
HAL Id: lirmm-04089535
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04089535

Submitted on 4 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Boolean Variability Relationship Extraction
to Multi-valued Software Descriptions

Jessie Galasso-Carbonnel, Marianne Huchard

To cite this version:
Jessie Galasso-Carbonnel, Marianne Huchard. Extending Boolean Variability Relationship Extraction
to Multi-valued Software Descriptions. Roberto E. Lopez-Herrejon; Jabier Martinez; Wesley Klew-
erton Guez Assunção; Tewfik Ziadi; Mathieu Acher; Silvia Vergilio. Handbook of Re-Engineering
Software Intensive Systems into Software Product Lines, Springer International Publishing, pp.143-
173, 2023, 978-3-031-11686-5. �10.1007/978-3-031-11686-5_6�. �lirmm-04089535�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04089535
https://hal.archives-ouvertes.fr

Chapter 6
Extending boolean variability relationship
extraction to multi-valued software descriptions

Jessie Galasso and Marianne Huchard

Abstract Extracting variability information from software product descriptions
is crucial when reverse engineering a software product line, e.g., for variability
model synthesis. Existing methods are predominantly designed for feature-oriented
product lines, where products are described by the set of distinguishable features they
implement, and variability information may be expressed by logical relationships over
these features. However, limits of such boolean feature-based variability modeling
approaches have been highlighted, notably regarding their expressive power. In
this chapter, we take a step towards more complex variability extraction and focus
on extracting non-boolean variability relationships from multi-valued software
descriptions. We first analyze software descriptions, variability relationships and
extraction methods used in the boolean case. We attract attention to a knowledge
engineering framework supporting a sound and complete feature-based variability
relationship extraction method. The benefits of this framework include several
extensions enabling to take into account more complex datasets than boolean ones.
We explore one of these extensions to extend the traditional boolean extraction method
and handle variability relationships including both boolean features and attribute
values that can be used to synthesize extended variability models.

6.1 Introduction

Reducing the development time and cost of a software portfolio while increasing
its overall quality and scope may be achieved through systematic reuse and mass-
customization; it is the core of the Software Product Line Engineering (SPLE)

Jessie Galasso
Université de Montréal, Canada e-mail: jessie.galasso-carbonnel@umontreal.ca

Marianne Huchard
LIRMM, University of Montpellier, CNRS, Montpellier, France e-mail: marianne.huchard@
lirmm.fr

143

jessie.galasso-carbonnel@umontreal.ca
marianne.huchard@lirmm.fr
marianne.huchard@lirmm.fr

144 J. Galasso et al.

approach [48]. SPLE is a development paradigm based on a set of reusable software
artifacts and a common architecture with which the artifacts may be combined:
di�erent combinations lead to di�erent software products that share similarities.
Altogether, the common architecture, the reusable artifacts and the derivable products
form a software product line (SPL). A central task of SPLE is to document the
SPL variability, i.e., documenting the accepted artifact combinations and thus the
derivable software products. This task produces variability models which are crucial
for the understanding, implementation, management, maintenance and evolution of
the SPL. Variability models can operate at several levels of abstraction but most
commonly group artifacts under distinguishable software characteristics or behaviours
called features. Feature-oriented product line engineering [4, 34] is a widely adopted
approach for SPL implementation, where feature diagrams (FDs) [33] are the most
commonly studied variability models. FDs are a family of description languages
that enable to express constraints (also called variability relationships) over a set of
features and thus delimit the scope of an SPL. In other words, FDs describe derivable
software intensive systems through boolean descriptions being accepted combinations
of features. However, limitations regarding the expressiveness of these “boolean”
FDs have been encountered, and FD extensions were proposed to overstep them, e.g.,
to represent feature cardinalities [16], group cardinalities [16,50], or multi-valued
attributes [7, 16]. Aside from these extended FDs, other types of variability models
try to tackle the problem of representing more detailed variability information, such
as orthogonal variability models [48] or the common variability language [31].

Proactive adoption of an SPL [37] instructs to first determine its scope (i.e.,
establishing which artifacts will be needed and which combinations should be allowed
through variability models), then implement the architecture and the artifacts, and
finally begin to derive software products. However, this adoption process takes time
before being able to propose working products to customers, that is why a large
part of companies working with SPLE prefer to adopt an extractive approach [11].
Extractive SPL adoption [37] is about capitalizing on similar software products
already developed to fasten the definition of the common software architecture,
the set of reusable artifacts and the variability models through reverse engineering
methods. A detailed overview of current research in SPL reverse engineering can
be found in [6] in the form of a mapping study. An abundant literature addresses
automated or semi-automated extraction of variability relationships between features
from (boolean) software intensive-system descriptions, mostly to synthesize boolean
FDs [2,3,16,21,29,30,38,41,45,51]. Variability extraction that goes beyond boolean
feature relationships is addressed by few authors: Becan et al. consider boolean
features and multi-valued attributes [9], and Carbonnel et al. consider boolean
features, UML-like cardinalities and multi-valued attributes [15].

In this chapter, we present a method to extract variability relationships involving
more than boolean features from product descriptions. More specifically, we focus
on the types of relationships to be extracted to synthesize the three prevalent FD
extensions that were proposed to enhance their expressiveness. We study product
descriptions that take the form of multi-valued matrices containing both boolean
and non-boolean characteristics. The proposed method leverages existing boolean

6 Extending boolean variability relationship extraction to multi-valued descriptions 145

variability relationships extraction methods based on Formal Concept Analysis
(FCA) [25], a framework for knowledge engineering and knowledge representation.
Even though the value of FCA may be di�cult to apprehend at first, it is one-of-a-kind
in the variability reverse engineering landscape; FCA o�ers a structural, reusable
and extensible framework which formalizes variability extraction and representation,
and thus includes most of the existing variability extraction approaches found in the
literature. In the following, we first present a boolean variability extraction method
based on FCA (Section 6.2), and then a way to extend this framework to handle
multi-valued variability extraction (Section 6.3). In each section, we present the
input product descriptions, the variability relationships to be extracted, the reverse
engineering approaches found in the literature, and a sound and complete FCA-based
extraction method (i.e., all variability relationships that are true for the considered
set of input product descriptions are extracted, and all extracted relationships are
true). We do not address the problem of synthesizing variability models such as FDs
extended with attributes or cardinalities; we focus on extracting variability information
independently from any representation, but that can be used to build di�erent kinds of
variability models. The soundness and completeness of the extraction method provide
strong foundations for the synthesis of variability models which are consistent with
the input descriptions, but do not guarantee the legibility and/or maintainability of
the produced models as these quality attributes depend on the synthesis method. We
conclude in Section 6.4 by summarizing the approach and drawing a few perspectives.

6.2 Variability in boolean descriptions

Descriptions composed of boolean feature sets have been extensively studied from the
very first research works on product line engineering [33]. In this section, we focus
on the variability relationships which can be extracted from this type of descriptions,
and how. Feature-based boolean descriptions are discussed in Section 6.2.1, where
we introduce an illustrative example derived from the robot battle programming game
Robocode1 [43]. Section 6.2.2 reviews the main variability relationships between
features that have been studied in the literature, and Section 6.2.3 reports the main
approaches for feature relationship extraction. The key principles and benefits of an
extraction process involving Formal Concept Analysis are exposed in Section 6.2.4.

6.2.1 Boolean feature-based descriptions

In SPLE, a feature corresponds to a high level product’s part or behavior which is
relevant to any stakeholder [4]. Features are intended to be easily understandable
contrary to artifacts of lower level that only experts may comprehend. They represent

1 https://robocode.sourceforge.io/

https://robocode.sourceforge.io/

146 J. Galasso et al.

noticeable characteristics which help distinguish similar products from one another;
a feature is associated to a unique name and may be implemented by various
(concrete) artifacts. Let us consider an example about Robocode, a programming
game where developers have to implement the behaviour of their own bots (i.e., the
products to be described) in order to fight bots implemented by other developers.
Examples of features characterizing a bot may be its strategies of movement on the
battlefield (e.g. random movement, minimum risk movement, stop&go,
wave surfing), the kinds of fights it is designed for (one-on-one fighting
or melee fighting), if it takes part to some community events (such as the
roborumble competition), or the software license of the code source (open
source or closed license). Let us note that all features may not be at the same level
of abstraction: for instance, the feature license is more abstract (or generalised)
than the feature open source.

In a feature-oriented approach [34], a product is designated by the set of features it
possesses. Such a set of features is called a product configuration and may be consid-
ered an abstract, high level description of the product. For example, {one-on-one
fighting, melee fighting, roborumble} is a configuration. However,
some configurations may not be admitted, for instance, if the artifacts implementing
the features are not compatible regarding some domain or business constraints. For
instance, a product cannot have both an open source and a closed license.
Accepted combinations of features may be delineated through constraints defining
a set of valid configurations, also called the product line scope. Constraints over a
finite set of features restricting the way they can be combined are called variability
relationships and express what is called the variability of the product line, which is
traditionally documented through variability models.

6.2.2 Boolean variability relationships

Feature relationships. If one maps features to propositional variables in propositional
logic [42], then any propositional formula may be used to express variability relation-
ships in the form of constraints between features (also called feature dependencies
or feature relationships). However, for a product designer, a simplified dependency
language is more suitable to highlight the principal feature relationships. Hence, four
kinds of feature relationships gathered most of the attention of practitioners. These
relationships express situations where: ¨ a feature requires another feature, ≠ two
features are mutually exclusive, Æ a feature should be refined by selecting at least
one feature in a group and Ø a feature should be refined by selecting exactly one
feature in a group. For example, to document Robocode variability, one may want
to define feature relationships stating that: a bot participating in the roborumble
competition requires to be designed for one-on-one fighting; a random
movement strategy is not appropriate for melee fighting; the implemented
movement strategies should be specified amongst the feature group {random,
wave surfing, stop&go, minimum risk} (at least one but possibly more);

6 Extending boolean variability relationship extraction to multi-valued descriptions 147

the source code license should be specified amongst the group {open-source,
closed} (exactly one). These four kinds of relationships may be expressed by propo-
sitional formulas using respectively: binary implications for “requires” relationships
(roborumble) one-on-one fighting), binary implications with nega-
tions for “exclude” relationships (random movement) ¬ melee fighting),
equivalences with or-connectives for “at least one” feature refinement (movement
, (random _ wave surfing _ stop&go _ minimum risk)) and equiv-
alences with xor-connectives for “exactly one” feature refinement (license ,
(open-source� closed)). Those are thus the basic feature relationships usually
expressed in boolean variability models.

Feature diagram. The de facto standard for representing a product line variability
in a diagram-like representation is a type of variability model called feature diagram
(FD) [33, 57]. Fig. 6.1 presents an example of FD representing a possible view of the
variability of Robocode bots.

robot

fighting

roborumble

license

movement

melee closedopen source

random

wave surfing

minimum risk

stop&go

Optional

Xor

Mandatory

Or

Requires Exclude

one-on-one

roborumble) one-on-one

Fig. 6.1 Excerpt of a possible FD depicting the variability of Robocode bots

The box-shaped nodes represent the features. They are structured in a tree
representing child-parent (or refinement) relationships. The edges of the tree must be
decorated to express some constraints (amongst the four depicted in the top part of the
box in the left-hand side of Fig. 6.1) restricting the way the features may be selected
when choosing a valid configuration. A white disc states that the child-feature may
be optionally selected when the parent-feature is present in the configuration, and a
black disc forces the child-feature to be selected. Arcs are used to group features;
when the parent feature of the group is selected: if the arc is filled with black then at
least one feature must be selected from the group (also called or-group); if the arc
is non-filled then exactly one feature must be selected from the group (also called
xor-group). Cross-tree constraints in the form of “requires” and “exclude” constraints
may be added (textually or graphically) to complete the graphical representation. The
FD presented in Fig. 6.1 states that: a bot necessarily implements at least one fighting
style, which may be melee, one-on-one or both. It can optionally participate to
the roborumble competition, but if it does, then it should implement the one-on-one
fighting style. A bot can optionally have a license which is either open source or
closed, but not both. Finally, it optionally implements at least one movement strategy
amongst four possible strategies.

148 J. Galasso et al.

Link with propositional logic. The relationships expressed in feature diagrams
may be mapped to the four basic feature relationships discussed at the beginning of
the section, and therefore to their representations in propositional logic [10, 16, 42].
Straightforwardly, mutually exclusive features (situation ≠) are expressed through
“exclude” cross-tree constraints, and feature group refinement (situations Æ and Ø)
are expressed through or- and xor-groups, respectively. Child-parent relationships
implicitly express “require” relationships (situation ¨); for instance, if one wants
to select open source (which is a kind-of license) in a configuration, he or she
needs to select the feature license beforehand, thus open source) license.
Note that such “require” relationships may also be expressed through cross-tree
constraints (such as roborumble) one-on-one) and mandatory relationships
(all bots have a fighting style, thus robot) fighting). The first two columns of
Table 6.2 depict this mapping: the first column shows the feature relationships in their
propositional form with a particular case of situation ¨ when there are symmetric
binary implications (i.e., logical equivalences) denoted by ¨’, and the second column
shows the FD syntax of the corresponding variability relationships. Third and fourth
columns will be addressed later in the section. We can see that: a binary implication
(¨) may correspond to a child-parent relationship, an optional relationship or a
“require” cross-tree constraint; an equivalence (¨’) may correspond to a mandatory
relationship (because it is the combination of two binary implications: one comes
from the child-parent relationship and the other comes the mandatory constraint) or
may correspond to two symmetric “require” cross-tree constraints; mutual exclusions
(≠) and groups (Æ and Ø) have only one representation in the feature diagram syntax.

Semantics. The conjunction of the “propositional logic forms” of feature relation-
ships depicted in an FD outlines a propositional formula (called the FD’s logical
semantics). The formula’s models correspond to the FDs’ set of valid configura-
tions (called its configuration semantics). Another semantics, called the ontological
semantics, is given by the tree structure of the diagram that conveys meanings to
the modeled domain. For instance, a situation where a feature f1 requires another
feature f2 (logically represented by f1) f2) may be represented in an FD by di�erent
relationships having di�erent meanings, e.g., through the feature hierarchy (f2 refines
f1), a mandatory relationship (f2 is a necessary refinement of f1), or through a
cross-tree constraint (f1 necessitates f2 but does not generalize nor specialize it).

Other boolean variability models. In some cases, when one needs to express
more complex feature relationships, the expressiveness of FD graphical syntax is
not su�cient. A feature model is a feature diagram supplemented by a complex
propositional logic formula capturing the constraints which cannot be expressed by an
FD [57]. In this context, a “complex” propositional formula is a formula which cannot
be written as a conjunction of “require” and “exclude” cross-tree constraints; if it is the
case, then it is considered an FD (as the one of Fig. 6.1). Other formalisms have been
introduced. Binary Implication Graphs (BIG), as their name suggests, graphically
represent binary implications [1, 2, 20, 21, 56, 57]. Directed hypergraphs have been
presented in [20]. In this representation, each binary implication is represented
by a directed binary edge, while other constraints (feature groups and mutex) are
represented by hyperedges. Mutex graphs [56,57] only show pairwise incompatibilities

6 Extending boolean variability relationship extraction to multi-valued descriptions 149

between features. Feature Diagram Generalized Notation and Feature Graphs [20]
represent binary implications and groups, while relaxing the tree-structure constraint
of traditional FDs. She et al. [57] add mutex to these representations. Equivalence
Class Feature Diagrams (ECFD) have been proposed in [14] as a canonical structure
for variability representation. They represent binary implications, groups, mutex as
the other structures, but may also highlight generalized exclusions (i.e., groups of
features that never appear together).

6.2.3 Feature relationship extraction in the literature

Becan et al. empirically show that variability model extraction approaches based on
1) logical heuristics extracting the logical semantics combined with 2) ontological
heuristics relying on user or expert decisions for associating meaningful knowledge
to the extracted logical relationships outperform other approaches [8]. In fact, the
first one guarantees correct configuration and logical semantics, while the second
one guarantees a correct ontological semantics. In this chapter, we mainly focus
on the first step of this type of variability model synthesis, i.e., the extraction of
variability information (feature relationships) in the form of logical relationships.
A sound and complete feature relationship extraction method is crucial to ensure
correct foundations for meaningful variability model synthesis.

In the literature, feature relationships extraction has been studied from various
perspectives. As feature diagrams may not represent all configuration sets, most authors
synthesize feature models. Several dedicated algorithms to build a feature model from
a set of valid configurations can be found. She et. al [57] propose a sound and complete
feature relationship extraction by enhancing the method defined by Czarnecki and
Wasowski [20] which originally did not extract mutually exclusive features; these
methods rely on binary decision diagrams to extract interim variability representations
in the form of binary implication graph and mutex graph. Acher et al. [2] also present
a dedicated algorithm for a sound and complete extraction using binary implication
graphs. Haslinger et al. [29,30] propose a recursive algorithm to build feature models
without extracting feature relationships beforehand; the soundness and completeness
of the extraction method is not assessed. Davril et al. [21] extract relevant features
from informal documents to produce a configuration-by-feature matrix, and all valid
implications. They use text-mining techniques and feature co-occurrences to identify
meaningful implications. The feature group extraction is sound but not complete,
and these properties are not assessed for the other feature relationships. Ferrari et
al. [23] analyze product descriptions in the form of commercial texts to propose
candidate optional and mandatory features to an expert. Search-based techniques
are applied in several works. The authors in [38] and [41] explore these techniques
and build FMs whose configuration semantics approximate a given configuration
set. Assunção et al. [5] propose to use 2 multi-objective evolutionary algorithms for
reverse engineering feature models. The multi-objective perspective allows the expert
to tune the reverse engineering process depending on the objectives (e.g., correct

150 J. Galasso et al.

configuration semantics, legibility) they identified as important in a given context.
They take into account knowledge from existing variants’ source code (in the form of
a weighted directed graph representing source code dependencies) to ensure that the
output models’ configurations correspond to well formed software variants with regard
to their source code. Czarnecki et al. propose an algorithm based on data-mining
techniques to build Probabilistic Feature Models in [19]. These extraction methods
are not deterministic. In [58], Temple et al. elaborate a technique to build a variability
model that can be configured for di�erent contexts, using classification trees [40]
and constraint solving. Other approaches use the conceptual structures built by
Formal Concept Analysis (FCA), a mathematical knowledge engineering framework,
to benefit from their ability to encode variability in a systematic and canonical
way [3, 14, 39, 51]. FCA framework supports a sound and complete extraction of
the four prevalent feature relationships, and stands out among the other proposed
methods in the literature. In fact, it is not a method specifically designed for variability
extraction, but rather an identification of variability information naturally embedded
in a unique and canonical structure whose construction relies on mathematical
properties applied on the input software descriptions. FCA encompasses most of the
aforementioned extraction methods, as well as their interim variability representations
(e.g., binary implication graphs, mutex graphs, FDs) used for variability analysis,
as the constructed structures contain the essence of variability [14]. The elements
composing these structures express, as pointed out by Uta Priss, “a natural feature of
information representation which is as fundamental to hierarchies and object/attribute
structures as set theory or relational algebra are for relational databases” [49]. This
explains the spreading of Formal Concept Analysis in knowledge engineering [47]
or even software reverse engineering [59]. In what follows, we detail a sound and
complete variability relationship extraction in the form of logical relationships based
on the FCA framework and its associated conceptual structures.

6.2.4 A sound and complete FCA-based feature relationships
extraction

Formal Concept Analysis (FCA) [25] is a knowledge engineering framework for
data structuring and knowledge representation. FCA enables the elaboration of
concept hierarchies, where concepts group a maximal set of objects (or entities,
documents) sharing a maximal set of attributes (or properties, descriptors). Applying
this framework on a set of objects described by a set of attributes enables to build
data structures organizing objects depending on the attributes they share.

Input. FCA input is a formal context K = (O,A,J) with O a set of objects, A a set
of attributes and J ✓ O⇥A a binary relationship, where (o,a)2 J when “o owns a”. A
formal context may be represented by a binary table where a cross in a cell represents
attribute (feature) ownership for an object (product). Table 6.3 shows a formal context
with 7 existing Robocode bots (objects as rows) described by 11 features (attributes

6 Extending boolean variability relationship extraction to multi-valued descriptions 151

as columns) taken from the RoboWiki2. It states for instance that the bot named
Aristocles owns the one-on-one fighting feature, but not the melee
fighting one. Formal contexts may conveniently represent configuration sets in an
extensional way (e.g., the bot Centaur corresponds to the configuration {melee
fighting, one-on-one fighting, roborumble}).

Table 6.1 Formal context about 7 Robocode bots gathered from RoboWiki (2019)

Robocode m
el

ee
fig

ht
in

g
on

e-
on

-o
ne

fig
ht

in
g

lic
en

se
cl

os
ed

op
en

-s
ou

rc
e

m
ov

em
en

t
m

in
-r

isk
-m

ov
em

en
t

ra
nd

om
-m

ov
em

en
t

st
op

-a
nd

-g
o

w
av

e-
su

rfi
ng

ro
bo

ru
m

bl
e

Aristocles ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
B26354 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Centaur ⇥ ⇥ ⇥
Coriantumr ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Decado ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
DrussGT ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Durandal ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Step 1 - building concepts. A concept C = (E, I) associates a maximal group
of objects E, with a maximal group of attributes I they share. E = {o 2 O | 8a 2
I,(o,a)2 J} is the concept’s extent and I = {a2A |8o2E,(o,a)2 J} is the concept’s
intent. For example, the concept gathering “all bots having open source license” is
Cos = (Eos, Ios) with Ios = {one-on-one fighting, license, open-sour-
ce,movement} and Eos = {Aristocles,Coriantumr,Decado,DrussGT}.
There is no other bot than the ones in Eos that share all attributes of Ios, and there is
no other attribute than the ones in Ios shared by all bots of Eos.

Step 2 - ordering concepts. The specialization order CL between concepts is
based on extent inclusion (and intent containment): for two concepts C1 = (E1, I1) and
C2 = (E2, I2),C1 CL C2 if and only if E1 ✓E2 (and equivalently I1 ◆ I2). For example,
Cos is a super-concept of concept Crand = (Erand , Irand), with Irand = {one-on-one
fighting, license, open-source, movement, random movement} and
Erand = {Aristocles, Decado}, which is the concept gathering all bots imple-
menting the random movement strategy. Indeed, Erand ✓ Eos and Ios ✓ Irand . This
order enables to organize concepts in a specialization/generalization fashion.

Output conceptual structures. The concept lattice is the set of all the concepts
CK of the formal context K, provided with the order CL. In some applications, it
is not necessary to study all the concepts that can be extracted: some of them may

2 http://robowiki.net/, last access July 2019

152 J. Galasso et al.

be more valuable than others regarding the analysis to be applied. This is the case
when investigating the variability information naturally embedded in concept lattices.
To analyze variability information highlighted by means of FCA, it is enough to
work with an output conceptual structure restricted to two types of concepts, namely
attribute-concepts and object-concepts. An attribute-concept is the concept gathering
all objects having a given attribute: we say that this attribute is introduced in this
concept. For instance, the concept Cos is the attribute-concept introducing the attribute
open source. An object-concept is the concept gathering the exact attribute set
of a given object (i.e., its associated configuration): we say that this object is
introduced in this concept. The concept Ccent = (Ecent , Icent) with Ecent = {Centaur,
Coriantumur, Durandal} and Icent = {melee fighting, one-on-one
fighting, roborumble} (corresponding to the configuration of Centaur)
is the object-concept introducing Centaur. The AOC-poset (for Attribute-Object
Concept partially ordered set) is the concept lattice restricted to these specific concepts.
Using AOC-posets instead of concept lattices brings a considerable improvement in
terms of scalability. In fact, given |O| and |A| the numbers of objects and attributes,
respectively, a concept lattice may have at most 2(min(|O|,|A|) concepts, whereas the
AOC-poset is bounded by |O|+ |A|, thus avoiding an eventual exponential growth
of the output conceptual structures. A graphical representation of the AOC-poset
associated with the formal context of Table 6.1 is shown in Fig. 6.2; it is built with
the tool RCAExplore [22]. Note that for a given formal context, there exists only one
concept lattice and only one AOC-poset (i.e., they are canonical structures).

Note that, if the products and/or features are numerous, the associated AOC-poset
will likely be very wide, the extracted relationships too numerous, and the resulting
model di�cult to read. Experiments assessing the size of conceptual structures and
the number of extracted relationships [14, 15] show that the method scales even
with large inputs and outputs. However, the aforementioned issue is not inherent to
FCA-based relationship extraction, but is related to the necessity to use separation
of concerns to avoid synthesizing huge monolithic variability models. Relational
Concept Analysis [27], another FCA extension that is not discussed here, provides
solutions to extract variability relationships between several configuration sets, that
can be obtained, for instance, by splitting a large configuration set depending on
concerns. In this way, it may support the synthesis of several smaller interconnected
variability models that enhance the legibility of represented variability information.

Reading the AOC-poset. In this graph-like representation, a concept is a 3-
part box showing: the concept identifier (top-part), the concept intent (middle-part
displaying attributes), and the concept extent (bottom-part displaying objects). The
specialization order is represented by arrows between concepts: an arrow from a
concept A (sub-concept) to a concept B (super-concept) states that “concept A
specializes concept B”. Organizing concepts by specialization/generalization allows
to represent factorized concepts’ intents and extents by displaying only the introduced
elements: full intents and extents may be reconstituted by inheritance, from top to
bottom for attributes (a concept possesses all attributes of its super-concepts) and
from bottom to top for objects (a concept possesses all objects of its sub-concepts).
In Fig. 6.2, the attribute-concept Cos introducing open source corresponds to

6 Extending boolean variability relationship extraction to multi-valued descriptions 153

Concept_3

Coriantumr

Concept_7

min-risk-movement

Concept_9

Centaur

Concept_12
open-source

Concept_0

Durandal

Concept_6

closed

Concept_5

Aristocles

Concept_8

random-movement

Concept_13

roborumble

Concept_4

B26354

Concept_1

DrussGT

Concept_10

wave-surfing

Concept_11

melee fighting

Concept_14

license
movement

Concept_15

one-on-one fighting

Concept_2

stop-and-go

Decado

Fig. 6.2 AOC-poset associated with the formal context of Table 6.1

Concept_12: attributes one-on-one fighting, license and movement are
introduced in its super-concepts, and all objects of its extent are introduced in its
sub-concepts. Crand corresponds to Concept_8 and Ccent to Concept_9.

Extracting feature relationships. By organizing objects depending on their
attributes, conceptual structures naturally highlight the common and variable features
amongst a set of configurations. By analyzing the structure, one can detect patterns
corresponding to the feature relationships that hold in the input configuration set.
Table 6.2 (columns 3 and 4) shows how the four prevalent feature relationships
appear in the AOC-posets. We detail them in what follows, and we consider that fi,
i 2 {0,1, . . . ,n} denotes a feature and Cfi the attribute-concept introducing fi.

Situation ¨ (binary implications representing features that “require” other features)
can be extracted from the AOC-poset by analyzing the specialization order between
attribute-concepts. In fact, if an attribute-concept Cf2 is a sub-concept of another
attribute-concept Cf1 (denoted by Cf2 CL Cf1), then the set of configurations having
f2 is included in the set of configurations having f1 (because E f2 ✓ E f1). Thus,
all configurations having f2 also have f1 and (f2) f1) holds. In Fig. 6.2, we can
see for instance that min-risk-movement) melee fighting (because
Concept_7 CL Concept_11) and closed) license (because Concept_6 CL

154 J. Galasso et al.

Table 6.2 Mapping between the representations of the four prevalent feature relationships: proposi-
tional formulas (Prop. form.), feature diagrams (FD syntax) and AOC-posets adapted from [14]. The
extent of a context C is denoted by Ext(C)

Prop. form. FD syntax AOC-posets

¨
f2) f1

f1

f2

Cf2 CL Cf1
Cf2
f2

Cf1
f1

f1

f2

f2) f1

¨’
f1 , f2

f1

f2
or

f1

f2

Cf1 =CL Cf2

Cf1,2
f1,f2

f1) f2;
f2) f1

≠
f1) ¬ f2

or
f2) ¬ f1

f1) ¬ f2 Ext(Cf1)\Ext(Cf2) =?

Cf2Cf1

 C

f2f1

Æ
f0 ,

(f1 _ . . ._ fk)

f0

f1 ... fk

8 fi 2 { f1, .. fk},Cfi CL Cf0 .

Ext(Cf1)[...[Ext(Cfk) = Ext(Cf0).
Cf0 62 OC

Cf0
f0

Cfj

...

Cfi
f i f j

Cm

Ø
f0 ,

(f1 � . . .� fk)

f0

f1 ... fk

8 fi 2 { f1, .. fk},Cfi CL Cf0 .

Ext(Cf1)[...[Ext(Cfk) = Ext(Cf0).
Cf0 62 OC

Ext(Cf1)\ ...\Ext(Cfk) =?.

Cf0
f0

Cfj

...

Cfi
f i f j

Cm

Concept_14). When such a pattern is detected in an AOC-poset built upon a
configuration set, then we have candidates for refinement, optional or “require” cross-
tree constraints during the synthesis of an FD. Deciding whether the minimum risk
movement feature requires the fighting melee feature or refines it is left to the expert
or to further processes relying on domain ontology. Situation ¨’ is a special case of
situation ¨ where two features require each other. Because there is a double binary
implication, then Cf2 CL Cf1 and Cf1 CL Cf2 , meaning that Cf1 and Cf2 are the same
concept (Cf2 =CL Cf1). Therefore, if two features are introduced in the same concept,
then they are always present together in any configuration (co-occurring features)
and (f1 , f2) holds. In Fig. 6.2, we observe that license, movement because
they are both introduced in Concept_14, meaning that if a bot defines movement
strategies, it also specifies a license, and conversely.

Situation ≠ (mutually exclusive features) is revealed in the AOC-poset by analyzing
the intersection of the extents of two attribute-concepts. If the intersection of Cf1
extent and Cf2 extent is empty (denoted by Ext(Cf1)\Ext(Cf2) =?), then it means

6 Extending boolean variability relationship extraction to multi-valued descriptions 155

that the configurations having f1 and the configurations having f2 are disjoint. In
other words, f1 and f2 never appear together in any configuration and (f1) ¬ f2)
holds. In Fig. 6.2, we can see that wave-surfing) ¬ random-movement
(because Ext(Concept_10)\Ext(Concept_8) =?).

Situation Æ (“at least one” feature group refinement, also called or-groups) is
more complex to identify. Let { f1, . . . , fk} be the features involved in an or-group,
and f0 the parent-feature of this group. A first property characterizing or-groups
is that each configuration having one feature in { f1, . . . , fk} should also have f0.
Thus, in the AOC-poset, the concepts {Cf1 , . . . ,Cfk} must be sub-concepts of Cf0 . A
second or-group property is that each configuration possessing the parent-feature
f0 must also have at least one feature of the or-group. This can be seen in the
AOC-poset when the union of the extents of concepts {Cf1 , . . . ,Cfk} is equal to
the extent of Cf0 . A “true" or-group would respect a third property, stating that
all { f1, . . . , fk} combinations appear amongst the objects (configurations) in the
AOC-poset. However, as we consider possibly incomplete configuration sets as input,
having product descriptions documenting all possible combinations is very unlikely.
Thus, we relax this third constraint and look for patterns corresponding to the two first
or-group properties in the AOC-poset. In other words, we look for an attribute-concept
and a set of its sub-concepts such that a) the latter are also attribute-concepts and
b) the union of their extents is equal to the extent of the first attribute-concept.
For example, let us consider in Fig. 6.2 Concept_7 (min-risk-movement),
Concept_8 (random-movement) and Concept_10 (wave-surfing): the union
of their extents is the configuration set corresponding to the set of bots having
identified movement strategies (all bots except Centaur). They form a candidate or-
group with parent movement introduced in their super-concept Concept_14. Thus,
(movement, (min-risk-movement _ wave-surfing _ random-move-
ment)) holds. Notice that the candidate does not contain the feature stop-and-go
(Concept_2) but that it could be integrated in the group; the feature could also
refine random-movement due to a complementary constraint establishing that
stop-and-go implies random-movement. Notice also that Concept_12 (open
source) may replace Concept_7 and satisfy the or-group properties: (movement
, (min-riskmovement_wave-surfing_open source)) holds too. The
candidates or-groups may be numerous and need an ontological evaluation in order
to detect the meaningful ones. Other constraints may be added to help select the best
candidates, e.g., set of candidates that do not overlap, minimal groups.

Situation Ø (“exactly one” feature group refinement, also called xor-group) is a
particular sub-case of the situation Æ where all pairs of features of { f1, . . . , fk} are mu-
tually exclusive. In addition to the two aforementioned or-group properties, concepts
{Cf1 , . . . ,Cfk} must have disjoint extents. In Fig. 6.2, Concept_14 (license) with
its sub-concepts Concept_6 (closed) and Concept_12 (open source) form a
xor-group candidate: (license, (closed � open source)) holds.

By analyzing concepts and how they are situated to each other, we can identify
variability information that can be represented by propositional formulas over the
set of features. Lattice theory guarantees that all detected relationships are true in
the considered input, and that all true relationships can be read in FCA conceptual

156 J. Galasso et al.

structures [25]. This enables the sound and complete extraction of all prevalent
feature relationships from a configuration set; variability model synthesis methods
using these relationships can thus guarantee a logical semantics and a configuration
semantics consistent with the input descriptions.

Feature diagram synthesis. Thanks to the mapping established in Table 6.2, it is
possible to guide an expert during a feature diagram synthesis, a task that can be seen
as choosing an FD syntax for each feature relationship identified in the AOC-poset.
Figure 6.3 presents an example of FD that can be extracted from the configurations
gathered in Table 6.3 by building and analyzing the associated AOC-poset. It di�ers
from the one exposed in Fig. 6.1 because it is based on existing configurations and
ontological choices corresponding to feature relationship patterns identified in the
AOC-poset. For instance, Table 6.3 does not contain any fighting feature stating
if the bot has at least one identified fighting styles, but it does contain two more
specific fighting styles: thus, fighting one-on-one and fighting melee
are not grouped in Fig. 6.3. Moreover, in the studied set of Robocode configurations,
all bots are defined for one-on-one fighting style: the corresponding feature may be
identified as mandatory in this case. Also, as feature stop&go implies random,
we decided to put it as an optional feature of random, but we could have chosen
to add stop&go in the or-group and to add a “require” cross-tree constraint. Some
extracted constraints may be seen as “accidental”, i.e., true for the considered set of
configurations but not for the domain. For instance, the constraint closed) wave
surfing, stating that if the bot’s source code is proprietary, then it must implement
the wave surfing movement strategy, is likely to be coincidental. Note that, because
FD syntax cannot represent all configuration sets, the configuration semantics of this
FD is not exactly the same as the one presented in the input Table 6.1. However, as the
extraction of the FD logical relationships is sound and complete, the configuration
semantics of the resulting model is as close as possible as the input configuration
set. If the domain expert building the FD from the extracted logical relationships
considers that some of them should not appear in the graphical part of the model
(e.g., for pertinence or legibility concerns), they can be kept as complex cross-tree
constraints to preserve a consistent configuration semantics.

Other variability information contained in AOC-posets. AOC-posets and more
generally conceptual structures highlight di�erent types of information which are
useful regarding variability management in general. If we look at the intent of each
concept (i.e., the middle part), these sub-sets of features actually represent either a
valid configuration (if the concept is an object-concept) or a partial configuration, i.e.,
a sub-set of features shared by several valid configurations. This information may be
useful for feeding decision processes, e.g., to guide a user when choosing a product
configuration, or to imagine new possible configurations which can be easy to build
from existing artifacts. Also, if we analyze the place of the concepts in the structure,
it may give information on the usage and distribution of features in the configuration
set. For instance, if a feature is introduced in a concept in the top of the structure, then
it is more likely to be inherited by numerous concepts, and therefore to be commonly
found in configurations. Conversely, if a feature is introduced in the bottom of the
structure, then it will be present in possibly less configurations and could be identified

6 Extending boolean variability relationship extraction to multi-valued descriptions 157

robot

fighting
one-on-one

roborumble

license

movement

fighting
melee

closedopen source

randomwave surfing

minimum risk

stop&go

random) open source ; minimum risk) fighting melee
closed) wave surfing ; closed) melee ; license , movement

random) ¬ fighting melee ; random) ¬ wave surfing ; minimum risk) ¬ random

Fig. 6.3 Example of FD synthesized from the AOC-poset built upon Robocode configurations of
Table 6.3

as a specific or unpopular feature. Conceptual structures result from the application
of a data analysis framework: their construction is structural; they are not built for
variability analysis, but by following some mathematical properties that naturally
highlight the intrinsic variability of a configuration set. They o�er a unique dual view
of variability, by organizing both features and configurations in one structure, that
makes them a suitable representation to study the variability of existing products
developed without any reuse strategy. Besides, FCA conceptual structures are not
only interim representations of variability: they come with a framework relying on
strong mathematical foundations, a set of management operations and numerous
extensions enabling to take into account more complex input than boolean datasets.

6.3 Variability in non-boolean descriptions

In the previous section, we focused on variability relationships in the form of
constraints over a set of features, and how to extract them from boolean descriptions.
However, representing product line variability through boolean features and feature
diagrams has shown some limits regarding expressiveness. This is even more the case
with the increasing complexity of software intensive systems, which give birth to new
issues about complex product lines and complex variability modeling [32]. In this
section, we study more expressive variability relationships (used in FD extensions)
which may be extracted from multi-valued descriptions. We first introduce product
descriptions containing multi-valued characteristics (Section 6.3.1). These non-
boolean descriptions necessitate a more complex modeling framework that the one
previously presented for boolean feature sets in order to fully apprehend their intrinsic
variability. Then, we present three prevalent FD extensions that seek to enhance the
expressiveness of traditional boolean models, and we identify the new variability
relationships introduced by these extensions (Section 6.3.2). We also discuss other
types of variability models that may take into account more than boolean features.

158 J. Galasso et al.

Then, we survey main directions in non-boolean variability extraction (Section 6.3.3)
before discussing how to extend FCA-based variability extraction to take into account
the expressive variability relationships (Section 6.3.4).

6.3.1 Multi-valued descriptions

Software descriptions may include boolean features but also more complex informa-
tion: characterizing products using multi-valued attributes such as numerical ones,
or with symbolic values enhanced with metadata is a common practice. Product
comparison matrices (PCMs) are representative of such complex product configura-
tions [46, 53]. PCMs describe product properties in a tabular form where rows show
the product configurations, columns show the product characteristics and cells contain
values. A PCM characteristic can be associated with a type (that may be boolean,
numerical or symbolic) and a scope for its corresponding set of possible values.
Examples of such PCMs used in the product line community include Wikipedia
PCMs3 [53], gathered descriptions of variants generated with JHipster v3.6.14 [28],
and the Robocode descriptions5 [43] used here. Table 6.3 is a multi-valued matrix
(PCM) that extends and adapts the previous boolean example about Robocode. Fea-
tures (boolean characteristics) are shown in the first six columns. Movement strategies
now are described in one column representing a multi-valued attribute with symbolic
values. The last column indicates numerical values for the roborumble PWIN (proba-
bility of win). When a product possesses several values for one characteristic, they
are split by a coma; the symbol ‘*’ states that there is no known value.

Modeling complex variability necessitates to express more than only feature
relationships: we now consider multi-valued relationships that should involve boolean
attributes (features) as well as multi-valued attributes.

6.3.2 Multi-valued variability relationships

In the same way as the literature identified feature relationships corresponding to the
prevalent variability information, we identify the multi-valued relationships necessary
to model more complex variability. This is done through the analysis of the three FD
extensions that seek to enhance the boolean case expressiveness, as we consider that
these extensions represent the designers’ needs in terms of non-boolean variability.

FD with attributes. A first extension associates multi-valued attributes to features
[16]. The attribute has a type, such as string, enumeration or integer. Attributes enable
to define more detailed information without making the model more complex. In fact,

3 https://en.wikipedia.org/wiki/Category:Software_comparisons, last ac-
cessed July 2019
4 https://github.com/xdevroey/jhipster-dataset/tree/master/v3.6.1

5 https://github.com/but4reuse/RobocodeSPL_teaching

https://en.wikipedia.org/wiki/Category:Software_comparisons
https://github.com/xdevroey/jhipster-dataset/tree/master/v3.6.1
https://github.com/but4reuse/RobocodeSPL_teaching

6 Extending boolean variability relationship extraction to multi-valued descriptions 159

Table 6.3 PCM about the 7 previous robots of Robocode Wiki (2018) with their roborumble PWIN.
Some boolean attributes (features) about movement strategy were transformed into one multi-valued
attribute having symbolic values

Robocode on
e-

on
-o

ne
fig

ht
in

g
m

el
ee

fig
ht

in
g

ro
bo

ru
m

bl
e

lic
en

se
op

en
-s

ou
rc

e
cl

os
ed

movement PWIN
Aristocles ⇥ ⇥ ⇥ ⇥ random 86.47
B26354 ⇥ ⇥ ⇥ ⇥ minimum risk, wave surfing *
Centaur ⇥ ⇥ ⇥ * 80.00
Coriantumr ⇥ ⇥ ⇥ ⇥ ⇥ minimum risk 77.24
Decado ⇥ ⇥ ⇥ random, stop & go *
DrussGT ⇥ ⇥ ⇥ ⇥ wave surfing 100.00
Durandal ⇥ ⇥ ⇥ ⇥ ⇥ wave surfing 79.48

modeling the same variability information with only boolean features would end up
with a large model more di�cult to read, as illustrated in Fig. 6.4.

With this extension, we can write (in addition to feature relationships) binary
implications, co-occurrences and mutex either between a feature and an attribute
value, or between two attribute values (denoted by attribute:value). As or-
and xor-groups represent feature refinements, attribute values cannot be involved in
such groups.

roborumble

PWIN

86,47 80.00 ...

roborumble
PWIN (�oat): [1..100]

Fig. 6.4 Representing detailed information without making the model more complex by using
attributes: (left) representation of PWIN values with features only, (right) representation of PWIN
values with a multi-valued attribute

FD with feature cardinalities. A second extension introduces UML-like cardinal-
ities on features [18], stating that a feature may occur several times in a configuration
and defining the minimum and maximum number of these occurrences. A number of
occurrences associated with a feature may be seen as an attribute with integer values:
the variability relationships necessary to represent this extension are the same as for
FDs with attributes.

160 J. Galasso et al.

FD with group cardinality. The third extension proposes to refine feature groups
with feature-group cardinality in the form hmin�maxi indicating that a product
can contain between min and max child features in the group. The boolean FD
notations for xor-groups and or-groups are respectively replaced by h1�1i groups
and h1�ni groups. Thanks to this extension, feature relationships Æ and Ø exposed
at the beginning of Section 6.2.2 may be merged in one kind of more abstract feature
relationship, stating that a feature should be refined by “between min and max”
features in a group. Instead of representing the logical semantics of or- and xor-groups
with _-connectives and �-connectives respectively, one may now specify which
combinations of features from a group are allowed by the cardinality. For instance,
a group with parent p, a cardinality h2�3i and children { f1, f2, f3} is represented
through the following formula:

p , ((f1 ^ f2 ^¬ f3)_ (f1 ^ f3 ^¬ f2)_ (f2 ^ f3 ^¬ f1)_ (f1 ^ f2 ^ f3))

To consider these three extensions, it is necessary to extend the previous four feature
relationships so that binary implications, co-occurrences and mutual exclusions can
involve attribute values as well as features. Figure 6.5 presents the grammar of
these variability relationships. We simplify the logical relationships representing
feature-groups by introducing the notation (p,{ f1, ..., fn},hmin�maxi) to be used
instead of the one introduced before.

variability relationships := relationship*
relationship := binary implication | co-occurrence | mutex | group
binary implication := element ‘)’ element
co-occurrence := element ‘,’ element
mutex := element ‘)’ ‘¬’ element
group := ‘(’ feature ‘,’ ‘{’ feature_set ‘}’ ‘,’ cardinality ‘)’
feature_set := feature | feature_set ‘,’ feature
element := feature | attribute
feature := feature_name
attribute := attribute_name: value
cardinality := ‘h’ nb_min ‘-’ nb_max ‘i’

Fig. 6.5 Grammar of variability relationships for representing FD extensions

Other formalisms for non-boolean variability. We survey a few alternative
formalisms for complex variability description without pretending to be exhaustive.
A survey on variability modeling in Cyber-Physical Systems (CPSs) and pointers to
other surveys can be found in [52]. Decision Models (DMs) are textual descriptions
focusing only on variability decisions [17,55]. They are organized in tabular form,
where each row includes a question (such as “has PWIN?”), the type of the expected
answer (such as Integer) and its range (such as [0,100]). It may also present constraints
about the required form of the answer (e.g., cardinality or implication) and conditions
on when to consider the question. Variability relationships expressed by such models

6 Extending boolean variability relationship extraction to multi-valued descriptions 161

are the same as the three aforementioned FD extensions. An Orthogonal Variability
Model (OVM) also focuses on variability only [48]. It introduces variation points
(e.g. movement) and their variants (e.g. random, wave surfing). Variation
points can be optional or mandatory. Optional variants may be part of a group with
a cardinality. Therefore, the variability relationships of Fig. 6.5 are su�cient to
represent OVM variability. Common Variability Modeling (CVL) [31] proposes three
interrelated models: base model (UML model or any MOF based Domain Specific
Language model), variability model, and resolution model (for selection). It allows the
description of cardinalities on features and groups and the introduction of attributes
(under the name of variable). CVL models rely on separation of concerns to split
one variability model in several smaller models referencing each other: this notion of
references is not taken into account in Fig. 6.5. Constraint Satisfaction Problem [54]
and Constraint Logic Programming [35] also have been used to consider non-boolean
descriptions. Variability relationships of Fig. 6.5 may be used to build such models,
but the models may represent more complex constraints as the one studied here.

6.3.3 Multi-valued variability extraction in the literature

Becan et al. [9] and Carbonnel et al. [15] both extract variability relationships
involving features and attributes. Becan et al. [9] propose dedicated algorithms to
extract attributed feature models. They start from configuration matrices: they compute
feature groups, implications between features and mutually exclusive features; then
they extract all implications involving an attribute value. They use di�erent structures:
a binary implication graph and a mutex-graph. Carbonnel et al. [15], in addition,
compute mutex between features and/or attribute values, and co-occurrences between
features and/or attributes. They use a single structure, which is a conceptual structure
and do not synthesize an attributed feature model. This approach is detailed in the
next section. The MoVa2PL approach [44] extracts dependencies as well as requires
and exclude constraints from feature spanning over several model variants graph
decomposition (including cardinalities), and may define CVL compliant models. To
the best of our knowledge, there is no approach for extracting OVM models from
product descriptions. Constraint satisfaction problem acquisition [12] is a promising
field which should be investigated and connected to complex variability extraction in
the future.

6.3.4 A sound and complete FCA-based multi-valued variability
extraction

As real datasets are often more complex than boolean descriptions, many extensions
have been proposed over the years for the FCA data analysis framework. To process
multi-valued attributes, we can mention the scaling of numerical data [25], the use

162 J. Galasso et al.

of value taxonomies [26], and the more general and complete framework extension
called Pattern Structures [24]. These approaches may overlap and have common
theoretical foundations that may lead to some mappings between them. Dealing with
a PCM information as the one presented in Table 6.3 (called a multi-valued context
in FCA) can be done with several of these frameworks. In this chapter, we choose to
explore the approach based on value taxonomies, for pedagogical purposes and to
avoid introducing a full complex data analysis framework such as Pattern Structures.

Value taxonomies. The key principle of the value taxonomy approach is the
elaboration of taxonomies (partial orders, or scales) on the attribute values. This task
may be summarized by “establishing, naming and organizing groups of values in
a hierarchy”. The goal of this approach is to group the di�erent values of a given
attribute under more abstract values; in this way, relationships may be established not
only on the attribute values present on the multi-valued descriptions, but also between
groups of these values. Value taxonomies may come from di�erent sources depending
what the variability analysis aims to highlight. They may be based on is-a relationships
for symbolic values, or extracted from external resources such as ontologies or other
documents. For example, if we consider Robocode movement strategies, one may
introduce the new value several opponents, that is more abstract than the
ones introduced in Table 6.3 and encompasses all strategies suited for dealing with
several bots during a fight. When studying the RoboWiki, one may determine that
minimum risk movement belongs to this group, while random movement,
wave surfing and stop&go rather belong to a group that could be identified
by the value one opponent. Alternatively they could be organized depending on
the complexity of their implementation algorithms, or by other movement strategies
they were inspired from. Movement strategies grouped by the number of opponents
against which they are more e�cient are presented in Fig. 6.6 . It states that a
bot which implements the wave surfing strategy (third level) thus implements a
strategy suited for fighting one opponent (second level) and thus implement a
movement strategy (first level).

> 95

> 85

> 75

[70..80[[80..90[[90..100]

[70..90[[80..100]

[70..100]

1 2 3

random
movement

stop
&go

several
opponents

one
opponent

movement

wave
sur�ng

minimum risk
movement

Fig. 6.6 Examples of a taxonomy for the symbolic values of the attribute movement, and two
taxonomies for the numerical values of the attribute PWIN

Taxonomies for numerical values correspond to strict or partial ordering of the
values. Several schemes have been studied in FCA for building these orders [25].
In nominal scaling, each value v of a multi-valued attribute m is converted to an

6 Extending boolean variability relationship extraction to multi-valued descriptions 163

attribute m:v. It is used in our example for movement values, generating 5 columns
labeled with the prefix “movement:”. Nominal scaling may be seen as an approach
to apply by default when no groups of values may be defined or retrieved. In ordinal
scaling, the ordinary number order is used. Values of a multi-valued attribute m are
described by expressions of the form m > n. It is shown in Fig. 6.6 Ã for PWIN
values. The figure indicates that a value described by attribute PWIN � 95q is
also described by attribute PWIN � 85 and by attribute PWIN � 75. Notice that,
to elaborate this scale, design choices are required to define the bounds that serve
in the description. Here, 75, 85 and 95 have been chosen. Figure 6.6 À describes
another type of scale on PWIN values. It is based on a description of values by their
membership to intervals that split the value set. Here again, the interval bounds have
to be determined by domain experts or using techniques like box-plot [36]. Moreover,
the intervals are grouped and organized through a hierarchical structure in order to
enrich the description and allow more similarities to be discovered between values.
For example 75 and 85 cannot be grouped with using the bottom intervals, but they
can be grouped using the level 2 interval [70..90[. Other kinds of scales can be found
in [25, 36]. In general, any similarity/distance relationships between values both
symbolic or numerical, can be used to form a scale.

Binary conversion. These value taxonomies may be used to convert the multi-
valued context in a binary context. In this way, theoretical properties and algorithms
of the standard FCA scheme (as presented in Section 6.2.4) apply on the transformed
dataset. To achieve the binary conversion, each element from the scale (i.e., each value
in the taxonomy) becomes a boolean attribute of the final binary context. Compared to
a naive solution which does not use value taxonomies and where each attribute value
is transformed in a boolean feature, this allows to extract additional relationships
taking into account groups of attributes values. Let us choose the scale for values
of movement and the scale Ã for values of PWIN. Then, the boolean attributes of
Table 6.3 along with the values of attributes movement and PWIN enhanced with
the taxonomy values form the boolean attributes of the equivalent binary context of
Table. 6.4; its associated AOC-poset is presented in Fig. 6.7.

Rows of the final context still correspond to the product configurations from the
multi-valued context shown Table 6.3. A relation between a product configuration c
and an attribute a is then established (and shown with a cross in the table) depending
on the attribute kind. For a boolean attribute a, c owns a in the final context when c
owns a in the multi-valued context. This is illustrated by the 6 first columns (Table 6.4).
For a nominal scale, c owns m:v in the final context when c owns m with value v in
the multi-valued context. This is illustrated by columns 7-11 for movement. For an
ordinal scale, c owns the attribute m > n in the final context when c owns for m a
value v > n in the multi-valued context. The last 4 columns illustrate the ordinal scale
for PWIN. A (c,a) relation in this scheme verifies the following general property: if
we have (c,al) and ag more general than al in the taxonomy, (c,ag) is also true. This
applies to all value taxonomies, beyond the examples we have shown in this section.

Reading multi-valued relationships in the AOC-poset. The AOC-poset can
be interpreted as in the boolean case. As a consequence of the value taxonomies, a
concept introducing an attribute ag, with ag more general than another attribute al in

164 J. Galasso et al.

Table 6.4 Formal context obtained after applying binary conversion to the multi-valued context of
Table 6.3

Robocode on
e-

on
-o

ne
fig

ht
in

g
m

el
ee

fig
ht

in
g

ro
bo

ru
m

bl
e

lic
en

se
op

en
-s

ou
rc

e
cl

os
ed

m
ov

em
en

t:r
an

do
m

m
ov

em
en

t:m
in

-r
isk

m
ov

em
en

t:w
av

e-
su

rfi
ng

m
ov

em
en

t:s
to

p-
an

d-
go

PW
IN

:�
95

PW
IN

:�
85

PW
IN

:�
75

m
ov

em
en

t
m

ov
em

en
t:o

ne
-o

pp
on

en
t

m
ov

em
en

t:s
ev

er
al

-o
pp

on
en

ts

Aristocles ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
B26354 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Centaur ⇥ ⇥ ⇥ ⇥
Coriantumr ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Decado ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
DrussGT ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Durandal ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

the taxonomy, is a super-concept of the concept introducing al (if one exists). For
example, in Fig. 6.7, Concept_15, introducing PWIN:�75, is a super-concept of
Concept_10 which introduces PWIN:�85. Therefore, the taxonomies are included
in the AOC-poset.

The mapping between propositional formulas and the AOC-poset still applies in
this context. For example, applying the rule from Table 6.2, row ¨, we can deduce
PWIN:�85) open-source because Concept_10 introduces PWIN:�85 and
its super-concept Concept_14 introduces open-source. From Table 6.2, row
≠, as Concept_11 (introducing movement:random) and Concept_11 (introduc-
ing PWIN�95) have disjoint extents, we can deduce movement:random) ¬
PWIN�95.

Group cardinalities may be extracted by analyzing the intent of the sub-concepts
of the concept introducing the parent of the group. For instance, by analyzing the
sub-concepts of Concept_16 introducing movement, one may notice that a bot
never possesses more than two initial values for the attribute movement, hence
suggesting a < 1�2 > cardinality.

In the FD extended with multi-valued attributes, each attribute is associated with a
feature of the FD. In the AOC-poset, when the most general value of a value taxonomy
(i.e., group representing all values of an attribute) implies a feature, then we can
deduce that the attribute corresponding to the value taxonomy may be associated
to this feature. For instance, in Concept_14 of Fig 6.7, the element representing all
values of PWIN (i.e., PWIN�75) is co-occurrent with the feature roborumble,
suggesting to associate the attribute PWIN to this feature.

6 Extending boolean variability relationship extraction to multi-valued descriptions 165

Concept_0

Durandal

Concept_6
closed

Concept_10

Centaur

Concept_5

Aristocles

Concept_9
movement:random

Concept_8
PWIN:≥85

Concept_4

B26354

Concept_7
movement:min-risk

movement:several-opponents

Concept_1
PWIN:≥95
DrussGT

Concept_11
movement:wave-surfing

Concept_2
movement:stop-and-go

Decado

Concept_3

Coriantumr

Concept_13
open-source

Concept_12
melee fighting

Concept_15
movement:one-opponent

Concept_16
license

movement

Concept_14
roborumble
PWIN:≥75

Concept_17
one-on-one fighting

Fig. 6.7 AOC-poset associated with the context of Table 6.4

The extracted logical relationships may be quite numerous due to the sound and
complete extraction method based on potentially incomplete input descriptions [15].
However, redundancy elimination techniques based on grouped attribute values
introduced through taxonomies may be applied to reduce their number without losing
information. For instance, one can extract the two binary implications PWIN:�95
) movement:one opponent and PWIN:�85) movement:one oppo-
nent, but only the second may be kept as the first one is included in it. Depending on
whether the input descriptions possess numerous features or attributes having values
which can be easily organized in taxonomies, redundancy elimination may reduce up
to 50% of some types of variability relationships. Redundancy elimination combined
with filtering methods allowing the expert to ignore or focus on relationships between
given features and/or attributes may help their analysis. A previous study shows
that a filtering method as simple as removing relationships between features and/or
attributes considered unrelated by the expert reduces their number from 30% to 65%.

FCA is a structural framework which naturally highlights variability and that can
be extended to take into account more complex input descriptions. We have seen how
value taxonomies may help handle multi-valued descriptions more e�ciently and
extract multi-valued variability relationships represented by extended FDs. The more

166 J. Galasso et al.

complete FCA extension called Pattern Structure generalizes the taxonomy approach
to take into account any description on which similarities may be defined. In this way,
one can imagine handling more complex artifacts such as slices of FDs, or versioning
data. Other extensions such as Relational Concept Analysis [27] can be investigated
to extend the extracted variability relationships and build interconnected variability
models such as FDs with references or CVL models [13].

6.4 Conclusion

In this chapter, we focused on the process of extracting variability information
in the form of logical relationships from product descriptions. More specifically,
we tackled the concern of extracting complex variability relationships from non-
boolean descriptions. To do so, we extend existing extraction methods focusing on the
traditional boolean case to complex variability representations. Thus, this chapter was
divided in two main symmetric parts: the first part discussed the traditional boolean
case, and the second part examined the extraction in a more complex case.

In the first part, we presented the boolean product descriptions as defined in
feature-oriented product line approaches. Then, we summarized the four main studied
feature relationships (i.e., variability relationships based on boolean descriptions) to
express variability in terms of features. After that, we reviewed methods found in the
literature that seek to extract these feature relationships. As revealed by a study on
feature model synthesis, methods that first focus on extracting the logical foundation
of descriptions’ intrinsic variability before relying on experts to breath ontological
meaning to them outperform the other methods. Thus, we directed attention to Formal
Concept Analysis, a knowledge engineering framework for knowledge representation
and extraction, as it includes and formalizes existing methods extracting variability
information in the form of logical relationships. We then presented a sound and
complete extraction method based on Formal Concept Analysis and its associated
conceptual structures. An advantage of using this framework in the boolean case
is that it is extensible, and thus may be applied to more complex datasets (i.e., not
necessarily boolean).

In the second part, we focused on multi-valued input descriptions, i.e., representing
software products by both boolean features and multi-valued characteristics. As
traditional feature relationships are not su�cient to capture the intrinsic variability
of this type of multi-valued descriptions, we identified new variability relationships
which take into account multi-valued characteristics. For that, we analyzed the three
FD extensions that were proposed to enhance the expressiveness of the feature-based
variability representations. Then, we discussed the few existing methods that tackle
this type of extraction, and we show how Formal Concept Analysis may be extended
to be applied in the multi-valued case. We relied on the definition of value taxonomies
(i.e., grouping values under more abstract values) for non-boolean attributes, which
enable the extraction of more precise variability relationships and the definition of
redundancy elimination techniques. We mentioned other Formal Concept Analysis

6 Extending boolean variability relationship extraction to multi-valued descriptions 167

extensions that may be useful to go further in the problem of complex variability
extraction, e.g., by relying on more complex descriptions or even interconnected
ones.

References

1. Acher, M., Baudry, B., Heymans, P., Cleve, A., Hainaut, J.: Support for reverse engineering and
maintaining feature models. In: The Seventh International Workshop on Variability Modelling
of Software-intensive Systems, VaMoS ’13, Pisa , Italy, January 23 - 25, 2013, pp. 20:1–20:8
(2013)

2. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., Lahire, P.: On
extracting feature models from product descriptions. In: Sixth International Workshop on
Variability Modelling of Software-Intensive Systems, Leipzig, Germany, January 25-27, 2012.
Proceedings, pp. 45–54 (2012)

3. Al-Msie’deen, R., Huchard, M., Seriai, A., Urtado, C., Vauttier, S.: Reverse engineering feature
models from software configurations using formal concept analysis. In: Proceedings of the
Eleventh International Conference on Concept Lattices and Their Applications, Ko�ice, Slovakia,
October 7-10, 2014., pp. 95–106 (2014)

4. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines -
Concepts and Implementation. Springer (2013)

5. Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.: Multi-
objective reverse engineering of variability-safe feature models based on code dependencies of
system variants. Empirical Software Engineering 22(4), 1763–1794 (2017)

6. Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.: Reengineer-
ing legacy applications into software product lines: a systematic mapping. Empirical Software
Engineering 22(6), 2972–3016 (2017)

7. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Software Product
Lines, 9th International Conference, SPLC 2005, Rennes, France, September 26-29, 2005,
Proceedings, pp. 7–20 (2005)

8. Bécan, G., Acher, M., Baudry, B., Nasr, S.B.: Breathing ontological knowledge into feature
model synthesis: an empirical study. Empirical Software Engineering 21(4), 1794–1841 (2016)

9. Bécan, G., Behjati, R., Gotlieb, A., Acher, M.: Synthesis of attributed feature models from
product descriptions. In: Proceedings of the 19th International Conference on Software Product
Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015, pp. 1–10 (2015)

10. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years later: A
literature review. Inf. Syst. 35(6), 615–636 (2010)

11. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski, A.: A
survey of variability modeling in industrial practice. In: The Seventh International Workshop
on Variability Modelling of Software-intensive Systems, VaMoS ’13, Pisa , Italy, January 23 -
25, 2013, pp. 7:1–7:8 (2013)

12. Bessiere, C., Daoudi, A., Hebrard, E., Katsirelos, G., Lazaar, N., Mechqrane, Y., Narodytska,
N., Quimper, C., Walsh, T.: New approaches to constraint acquisition. In: Data Mining and
Constraint Programming - Foundations of a Cross-Disciplinary Approach, pp. 51–76 (2016)

13. Carbonnel, J., Huchard, M., Nebut, C.: Exploring the Variability of Interconnected Product
Families with Relational Concept Analysis. In: Proceedings of 7th International Workshop on
Reverse Variability Engineering (REVE 2019) @ SPLC (2019)

14. Carbonnel, J., Huchard, M., Nebut, C.: Modelling equivalence classes of feature models with
concept lattices to assist their extraction from product descriptions. Journal of Systems and
Software 152, 1–23 (2019)

15. Carbonnel, J., Huchard, M., Nebut, C.: Towards Complex Product Line Variability Modelling:
Mining Relationships from Non-Boolean Descriptions. Journal of Systems and Software (2019)

168 J. Galasso et al.

16. Czarnecki, K., Eisenecker, U.W.: Generative programming - methods, tools and applications.
Addison-Wesley (2000)

17. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A.: Cool features and tough
decisions: a comparison of variability modeling approaches. In: Sixth International Workshop
on Variability Modelling of Software-Intensive Systems, Leipzig, Germany, January 25-27,
2012. Proceedings, pp. 173–182 (2012)

18. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration using feature models. In:
Software Product Lines, Third International Conference, SPLC 2004, Boston, MA, USA,
August 30-September 2, 2004, Proceedings, pp. 266–283 (2004)

19. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There and back again.
In: Proceedings of the 12th International Conference on oftware Product Lines (SPLC’08), pp.
22–31 (2008)

20. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again. In: Software
Product Lines, 11th International Conference, SPLC 2007, Kyoto, Japan, September 10-14,
2007, Proceedings, pp. 23–34 (2007)

21. Davril, J., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., Heymans, P.: Feature model
extraction from large collections of informal product descriptions. In: Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation,
August 18-26, 2013, pp. 290–300 (2013)

22. Dolques, X., Braud, A., Huchard, M., Ber, F.L.: Rcaexplore, a FCA based tool to explore
relational data. In: Supplementary Proceedings of ICFCA 2019 Conference and Workshops,
Frankfurt, Germany, June 25-28, 2019., pp. 55–59 (2019)

23. Ferrari, A., Spagnolo, G.O., Gnesi, S., Dell’Orletta, F.: CMT and FDE: tools to bridge the
gap between natural language documents and feature diagrams. In: Proceedings of the 19th
International Conference on Software Product Line, SPLC 2015, Nashville, TN, USA, July
20-24, 2015, pp. 402–410 (2015)

24. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Conceptual Structures:
Broadening the Base, 9th International Conference on Conceptual Structures, ICCS 2001,
Stanford, CA, USA, July 30-August 3, 2001, Proceedings, pp. 129–142 (2001)

25. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer (1999)
26. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using Galois

lattices. In: Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), Eighth Annual Conference, Washington, DC, USA, September 26 - October 1,
1993, Proceedings., pp. 394–410 (1993)

27. Hacene, M.R., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining
concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)

28. Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Heymans, P.: Yo variability!
jhipster: a playground for web-apps analyses. In: Proceedings of the Eleventh International
Workshop on Variability Modelling of Software-intensive Systems, VaMoS 2017, Eindhoven,
Netherlands, February 1-3, 2017, pp. 44–51 (2017)

29. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Reverse engineering feature models from
programs’ feature sets. In: 18th Working Conference on Reverse Engineering, WCRE 2011,
Limerick, Ireland, October 17-20, 2011, pp. 308–312 (2011)

30. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: On extracting feature models from sets
of valid feature combinations. In: Fundamental Approaches to Software Engineering - 16th
International Conference, FASE 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,
pp. 53–67 (2013)

31. Haugen, Ø., Wasowski, A., Czarnecki, K.: CVL: common variability language. In: 17th
International Software Product Line Conference, SPLC 2013, Tokyo, Japan - August 26 - 30,
2013, p. 277 (2013)

32. Holl, G., Grünbacher, P., Rabiser, R.: A systematic review and an expert survey on capabilities
supporting multi product lines. Information & Software Technology 54(8), 828–852 (2012)

6 Extending boolean variability relationship extraction to multi-valued descriptions 169

33. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-021 (1990)

34. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented project line engineering. IEEE Software
19(4), 58–65 (2002)

35. Karatas, A.S., Oguztüzün, H., Dogru, A.H.: From extended feature models to constraint logic
programming. Sci. Comput. Program. 78(12), 2295–2312 (2013)

36. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal
concept analysis. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI’11), pp. 1342–1347 (2011)

37. Krueger, C.W.: Easing the transition to software mass customization. In: Software Product-
Family Engineering, 4th International Workshop, (PFE’01) Revised Papers, pp. 282–293
(2001)

38. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Feature model synthesis with genetic program-
ming. In: Search-Based Software Engineering - 6th International Symposium, SSBSE 2014,
Fortaleza, Brazil, August 26-29, 2014. Proceedings, pp. 153–167 (2014)

39. Loesch, F., Ploedereder, E.: Restructuring variability in software product lines using concept
analysis of product configurations. In: 11th European Conference on Software Maintenance
and Reengineering, Software Evolution in Complex Software Intensive Systems, CSMR 2007,
21-23 March 2007, Amsterdam, The Netherlands, pp. 159–170 (2007)

40. Loh, W.: Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
1(1), 14–23 (2011)

41. Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo, J.A., Benavides, D., Segura, S.,
Egyed, A.: An assessment of search-based techniques for reverse engineering feature models.
Journal of Systems and Software 103, 353–369 (2015)

42. Mannion, M.: Using first-order logic for product line model validation. In: Software Product
Lines, Second International Conference, SPLC 2, San Diego, CA, USA, August 19-22, 2002,
Proceedings, pp. 176–187 (2002)

43. Martinez, J., Tërnava, X., Ziadi, T.: Software product line extraction from variability-rich
systems: the Robocode case study. In: Proceeedings of the 22nd International Systems and
Software Product Line Conference - Volume 1, SPLC 2018, Gothenburg, Sweden, September
10-14, 2018, pp. 132–142 (2018)

44. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Automating the extraction of
model-based software product lines from model variants (T). In: Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE’15), pp.
396–406. IEEE Computer Society (2015)

45. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.: Bottom-up technologies for
reuse: automated extractive adoption of software product lines. In: Proceedings of the 39th
International Conference on Software Engineering, (ICSE’17), Companion Volume, pp. 67–70.
IEEE Computer Society (2017)

46. Nasr, S.B., Bécan, G., Acher, M., Filho, J.B.F., Sannier, N., Baudry, B., Davril, J.: Automated
extraction of product comparison matrices from informal product descriptions. Journal of
Systems and Software 124, 82–103 (2017)

47. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge
processing: A survey on applications. Expert Syst. Appl. 40(16), 6538–6560 (2013)

48. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering - Foundations,
Principles, and Techniques. Springer (2005)

49. Priss, U.: Formal concept analysis in information science. ARIST 40(1), 521–543 (2006)
50. Riebisch, M., Böllert, K., Streitferdt, D., Philippow, I.: Extending feature diagrams with uml

multiplicities. In: Proceedings of the 6th World Conference on Integrated Design & Process
Technology (IDPT’02) (2002)

51. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal contexts.
In: Software Product Lines - 15th International Conference, SPLC 2011, Munich, Germany,
August 22-26, 2011. Workshop Proceedings (Volume 2), p. 4 (2011)

170 J. Galasso et al.

52. Safdar, S.A., Yue, T., Ali, S., Lu, H.: Evaluating variability modeling techniques for supporting
cyber-physical system product line engineering. In: Proceedings of the 9th International
Conference on System Analysis and Modeling. Technology-Specific Aspects of Models
(SAM’16), pp. 1–19 (2016)

53. Sannier, N., Acher, M., Baudry, B.: From comparison matrix to variability model: The
wikipedia case study. In: 2013 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, pp.
580–585 (2013)

54. Sawyer, P., Mazo, R., Diaz, D., Salinesi, C., Hughes, D.: Using constraint programming to
manage configurations in self-adaptive systems. IEEE Computer 45(10), 56–63 (2012)

55. Schmid, K., John, I.: A customizable approach to full lifecycle variability management. Sci.
Comput. Program. 53(3), 259–284 (2004)

56. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering feature
models. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pp. 461–470 (2011)

57. She, S., Ryssel, U., Andersen, N., Wasowski, A., Czarnecki, K.: E�cient synthesis of feature
models. Information & Software Technology 56(9), 1122–1143 (2014)

58. Temple, P., Acher, M., Jézéquel, J., Barais, O.: Learning contextual-variability models. IEEE
Software 34(6), 64–70 (2017)

59. Tilley, T., Cole, R., Becker, P., Eklund, P.W.: A survey of formal concept analysis support for
software engineering activities. In: Formal Concept Analysis, Foundations and Applications,
pp. 250–271 (2005)

	Part I Feature location and variability model extraction
	Feature Location in Software Variants Toward Software Product Line Engineering
	Hamzeh Eyal Salman, Abdelhak-Djamel Seriai and Christophe Dony
	Introduction
	Product Variants
	Types of Feature Location
	Static-Based Feature Location
	Textual-Based Feature Location
	Dynamic-Based Feature Location

	Feature Location in Software Variants
	Feature Location with IR in Product Variants: Conventional Application
	Feature Location with IR in Product Variants: Variability Awareness

	 An Illustrative Approach for Feature Location with IR: Variability Awareness
	An Overview of the Feature Location Process
	Reducing IR Search Spaces
	Reducing the Abstraction Gap between Feature and Source Code Levels Using Code-Topic
	Locating Features by LSI

	Conclusions
	References

	Feature & Variability Extraction From Natural Language Requirements
	Sandro Schulze and Yang Li
	Introduction
	Natural Language Processing in a Nutshell
	Feature Extraction
	Similarity-Based Feature Extraction
	Graph-Based Feature Extraction
	Feature Term Extraction
	Evaluation Metric

	Variability Extraction
	Optionality
	Group Constraints
	Cross-Tree Constraints
	Evaluation Metric

	Related Work
	Challenges and Risks
	References

	Semantic History Slicing
	Yi Li, Julia Rubin, and Marsha Chechik
	Introduction
	Locating Features in Software Histories
	Semantic History Slicing
	Chapter Organization

	Representing Programs and Program Changes
	Program Representation
	Changes and Change Histories
	Tests and Test Suites

	Semantics-Preserving History Slices
	Semantic History Slicing
	CSlicer by Example
	The Semantic History Slicing Algorithm
	SCM Adaptation

	Web-Based History Slicing Framework
	User Interface
	Use Cases in SPL

	Conclusion
	References

	Feature Location in Models (FLiM): Design time and Runtime
	Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina
	Introduction
	Background
	Software Product Lines
	Feature Location
	Information Retrieval
	Evolutionary Algorithms
	The Induction Hob Domain
	The Common Variability Language applied to Induction Hobs

	Relation between FLiMEA and FLiMRT
	FLiM at Design time (FLiMEA)
	User Input
	Encoding
	Genetic Operations
	Model Fragment Fitness

	FLiM at Runtime (FLiMRT)
	The Dynamic Analysis Phase
	The Information Retrieval Phase

	Evaluation
	The Induction Hobs Domain
	Train Control and Management Domain
	Oracle Preparation
	Test Cases
	Comparison and Measure
	Evaluation of FLiM at Design time (FLiMEA)
	Evaluation of FLiM at Runtime (FLiMRT)

	Conclusion
	References

	Search-Based Variability Model Synthesis from Variant Configurations
	Wesley K. G. Assunção, Silvia R. Vergilio, Roberto E. Lopez-Herrejon, and Lukas Linsbauer
	Introduction
	Running Example
	Source Code Dependency Graphs
	Multi-Objective Search-Based Variability Model Synthesis
	Variability Model Representation
	Fitness Functions
	Evolutionary Operators

	Evaluation
	Results and Analysis
	Example of Use
	Related Work
	Concluding Remarks
	References

	Extending boolean variability relationship extraction to multi-valued software descriptions
	Jessie Galasso and Marianne Huchard
	Introduction
	Variability in boolean descriptions
	Boolean feature-based descriptions
	Boolean variability relationships
	Feature relationship extraction in the literature
	A sound and complete FCA-based feature relationships extraction

	Variability in non-boolean descriptions
	Multi-valued descriptions
	Multi-valued variability relationships
	Multi-valued variability extraction in the literature
	A sound and complete FCA-based multi-valued variability extraction

	Conclusion
	References

	Machine learning for feature constraints discovery
	Hugo Martin, Paul Temple, Mathieu Acher, Juliana Alves Pereira, Jean-Marc Jézéquel
	Introduction
	Machine Learning in a Nutshell
	Data representation and model generation
	Supervised and unsupervised learning
	Decision trees
	Metrics

	Sampling, Labeling, Learning
	Sampling
	Labeling
	Learning

	Applications
	Learning constraints of an industrial video generator
	VaryLaTeX: Generating text documents that does not exceed a fixed number of pages
	Other applications
	Applicability

	Benefits, Risks, and Challenges
	Benefits
	Risks
	Challenges

	Conclusion
	References

	Part II Reengineering product line architectures
	Extraction of Software Product Line Architectures from Many System Variants
	Anas Shatnawi, Abdelhak-Djamel Seriai and Houari Sahraoui
	Introduction
	An Illustrative Example
	Variability in SPLA
	Component Variability
	 Architecture Configuration Variability
	Component dependencies

	Challenges in Extracting SPLA from Software Variants
	Toward SPLA Extraction from Many Software Variants: Good Practices
	The Input Artifacts to be Analyzed for Extracting SPLA
	The Process of SPLA Extraction

	Illustrative Approach to Extract SPLA
	Input and Goal
	Extraction of Component Variability
	Extraction of Configuration Variability

	Conclusion
	References

	ModelVars2SPL: from UML Class Diagram Variants to Software Product Line Core Assets
	Wesley K. G. Assunção, Silvia R. Vergilio, and Roberto E. Lopez-Herrejon
	Introduction
	Background and Related Work
	ModelVars2SPL
	Approach overview
	Features Traceability
	Reverse Engineering of Feature Models
	Model Merging
	Variability Grafting

	Evaluation
	Implementation Details and Parameter Settings
	Target applications
	Evaluation Metrics

	Results and Analysis
	Capacity to Rederive Input Variant
	Performance for Obtaining Solutions

	Practical Usage of ModelVars2SPL Solutions
	Concluding Remarks
	References

	Extraction and Evolution of a Software Product Line from Existing Web-Based Systems
	Erick Sharlls Ramos de Pontes, Uirá Kulesza, Carlos Eduardo da Silva, Eiji Adachi and Elder Cirilo
	Introduction
	Study Settings
	Target Systems
	Study Procedures

	Study Results
	SPL Extraction from Existing Systems
	SPL Evolution

	Discussions and Lessons Learned
	Related Work
	Conclusion and Future Work
	References

	Re-Engineering Microservice Applications into Delta-Oriented Software Product Lines
	Maya R. A. Setyautami, Hafiyyan S. Fadhlillah, Daya Adianto, Ichlasul Affan, and Ade Azurat
	Introduction
	Variability Modeling
	Preliminary Analysis
	Multi-Level Feature Diagram
	Multi-Stage Configurations

	Product Line Architecture
	UML Component Diagram
	UML Class Diagram

	Product Line Implementation
	Conclusion and Future Work
	References

	Understanding the Variability on the Recovery of Product Line Architectures
	Crescencio Lima, Mateus Cardoso, Ivan do Carmo Machado, Eduardo Santana de Almeida, and Christina von Flach Garcia Chavez
	Introduction
	Background
	Architecture Recovery
	Variability in Software Architecture

	PLA recovery Approach
	Motivating Example
	PLAR Tool
	PLAR algorithm
	Validation Example

	Exploratory Study
	Research Questions
	Execution
	Data collection
	Descriptive Statistics
	Answers to the Research Questions
	General Findings
	Threats to Validity

	Related work
	Conclusion
	References

	Part III Frameworks
	PAxSPL: A framework for aiding SPL Reengineering Planning
	Luciano Marchezan, Elder Rodrigues, João Carbonell, Maicon Bernardino, Fábio Paulo Basso and Wesley K. G. Assunção
	Introduction
	Background and Related Work
	Software Product Lines and Reengineering Process
	SPL Reengineering Planning
	Motivational Scenarios
	Related Work

	PAxSPL Framework
	Process Overview
	Guidelines

	Case Study
	Planning and Design
	Conduction and Data Collecting
	Results and Discussion

	Concluding Remarks
	Appendix
	References

	Bottom-Up Technologies for Reuse: A Framework to Support Extractive Software Product Line Adoption Activities
	Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jaques Klein, and Yves le Traon
	Introduction
	A generic framework for different artefact types: Adapters
	Principles to be considered in adapter development
	Design examples of adapters
	Currently available adapters

	Covered re-engineering activities
	An extensible framework for different algorithms and techniques
	Benchmarking support for different techniques
	Conclusion
	References

	Systematic Software Reuse with Automated Extraction and Composition for Clone-and-Own
	Lukas Linsbauer, Stefan Fischer, Gabriela Karoline Michelon, Wesley K. G. Assunção, Paul Grünbacher, Roberto Erick Lopez-Herrejon and Alexander Egyed
	Introduction and Motivation
	Illustrative Example and Basic Data Structures
	Operations
	Trace Extraction
	Variant Composition

	Workflow and Application Scenarios
	Extractive Adoption
	Reactive Extension

	Repository Contents
	Tool Implementation
	Heterogeneous Implementation Artifacts
	Graphical User Interface
	Data Visualization

	Evaluation
	Setup
	Data Set
	Results

	Conclusion and Future Work
	References

	Re-engineering Automation Software with the Variability Analysis Toolkit
	Kamil Rosiak, Lukas Linsbauer, Birgit Vogel-Heuser and Ina Schaefer
	Introduction and Motivation
	The IEC 61131-3 Standard
	Structured Text
	Sequential Function Chart
	Function Block Diagram
	Ladder Diagram

	Code Clones
	Intra- and Inter-System Clone Detection for IEC 61131-3
	IEC 61131-3 Meta-Model
	Comparison Metric for IEC 61131-3
	Comparison of IEC 61131-3 Model Instances
	Matching of Compared Model Instances
	Result Presentation

	The Variability Analysis Toolkit for IEC 61131-3
	Analyzing the Pick and Place Unit
	The Pick and Place Unit
	Case Study Methodology
	Results of the Intra System Clone Analysis
	Results of the Inter System Clone Analysis
	Quantitative Analysis

	Conclusion and Future Work
	References

	Managing Software Product Line Evolutionby Filtered Editing: The SuperMod Approach
	Felix Schwägerl and Bernhard Westfechtel
	Introduction
	Background and Contribution
	Relevant Software Engineering Sub-Disciplines
	Integration of Sub-Disciplines
	Comparison: SPLE and Revision Control
	Filtered Editing and Variation Control
	Contribution

	SuperMod by Example
	Architectural and Functional Foundations
	Formal Foundations
	Advanced Functionality
	Dynamic Filtered Editing and the Operation Migrate
	Multi-User Operation by Distributed Versioning
	Product Conflict Detection and Resolution

	Discussion
	Connection to SPL Re-Engineering
	Alignment with SPLE Processes
	Conceptual and Technical Maturity

	Conclusion
	References

	Part IV Perspectives
	Challenges and Potential Benefits of Adopting Product Line Engineering in Start-Ups: A Preliminary Study
	Mercy Njima, Serge Demeyer
	Introduction
	Background
	Start-up Ecosystems
	Software Product Line Engineering in Start-ups
	Related Work

	Research Design
	Results and Discussion
	Threats to Validity
	Conclusion and Outlook
	References

	Re-engineering Legacy Systems as Microservices: An industrial survey of criteria to deal with modularity and variability of features
	Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assunção, Thelma Elita Colanzi, Rodrigo Bonifácio, Leonardo P. Tizzei, Rafael de Mello, Renato Cerqueira, Márcio Ribeiro, Carlos Lucena
	Introduction
	Background
	Microservices
	Customization and Variability

	Study Design
	Study Phases, Population and Sample
	Instrumentation
	Rolling out the Survey and Interview

	Results and Analysis
	Participants Characterization
	Perception of Criteria Usefulness
	Detailed Results and Analysis

	Related Work
	Final Remarks
	References

	Evolution in Software Product Lines: An overview
	Leticia Montalvillo and Oscar Díaz
	Introduction
	SPL evolution: a brief on main concepts
	Backward propagation: evolving SPL assets out of product customization
	Identify change
	Analyze and plan change
	Implement change
	Verify change

	 Forward propagation: evolving derived products out of core-asset changes
	Conclusion
	References

	Glossary
	Index

