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Adjusting the Exploration Flow
in Relational Concept Analysis

An Experience on a Watercourse Quality Dataset

Amirouche Ouzerdine, Agnès Braud, Xavier Dolques, Marianne Huchard,
and Florence Le Ber

Abstract In this paper, we focus on the exploration of multi-relational datasets, and
the various ways they can be analyzed using Relational Concept Analysis (RCA), an
extension of Formal Concept Analysis (FCA). RCA uses several scaling operators
thatmake the process highly tunable, allowing a high flexibility in the exploration and
in the results. In return, the multiplicity of choices that can bemade when performing
an analysis task potentially overwhelms the expert. We thus propose three overlays
for helping users control and foresee the results of their choices. Our proposition is
exemplified on a dataset about the hydro-ecological state of watercourses.

Keywords Multi-relational dataset · Relational concept analysis · Formal concept
analysis · Relational data exploration

1 Introduction

Multi-relational datasets are based on a schema (datamodel), where entities (objects)
of several categories are described by characteristics (attributes, fields) and where
relations link objects from two categories (possibly from the same one). Experts
of the domains in which these data are collected are interested in exploiting them
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through multiple tasks: browsing or exploration, querying, extraction of knowledge
patterns, or classification. By classification, we mean grouping, hierarchically orga-
nizing groups by generalization, and explicitly describing sets of similar objects
by characteristics. This paper focuses on exploration and knowledge extraction in
hierarchical by-generalization classifications built on top of the dataset. These tasks
are indeed facilitated thanks to: (1) a classification of extracted knowledge patterns
rather than a flat set of patterns, and (2) a support for exploring groups of similar
objects connected through inter-group links, rather than exploring individual objects
connected through inter-individual links.

Formal Concept Analysis (FCA, Ganter and Wille 1999) and its extensions bring
methods that contribute to many data exploitation tasks. FCA based on graph repre-
sentations (Liquière and Sallantin 1998; Kötters 2013; Ferré 2015), logical represen-
tations (Ferré et al. 2005) and multiple binary relations such as Relational Concept
Analysis (Hacene et al. 2013), are extensions that can apply, in different manners, to
multi-relational datasets.

Relational Concept Analysis (RCA) has been specifically designed for data explo-
ration tasks. It iteratively builds a set of interconnected classifications, and it can be
used to extract object groups, knowledge patterns and implication rules involving the
inter-object links. It has been successfully used for analyzing datasets in different
domains such as software engineering (Dolques et al. 2012), ontology engineer-
ing (Bendaoud et al. 2008; Rouane-Hacene et al. 2011), Web services (Azmeh et al.
2011), or recently linked data (Atencia et al. 2020).

One main feature of RCA is the process of building abstractions of inter-objects
links over object groups (concepts) through quantifiers inspired by description logics
constructors, such as at least one / only / all / at least 30% / etc. These link abstrac-
tions may group objects that have at least one / only / all / at least 30% / etc. (of)
their outgoing links for a specific relation entering into another identified group of
objects. This allows the abstraction behind an object group to be propagated through
chained inter-objects links. The step-by-step and exploratory nature of RCA, where
the relations and the quantifiers considered at each step can be chosen, makes the
process highly tunable.

On the one hand, these tuning possibilities make the resulting classification highly
expressive with descriptions using quantifiers beyond the usual universal and exis-
tential ones. On the other hand, the multiplicity of choices needed to perform an
analysis task can be overwhelming. In Dolques et al. (2015), an adaptation of RCA
is proposed to explore relations gradually by configuring one step at a time instead
of having to manage the whole process at once. Nevertheless, as far as we know, no
tool has been provided to guide the users in their choices and make the process more
intuitive.

In this paper, we propose to introduce pieces of knowledge in the RCA process
to make the analysis easier, both some knowledge on the data that is given by the
users to constrain the process before its start, and some knowledge built on the fly by
the users, based on the information extracted from the process, and that help them
decide how to tune this process. This takes the form of three overlays over the RCA
process: the first overlay consists in expressing constraints on the scaling quantifiers
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to keep their choice consistent; the second overlay consists in translating high-level
(often schema-level) query patterns, that are difficult to formalize by experts, into
expressions of a controlled language; the third overlay consists in giving quantitative
metrics on the concept lattices to be built and on particular relational implication
rules in order to help experts tune the analysis. The term of “knowledge” is to be
understood as defined by Zeleny (2013), “a purposeful coordination of actions”,
in our case, a coordination of actions to control the data exploration process. Data
is the input of the process, information is the output. We apply our proposal on a
watercourse quality dataset from the Fresqueau project1 in order to analyze the
relations between the physico-chemical state of a river site and the characteristics of
taxons (macroinvertebrates) living there.

The paper is organized as follows. In Sect. 2, we deepen the kind of relational data
exploration we aim to achieve and why it can be difficult for experts to conduct such
analyses. Proposed approaches of the literature, that address the problemof exploring
multi-relational datasets through by-generalization or by-aggregation organizations
are presented in Sect. 3. Section4 briefly introduces RCA for our context: its input, its
main principles and its outputs. Section5 describes the overlays we have developed
and Sect. 6 presents results on the Fresqueau data. We conclude the paper and give
some work perspectives in Sect. 7.

2 Exploring Multi-relational Datasets

Many data are inherently relational, with different types of relations. This motivates
the development of methods that aim for example to extract relational patterns, or
relational association rules, to induce relational decision trees, or to make clustering
with relational distance-based approaches (Džeroski 2003). In FCA context, rela-
tional data are taken into account through graph-based representations (Liquière and
Sallantin 1998; Kötters 2013; Ferré 2015), logical expressions (Ferré et al. 2005), or
multiple binary relations, as in RCA (Hacene et al. 2013).

When the experts have vague knowledge on the data and when their queries are
general, an exploratory approach can be suitable (Wildemuth andFreund2012; Palagi
et al. 2017). The data exploration can be fully free, or it can be guided by general
questions, often at the level of the data schema (concepts and relations).

We use as illustration a typical exploration case for an hydro-ecologist who studies
the effect of the physico-chemical state of a watercourse on the characteristics (life
traits) of the taxons (animals or plants) living there. An excerpt of the data model
is shown in Fig. 1, where water samples have a certain abundance of taxons (identi-
fiers of groups of living beings, here macroinvertebrates, organized into genus and
families); those taxons having some affinity with some (modalities of) life traits (e.g.
maximal size; aquatic stage: egg, larva, nymph; breathing mode; locomotion mode).
Water samples are also described by measures on physico-chemical (PC) parame-

1 http://engees-fresqueau.unistra.fr/.

http://engees-fresqueau.unistra.fr/


178 A. Ouzerdine et al.

Fig. 1 Excerpt of the data model of the Fresqueau project (Bimonte et al. 2015)

ters (e.g. nitrites, minerals, organic matters, temperature) organized into categories
depending on their nature. For each relation, the level corresponds to 5 degrees of
intensity depending on the number of individuals of a taxon in the water sample for
abundance, the part of a taxon population showing a life trait modality for affinity
and on the value of the measure done in the water sample for the PC parameter
measures. For the analysis purpose, each relation between categories of objects is
divided into 5 relations corresponding to those levels.

One main general question of the project experts is: what are the links between
life traits of the taxons and values of physico-chemical parameters? Exploring the
dataset in order to answer the question may take several forms, such as extracting
rules that involve the relations, or grouping objects from the different categories
(like water samples, or taxons) depending on their attributes and on the objects of
another category they are connected with. For example, experts may be interested
by the results of the following query: find groups of water samples that have (1) a
certain abundance level for a group of taxons, having themselves a common group
of life traits with a certain level of affinity and that have (2) at a certain level,
physico-chemical parameters in a certain group. Results may reveal for example:
a group of water samples containing taxons with a long life, and containing much
organic matters; a group of water samples with a high level of mineral material, and
containing taxons that use crawling as a locomotion mode. If we look closer at it, the
general question and the extracted groups can be refined in many directions, such as
(terms in bold denote the variable points in a question):

• find groups of water samples that have (1) a certain abundance level for a group
of taxons (and only taxons of this group), having themselves at least 70% of life
traits in a common group of life traits with a certain level of affinity, and that have
(2) at a certain concentration level, at least one physico-chemical parameter in a
certain group.

• find groups of water samples that have (1) a certain abundance level for a group
of taxons (and more than 60% of the taxons of each water sample are in this
group), having themselves only life traits in a common group of life traits with a
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certain affinity level, and that have (2) at a certain concentration level, all the
physico-chemical parameters in a certain group.

On the one hand, reformulating the general query in someof the possible directions
is important for experts because they need precise answers and they also can change
the focus of their analysis. On the other hand, the refinement can be done in many
directions, and experts will probably get lost relatively quickly. Besides, choosing
some refinements compared to others may lead to a too restrictive or too large set
of results. Lastly, the results are sets of connected groups of objects that respect a
certain question pattern. These groups may be many and they potentially specialize
one another, as shown in the following.

3 By-generalization or By-aggregation Approaches
for Multi-relational Dataset Exploration

Graphs are natural settings for representing relational data. Conceptual graphs have
been introduced to represent semantic information (Sowa 2008): they allow to per-
form queries and generalization/specialization operations based on hierarchies of
concepts and relations. These last years, many methods of graph mining have been
proposed, and more specifically in multi-graphs (Ingalalli et al. 2018). In the domain
of visualization, multi-relational datasets are represented as multilayer graphs. For
example, VERTIGo (Cuenca et al. 2018) is a visualization-based data mining system
that groups links and objects during navigation to present query results at different
levels of details and suggest new query extensions.

Inductive Logic Programming (ILP) was initially concerned with learning logic
programs, and ILP techniques have then been applied in relational data mining. In
ILP, learning is performed directly in the first-order logic setting, so that the search
space is intractable when data are numerous. Propositionalisation was proposed as
a mean to reduce this complexity (Muggleton and Raedt 1994; Lachiche 2010).
In Dolques et al. (2014), a comparison between propositionalisation and RCA has
been conducted. Besides, relational data have been transformed into logical formulae
within the framework of logical concept analysis described in Ferré et al. (2005).

Data Warehouses (DWs) are databases dedicated to the integration and storage
of large volumes of data to support the decision processes of organizations (Inmon
2005). DWs store decisional data at the finest granularity level and organize them
to facilitate analysis and aggregation. On-Line Analytical Processing (OLAP) tools
allow to build multidimensional data structures having different granularities, called
data cubes, by aggregating DW data, and provide users with operators for rapid
exploration of these data cubes (Kimball and Ross 2002). The dimensions are orga-
nized into hierarchies of aggregation (or generality) levels to allow viewing analysis
indicators at different granularities. Such cubes have been implemented to aggregate
and navigate Fresqueau data (Boulil et al. 2014).
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Formal Concept Analysis approached the multi-relational datasets through sev-
eral perspectives. Some approaches extract and classify graph patterns that connect
objects or object groups (Liquière and Sallantin 1998; Prediger andWille 1999; Gan-
ter and Kuznetsov 2001). Besides, K. E. Wolff has introduced Relational Semantic
Systems: the data model is represented through a conceptual graph, while the rela-
tional knowledge is represented through object traces and relation concept traces in
trace diagrams (Wolff 2009). Tuples of boolean factors are extracted from various
tables thanks to an extended version of the Boolean Factor Analysis (Krmelova and
Trnecka 2013). An n-ary relation may be in many concrete cases considered as an
aggregation of several relations of lower arity. FCAhas thus beengeneralized intoTri-
adic Concept Analysis, that considers a ternary relation including objects, attributes
and conditions. This yields triadic concepts that are organized in a complete tri-
lattice. This framework has been generalized to n-adic contexts (n-ary relations) in
Polyadic Concept Analysis (Voutsadakis 2002).

Although the previous FCA approaches give relevant and complementary views
on multi-dimensional datasets, they do not specifically focus on dataset exploration.
A step towards data exploration is made through the definition of queries. In the
existential case, this has been proposed by J. Kötters with relational, windowed
structures (Kötters 2013), and by S. Ferré in Graph-FCA (Ferré 2015). A combined
approach takes advantage of OLAP cubes to structure sets of concepts and OLAP
operations to support multi-dimensional navigation (Ferré et al. 2012). In the spirit
of conceptual navigation (Carpineto and Romano 2004; Wray and Eklund 2011;
Dunaiski et al. 2017), Abstract Conceptual Navigation (Ferré 2014) introduces a
high-level view on exploration in the context of FCA, which gives guidelines and
inspiration to define exploratory approaches.

RelationalConceptAnalysis (RCA) (Hacene et al. 2013)more specifically focuses
on exploring datasets by highlighting the object categories (each being encoded
in a formal context), and by connecting objects from the same category or from
different categories through relational contexts. The result is a set of interconnected
concept lattices (one lattice per object category). Connections between the lattices
are made through relational attributes which capture groups of similar individual
links between objects. The relational attributes are built using operators inspired by
description logics. By nature, RCA is iterative, as concepts formed on one object
category emerge and are propagated step-by-step through the constructed relational
attributes. Thus, immediate relational abstractions come first. Combining RCA and
Graph-FCA to help the RCA results interpretation has been studied in Ferré and
Cellier (2018). In the next section, we introduce basics on RCA.

4 Data Exploration with Relational Concept Analysis

Relational Concept Analysis (Hacene et al. 2013) goes beyond Formal Concept
Analysis (Ganter and Wille 1999) by considering a multi-relational dataset. With
respect to the previously mentioned methods, it adds a set of operators and an iter-
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ative approach that allows to follow information propagation through the various
relations, helps the comprehension of patterns, rules or clusters formation process,
and facilitates user (even abductive) reasoning. A relational dataset is represented by
a Relational Context Family (RCF), composed of formal contexts and relations. Each
formal context (also called object-attribute context) represents a set of objects of a
given category by their attributes. The relations (also called object-object contexts)
connect the objects of the different categories (or of the same category).

Definition 1 (Relational Context Family (RCF)) A Relational Context Family is a
(K,R) pair where:

• K = {Ki}i=1,...,n is a set ofKi = (Gi ,Mi , Ii ) object-attribute contexts, where Gi

is a set of objects, Mi is a set of attributes and Ii ⊆ Gi × Mi ; and
• R = {rj} j=1,...,p is a set of rj relations (object-object contexts) where rj ⊆ Gk × Gl

for some k, l ∈ {1, . . . , n}.

A simple example of RCF inspired by our hydro-ecological application domain
is shown in Table1 (has_abundance, is here binary for the sake of illustration). The
Taxon formal context introduces:

• the taxons Aeschnidae (Aes.), Agabus (Agb.), Agraylea (Aga.), Agrioty-
pus (Agi.), Ancylus (Anc.), Anisus (Ani.), Anodonta (Ano.), Anthomyiidae
(Ant.).

• five attributes describing theirmicro-habitats (boulders, gravel, sand,macrophytes,
organic detritus/litter).

The WaterSample formal context describes 8 water samples by their flow char-
acteristic (torrent, calm water) and chemical components. The has_abundance

object-object context connects the 8water samples to the taxons that have been found
into during a sampling campaign.

Formal Concept Analysis can be applied to the formal contexts Taxon and
WaterSample to form hierarchies of object groups sharing common attributes.
These groups are called concepts and are more precisely defined as follows.

Definition 2 (Formal concept) Given an object-attribute context K = (G,M, I ), a
concept maps a maximal set of objects with the maximal set of attributes they share,
yielding a set pair C = (Extent (C), I ntent (C)) such that:

• Extent (C) = {g ∈ G|∀m ∈ I ntent (C), (g,m) ∈ I } is the extent of the concept
(objects covered by the concept).

• I ntent (C) = {m ∈ M |∀g ∈ Extent (C), (g,m) ∈ I } is the intent of the concept
(shared attributes).

The formal concepts are ordered through a specialization/generalization order,
denoted by ≼C , based on the set-inclusion order. Given two formal concepts C1 =
(E1, I1) and C2 = (E2, I2), C2 ≼C C1 if and only if E2 ⊆ E1 (and equivalently
I1 ⊆ I2). C2 is a specialization (i.e., subconcept) of C1. C1 is a generalization (i.e.,
superconcept) of C2. C2 intent inherits the attributes from C1 intent, while C1 extent
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Table 1 RCF composed of the formal contexts Taxon, WaterSample, and the object-object
context has_abundance

Taxon bo
ul
de
rs

gr
av
el

sa
nd

m
ac
ro
ph
yt
es

or
gL

itt
er

Aes ×
Agb × ×
Aga × ×
Agi × × × ×
Anc × ×
Ani × × × ×
Ano × ×
Ant × ×

WaterSample to
rr
en
t

ca
lm

W
at
er

N
H
4

SO
4

C
a

M
g

C
3H

8N
O
5P

ws1 × ×
ws2 × ×
ws3 × ×
ws4 × ×
ws5 × × ×
ws6 × × ×
ws7 × × ×
ws8 × × ×

has_abundance A
es

A
gb

A
ga

A
gi

A
nc

A
ni

A
no

A
nt

ws1 × ×
ws2 × ×
ws3 × × × × ×
ws4 × × × × ×
ws5 × × ×
ws6 × × ×
ws7 × × ×
ws8 × × ×

inherits the objects from C2 extent. The set of all concepts of K , ordered by ≼C , is
provided with a lattice structure, and is called the concept lattice of K .

Figure2 shows the concept lattices associated with the formal contexts of
water samples (left-hand side) and taxons (right-hand side). The lattice formed
on water samples highlights the group of water samples collected in calm waters
(C_Water Sample_5) versus the group of water samples collected in torrents
(C_Water Sample_4). The water samples collected in calm waters are then sep-
arated in three subgroups depending on the presence of glyphosate (C3H8NO5P, in
C_Water Sample_3), calcium (Ca, in C_Water Sample_1) or magnesium (Mg, in
C_Water Sample_2).

In RCA, relational attributes are introduced to complete the initial formal contexts
to take into account relational information. A relation rj ⊆ Gk × Gl will be used to
build relational attributes of Kk by using relations between objects ofGk and concepts
built over objects of Gl . Figure3 illustrates relational attributes with a few examples,
on the set of water samples composed of ws3, ws6, ws7 and ws8. A relational
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Fig. 2 Concept lattices for formal contexts WaterSample and Taxon. A concept is shown as a
three-parts box. The upper part is its identifier; the middle part contains the intent deprived of the
top-down inherited attributes (it contains “introduced” attributes only); the bottom part contains the
extent deprived of the bottom-up inherited objects (it contains “introduced” objects only)

attribute is composed of a scaling quantifier, the name of the relation, and the target
concept. For example:

• Relational attribute ∃has_abundance(Concept_Taxon_2) is associated with
water samples ws3, ws7 and ws8 because they have at least one has_abundance
link to a taxon of the extent of Concept_Taxon_2.

• Relational attribute ∃∀has_abundance(Concept_Taxon_3) is associated with
water sample ws6, because it has at least one has_abundance link and such links
are only directed to taxons of the extent of Concept_Taxon_3.

• Relational attribute ∃∀≥60%has_abundance(Concept_Taxon_2) is associated
with water samplesws7 andws8 because they have at least one and at least 60%
of their has_abundance links to taxons of the extent of Concept_Taxon_2.

• Relational attribute ∃⊇has_abundance(Concept_Taxon_1) is associated with
water samples ws3 and ws6 because they have at least one and all the taxons of
the extent of Concept_Taxon_1 through has_abundance links.

Using such relational information leads to extend formal contexts with the rela-
tional attributes and build new concept lattices. For example, left-hand side of Fig. 4
(resp. right-hand side) shows the concept lattice associated with the formal context
WaterSample extended with all possible relational attributes composed with scal-
ing quantifier ∃∀ (resp. ∃∀≥60%) and concepts of the Taxon concept lattice of Fig. 2.
Figure4 also highlights a generality relation between the scaling quantifiers. In our
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Fig. 3 Relational attributes built from Taxon concepts and the relation has_abundance between
WaterSample and Taxon

Fig. 4 Concept lattices for WaterSample (WS) with scaling quantifiers ∃∀ (LHS) and ∃∀≥60%
(RHS)

example, ∃∀ is more general than ∃∀≥60% (denoted as ∃∀ ≼S ∃∀≥60%), with the con-
sequence that if an object owns a relational attribute formed with ∃∀, it also owns its
equivalent (same relation/same concept) formed with ∃∀≥60%, and there is a form of
projection between the relational attribute introducers in the left-hand side lattice to
these of the right-hand side lattice (Braud et al. 2018).

Let us note that the hydro-ecologist queries look like statements that can be writ-
ten using query languages like SQL, however in the above examples the groups are
formed during the RCA process, helping inherently to deliver the results in an orga-
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nized form. For example, if finding calm water samples is the expert query, the lattice
from the left-hand side of Fig. 2 organizes the answers withC_Water Sample_5 and
its subconcepts. The expert learns which answers correspond to its query with the
least possible amount of additional characteristics, and the more she/he goes down
the lattice, the more characteristics are added to the groups. She/he also learns which
water samples are among the “equivalent” answers (answers that have exactly the
same characteristics), or which characteristics appear together. All these informa-
tions help her/him to navigate among the possible answers to the query. Using RCA,
these lessons learned extend to the relational information. For example, the concept
lattice of Fig. 4 (right-hand side) highlights the fact that water samples from calm
water (C_WS_5) have a significant proportion of their taxons among those which
appreciate organic litter. It more specifically represents the answers to the general
query: “find groups of water samples that have more than 60% of their taxons in
a certain taxon group”. C_WS_5 and its subconcepts show the organization of the
answers to the query finding calm water samples or alternatively finding water sam-
ples that have more than 60% of their taxons in the micro-habitat organic litter. This
specific feature of FCA and RCA brings data structuring to the expert attention and
fosters the navigation within the answers, and within the dataset.

In the general case, the data model can be cyclic: for example, we could have the
reverse relation is_abundant_in from taxon to water samples. In this case, once
concepts of water samples are built, a new concept lattice of taxons can be built
thanks to a chosen scaling quantifier and the resulting relational attributes formed on
is_abundant_in. This entails an iterative process which converges after a number
of steps depending on the dataset. Besides, the initial definition of the RCA process
considers that a single scaling quantifier is associated with a given relation all along
the iteration process. But variants have been defined and used for specific usages
(Dolques et al. 2015; Braud et al. 2018).

5 Guiding Tools for RCA

The tool RCAexplore2 allows a variety ofRCAusages: changing at each step the scal-
ing quantifiers, the considered formal contexts and relations and the set of concepts
that are computed. This variety of usages has its counterpart which is the difficulty
of choosing the right parameters for a given question.

To overcome these difficulties, we have designed three overlays, that are added to
the general RCA process, as outlined in Fig. 5. In a first step (step 1), a data model
(objects, attributes and relations) is chosen; based on this model, the first overlay
allows the user to put constraints on relations (Sect. 5.1). Step 2 focuses on data
processing and formatting, in order to build the RCF; then FCA is applied on the
object-attribute contexts (step 3). The choice of which scaling operator to apply to
which relations is done in step 4 with the help of the second and third overlays: they

2 http://dataqual.engees.unistra.fr/logiciels/rcaExplore.

http://dataqual.engees.unistra.fr/logiciels/rcaExplore
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Fig. 5 RCAExplore process and its overlays

aim to guide the user through scaling quantifiers assignment, with an interpretation
outline (Sect. 5.2) and information relative to neighbor result sets (Sect. 5.3). The
application of scaling operators leads to new relational attributes that complete the
object-attribute contexts (step 5); then step 3, step 4 and step 5 are again applied,
until a fixpoint is reached (step 6). The obtained results are concept lattices, or other
conceptual structures, as well as different extracted information, such as implication
rules. These overlays have been introduced for the Fresqueau dataset, jointly
with hydro-ecologists, which explains the applied perspective, but our experience
with RCA makes us think that they have a wider interest for other multi-relational
datasets in other domains. A short demo is available.3

5.1 Constraints on Relations

RCAExplore offers the possibility to choose among several quantifiers on rela-
tions, but sometimes, some relations are semantically connected and the quanti-
fiers that are associated with them have thus to be consistent. For example, in the
Fresqueau project, each general relation (e.g. has_abundance) is represented
with several relations to capture the notion of levels of Fig. 1, e.g. the five rela-
tions has_an_abundance_of _level_i , each one corresponding to a level between
1 and 5. In this case, if several has_abundance relations are selected together, it
may be consistent to apply to them the same quantifier. Relations are thus gathered
into equivalence classes: relations in the same equivalence class are considered in
the same way along the process, i.e. they are all given the same scaling quantifier at
each step. Nevertheless, the scaling quantifier for a class can be different from one
step to another.

This information is encoded in a json file which is analyzed each time a scaling
quantifier is associatedwith a relation through the user interface, in order to propagate
the constraint to the other relations that are in the same class as the chosen one. The
users can accept or change the system propositions. For example, the json file shown

3 http://dataqual.engees.unistra.fr/logiciels/rcaExplore/rcaexplore2019.mp4.

http://dataqual.engees.unistra.fr/logiciels/rcaExplore/rcaexplore2019.mp4


Adjusting the Exploration Flow in Relational Concept Analysis … 187

Fig. 6 json file for equality constraints defining equivalence classes of relations on the Fresqueau
dataset

Fig. 7 General form of the constraint json file

in Fig. 6 expresses that users want to have the same quantifier on the five abundance
relations, the samequantifier on thefivePCmeasures relations and the samequantifier
on the five affinity relations. The general form of the json file is shown in Fig. 7.

5.2 Interpretation Outline

Another difficulty that we observed during the analysis is understanding the impact
of the choice of scaling quantifiers. In order to address this issue, we developed an
interpreter which automatically translates the choices made on the user interface into
a formatted expression in a controlled language. The box of the upper part of Fig.8
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Fig. 8 Scaling quantifier selector and associated interpretation (screenshot excerpt)

Fig. 9 Schematic representation of quantifier selection for the screenshot excerpt of Fig. 8

shows such an expression corresponding to the selections made in the lower part. It
is composed using expressions of the form:

Group of < source Formal Context name > that

< Relation name >< quantifier expression >
in the < target Formal Context name > group

Such kind of expression corresponds to a group C = (X,Y ) ∈ Lsource

such that there exists C ′ ∈ Ltarget with qr.C ′ ∈ Y . C corresponds to
Group of < source Formal Context name >; r corresponds to
< Relation name >; q corresponds to < quantifier expression >;
C ′ corresponds to < target Formal Context name > group.

The < quantifier expression > can be one of the following:

at least one < target Formal Context name >

< target Formal Context name > only

< n > %of < target Formal Context name >

all < target Formal Context name >

< n > %of < Relation name > links

The textual box (upper part of Fig. 8 with an associated schematic interpretation
in Fig. 9) is automatically updated when new scaling quantifiers are chosen, allowing
experts to immediately capture the meaning of their last choice.
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5.3 Dashboard of Neighbor Result Sets

The third overlay consists in computing metrics for neighbor result sets, i.e. potential
results of the next step, andwasmotivated by the difficulty to know the shape (mainly
the size) of the answers. The neighborhood is built on the generality relation≼S (more
general than) between scaling quantifiers (Braud et al. 2018). It can be based on forall
(∃∀ being ∃∀≥100%):

∃∀ ≼S (...) ≼S ∃∀≥60%(...) ≼S ∃∀≥30% ≼S (...) ≼S ∃

Or it can be based on contains (∃⊇ being ∃⊇≥100%):

∃⊇ ≼S (...) ≼S ∃⊇≥60%(...) ≼S ∃⊇≥30% ≼S (...) ≼S ∃

Afirst metric is defined as the number of concepts that would be computed in each
neighbor configuration. Another relevant metric relies on the number of implication
rules that can be extracted from the extended formal contexts for each configuration.
By implication rule, we mean, in this paper, “attribute implication” in a formal
context K = (G,M, I ). An implication X =⇒ Y , where X ⊆ M and Y ⊆ M are
two attribute sets, holds if the objects that have all the attributes of X also have all
the attributes of Y : {g ∈ G|∀m ∈ X, (g,m) ∈ I } ⊆ {g ∈ G|∀m ∈ Y, (g,m) ∈ I }.

Several implication rule sets (implicative systems), and more precisely, several
bases (non-redundant implicative systems), can be built from a formal context (Bertet
et al. 2018). A non-redundant implicative system is a system fromwhich the removal
of any of its implicative rules produces a non-equivalent system (a different fact set
is deduced). To guide domain experts, we have considered three different implicative
systems which highlight different aspects of data.

First, we considered the implication set introduced in Ouzerdine et al. (2019), and
we removed the identical ones (they were very few). As these rules are very specific
to our dataset, they are introduced in the next section. For new datasets, such specific
implication rules should be redefined.

Then, we considered non-redundant implicative systems composed of binary
implications, namely, where |X | = |Y | = 1. We did not compute these rules, but
we evaluated their number. They can be used to recover all binary implications. The
cardinal of a non-redundant set of strict binary implications (implications x =⇒ y
such that y =⇒ x does not hold) can be obtained by counting the number of edges
in the transitive reduction of the AC-poset (partially ordered set of concepts intro-
ducing at least one attribute). Then, we need to add to the count the cardinal of a
non-redundant set of implications x =⇒ y such that y =⇒ x also holds. They are
given by the simplified intents of the concepts introducing more that one attribute.
When a simplified intent contains n > 2 attributes, e.g. {a, b, c}, then an associ-
ated non-redundant set of binary implications contains n binary implications, e.g.
a =⇒ b, b =⇒ c, and c =⇒ a. The sum of the cardinals of all simplified intents
of attribute introducer concepts introducingmore than one attribute gives us the num-
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ber of such implications. Besides, the attributes of the bottom concept (if it exists in
the AC-poset), when it does not introduce objects, can be removed from the count,
as they are not relevant (the support of the corresponding implications is null).

The third non-redundant implicative system that we consider is the best-known
basis, namely the canonical basis, and has been defined by Guigues and Duquenne
and later reworked by several authors (Obiedkov andDuquenne 2007). It is computed
thanks to different systems, including Concept Explorer (Conexp)4 that we used in
our experimentation. It is of minimal cardinality, and all the other implication rules
can be deduced from the canonical basis using Armstrong axioms (Armstrong 1974).

6 Application to the FRESQUEAU Dataset

In this section, after introducing the part of the Fresqueau dataset we used
(Sect. 6.1), we describe neighbor result sets for this case: for specific rules in Sect. 6.2,
for binary implications in Sect. 6.3, and for the canonical basis in Sect. 6.4.

6.1 FRESQUEAU Dataset

The dataset used in this paper, and encoded in a format readable by RCAExplore is
available online.5 It is composed of 1702 water samples collected in Alsace region
(East of France), 392 taxons (macroinvertebrates), 116 taxon traits, and 40 physico-
chemical parameters. Datawere collected during a previous project (Grac et al. 2011)
and included in the Fresqueau database.

Taxons are described by their name. The initial formal context also indicates tax-
onomy relationships between taxons (family, gender, etc.). The traits and physico-
chemical parameters are also simply described by their name (serving as an iden-
tifier). Water samples have no specific attribute (see Fig. 1) thus, their description
comes from the relations.

Fifteen relational contexts implement five levels for the relations between objects
Water samples and PC measures, between objects Water samples and Taxons, and
between objects Taxons and Traits. Levels are based on percentiles for PC measures
and abundances, and on predefined levels for affinity, relying on statistical observa-
tions (Usseglio-Polatera et al. 2000).

A previous work (Dolques et al. 2016), based on a similar dataset, has focused
on decreasing the computational complexity of implication rules (using AOC-posets
versus iceberg lattices) and studying the resulting number of concepts and rules with
various scaling operators. Only implication rules linking taxon traits and physical
characteristics of river streams have been studied. With regard to this work, we

4 http://conexp.sourceforge.net/.
5 http://dataqual.engees.unistra.fr/data.

http://conexp.sourceforge.net/
http://dataqual.engees.unistra.fr/data
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here provide a systematic study of different types of rules, and we explore rules
linking physico-chemical measures and taxon abundances in two ways. While work
presented in Dolques et al. (2016) focuses on results, here we also describe helping
tools for producing and analyzing those results.

6.2 Specific FRESQUEAU Rules

In our practical study, the aim is to explore the connections between physico-chemical
parameters and life traits of taxons. We extract classifications (concept lattices) in
which experts navigate, as well as rules. In the metrics presented here, we first
compute the number of concepts of the lattices which is a good indicator about
the size of the classifications (Table2, column 3). We also compute the number
of particular non-redundant implication rules with premises of size 1 between the
relational attributes, that are deduced from introducer concepts and the transitive
reduction (Table2, column 4). In the Taxon concept lattice, we chose to extract
rules of the following form, to highlight relations between traits:

< quantified affinity to a life trait group >
=⇒ < quantified affinity to a life trait group >

In the WaterSample lattice, the extracted rules have the following forms:

ma: < quantified measure of a PC −parameter >
=⇒ < quantified abundance of a taxon group >

aa: < quantified abundance of a taxon group >
=⇒ < quantified abundance of a taxon group >

mm: < quantified measureof a PC −parameter >
=⇒ < quantified measure of a PC −parameter >

am: < quantified abundance of a taxon group

=⇒ < quantified measure of a PC −parameter >

ma is supposed to give informationon the links between the physico-chemical state
of watercourses and the presence of certain groups of taxons. aa will reveal the co-
presence of taxons. Both rulesaa and ma are consistentwith experts’ questions.mm is
supposed to give some already known results, e.g. relations between the various forms
of nitrogen, due to chemical processes. am is not supposed to give information, since
taxons (macroinvertebrates) should not have effect on physico-chemical parameters.
The tool could propose to skip the computation of this last type of rule, according to
expert knowledge.

The corresponding metrics are shown in Table2 when tuning n in ∃∀≥n% and
∃⊇≥n%, with n ∈ 0, 30, 60, 100. We recall that ∃∀≥0% = ∃⊇≥0% = ∃. In these con-
figurations, we have examined what happened when the scaling quantifier is changed
on relation abundance 3. The neighbor result sets allow experts to move into the
analysis space. Using Table2 as dashboard, experts first can remark that the dataset
contains water samples with a diversity in terms of their PC-composition and the
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Table 2 Specific Fresqueau rule sets metrics: ∃ affinity and measure, and different operators for
abundance
Formal context Relation Concept nb Spec. Fresq. rule

nb
Support maximal
size

Taxon ∃ affinity 3 460 250 153 on 1 rule

WaterSample ∃ measure 3 1661 Tot = 415 1258 on 1 rule
∃ abundance 3 ma = 19 2 on 19 rules

mm = 3 2 on 3 rules
am = 2 9 on 1 rule
aa = 391 1258 sur 1 rule

WaterSample ∃ measure 3 1661 Tot = 433 1258 on 1 rule
∃∀≥30%
abundance 3

ma = 32 2 on 32 rules

mm = 3 2 on 3 rules
am = 3 9 on 1 rule
aa = 395 1258 on 1 rule

WaterSample ∃ measure 3 1641 Tot = 405 1254 on 1 rule
∃∀≥60%
abundance 3

ma = 11 2 on 11 rules

mm = 3 2 on 3 rules
am = 2 3 on 1 rule
aa = 389 1254 on 1 rule

WaterSample ∃ measure 3 1642 Tot = 408 930 on 1 rule
∃∀ abundance 3 ma = 7 2 on 7 rules

mm = 3 2 on 3 rules
am = 2 3 on 2 rules
aa = 396 930 on 1 rule

WaterSample ∃ measure 3 1557 Tot = 31 2 on 7 rules
∃ ⊇≥30%
abundance 3

ma = 1 2 on 1 rule

mm = 3 2 on 3 rules
am = 25 1 on 25 rules
aa = 2 1 on 2 rules

WaterSample ∃ measure 3 1514 Tot = 3 2 on 3 rules
∃ ⊇≥60%
abundance 3

ma = 0 /

mm = 3 2 on 3 rules
am = 0 /
aa = 0 /

WaterSample ∃ measure 3 1514 Tot = 3 2 on 3 rules
∃ ⊇ abundance 3 ma = 0 /

mm = 3 2 on 3 rules
am = 0 /
aa = 0 /
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taxons population, explaining the low value of the maximal size of a rule support
in many cases. If experts are interested in the concepts and their classification, they
can notice that there is not a large difference when they specialize the ∃∀ scaling
quantifier (going from 1661 concepts to 1641) but a larger one when they specialize
the ∃⊇ scaling quantifier (going from 1661 concepts to 1514). With the upper part
of Table2, they can notice that lattices for ∃∀≥60% and ∃∀ have the same number
of concepts, making it useless to refine the quantifier up to 100% if their goal is to
reduce the size of the result to make it more manageable. If domain experts are more
interested in measure/abundance (ma) rules, they can consider the number
of ma rules in column 4, successively 19, 32, 11 and 7. They can decide to use the
quantifier ∃∀≥60% which gives a reasonable number of rules, that are based on a rel-
atively high connection between water samples and taxons. With Table2 (bottom),
they can observe that the quantifiers are too restrictive for the ma rules. Besides, it
is useless to explore between ∃⊇≥60% and ∃⊇ because the number of rules and the
lattice size do not change.

6.3 Non-redundant Binary Implication Sets

Table3 shows the numbers of non-redundant binary implication sets. All numbers
are high, with 1145 (around 10%) more rules when choosing the operator ∃∀≥30%

rather than the operator ∃, and 669 (around 5.5%) more when choosing the operator
∃∀≥60% rather than the operator ∃∀≥30%. We can observe that using ∃∀≥60% or ∃∀
gives similar results, thus it is useless to explore the operators with intermediate
percents on this kind of rules. The rule number is decreased by 500 (around 5%)
between ∃⊇≥30% and ∃⊇≥60%, and is little changed afterwards.

6.4 Canonical Basis

Although we have computed the previous indicators without any difficulty on our
personal computers,wemet difficultieswith the canonical basis.Wefinally computed
it on a physical server Dell M630 - 2 x Intel Xeon E5-2697 v3 @ 2.60GHz - 256
Go RAM and on a virtual server based on the hardware Dell M630 - 2 x Intel Xeon
E5-2695 v3 @ 2,30GHz - 384 Go RAM (using 54 of the 56 available cores, and the
whole RAM). Table4 shows the obtained results after more than 12h of computation.
The other processes were stopped after 170h without giving any result. Although
canonical basis is a relevant information source for experts, this experiment showed
that it should not be used in this context.

To conclude this section, whatever metrics are used, our point is that the neighbor
result sets allow experts to move into the analysis space, knowing the increase or
decrease of the constructed artefacts amount. This will prevent them from using
operators that would give no additional information especially when datasets are
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Table 3 Binary implication rule sets metrics: ∃ affinity and measure, and different operators for
abundance
Formal context Relation Concept nb Binary rule nb

Taxon ∃ affinity 3 460 3580

WaterSample ∃ measure 3 1661
∃ abundance 3 10982

WaterSample ∃ measure 3 1661
∃∀≥30% abundance 3 12127

WaterSample ∃ measure 3 1641
∃∀≥60% abundance 3 12796

WaterSample ∃ measure 3 1642
∃∀ abundance 3 12796

WaterSample ∃ measure 3 1557
∃ ⊇≥30% abundance 3 10271

WaterSample ∃ measure 3 1514
∃ ⊇≥60% abundance 3 9771

WaterSample ∃ measure 3 1514
∃ ⊇ abundance 3 9769

Table 4 Canonical basis metrics: ∃ affinity and measure, and different operators for abundance
Formal context Relation Nb of concepts Nb of rules Max size support

Taxon ∃ affinity 3 460 38734 291 on 1 rule
WaterSample ∃ measure 3 1642 120872 1262 on 2 rules

∃∀100% abundance 3
WaterSample ∃ measure 3 1514 17022 201 on 1 rule

∃ ⊇60% abundance 3
WaterSample ∃ measure 3 1514 17022 201 on 1 rule

∃ ⊇100% abundance
3

large or complex, as they may be in the domains we consider. Following this idea,
we have recently studied the complexity issue of applying RCA on larger datasets
from the hydroecological and agricultural domains (Braud et al. 2020). This study
draws the opportunities and the limits of RCA in these cases and concludes with a
few new research and technological potential solutions.

7 Conclusion

In this paper, we have presented several overlays that we have integrated in RCA-
Explore to guide domain experts without an extended knowledge of RCA in the
exploration of datasets. Indeed, RCA allows us to extract classifications, rules and
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patterns with a large range of filters (provided by quantifiers), but the modifications
that are brought to the results by these filters may not be very intuitive, and the
analysis of a large number of generated concepts may be difficult. As a way to limit
the choices, the application of constraints allows experts to take into account coher-
ent groups of relations coming from the initial dataset, and to apply quantifiers in
a homogeneous way. Besides, the formal writing of the query may be very diffi-
cult to understand, possibly leading to wrong choices. The built-in query interpreter
to RCAExplore has been implemented, to translate instantly the choices of experts
into an advanced language helping the query formulation. The Python scripts used
upstream of RCAExplore and applied to the generated lattices, compute metrics that
allow experts to have an overview on the extracted information (number of concepts,
number and support of extracted rules) and thus to reorient (refine or expand) their
search. The generated implication rules inform the experts on the relations between
domain objects.

In the future, we plan to develop a version of RCAExplore that will be a fully
integrated data exploration tool, allowing to go from raw data to results more easy
to exploit by the domain experts. To this aim, an interface should be developed to
make transparent the sequencing of the various tool parts, to render all results, some
currently being stored in separate files, and to provide a menu assisting the iterative
process. Constraint and interpretation languages will be refined to come closer to
the natural language, providing a more simple interface. We will also conduct user
analyses to observe to which extent this interface and the tool in general facilitates
the RCA usage.

Besides, we plan to study the complementarity between RCA and other by-
generalization and by-aggregation approaches. We have already achieved compar-
isons with temporal pattern discovery (Nica et al. 2016) and inductive logic program-
ming (Dolques et al. 2014); other comparisons can be done with pattern structures
(Codocedo and Napoli 2014) or bi-clustering, or in general, with machine learning
(Kaytoue et al. 2015). These comparisons will be extended to the domain of rela-
tional databases, inductive databases, OWL/RDF and SPARQL: Knowledge graphs
(such as described with OWL/RDF) can be input data for RCA, as RCA basically
considers triplets, and reversely, RCA output (concepts) can be used in ontology
design (Hacene et al. 2008). Furthermore, rules discovered by RCA can be included
in rule-based systems. Nevertheless the initial purpose of RCA is not reasoning but
data mining in the form of knowledge pattern extraction, conceptual classification
building and implication/association rule discovery, and more generally machine
learning, in the line of FCA (Kuznetsov 2004).
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