundry without revealing the secret key, the locked IC is produced and delivered back to the design house. Then, values of the secret key are stored in a tamper-proof memory and the functional IC is sent to the market.

1) Defenses: Earlier logic locking methods have been applied at gate-level. After the introduction of the concept of Random Logic Locking (RLL) using XOR/XNOR gates in [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], many works focused on different types of key logic, such as AND/OR, multiplexors (MUXes), and look-up tables, taking into account the hardware complexity of the locked circuit [START_REF] Dupuis | Logic Locking: A Survey of Proposed Methods and Evaluation Metrics[END_REF]. However, the satisfiability (SAT)-based attack [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF] overcame all the defenses existing at that time. To thwart the SAT-based attack and its variants, circuits have been locked using a point function that forces these attacks to explore an exponential number of queries [START_REF] Yasin | Provably-Secure Logic Locking: From Theory To Practice[END_REF], [START_REF] Yasin | SARLock: SAT Attack Resistant Logic Locking[END_REF]- [START_REF] Nguyen | On Preventing SAT Attack with Decoy Key-Inputs[END_REF]. Moreover, the obfuscation of a locked design is considered in [START_REF] Zhou | Resolving the Trilemma in Logic Encryption[END_REF].

However, as mentioned in [START_REF] Muttaki | HLock: Locking IPs at the High-Level Language[END_REF], at a higher level in the IC design flow, the selection of critical blocks of the design to be obfuscated gets easier, the exploration of tradeoffs between overhead and attack resiliency becomes more efficient, and the optimization of the obfuscated design is more effective. Recently, high-level and behavioral obfuscation techniques have been presented in [START_REF] Muttaki | HLock: Locking IPs at the High-Level Language[END_REF]- [START_REF] Sengupta | DSP Design Protection in CE through Algorithmic Transformation based Structural Obfuscation[END_REF]. Related to digital FIR filters including a large number of constants, filter coefficients are obfuscated by replacing their bits by key bits in [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF], [START_REF] Pilato | TAO: Techniques for Algorithm-Level Obfuscation during High-Level Synthesis[END_REF].

We note that our proposed hybrid protection technique works at one level higher than the gate-level, i.e., at RTL, as also shown in Fig. 3.

2) Attacks: In logic locking, there are generally two threat models, namely oracle-less (OL) and oracle-guided (OG). In the OL threat model, only the gate-level netlist of the locked circuit is available to an adversary. In the OG threat model, it is assumed that an adversary can also obtain the functional IC programmed with the secret key from the market and use it as an oracle to apply inputs and observe outputs. Hence, in this model, the adversary has both the netlist of the locked circuit and the functional IC.

Under the OL threat model, due to the limited information available to the adversary, patterns in the structure of the locked netlist are studied using statistical analysis, Automated Test Pattern Generation (ATPG), and machine learning [START_REF] Chakraborty | SAIL: Machine Learning Guided Structural Analysis Attack on Hardware Obfuscation[END_REF]- [START_REF] Alrahis | GNNUnlock: Graph Neural Networks-based Oracleless Unlocking Scheme for Provably Secure Logic Locking[END_REF]. Structural attacks, which identify and remove the logic inserted by a logic locking method, are proposed in [START_REF] Sirone | Functional Analysis Attacks on Logic Locking[END_REF]- [START_REF] Han | Does Logic Locking Work with EDA Tools?[END_REF].

Under the OG threat model, the ATPG-based attack of [START_REF] Rajendran | Security Analysis of Logic Obfuscation[END_REF] leverages testing principles, such as justification and sensitization while finding the secret key. The SAT-based attack [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF] iteratively finds Distinguishing Input Patterns (DIPs) that rule out wrong keys and achieves decryption as shown in Algorithm 1. It generates two locked circuits with the same inputs (X), but two different keys (K 1 and K 2) described in a Conjunctive Normal Form (CNF) formula in a SAT problem Algorithm 1 The SAT-based attack [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF] Inputs: Locked circuit LC and oracle. Output: Secret key K.

1: i := 1 Number of iterations 2: F1 = LC(X, K1, Y1) ∧ LC(X, K2, Y2) 3: while sat[Fi ∧ (Y1 = Y2)] do 4: X d i := sat_assignmentX [Fi ∧ (Y1 = Y2)]
5:

Y d i := oracle(X d i)
6:

Fi+1 := Fi ∧ LC(X d i , K1, Y d i) ∧ LC(X d i , K2, Y d i) 7:
i := i + 1 8: K := sat_assignmentK 1 (Fi) (line 2). Then, it finds a DIP, which generates different outputs on these circuits, using a SAT solver (line 4) and computes the output based on the found DIP using the oracle (line 5). It adds the Boolean equations including key bits into the SAT problem, which are obtained after inserting the values of these inputs and outputs into these circuits (line 6). This process is iterated until the SAT problem becomes unsatisfiable (line 3), meaning that there exists no DIP to distinguish wrong keys from the secret key. Finally, it determines the secret key as the one found in the last iteration (line 8).

In a similar fashion, the SAT-based attack of [START_REF] Shen | Double DIP: Re-Evaluating Security of Logic Encryption Algorithms[END_REF] eliminates at least 2 DIPs in a single iteration. A Satisfiability Modulo Theory (SMT) solver is used instead of a SAT solver, providing more flexibility while encoding the problem [START_REF] Azar | SMT Attack: Next Generation Attack on Obfuscated Circuits with Capabilities and Performance Beyond the SAT Attacks[END_REF], [START_REF] Karfa | Is Register Transfer Level Locking Secure?[END_REF]. The so-called approximate attack of [START_REF] Shamsi | AppSAT: Approximately Deobfuscating Integrated Circuits[END_REF] aims for approximate functional recovery. The SAT-based attack of [START_REF] Shamsi | KC2: Key-Condition Crunching for Fast Sequential Circuit Deobfuscation[END_REF] achieves sequential deobfuscation using dynamic simplifications of key conditions. The attack of [START_REF] Xu | Novel Bypass Attack and BDD-based Tradeoff Analysis Against All Known Logic Locking Attacks[END_REF] discovers the vulnerabilities of the SAT-resilient logic locking methods of [START_REF] Yasin | SARLock: SAT Attack Resistant Logic Locking[END_REF], [START_REF] Xie | Anti-SAT: Mitigating SAT Attack on Logic Locking[END_REF]. In [START_REF] Limaye | Fa-SAT: Fault-aided SATbased Attack on Compound Logic Locking Techniques[END_REF], a generic framework is developed to attack compound locking techniques. A security diagnosis tool, which can evaluate the structural vulnerability of a design locked by a provably secure logic locking technique, is introduced in [START_REF]Valkyrie: Vulnerability Assessment Tool and Attack for Provably-Secure Logic Locking Techniques[END_REF].

III. THE QUERY ATTACK

The SAT-based attack [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF] presented in Algorithm 1 guarantees that the found values of all key bits are equal to those of the secret key. To do so, it may use a large number of queries that are required to eliminate all the wrong keys. On the other hand, our query attack proves that the found value of a single key bit is equal to that of the associated one in the secret key. To do so, it uses a small number of queries that make each key bit observable at a primary output. Hence, it slightly increases the SAT problem size when compared to the SAT-based attack. Thus, it can easily cope with circuits including a large number of gates and key bits [START_REF] Tan | Benchmarking at the Frontier of Hardware Security: Lessons from Logic Locking[END_REF] and logic structures, such as a multiplier and a tree of AND gates [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF], which the SAT-based attack generally finds hard to handle. In this section, we initially describe the proposed query attack and then, present its results on obfuscated designs.

A. Description

Our proposed OG SAT-based query attack is described in Algorithm 2. It initially finds queries using two strategies (line 1). In the first one, an ATPG tool is used to find the test Yi := oracle(Qi) 5:

F := F ∧ LC(Qi, K, Yi) 6: K := sat_assignmentK (F) 7: for i := 0 to p -1 do 8: if unsat[F ∧ Ki] then 9:
K i = Ki 10: for i := 0 to p -2 do 11:

for j := i + 1 to p -1 do 12: if undef ined(K i) & undef ined(K j) then 13: if unsat[F ∧ (Ki = Kj)] then 14: K i = K j 15: else if unsat[F ∧ (Ki = Kj)] then 16: K i = K j
patterns for the stuck-at-fault of each key bit on the locked circuit and the values of the related primary inputs are stored as queries. The aim of this strategy is to find input patterns that can propagate each key bit to a primary output, making it observable. In the second one, queries are obtained randomly. The aim of this strategy is to find input patterns that may make multiple key bits observable at primary outputs. In our experiments, we generate a total of 2p queries, where p denotes the total number of key bits.

Then, the locked circuit is described in a CNF formula F by expressing each gate in its CNF (line 2). For each query (lines 3-5), it is applied to the oracle and the values of primary outputs are obtained (line 4). Then, the related input and output values are assigned to the associated nets in the locked circuit, the constant values of these nets are propagated, and the Boolean equations including key bits are derived in a CNF formula and added into F (line 5).

After all the queries are considered, the SAT problem F is solved using a SAT solver and the values of key bits are determined (line 6). Note that the locked circuit with the found values of key bits behaves exactly the same as the oracle under the given queries, but not under all possible input values. Hence, the found key is not guaranteed to be the secret key.

However, the found value of a key bit can be proven correct by using the concept of proof by contradiction. To do so, for each key bit (lines 7-9), the complement of its found value is added into F and the SAT solver is run. If there exists no solution to F, i.e., the SAT problem is unsatisfiable, the value of the related key bit in the secret key is proven to be the one in the found solution.

As an example, consider the majority circuit in Fig. 4(a) and suppose that it is locked using XOR/XNOR gates as given in Fig. 4(b). Assume that a query is found as x 1 x 2 x 3 = 000 and thus, the value of its output y is obtained as 0 using the oracle. After propagating these values on the locked circuit, a Boolean equation k 0 ∨k 1 = 0, i.e., k 0 ∧k 1 in CNF, is obtained as shown in Fig. 4(c). In the SAT solution, the key bit values are found as k 1 k 0 = 01. Note also that these are the proven key values since a SAT solver guarantees that there exists no [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF] OoT OoT 128 365

Mirzaei10b 256 TMCM-MUL [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF] OoT OoT 256 809 TMCM-CRK [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF] OoT OoT 256 852 solution to the SAT problem F when it is extended by either the constraint k 0 = 0, i.e., k 0 in CNF or k 1 = 1, i.e., k 1 in CNF, due to a conflict with the found Boolean equation, i.e.,

k 0 ∧ k 1 in CNF.
We note that the query attack is also capable of proving if the value of a key bit, k i , is equal to the value of another key bit, k j , or its opposite (lines 10-16). To do so, we extend the SAT problem with k i = k j , i.e., (k i ∨ k j) ∧ (k i ∨ k j) in CNF, and k i = k j , i.e., (k i ∨ k j) ∧ (k i ∨ k j) in CNF, respectively, where i = j and 0 ≤ i, j ≤ p -1. We run the SAT solver and check if the SAT problem is unsatifiable. In this case, relations between two key bits are found independent of their values.

Returning back to our majority circuit, consider its another locked version given in Fig. 4(d). Assume that a query is again found as x 1 x 2 x 3 = 000 and hence, the output y is computed as 0. Thus, after the propagation of input and output values as shown in Fig. 4(e), a Boolean equation k 0 ⊕ k 1 = 0, i.e., (k 0 ∨ k 1) ∧ (k 0 ∨ k 1) in CNF, is found. In the SAT solution, the key bit values are found as k 1 k 0 = 10. Although the actual values of key bits could not be proven, it is found that k 0 and k 1 have opposite values after the SAT problem is extended with the Boolean equation k 0 = k 1 and it becomes unsatisfiable. Hence, the values of key bits k 1 k 0 = 10 or k 1 k 0 = 01 in the locked design lead to the original majority circuit.

B. Results

First, three FIR filters with a large number of coefficients and a large bit-width of filter input and coefficients were used to demonstrate the performance of the query attack. They were taken from [START_REF] Firsuite | Suite of Constant Coefficient FIR Filters[END_REF]. Table II presents their details, where n and mbw are the number and maximum bit-width of coefficients, respectively. The folded realization of these filters was considered. Table II presents details on their TMCM blocks, where #in and #out are respectively their number of inputs and outputs when the bit-width of the input variable, i.e., ibw, is set to 32. These TMCM blocks were obfuscated using decoys under the architecture including MUXes and a multiplier [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF], denoted as TMCM-MUL, and also obfuscated by replacing constants with key bits [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF], denoted as TMCM-CRK.

Table III presents the number of key bits p and the results of the query attack along with the SAT-and ATPG-based attacks taken from [START_REF] Subramanyan | HOST'15 Code Material[END_REF]. In this table, time denotes the run-time of an attack in seconds and prv stands for the number of key bits, whose values are proven by the query attack. Also, OoT indicates that an attack could not find a solution due to the time limit, which was set to 2 days. The attacks were run on a computing cluster including Intel Xeon processing units at 2.4 GHz with 40 cores and 96 GB memory. The query attack was developed in Perl and equipped with the ATPG tool Atalanta [START_REF] Lee | On the Generation of Test Patterns for Combinational Circuits[END_REF] and the SAT solver CaDiCaL [START_REF] Biere | CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling Entering the SAT Competition 2020[END_REF]. It is available at https://github.com/Centre-for-Hardware-Security/.

Observe from Table III that the query attack can easily find the secret key of obfuscated designs while it is hard for the well-known attacks to find a solution. The main reason is that the TMCM block includes a multiplier block, where one of its inputs is the 32-bit input variable, and the SAT-based attack is not effective on designs including a multiplier as mentioned in [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF]. However, the query attack can deal with a small number of queries, which are sufficient to determine the value of each key bit, using a little computational effort.

Second, we generated a total of 112 FIR filters, where n ranges between 16 and 127 when mbw was set to 12, to find the impact of the number of constants and key bits on the performance of the query attack. Again, the folded design of these filters were considered and ibw was set to 32. The TMCM blocks were obfuscated using 2 log2n +1 key bits under the TMCM-MUL and TMCM-CRK architectures. The SAT-based [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF] and query attacks were run on these obfuscated TMCM blocks, where the time limit was set to 2 days. Fig. 5 presents the run-time of these attacks. for i = 1 to n do 7:

Di = AssignDecoy(Di, ci, nod)

8: nok = nok + 1 9: if nok == v then 10: break 11: noi = noi + 1
Observe from Fig. 5 that as n and p increase, the run-time of the query attack increases slightly. Note that while the query attack can find the secret key of each instance, the SAT-based attack can find a solution on 39 and 43 instances under the TMCM-MUL and TMCM-CRK architectures, respectively. Observe that the query attack runs faster than the SAT-based attack on these instances. Note that Section V presents more results of the query attack on different multiplier blocks obfuscated and locked by different techniques.

IV. PROPOSED HYBRID PROTECTION TECHNIQUE

This section initially presents the obfuscation technique used to hide filter coefficients behind decoys in the CAVM and MCM blocks of parallel direct and transposed forms of FIR filters (cf. Section IV-A and Section IV-B, respectively). Then, it describes the logic locking method using a point function described at RTL (cf. Section IV-C). Finally, it introduces the hybrid protection technique including both of these methods (cf. Section IV-D).

The original constants can be obfuscated using decoys as described in [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF]. The motivation behind such obfuscation is that the use of decoys enables us to control the tradeoff between hardware complexity, output corruption, and filter behavior [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF], [START_REF] Aksoy | Hardware Obfuscation of Digital FIR Filters[END_REF] when compared to logic locking. The obfuscation technique using decoys requires two main steps: i) given the number of key bits, determine decoys for each original constant; ii) realize the obfuscated design, where original constants are hidden behind decoys using MUXes and key bits. The selection of decoys for the original constants is done as shown in Algorithm 3. In its AssignDecoy function (line 7), decoy selection can be done based on a given criterion, namely hardware complexity, output corruption, and filter behavior. In these criteria, decoys are chosen to be unique to increase the obfuscation.

A. Hardware Obfuscation of the CAVM Block

Given 1 × n original constant array C = [c 1 , c 2 , . . . , c n] and the number of key bits for obfuscation, i.e., v, let D denote a set of n decoy constant arrays, i.e.,

D = {[d 1 1 , . . . , d nd1 1], [d 1 2 , . . . , d nd2 2], . . . , [d 1 n , . . . , d ndn n]}
, where nd i is the number of decoy constants selected for the i th original constant determined based on a given criterion with 1 ≤ i ≤ n. Then, the set R, which includes each original constant and its decoys, i.e.,

R i = c i ∪ D i = [c i , d 1 i , . . . , d ndi i] with 1 ≤ i ≤ n,
is formed. Let r i,j denote the j th constant in R i with 1 ≤ i ≤ n and 1 ≤ j ≤ nd i + 1. Thus, the straightforward realization of the obfuscated CAVM block is given in Fig. 6(a). Note that the key bits determined for each constant, i.e., kc i , have the size of log 2 (nd i + 1) with 1 ≤ i ≤ n. The secret key, which is formed as the concatenation of these key bits, is determined based on the location of the original constant in the constant array R i .

Note that the size of a multiplier given in Fig. 6(a) is related to the bit-width of the original constant and its decoy(s). Hence, to reduce the hardware complexity of the straightforward design, the size of constants, which are inputs of MUXes, can be decreased. To do so, we implement a CAVM block, where each entry of its constant array S is an element of each R array, i.e., S = [s 1 , s 2 , . . . , s n] with

s i ∈ R i = [c i , d 1 i , . . . , d ndi i] and 1 ≤ i ≤ n.
Then, the original constant and its decoys at inputs of each MUX are computed as Note that the CAVM block realizes s 1 X 1 +s 2 X 2 +. . .+s n X n and is implemented under the shift-adds architecture using the algorithm of [START_REF] Aksoy | ECHO: A Novel Method for the Multiplierless Design of Constant Array Vector Multiplication[END_REF]. The constants to be in S are decided based on the hardware complexity of the CAVM block and the size of multipliers. This problem is formulated as a 0-1 Integer Linear Programming (ILP) problem.

T i = R i -s i with 1 ≤ i ≤ n.
To further reduce the hardware complexity of the design in Fig. 6(b), each multiplier with a MUX, which represents a TMCM block, is realized under the shift-adds architecture using the algorithm of [START_REF] Aksoy | Multiplierless Design of Folded DSP Blocks[END_REF]. Fig. 6(c) presents the obfuscated design under the proposed architecture called CAVM-SA. Returning to our example in Fig. 2 with C = [57, 81] and assuming that the number of key bits is 3, the set D, that includes decoys for each constant, is found as D = {[61, 59, 56], [80]} based on the hardware complexity criterion. Thus, the set R is formed as R = { [START_REF] Shamsi | Netlist Encryption and Obfuscation Suite[END_REF][START_REF] Shen | DoubleDIP Code Material[END_REF][START_REF] Subramanyan | HOST'15 Code Material[END_REF][START_REF] Lee | On the Generation of Test Patterns for Combinational Circuits[END_REF], [81, 80]}. The straightforward realization of the obfuscated CAVM block using decoys is shown in Fig. 7(a), where the secret key is K = k 2 k 1 k 0 = 011. Under the CAVM-MUL and CAVM-SA architectures, the constant array S is determined as S = [START_REF] Subramanyan | HOST'15 Code Material[END_REF]80]. Thus, the set T is formed as {[5, 3, 0, 1], [1, 0]} leading to multipliers with smaller sizes when compared to those given in Fig. 7(a). The realization of the obfuscated CAVM design under the CAVM-MUL architecture is given in Fig. 7(b). Furthermore, Fig. 7(c) presents the shift-adds realization of the TMCM blocks implementing the constant multiplications including those in the set T under the CAVM-SA architecture.

In addition to the obfuscation using decoys on the CAVM block, we also developed the constant obfuscation technique used in the ASSURE tool [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF]. Given the number of key bits, constants in the original CAVM block are replaced by key bits under the architecture called CAVM-CRK.

B. Hardware Obfuscation of the MCM Block

Similarly, the MCM block can also be obfuscated using decoys. After decoys selected for each original constant are found based on the given criterion, and the set R is determined, the straightforward realization of the obfuscated design can be obtained as illustrated in Fig. 8(a). Moreover, the size of multipliers can be reduced by determining the set of constants S from the set R and the set T is computed accordingly as described in Section IV-A. The multiplications of constants in the set S by the variable X, i.e., s 1 X, s 2 X, . . . , s n X, are realized in an MCM block, which is implemented under the shift-adds architecture using the algorithm of [START_REF] Aksoy | Search Algorithms for the Multiple Constant Multiplications Problem: Exact and Approximate[END_REF]. Fig. 8(b) presents the obfuscated design under the proposed architecture called MCM-MUL. Furthermore, the multiplierless realization of the design obfuscated under the MCM-MUL architecture can be obtained by realizing the TMCM block under the shift-adds architecture using the algorithm of [START_REF] Aksoy | Multiplierless Design of Folded DSP Blocks[END_REF]. Fig. 8(c) shows the obfuscated design under the proposed architecture called MCM-SA.

Returning to our example, Fig. 9 presents the straightforward realization of the obfuscated MCM block and its designs under the MCM-MUL and MCM-SA architectures.

In addition to the obfuscation using decoys, constants in the original MCM block are replaced by key bits under the architecture called MCM-CRK.

C. Logic Locking with a Point Function

As shown in Sections III and V, the constant obfuscation techniques are vulnerable to the SAT-based attack and its variants. The motivation behind locking the obfuscated design with a point function is to make it resilient to these techniques. In order to increase the number of DIPs to be explored in a SAT-based attack, one can lock primary outputs of a multiplier block using a point function1 at RTL as done at gate-level in [START_REF] Yasin | Provably-Secure Logic Locking: From Theory To Practice[END_REF], [START_REF] Yasin | SARLock: SAT Attack Resistant Logic Locking[END_REF]- [START_REF] Shakya | CAS-Lock: A Security-Corruptibility Trade-off Resilient Logic Locking Scheme[END_REF].

Suppose that a Boolean function f : B q → B is locked using a one-point function with w key bits, where w ≤ q, leading to a locked Boolean function g : B w+q → B and let K denotes the secret key. Then, f (X) = g(X, K) under all possible input values. Fig. 10(a) shows the behavior of the locked function g under each possible key value when q = w = 3 and k 2 k 1 k 0 = 011 is the secret key. In this figure, K i stands for the assignment of the value i in binary to key bits, i.e., k w-1 . . . k 1 k 0 = (i) bin with 0 ≤ i ≤ 2 w -1. Also, the value of logic 0 (1) under each possible key value denotes that the locked function g is (not) equal to the original function f . Note that the locked function under the secret key, i.e., K = K 3 highlighted in our example, always generates the

// One-point function at RTL always @(*) begin if (X == K) if (K == K) g = f; else g = !f; else g = f; end //Relaxed one-point function at RTL always @(*) begin if ((X -K) >= q'd0 && (X -K) <= q'dcv) if (K == K) g = f; else g = !f; else g = f; end
Listing 1. Logic locking using a point function at RTL. same output as the original function for every input pattern. Observe from Fig. 10(a) that each input pattern eliminates at most one wrong key, leading to an exponential number of DIPs to find the secret key, i.e., 2 w . Moreover, such a one-point function can be relaxed to increase the corruption at a primary output. For example, Fig. 10(b) presents the behavior of the locked function g, where each input pattern can eliminate at most 2 wrong keys. Observe that the exponential number of tries to find the secret key is still valid, i.e., 2 w-1 in this case. Furthermore, multiple primary outputs can be locked using point functions with different key bits.

Listing 1 presents the Verilog code snippet, which describes logic locking using the one-point function at RTL. In this code, X is an array of primary inputs and K is an equally sized array of key bits. Moreover, the relaxed one-point function can also be described at RTL as shown in the same listing. In its code, cv stands for the corruption value, which denotes the maximum number of wrong keys that can be distinguished by a single input pattern.

We note that since the point function is described at RTL, the synthesis tool shapes its circuit based on the given synthesis parameters. Thus, its realization does not have a regular structure like logic locking methods of [START_REF] Xie | Anti-SAT: Mitigating SAT Attack on Logic Locking[END_REF], [START_REF] Shakya | CAS-Lock: A Security-Corruptibility Trade-off Resilient Logic Locking Scheme[END_REF], [START_REF] Nguyen | On Preventing SAT Attack with Decoy Key-Inputs[END_REF].

D. Combination of Obfuscation and Logic Locking

The hybrid protection technique includes obfuscation and logic locking using a point function described in previous subsections. Initially, the obfuscation technique using decoys is applied and then, the obfuscated design is locked using a point function. Fig. 11 illustrates the hybrid protection technique, where X and Y denote the inputs and outputs of the original design and K obf and K ll stand for the key bits used for obfuscation and locking, respectively. Additionally, to thwart the structural attacks, the key bits used for logic locking, K ll , are hidden among the key bits used for obfuscation, K obf , using XOR/XNOR gates. In this scheme, an XOR (XNOR) gate, which has k ll i and k obf j as inputs, is generated if the value of k obf j in the secret key is equal to logic 0 (1) value, where 0 ≤ i ≤ w -1 and 0 ≤ j ≤ v -1. Then, the output of this gate is connected to the net, which would be driven by k ll i . Moreover, to thwart the query attack, each k obf i is hidden among another k obf j using an XOR/XNOR gate, where i = j and 0 ≤ i, j ≤ v -1. By doing so, each key bit is observed with other key bits at a primary output, making it harder for the query attack to prove the value of the related key bit.

We developed a Computer-Aided Design (CAD) tool to automate the design and verification process for the obfuscation and locking of the CAVM, MCM, and TMCM blocks and the parallel direct and transposed form and folded FIR filters. The CAD tool takes the filter coefficients, the number of key bits, the design architecture, and other design parameters as inputs and generates the description of the obfuscated design in Verilog, the testbench for verification, and synthesis and simulation scripts. Note that designs are described in a behavioral fashion at RTL.

V. EXPERIMENTAL RESULTS

In this section, we introduce the gate-level synthesis results of multiplier blocks protected by the proposed hybrid technique, obfuscated by previously proposed techniques, and locked by prominent logic locking methods. We also provide the results of well-known logic locking attacks and the proposed query attack on these designs. Furthermore, we present the results of obfuscated and locked FIR filters and also, introduce the results of prominent attacks on these designs. Finally, we explore the impact of parameters used in the point function on the hardware complexity and resiliency to the SAT-based attack and present gate-level synthesis results of the obfuscated and locked CAVM block of the direct form filter, which has promising security properties.

A. Results of Obfuscated and Locked Multiplier Blocks

Based on our experimental observations, similar outcomes have been observed on FIR filters with a different number of coefficients and different bit-width of filter input and coefficients in comparison of design architectures, obfuscation and locking techniques, and attacks. Hence, in this experiment, a single FIR filter with a small number of coefficients and a small bit-width of filter input and coefficients was used to reveal the effectiveness of obfuscation and locking techniques. Table IV presents the details of this filter taken from [START_REF] Firsuite | Suite of Constant Coefficient FIR Filters[END_REF], where #in and #out are respectively the number of inputs and outputs of the multiplier blocks when ibw is 16.

Table V presents the synthesis results of the CAVM, MCM, and TMCM blocks of the FIR filter obfuscated by previously proposed methods [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF], [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF] and protected by the proposed hybrid technique. Note that the TMCM-SA architecture denotes the TMCM block obfuscated using decoys under the shift-adds architecture. Logic synthesis was performed by Cadence Genus using a commercial 65 nm cell library with the aim of area optimization. For this aim, a very high virtual clock period value, i.e., 80 ns, was used. The encrypted designs were validated by simulation using 10,000 randomly generated inputs, where the switching activity data of each node in the design were collected and stored in a Switching Activity Interchange Format (SAIF) file, which is later used by the synthesis tool while computing the power dissipation. For obfuscation, 32 key bits were used. There were 16 key bits for locking using the one-point function. Thus, a total of 48 key bits were used in designs protected by the hybrid technique. In this table, area, delay, and power stand for the total area in µm 2 , delay in the critical path in ps, and total power dissipation in µW , respectively. This table also presents the results of OG attacks, namely SAT-and ATPG-based attacks, the approximate AppSAT attack taken from [START_REF] Subramanyan | HOST'15 Code Material[END_REF], and the DoubleDIP attack taken from [START_REF] Shen | DoubleDIP Code Material[END_REF], and the OL SCOPE attack taken from [START_REF] Alaql | [END_REF]. For the SCOPE attack, cdk and dk denote the number of correctly deciphered key bits and the number of deciphered key bits, respectively. The time limit given to the attacks was 2 days. In this table, designs, whose secret key has not been discovered by the given attacks, are highlighted.

1) Comments on Hardware Complexity: Observe from Table V that the hybrid protection technique increases the hardware complexity when compared to the obfuscation techniques simply due to the inclusion of the point function and logic for the obfuscation of key bits. Note that the increase of area in the CAVM, MCM, and TMCM blocks reaches up to 1.7%, 2%, and 13.8%, respectively. The obfuscation and hybrid protection of the CAVM and MCM blocks under the proposed architectures, i.e., CAVM-MUL, CAVM-SA, MCM-MUL, and MCM-SA, lead to designs with less area when compared to those realized under the CAVM-CRK and MCM-CRK archi- tectures. Note that such a decrease reaches up to 17.6% and 18% in the CAVM and MCM blocks, respectively. This is simply because the proposed techniques exploit common subexpressions shared in constant multiplications. On the other hand, the obfuscation and hybrid protection of the TMCM blocks under the TMCM-MUL and TMCM-CRK architectures lead to designs with less area with respect to those realized under the TMCM-SA architecture. Note that such a decrease reaches up to 24.3%. This is because a single multiplier is replaced by a large number of addition and subtraction operations under the TMCM-SA architecture. It is also observed that the minimum achievable delay values in the critical path of obfuscated and protected multiplier blocks are very close to each other, meaning that the inclusion of the point function and logic for the obfuscation of key bits does not have a significant impact while realizing the design with the smallest delay.

2) Comments on Attack Resiliency: Observe also from Table V that while the OG attacks can easily discover the secret key on the obfuscated designs, the OL attack can decipher all the key bits with high accuracy, except for the CAVM design obfuscated under the CAVM-CRK architecture. On the other hand, none of these attacks can break the defense built by the hybrid protection technique. Note that the designs protected by the hybrid technique were also applied to Fa-SAT [START_REF] Limaye | Fa-SAT: Fault-aided SATbased Attack on Compound Logic Locking Techniques[END_REF] and the Valkyrie tool [START_REF]Valkyrie: Vulnerability Assessment Tool and Attack for Provably-Secure Logic Locking Techniques[END_REF], but without any success due to the combination of both obfuscation and locking.

Moreover, these multiplier blocks under an architecture including a multiplier are locked by prominent logic locking methods, namely, RLL [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF] and the SAT-resilient methods of AntiSAT [START_REF] Xie | Anti-SAT: Mitigating SAT Attack on Logic Locking[END_REF], SARLock [START_REF] Yasin | SARLock: SAT Attack Resistant Logic Locking[END_REF], SFLL [START_REF] Yasin | Provably-Secure Logic Locking: From Theory To Practice[END_REF], CASLock [START_REF] Shakya | CAS-Lock: A Security-Corruptibility Trade-off Resilient Logic Locking Scheme[END_REF], and SKGLock [START_REF] Nguyen | On Preventing SAT Attack with Decoy Key-Inputs[END_REF]. In this case, the multiplier block described at RTL is initially synthesized and its gate-level netlist is obtained, and then, this netlist is locked. Note that while the RLL, AntiSAT, and SFLL methods were applied using the NEOS tool [START_REF] Shamsi | Netlist Encryption and Obfuscation Suite[END_REF], the script for the SARLock method was provided by P. Subramanyan, and we implemented the CASLock and SKGLock methods. In the RLL method, 32 key bits are used, the same as the obfuscation techniques presented in Table V. Same as the hybrid protection method shown in Table V, there are a total of 48 key bits in the combination of RLL and a SAT-resilient method, while 16 key bits are designated to a SAT-resilient method. Note that due to the locking nature of AntiSAT, CASLock, and SKGLock, they require twice the number of designated key bits. Hence, a total of 32 key bits are used in these methods. Table VI presents the results of locked multiplier blocks. The locked designs, whose secret key has not been discovered by the given attacks, are also highlighted.

3) Comments on Hardware Complexity: Observe from Table VI that SAT-resilient methods with a combination of RLL lead to designs with hardware complexity very close to each other. When compared to the results of the hybrid protection technique given in Table V under the architectures using multiplier(s), the locked CAVM and MCM blocks have larger and smaller area, respectively and the locked TMCM blocks have competitive area. A locked MCM block has less hardware complexity than an obfuscated or protected MCM block because the logic locking is applied after the common subexpressions are exploited by the synthesis tool.

4) Comments on Attack Resiliency: Also, observe from Table VI that the secret key of designs locked by RLL, RLL+SARLock, and RLL+SFLL2 can be found by the given attacks. Note also that the MCM block locked by RLL+CASlock could be broken by the AppSAT. While the query attack is also capable of proving the values of most of the RLL key bits in all logic locking methods and extra SKGLock key bits, the SCOPE attack can predict the values of some key bits of designs locked by RLL+SARLock and RLL+SKGLock with high accuracy.

B. Results of the Obfuscated and Locked FIR Filters

Table VII presents the synthesis results of parallel direct and transposed form and folded FIR filters, whose CAVM, MCM, and TMCM blocks are obfuscated by the previously proposed techniques [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF], [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF] and the hybrid protection technique, respectively. It also shows the synthesis results of FIR filters locked by prominent logic locking methods. It introduces the results of attacks that can be applied to sequential circuits namely, the OG KC2 attack, which was taken from [START_REF] Shamsi | Netlist Encryption and Obfuscation Suite[END_REF], and the OL SCOPE attack. In this table, failed denotes that the found solution of the KC2 attack is actually a wrong key verified through simulation.

1) Comments on Hardware Complexity: Observe from Table VII that the direct form filter has less area and consumes less power, but has a higher delay when compared to the transposed form filter. On the other hand, the folded design has the smallest area, but the filter output is computed in 30 clock cycles, increasing the latency and energy consumption. The conclusions drawn based on the gate-level synthesis results on the obfuscated and locked multipliers blocks given in Tables V-VI are also valid on the obfuscated and locked FIR filters. However, due to the registers in the FIR design, the overhead on the overall FIR filter design gets smaller. Note that the proposed hybrid technique achieves the maximum area reduction with respect to the logic locking methods on the parallel direct form FIR filters, i.e., 4.4%, obtained when the FIR filter under the CAVM-SA architecture is compared to the FIR filter locked by RLL+SKGLock.

2) Comments on Attack Resiliency: Observe also from Table VII that the KC2 attack is capable of discovering the secret key of the obfuscated FIR filters using previously proposed techniques, except for the direct form filters, but it is not successful on the FIR filters protected by the proposed hybrid technique. It can also find the secret key locked by RLL, except for the direct form filter, but fails on the filters locked by both RLL and a SAT-resilient method. Similarly, the SCOPE attack generally deciphers all the key bits on the obfuscated FIR filters with high accuracy, but it can only decipher a small number of key bits of the FIR filters protected by the hybrid technique. However, it is capable of deciphering more key bits on the locked FIR filters when compared to its results on the locked multiplier blocks. This is heavily due to the resynthesis of the FIR filter including the locked multiplier block. Note that the proposed hybrid technique increases the area and power dissipation of FIR filters when compared to the previously proposed obfuscation techniques [START_REF] Pilato | ASSURE: RTL Locking Against an Untrusted Foundry[END_REF], [START_REF] Aksoy | High-Level Intellectual Property Obfuscation via Decoy Constants[END_REF] in order to increase their resiliency to the existing attacks.

C. Analysis on the Point Function

To find the impact of the point function and its parameters in the hybrid protection technique on the hardware complexity, the number of iterations taken in the SAT-based attack [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF], and the run-time of the SAT-based attack [START_REF] Subramanyan | Evaluating the Security of Logic Encryption Algorithms[END_REF], we used the TMCM block of our FIR filter under the TMCM-MUL architecture. Again, the TMCM block is obfuscated using decoys with 32 key bits when ibw is 16. In logic locking with the point function, the number of key bits, i.e., w, is determined to be between 8 and 16, the corruption value, i.e., cv, is set to be between 0 and 2, and a single primary output is locked. Fig. 12 presents the impact of point function parameters on the area of the protected TMCM block and the number of iterations and run-time of the SAT-based attack.

Observe from Fig. 12(a) that as the number of key bits used in logic locking, w, increases, the area of the protected TMCM block using the hybrid technique increases slightly. Note that as the corruption value, cv, increases, the design area increases simply due to the increased range of comparator logic given in Listing 1. Also, observe from Figs. 12(b)-(c) that as w increases, the number of iterations and run-time of the SAT-based attack increases. An exponential growth in the number of iterations and run-time can be observed till w is 15. As can be seen from Fig. 12(c), for the 15-and 16-bit keys in the point function, the SAT-based attack cannot find the secret key in the time limit, i.e., 2 days, denoted by the red line. Thus, the number of iterations given in Fig. 12(b) for these number of key bits, is the one obtained in the time limit. Note also that in all TMCM designs locked by the point function with the given parameters, the number of iterations increases exponentially, while it decreases as cv is increased, but still keeping the exponential growth.

To find the impact of locking an obfuscated design using a point function on hardware complexity and attack resiliency, we used the same 112 FIR filters presented in Section III-B, where n ranges between 16 and 127. In our experiments, the TMCM blocks of folded FIR filters were obfuscated using 2 log2n +1 key bits under the TMCM-MUL architecture when ibw was set to 16. For the point function, 16 key bits were used. Fig. 13 presents the run-time of the SAT-based attack on obfuscated and protected TMCM blocks when its time limit was 2 days.

Observe from Fig. 13 that locking an obfuscated design using a point function increases the SAT-based attack resiliency significantly. Note that the SAT-based attack can find a solution to all obfuscated TMCM blocks except one. However, the average area, delay, and power dissipation of the protected designs are increased by 10.7%, 7.1%, and 9.6%, respectively when compared to those of the obfuscated designs.

D. Analysis on the Direct Form FIR Filter

Among the parallel design of FIR filters, the direct form is a good candidate to be used in a secure implementation for several reasons based on the results obtained in this work. First, as shown in Table VII, its obfuscated hardware complexity in terms of area and power dissipation is significantly smaller than the transposed form filter. Second, it includes a large number of multiplication operations in chain, which make the SAT-based attack and its variants hard to discover the secret key. Third, the CAVM block of the direct form filter has a large number of inputs than the MCM block of the transposed form filter, which enables an increase in the number of key bits in the point function, improving the resiliency of the design protected by the hybrid technique as shown in Figs. 12(b)-(c). This last observation is also true when compared to the TMCM block used in folded FIR filter design.

To find the impact of the number of coefficients on the hardware complexity of the protected CAVM block of an FIR filter, 10 filters were taken from [START_REF] Firsuite | Suite of Constant Coefficient FIR Filters[END_REF], where n ranges between 25 and 121 and mbw is between 9 and 15. In the design of CAVM blocks, ibw is set to 16. In the hybrid protection technique, these CAVM blocks were obfuscated using decoys with n key bits and locked using the point function with ibw key bits under the CAVM-MUL architecture using a total of n + ibw key bits. These protected designs are also compared with those locked by both RLL and CASLock, where the number of RLL and CASLock key bits is n -ibw and 2 * ibw, respectively. This logic locking method was chosen because it generally generates a locked multiplier block with a small area as shown in Table VI. Table VIII presents the gate-level synthesis results of the CAVM designs protected by the hybrid technique and locked by both RLL and CASLock.

Observe from Table VIII that as the number of coefficients, n, increases, the hardware complexity of the protected and locked CAVM blocks generally increases. The hybrid protection technique generally leads to a design with a smaller area when compared to the RLL+CASLock method, where the gain reaches up to 32.6%. Note that on filters Shi11_A and Maskell07, the RLL+CASLock method leads to a locked design with a smaller area, since the bit-width of coefficients is small, enabling the synthesis tool to optimize the logic.

To find the impact of obfuscation techniques on the filter behavior, the Zero-Phase Frequency Response (ZPFR) of the FIR filter Nielsen89 is obtained when the secret key and 100 randomly generated wrong keys are applied. Fig. 14 presents ZPFRs of FIR filters protected by the hybrid technique and locked by RLL+CASlock.

Observe from Fig. 14 that both obfuscation techniques may lead to a filter behavior different from the original one when a random wrong key is applied. While the filter behavior of the protected design under a wrong key is meaningful, but out of desired filter specification, the locked design exhibits an unmeaningful behavior under a wrong key due to the logic related to RLL key bits. Thus, the hybrid protection technique may make the adversary believe that the filter behavior under the wrong key is actually the desired one.

VI. DISCUSSION

Other than the logic locking attacks used in this article, there exist Reverse Engineering (RE) and Side-Channel Analysis (SCA) techniques that can identify the filter coefficients in an obfuscated design. In [START_REF] Aksoy | Hardware Obfuscation of Digital FIR Filters[END_REF], a machine learning tool that can determine the decoy selection method used in an obfuscated design was developed. The same work also proposed an RE technique that can identify filter coefficients hidden among decoys determined based on a decoy selection method. It was shown that if more than one decoy is used to obfuscate a filter coefficient, where the Hamming distance between each decoy and filter coefficient is 1, then the coefficient can be identified. In other cases, the RE technique was not capable of identifying original filter coefficients.

To the best of our knowledge, there exists no SCA technique proposed specifically to identify the original filter coefficients in an obfuscated filter design. The challenge for such a technique would be to understand how the synthesis tools embed the constants, i.e., filter coefficients and decoys, into the gate-level design using efficient methods, which optimize the hardware complexity of constant multiplications. This procedure would almost entail reverse engineering the algorithms used by the synthesis tools. In this case, it will be hard to reveal the filter coefficients from the power dissipation or delay values obtained from the obfuscated design since those data come from a logic combining both filter coefficients and decoys. Studying SCA and its efficiency to overcome obfuscation methods remains a formidable path for future research.

VII. CONCLUSIONS

This article focused on the obfuscation of digital FIR filters. Initially, it showed that the techniques previously proposed for the obfuscation of FIR filters are vulnerable to our SAT-based query attack, which applies several queries and proves that the found key bit value is the actual value of the related key bit in the secret key. Then, to secure an FIR filter design, it proposed the hybrid protection technique, which includes both obfuscation and locking with a point function. The proposed technique is applied to parallel direct and transposed forms of an FIR filter and its folded implementation. Experimental results clearly showed that the hybrid protection technique is competitive to prominent logic locking techniques in terms of hardware complexity and leads to obfuscated designs resilient to well-known attacks. It is also shown that the direct form FIR filter is a good candidate for secure filter implementation.

Fig. 1 .

 1 Fig. 1. Designs of an FIR filter: (a) parallel direct form; (b) parallel transposed form; (c) folded transposed form, where the counter counts from 0 to n -1.cycle in a parallel design, as shown in the direct and transposed forms in Figs.1(a)-(b). On the other hand, the folded realization leads to a design with the least hardware complexity, since the common operations are re-used. However, it requires n clock cycles to compute the filter output, as shown in Fig.1(c).

Algorithm 2

 2 The query attackInputs: Locked circuit LC and oracle. Output: Proven values of the secret key K. 1: Q := f ind_queries(LC) 2: F = LC(X, K, Y) 3: for i := 1 to 2p do 4:

Fig. 4 .

 4 Fig. 4. Examples on the query attack: (a) majority circuit; (b)-(c) a locked majority circuit; (d)-(e) another locked majority circuit.

 Fig. 5. Run-time of attacks on obfuscated TMCM blocks.

Algorithm 3

 3 Selection of decoys for original constants Inputs: Original constants C = {c1, c2, . . . , cn} and v key bits. Output: Decoy set D. 1: noi = 0 Number of iterations 2: nok = 0 Number of used key bits 3: D = ∅ Set of n decoy constant arrays 4: while nok < v do 5: nod = 2 noi Number of decoys to be assigned 6:

Fig. 6 .

 6 Fig. 6. Realizations of the obfuscation of the CAVM block using decoys: (a) straightforward design; (b) CAVM-MUL; (c) CAVM-SA.

Fig. 7 .

 7 Fig. 7. Realizations of the obfuscation of the CAVM block including constants 57 and 81: (a) straightforward design; (b) CAVM-MUL; (c) CAVM-SA.

Fig. 6 (

 6 b) presents the obfuscated design under the proposed architecture called CAVM-MUL.

Fig. 8 .

 8 Fig. 8. Realizations of the obfuscation of the MCM block using decoys: (a) straightforward design; (b) MCM-MUL; (c) MCM-SA.

Fig. 9 .

 9 Fig. 9. Realizations of the obfuscation of the MCM block including constants 57 and 81: (a) straightforward design; (b) MCM-MUL; (c) MCM-SA.

Fig. 10 .

 10 Fig. 10. (a) Behavior of a Boolean function locked by one-point function; (b) behavior of a Boolean function locked by relaxed one-point function.

Fig. 11 .

 11 Fig. 11. Proposed hybrid protection technique.

Fig. 12 .

 12 Fig. 12. Impact of point function parameters: (a) area; (b) number of iterations; (c) run-time.

Fig. 13 .

 13 Fig. 13. Run-time of the SAT-based attack on TMCM blocks.

Fig. 14 .

 14 Behavior the FIR filter Nielsen89: (a) protected by the technique; (b) by RLL+CASLock.

 Table I presents notations of important parameters used in the description of obfuscation and logic locking techniques.

TABLE II DETAILS

 II ON FIR FILTERS AND THEIR TMCM BLOCKS.

	Filter	Filter Details n mbw	TMCM Details #in #out
	Mirzaei10a	71	15	39	47
	LimYu07	121	14	39	46
	Mirzaei10b	151	15	40	47

TABLE III ATTACKS

 III ON OBFUSCATED TMCM BLOCKS.

					Attacks	
	Filter	p	Architecture	SAT	ATPG	Query
				time	time	prv	time
	Mirzaei10a 128	TMCM-MUL [17] TMCM-CRK [9]	OoT OoT	OoT OoT	128 128	212 341
	LimYu07	128	TMCM-MUL [17] TMCM-CRK	OoT	OoT	128	112

TABLE V RESULTS

 V OF OBFUSCATED AND PROTECTED MULTIPLIER BLOCKS.

	Block	Architecture	Technique	Synthesis		SAT	Attacks ATPG AppSAT DoubleDIP		Query	SCOPE
						area	delay power	time	time	time	time	prv	time	cdk/dk time
		CAVM-MUL	Decoy [17] Proposed Hybrid	15435 15710	4616 4611	4641 4757	155143 OoT	OoT OoT	OoT OoT	OoT OoT	32 0	9893 OoT	20/32 1/1	8 13
	CAVM	CAVM-SA	Decoy [17] Proposed Hybrid	15465 15704	4611 4715	4475 4497	36083 OoT	4539 OoT	OoT OoT	OoT OoT	32 0	9944 29328	20/32 1/1	8 12
		CAVM-CRK	Constant [9] Proposed Hybrid	18737 18976	3982 4265	4756 4809	110 OoT	1446 OoT	OoT OoT	OoT OoT	32 0	897 1937	21/27 2/3	11 16
		MCM-MUL	Decoy [17] Proposed Hybrid	10949 11173	3102 3031	2839 2897	106 OoT	OoT OoT	324 OoT	243 OoT	32 0	176 197	27/32 1/1	7 11
	MCM	MCM-SA		Decoy [17] Proposed Hybrid	10493 10705	3112 3159	2493 2495	119 OoT	OoT OoT	342 OoT	254 OoT	32 0	152 115	27/32 1/1	7 11
		MCM-CRK	Constant [9] Proposed Hybrid	12799 13038	2772 2970	2412 2456	159 OoT	OoT OoT	415 OoT	300 OoT	32 0	459 759	18/32 1/1	7 11
		TMCM-MUL	Decoy [17] Proposed Hybrid	1545 1794	3517 4278	610 639	241 OoT	6783 OoT	378 OoT	496 OoT	32 0	7 17	21/32 2/3	4 2
	TMCM	TMCM-SA	Decoy [17] Proposed Hybrid	2043 2245	4452 4536	1037 1065	738 OoT	963 OoT	935 OoT	OoT OoT	32 0	37 42	17/32 1/2	4 3
		TMCM-CRK	Constant [9] Proposed Hybrid	1566 1776	2997 3655	623 642	1035 OoT	15571 OoT	1032 OoT	OoT OoT	32 0	29 48	20/32 1/1	4 2
								TABLE VI					
						RESULTS OF LOCKED MULTIPLIER BLOCKS.			
		Block	Logic Locking		Synthesis		SAT	Attacks ATPG AppSAT DoubleDIP	Query	SCOPE
					area	delay power	time	time	time	time	prv time	cdk/dk time
			RLL		16411	3385	4183	171	OoT	205	2609	32	254	0/0	9
			RLL+AntiSAT	16492	3416	4127	OoT	OoT	OoT	OoT	16	364	0/0	14
		CAVM	RLL+CASLock RLL+SARLock	16473 16512	3502 3572	4110 4191	OoT OoT	OoT OoT	OoT 48855	OoT OoT	16 32	443 441	0/0 8/8	13 13
			RLL+SFLL	16506	3473	4205	339	829	39664	OoT	32	436	0/0	14
			RLL+SKGLock	16559	3894	4308	OoT	OoT	OoT	OoT	19	513	5/6	14
			RLL		8090	2398	2039	86	122	293	371	32	89	0/0	6
			RLL+AntiSAT	8244	2434	2065	OoT	OoT	OoT	OoT	16	249	0/0	9
		MCM	RLL+CASLock RLL+SARLock	8121 8209	2404 2467	2024 2041	OoT OoT	OoT OoT	1054 45013	OoT OoT	16 32	164 228	0/0 10/10	9 9
			RLL+SFLL	8166	2452	2019	576	7870	2626	OoT	32	243	0/0	9
			RLL+SKGLock	8252	2464	2056	OoT	OoT	OoT	OoT	19	160	5/5	9
			RLL		1587	3712	646	8	39	57	77	32	15	0/0	2
			RLL+AntiSAT	1659	3545	632	OoT	OoT	OoT	OoT	13	28	0/0	2
		TMCM	RLL+CASLock RLL+SARLock	1653 1659	3664 3756	628 658	OoT OoT	OoT OoT	OoT 2662	OoT OoT	15 31	20 36	0/0 6/6	2 3
			RLL+SFLL	1644	3800	653	1095	1089	5363	OoT	32	36	0/0	2
			RLL+SKGLock	1694	3739	676	OoT	OoT	OoT	OoT	18	34	10/10	2

TABLE VII RESULTS

 VII OF OBFUSCATED AND LOCKED FIR FILTERS.

			Obfuscation and Hybrid Protection				Logic Locking		
	Filter	Architecture	Technique	Synthesis	KC2	Attacks SCOPE	Technique	Synthesis	KC2	Attacks SCOPE
				area delay power	time	cdk/dk time		area delay power	time	cdk/dk time
		CAVM-MUL	Decoy [17] Proposed Hybrid 19500 4828 3153 19238 4907 3088	Failed OoT	18/32 8 1/1 13	RLL RLL+AntiSAT	20233 3566 2906 Failed 15/18 10 20300 3512 2896 Failed 21/26 14
	Direct	CAVM-SA	Decoy [17] Proposed Hybrid 19485 4798 3040 19243 4792 3012	Failed OoT	19/32 8 1/1 13	RLL+CASLock 20324 3746 2928 RLL+SARLock 20326 3630 2936	OoT OoT	11/15 14 31/37 14
		CAVM-CRK	Constant [9] Proposed Hybrid 22796 4244 2757 22551 4228 2734	Failed OoT	14/32 10 2/4 15	RLL+SFLL RLL+SKGLock 20380 4052 2994 Failed 16/24 15 20307 3619 2892 Failed 21/28 14
		MCM-MUL	Decoy [17] Proposed Hybrid 25439 3540 3896 25195 3470 3848 100347 25/32 11 OoT 1/1 16	RLL RLL+AntiSAT	22362 3093 3303 67811 16/21 9 22510 3218 3302 OoT 15/24 15
	Trans.	MCM-SA	Decoy [17] Proposed Hybrid 25139 3346 3562 24967 3322 3569	82952 OoT	26/32 10 1/1 15	RLL+CASLock 22461 3337 3320 RLL+SARLock 22425 3183 3303	OoT OoT	7/8 14 31/41 14
		MCM-CRK	Constant [9] Proposed Hybrid 27433 3256 3290 27126 3240 3273	51973 OoT	21/32 11 1/1 17	RLL+SFLL RLL+SKGLock 22514 3186 3329 22389 3116 3311	OoT OoT	19/29 14 17/24 15
		TMCM-MUL	Decoy [17] Proposed Hybrid 9379 4665 933 9126 4785 869	7478 OoT	20/32 2 2/2 3	RLL RLL+AntiSAT	9183 4496 904 9225 4681 882	7845 OoT	15/18 3 8/15 4
	Folded	TMCM-SA	Decoy [17] Proposed Hybrid 9966 5646 1236 9791 5758 1168	11895 OoT	18/32 2 9/13 3	RLL+CASLock 9237 4675 926 RLL+SARLock 9235 4761 911	OoT OoT	8/13 4 31/31 4
		TMCM-CRK	Constant [9] Proposed Hybrid 9356 4602 894 9126 4328 870	5657 OoT	22/32 2 1/1 3	RLL+SFLL RLL+SKGLock 9288 4434 910 9222 4570 892	OoT OoT	16/20 4 18/31 4

TABLE VIII DETAILS

 VIII ON THE PROTECTED AND LOCKED CAVM BLOCKS.

	Filter	n mbw	p	Hybrid area delay power	RLL+CASLock area delay power
	Dempster02	25 12	41 11145 5903 7057 16557 3136 4238
	Johansson08 30 10	46 14826 4662 4504 16461 3381 4101
	Shi11_Y2	34 11	50 12270 3594 3567 12533 3163 3190
	Shi11_A	59 10	75 21431 4858 5825 20993 3404 5390
	Samueli89	60 13	76 24188 4130 7522 26696 3998 6819
	Lim83	63 10	79 22932 4848 6652 24696 3661 6322
	Yoshino09	64 13	80 25096 4964 7927 30414 3437 7927
	Nielsen89	67 15	83 26187 5318 9645 34950 4071 9164
	Maskell07	108 9	124 37306 4811 9049 37148 3604 9522
	LimYu07	121 14	137 48354 4947 16862 59492 3888 15346

A one-point function is a Boolean function that evaluates to 1 at exactly one input pattern.

Confirmed by the developer of the SFLL method that when a small number of key bits are used and their values are biased towards all logic 0s or 1s in the SFLL method, the exponential growth in the number of iterations in the SAT-based attack is no longer valid.

ACKNOWLEDGMENT

The authors would like to thank Nimisha Limaye and Satwik Patnaik for running our obfuscated designs on their tools and Mohammad Yasin, Leon Li, and Christian Pilato for fruitful discussions. The attacks were carried out in the High Performance Computing Centre of TalTech.

This work has been partially conducted in the project "ICT programme" which was supported by the European Union through the European Social Fund. It was also partially supported by European Union's Horizon 2020 research and innovation programme under grant agreement No 952252 (SAFEST) and by the project MOOSIC ANR-18-CE39-0005 of the French National Research Agency (ANR).

Felipe Almeida received his bachelor's degree in Computer Engineering from the Pernambuco University and a master's degree in Microelectronics from the Federal University of Rio Grande do Sul. He is currently affiliated with the Centre for Hardware Security at Tallinn University of Technology (TalTech) as a Ph.D. student. His research interests are on Hardware Security and Radiation Tolerant Circuits.

Jaan Raik is a professor of digital systems' verification at the Department of Computer Systems and the head of the Centre for Dependable Computing Systems of TalTech University, Estonia. Prof. Raik received his M.Sc. and Ph.D. degrees at TalTech in 1997 and in 2001, respectively. He has co-authored more than 200 peer-reviewed scientific publications. His research interests cover a wide area in electrical engineering and computer science domains including hardware test, functional verification, fault-tolerance and security as well as emerging computer architectures.

Marie-Lise Flottes is a researcher for the French National Research Center (CNRS). Since 1990, she has been conducting research at LIRMM, Montpellier, France. She received her Ph.D. degree in 1990 from the University of Montpellier. Her interests include design for testability, testability and dependability of secure circuits, test data compression and test management for SoC and SiP.