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Abstract

In this paper we discuss potentially practical ways to construct ex-
pander graphs with good spectral properties and a compact description.
We consider variations of a constructions that is simple to implement in
practice, and develop techniques that seem to be applicable to graphs of
feasible size. More specifically, we focus on expander graphs defined as
random Schreier graphs of the general linear group over the finite field
of size two. We perform numerical experiments and observe that such
constructions produce with high probability Ramanujan graphs that can
be useful for practical applications.

To find a theoretical explanation of the observed experimental results
and prove an upper bound for the expected second largest eigenvalue of
the sampled graphs, we use the method of moments. We focus on the
settings for which it seems difficult to study the asymptotic behaviour of
large graphs but it is possible to provide non-trivial bounds for graphs of
relatively small size (interesting for practical applications).

The main contribution of this work is twofold. First, we study families
of expander graphs that are, so to speak, pseudo-random (i.e., each graph
can be efficiently reconstructed from a short random seed); this approach
takes an intermediate position between explicit (deterministic) construc-
tions and the conventional theory of random graphs. Second, we adjust
and optimise theoretical bounds not for the limiting behaviour of graphs
but for the values of parameters that become meaningful in practical ap-
plications (when the whole graph or at least the indices of its vertices can
be stored in computer memory).

1 Introduction

The regular expander graphs have been extensively studied for several decades
and applications can be found in a wide variety of fields, see [20]. It is re-
markable that the expansion properties, which are of combinatorial nature, are
connected to some spectral properties of the adjacency matrix of the graph,
namely the gap between the two largest magnitude eigenvalues (the spectral
gap). A large spectral gap means “good” expansion, mixing, and connectivity
properties. Observe also that the second largest eigenvalue for some particular
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graph can be computed efficiently, while a direct computation of the Cheeger
constant (as well as other combinatorial parameters characterising the proper-
ties of expansion and connectivity) would require an exponential search over all
subsets of the graph’s vertices. At the same time, we should notice that the
spectral technique has its limitations, and computing the second largest eigen-
value cannot give better guarantee than an expansion ratio greater than half of
the degree ([10]).

In a regular graph of degree d (called d-regular graph) with n vertices, the
largest magnitude eigenvalue of its adjacency matrix is always d. Since the
graph is undirected, the matrix is symmetric, hence all eigenvalues are real. We
then denote them d = |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. If we consider the normalised
adjacency matrix (whose entries are divided by the degree), we note its eigenval-
ues 1 = |µ1| ≥ · · · ≥ |µn|. The Alon-Boappana bound refers to the lower bound
|λ2| ≥ 2

√
d− 1 − ϵ ([15]). A famous result due to Friedman ([9], see also [5]

for a shorter proof) states that almost all d-regular graphs have second largest
eigenvalue smaller than 2

√
d− 1+ ϵ. This upper bound matches asymptotically

the lower bound which makes it optimal in some sense. Thus, most graphs have
second largest eigenvalue as small as one can hope for.

The aforementioned results suggest that in practice one can produce a ran-
dom expander graphs and use it in applications. However, producing such a
graph, keeping it in memory and manipulations with it may require much re-
sources. Explicit constructions constructions of expanders (see e.g. [11], [8],
[1], [12], [13], [14]) may seem more attractive since we don’t need to keep such
a graph in memory: neighbours of each vertex can be computed from scratch
when needed. However, this approach has its own disadvantages. Some explicit
constructions of graph of expanders lack optimality of parameters; they often
imply constraints on the degree and the implementation can be difficult in prac-
tice. Besides, “polynomial time” algorithms and “asymptotic bounds” involved
in these constructions may be good in theory but less successful in practice, for
graphs of reasonably small size.

To overcome the mentioned difficulties, in this paper we use an approach that
is intermediate between explicit constructions of expanders and purely random
graphs. We consider families of graphs that are in some sense pseudo-random.
Such a graph can be specified by a “seed” that is rather short compared with the
size of the graph; the efficiency of the construction means that given the seed we
can compute very efficiently the list of neighbours for every given vertex. More
specifically, we take for this purpose some families of Schreier graphs, see below.
We start our work with numerical experiments and show that typical graphs in
these families enjoy good spectral properties. Then we analyse the properties
of these graphs with theoretical tools, which allows us to explain partially the
observed results.

Our theoretical analysis also has certain peculiarities. Unlike most works on
expander graphs, we pay little attention to asymptotic estimates. Indeed, are
ultimate aim to explain eventually the behaviour of (pseudo)random graphs of
graspable size, while the remainder terms in typical asymptotic bounds become
reasonably small only for astronomically large graphs. Instead, we focus on the
techniques that can be used for graphs of comparatively small size (mostly with
210 to 2200 vertices, which seems to be relevant for most practical applications).
While asymptotic bounds need to be somewhat elegant (otherwise they would
be too hard to analyse), we can afford to use complex and hideous formulas that
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still allow to do calculations for specific values of the parameters.

1.1 Models of random and pseudo-random graphs

Now we proceed with a more formal description of random graph models. There
exist several such models, see, e.g. [21]. Our interest will focus on the permuta-
tion model.

Definition 1.1 (Permutation model). Select randomly and independently d el-
ements {π1, . . . πd} of the symmetric group over the set {1, . . . , n}. A 2d-regular
graph on n vertices in the permutation model is then constructed as follows:
connect every vertex i with the vertex πj(i) for every j ∈ [[1, d]].

The obtained graph is undirected, and every vertex i will be connected to
πj(i) and π−1

j (i) for all j ≤ d. We allow multiple edges and self-loops. Observe
that a randomly chosen permutation πi requires O(log(n!)) bits to keep it in
the memory of a computer. A description of a random graph sampled in the
permutation model occupies Θ(dn log n) bits of information (substantially, we
have to store for each vertex the list of its neighbours, and in general there is
no way to compress such a naive representation).

In this model, it is known that most of graphs have a nearly optimal spectral
gap (in [9] it is proven that almost all graphs have second largest magnitude
eigenvalue smaller than 2

√
2d− 1 + ϵ). Thus, the procedure of sampling a

random graph will give us with high probability an expander. The argument
that we suggest in this paper is inspired by the proof of a similar but weaker
statement by Broder and Shamir:

Proposition 1 ([4]). Let G be a 2d-regular undirected graph on n vertices in
the permutation model. Let λ2 be the second largest magnitude eigenvalue of its
symmetric adjacency matrix. Then

E(|λ2|) = O(d
3
4 )

as n goes to infinity.

In what follows we deal with a more algebraic model of random graphs
(which seems to be more convenient from the practical view point). Let us
proceed with the definition of a Schreier graph.

Definition 1.2 (Random Schreier graphs). Let H be a group acting transitively
on a set X. We denote h.x ∈ X the product of the action of h ∈ H on x ∈ X.
Let S be a random multiset of elements of H of d elements. Then the Schreier
(undirected) graph

G = Sch(H ⟲ X,S)

is a 2d-regular graph of size |X| whose edges are (x, s.x) for x ∈ X and s ∈ S.

One can notice that a graph from the permutation model is also a Schreier
graph of the symmetric group on n elements.

We are motivated by the result about random Schreier graphs expansion
properties in [7], which generalises the theorem on Cayley graphs proven in [2].
A similar result was proven recently in [16]:
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Proposition 2 ([16]). Let H be a group, X a set on which H is acting transi-
tively and S a multiset of d randomly chosen elements of H and their inverses.
Let G = Sch(H ⟲ X,S). The second largest eigenvalue of the associated nor-
malised adjacency matrix is denoted µ2. For every ϵ > 0, there exist a constant
cϵ such that for d = cϵ log |X| we get

E(|µ2|) < ϵ

where the expectation is taken over all random multisets S.

The bound in Proposition 2 may look too weak (ideally, we would like to
bound |µ2| for a d-regular graph by (2

√
d− 1 + ϵ)/d). However, it applies to a

very large class of Schreier graphs. One may hope to prove stronger bound for
a more restricted family of graphs.

The main construction. We will focus on Schreier graphs of H = GLk(F2)
acting on X = (Fk

2)
∗ by matrix-vector multiplication. This construction is, in

some ways, similar to the permutation model — it is actually the permutation
model restricted to the permutations that can be represented by an invertible
matrix over F2. Observe that this construction is very simple and convenient
for practical applications. Indeed, vertices of this graph are all strings of k zeros
and ones (except for the single string that consist of k zeros). The elements of
S are d non-singular (invertible) matrices sampled uniformly and independently
from H and their inverses. To find a neighbour of a vertex v induced by s ∈ S,
we simply multiply the column-vector v by the matrix s.

Let us observe that a representation of a random Schreier graph is much more
compact than a representation of a random graph from the general permutation
model. Indeed, in order to specify a permutation on n vertices, O(n log n) bits
are needed, whereas only O(k2) = O(log2 n) bits are necessary to specify an
invertible matrix in our finite field. By analogy with pseudo-random generators,
one may call these graphs pseudo-random, since the random seed determining
the entire graph is much shorter than the size of incidence matrix or the list of
all edges.

It remains to verify that graphs from the presented constructions are typi-
cally good spectral expanders. We will see that, due to numerical experiments,
this is indeed the case for most graphs from these families (with reasonably
chosen parameters). For relatively small graphs (e.g., with n ∼ 104 vertices,
when we are able to produce completely the matrix of a graph and compute its
eigenvalues with a computer) the experimental results might be quite enough
for application. Indeed, we can sample a random set S, then verify numerically
that the graph corresponding to this S is indeed a good expander, and then
plug this instance of a graph in the application.

However, most of this paper is devoted to the attempts to get theoretical
bounds for the families of graphs discussed above. Why do we need theoretical
bounds for the spectral gap of these (pseudo)random graphs? One reason is
purely theoretical: we would like to eventually explain the phenomena that we
observe in numerical experiments. Another reason is more practical. In appli-
cations we may need “strongly explicit” expanders with pretty large number of
vertices (e.g., with n ∼ 2200), so that we cannot produce the entire matrix of
the graph, but we still can keep in the memory of a computer an index of one
vertex and we can compute efficiently indices of its neighbours. In this case, we
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cannot compute numerically the spectrum of the graph. So it would be helpful
to have a theoretical result saying that a randomly chosen graph from the family
G with a very high probability has a small enough second eigenvalue. Although
our theoretical results only apply to finite fields of size 2, experimental results
show that the construction can be suitable for bigger fields (see Figures 2 and
3).

All of this led us to try to adapt the proof in [4] (though it ended up being
quite different) to get a bound on the expected second largest eigenvalue of the
adjacency matrix of the graphs obtained. We prove the following statement:

Theorem 1. Let G = Sch(GLk(Z2) ⟲ (Zk
2)

∗, S) be a graph of size n = 2k −
1 and whose degree is 2d = 2|S|, with k ≤ 2. Let µ2 be the second largest
eigenvalue of its normalised adjacency matrix. Consider the following recursive
relation:

Xq(c, l, d) =


1 if c = 0 and l = 0
0 if q > l∑⌊ l

q ⌋
i=c

(
d
i

)(
2q

q!

)i
l!

(l−qi)!Xq+1(0, l − qi, d− i) otherwise.

We set x3(i) = X3(1, 2m−2i, d− i) and x4(i) = X4(0, 2m−2i, d− i). Then,
for all integer m,

E(|µ2|) ≤((
1

2d

)2m

n

[ m∑
i=1

(
d

i

)
(2m)!

(2m− 2i)!

[
(2i − 1)(x3(i) + x4(i))

2

n

+

(
(x3(i) + x4(i))

1

n
+

2i

(i+ 1)!

(
x3(i)

5

n
+ x4(i)

))]
+X1(1, 2m, d)

1

n
+ x3(0)

5

n
+ x4(0)

]
− 1

) 1
2m

. (1)

The bound (1) looks messy, and the asymptotic analysis may be difficult.
However, this formula becomes useful when we need to calculate (with help of
a computer) a bound for a specific graph of relatively small size (e.g., less than
2200 vertices). For a specific graph G, we choose m in such a way that (1) gives
the strongest bound possible for E(|µ2|). Though this big formula is fairly hard
to analyse, it is easy to compute it numerically. We have been able to check that
this gives a meaningful and non trivial bound for 2m close to k. This result is
less general than Proposition 2, but it gives stronger and more explicit bounds
for certain specific values of parameters. Nevertheless, an asymptotic study of
its behaviour might be interesting. However, this is not done in this paper.

1.2 A construction of pseudo-random bipartite expanders

The construction explained above can easily be adapted to obtain bipartite d-
regular graphs of 2n vertices (n in each partition, n = 2k − 1). In such a graph,
each vertex of the first partition is labeled the same way that of the second, by
a vector in (Fk

2)
∗. We have two ways of constructing the edges.

The first way is the following. We select uniformly at random d matrices of
GLk(Fp) that form a multiset D. Then we connect each vertex x from the first

5



partition to two vertices of the second partition: s.x and s−1.x, with s ∈ D.
This way, we obtain a bipartite 2d-regular graph. Here the degree of the graph
needs to be even, as in non bipartite graphs from our construction. The main
interest of this approach is that we can obtain the same bound for the second
largest eigenvalue as in Theorem 1 with very little additional work.

In order to obtain bipartite regular graphs of odd degree, we can take a
slightly different setting. Once we have our multiset D, we connect every x in
the first partition to s.x in the second one. This gives a d regular bipartite
graph denoted

G = SchBP (GLk(F2) ⟲ (Fk
2)

∗, D).

For this family of graphs the proof of Theorem 1 does not apply directly, but we
can adapt it in order to get similar bounds. We prove the following statement:

Theorem 2. Let G = SchBP (GLk(F2) ⟲ (Fk
2)

∗, D) with k ≤ 2, |D| = d, and
|(Fk

2)
∗| = n. Let µ2 be the second largest magnitude eigenvalue of its normalised

adjacency matrix. Consider the relation

Yq(c, l, d) =


1 if c = 0 and l = 0
0 if q > l∑⌊ l

q ⌋
i=c

(
d
i

)
(q!)−i l!

(l−qi)!Yq+1(0, l − qi, d− i) otherwise.

We set y3(i) = Y3(1, 2m− 2i, d− i), y4(i) = Y4(0, 2m− 2i, d− i). Then,

E(|µ2|) ≤
((

1

d

)2m

n

[(
1

d

)2m

m∑
i=1

[(
d

i

)(
1

2

)i
(2m!)

(2m− 2i)!

2i

(i+ 1)!

(
y3(i)

5

n
+ y4(i)

)]

+ Y1(1, 2m, d)
1

n
+ Y2(1, 2m, d)

2

n
+ y3(0)

5

n
+ y4(0)

]
− 1

) 1
2m

. (2)

And again, the expression in (2) is difficult to analyse, but it helps to com-
pute concrete bounds for graphs with some specific values of parameters. The
expression in (2) is only slightly weaker than that in (1) (see Section 2). More-
over, it seems that the optimal value of 2m is the same in both theorems.

So far we discussed regular bipartite graphs, where all vertices have the same
degree. In bipartite biregular graphs, the degree is the same for every vertex in
the same partition, but it can be different from one partition to the other. These
graphs are of interest for many applications in computer science and in coding
theory (see, e.g., [17], [22]), and good spectral properties are often needed. We
can adapt the construction above to get such graphs. Assume we need a graph
with degree d1 in the left partition whose size is n1, and d2 in the right one, of
size n2, such that n1d1 = n2d2 and n2 ≤ n1. To achieve that, construct a graph
as previously and merge every γ = d2/d1 vertex on the right side (taking them
in an arbitrary order). We denote such a graph

G = SchBP (GLk(Fp) ⟲ (Fk
p)

∗, D, γ).

In such a graph, the greatest eigenvalue of its adjacency matrix is
√
d1d2.

For this kind of graphs, the analogous of the Alon-Boppana bound 2
√
d− 1 is

6



√
d1 − 1+

√
d2 − 1: it has been proven that the second largest magnitude eigen-

value cannot be much smaller than this quantity ([19]) and not much larger in
most of the cases ([3]). We prove the following statement, which is a corollary
of Theorem 2:

Corollary 1. Let G′ = SchBP (GLk(F2) ⟲ (Fk
2)

∗, D, γ) with |D| = d1. Let
d2 = γd1 and let λ2 be the second largest magnitude eigenvalue of its adjacency
matrix.

E(|λ2|) ≤
√
d1d2α.

where α is the minimum over m of the bound applied to regular bipartite Schreier
graphs of odd (Theorem 2) or even (Theorem 1) degree.

1.3 A simple asymptotic bound

In this work we do not focus on asymptotic behaviour of large graphs. However,
we observe that at least in some setting, the used technique easily gives some
asymptotic bounds. This bound applies to the construction of a Schreier graph
GLk(F) with any dimension k and with any finite field F, which is not the case
of the previous ones (in Theorem 1 and Theorem 2 we use very substantially the
fact that the group is not abelian, which is false in dimension one). The bound
applies to graphs with a pretty large degree, d = Ω(lnn) (see next section for
an estimate of the constant hidden in the Ω notation).

Theorem 3. Let G = Sch(GLk(Fp) ⟲ (Fk
p)

∗, S) graph of size n = pk − 1
and whose degree is 2d = 2|S|. Let µ2 be the second largest eigenvalue of its
normalised adjacency matrix. Then,

E(|µ2|) ≤ e

√
lnn

d

where ln is the natural logarithm and e its base.

2 Experimental results

We have conducted numerical experiments which showed that the spectral prop-
erties of the Schreier graphs in our constructions for regular and bipartite graphs
are pretty close to the optimal values achieved by “truly random” graphs (much
closer than what one could expect from Theorem 1 and Theorem 2, see Figures 2
and 3 below). The main motivation of our work was to explain this results theo-
retically. With the help of a computer, we applied our bounds from Theorems 1,
2 and 3 to some specific parameters of graphs. This calculations are shown in
Figure 1. We can observe that the theoretical results that we obtain give non
trivial bounds for the second eigenvalue but do not explain completely our nu-
merical experiments.

Results of the experiments. We show below (Figures 2 and 3)the exper-
imental results we have got for the eigenvalues of randomly sampled graphs.
For each of the following curves, we computed the second largest magnitude
eigenvalues of 5000 graphs and display the probability distribution. In order to
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(k, d) Th.1 Th.2 Th.3 [4] [9]
(14, 16) 0.7317 0.8256 2.1169 1.1208 0.3479
(16, 16) 0.7862 0.8794 2.2631 1.0458 0.3479
(20, 20) 0.7758 0.8629 2.2631 0.9532 0.3122
(25, 100) 0.3277 0.3718 1.1315 0.6783 0.1410
(30, 1000) 0.0988 0.1128 0.3919 0.4088 0.0447
(40, 1000) 0.1110 0.1251 0.4526 0.3594 0.0447
(60, 60) 0.7377 0.7944 2.2631 0.5805 0.1818
(200, 200) 0.7016 0.7350 2.2631 0.3694 0.0998

Figure 1: This table shows the computed bounds from our three theorems for
different parameters (the dimension k and the degree d). These values are
compared with the best asymptotic bound known ([9]) and to the bound from
[4]).

calculate these eigenvalues, we used the C++ library Spectra1 that implements
the Lanczos algorithm ([6]).

One can observe that the second largest eigenvalues are likely to be much
closer to the optimal asymptotic value (2

√
2d− 1 and

√
d1 − 1+

√
d2 − 1 respec-

tively) than what we have shown theoretically. In addition, the variances of the
distributions decrease when the dimensions of the matrices grow. The degrees
of the graphs do not seem to have an effect on the probability distribution of
the normalised value of the second largest eigenvalue.

A partial theoretical explanation. These experimental observations show
that the second eigenvalue of a random Schreier graph from our construction
is very close to the theoretical optimum (among all regular graphs). This phe-
nomenon remains unexplained. What is even more frustrating, and we cannot
guarantee that (pseudo)random graphs from similar families but with a large
number of vertices (e.g., with n ∼ 2200) posses good spectral properties. How-
ever, Theorem 1, Theorem 2 and Theorem 3 imply some nontrivial bound for
the second eigenvalues of those graphs. The values in Figure 1 allow to illustrate
the behaviour of our bounds.

Let us start with the bound from Theorem 3. We apply this theorem with
d = ck = O(log n) (where c is a constant). The theorem gives a non-trivial
bound (a constant that is below 1) when c is around 6 or above.

Theorem 1 implies a stronger bound: this resulting bound becomes mean-
ingful with d ≥ 2

3k, which means that it becomes useful with a smaller degree
(for large enough k). With d = k, this theorem gives a bound that seems to
converge to a value around 0.7 (we have tested this observation up to k = 400).
This bound is always smaller than that of Theorem 3.

The bound from Theorem 2 is very similar to that of Theorem 1. Their
respective values can be easily compared in the table (1.

The natural conjecture that raises from this observation would then be that
for d = O(log n), the bounds from Theorems 1 and 2 converge to a value be-
tween 0 and 1 (exclusive). This would imply that those theorems improve the

1Spectra’s home page: spectralib.org.
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0.996 0.998 1.000 1.002 1.004 1.006
0

100

200

300

400

500
n=16806, 5dim
n=15624, 6dim
n=16383, 14dim
n=16000, perm
n=15000, SW

Figure 2: This is the observed distribution of the second largest eigenvalues
of 2d-regular graphs (not normalised) adjacency matrix from our construction
with different parameters. Here, d = 15, and n is the size of the graph. We
represent the probability distribution with k = 5, 6 and 14, (where k is the
matrix dimension) and adapt the size of the field so that all graphs have roughly
the same size. We show the measured value of the second largest eigenvalue
in the normalised form, i.e., s divided by 2

√
2d− 1. We compare the random

Schreier graphs with “truly” random regular graphs: in the figure, “Perm” refers
to the graphs obtained from the permutation model (see above) and “SW” refers
to graphs obtained from the Steger-Wormald algorithm ([18]) which provides
random regular graphs without loops and multiple edges.
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0.997 0.998 0.999 1.000 1.001 1.002 1.003
0

100

200

300

400

500

600 n1=16128,d1=20,d2=40,2dim
n1=15624,d1=20,d2=40,5dim
n1=19682,d1=20,d2=40,9dim
n1=8191,d1=40,d2=40,13dim
n1=16383,d1=10,d2=30,14dim

Figure 3: We display here the observed distribution of the second eigenvalue for
bipartite biregular graphs. The measured value of the second largest eigenval-
ues is normalised by division by

√
d1 − 1 +

√
d2 − 1, which is the analogous of

2
√
d− 1 for bipartite biregular graphs ([3]).
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bound from Theorem 3 by a constant factor. Therefore, those bounds would be

asymptotically O(
√

logn
d ).

Practical implementation. We now briefly explain how our construction
of “pseudo-random” (and, therefore, “almost explicit”) graphs can be imple-
mented. The main task that needs to be done is obviously sampling the d
matrices from GLk(Fp). One way of doing so is simply picking uniformly and
independently all k2 coefficients of the matrix and reject the matrix if its de-
terminant is zero (modulo p). Computing the determinant is polynomial in
k = O(log n). In order to estimate the expected value of the numbers of tries
we need to get an invertible matrix, we can estimate the following quantity:

|GLk(Fp)|
|Mk,k(Fp)|

=

∏k−1
i=0 pk − pi

pk2 =

k−1∏
i=0

1− pi−k =

k∏
i=1

1− p−i

where Mk,k(Fp) is the set of all k × k matrices whose coefficients are in Fp.
One can show2 that this product is convergent and always bigger than 1

4 . From
this, we can conclude that we need generally less than four tries so we get a
non-singular matrix. Once we have our d matrices, it is enough to apply them
to all vectors. This can be done in O(k2) steps. This way, the whole graph can
be produced in time O(nd log2 n).

3 Proofs of the main results

3.1 Proofs of Theorems 1 and 3

Let p be a prime, k a natural integer and G = Sch(GLk(Zp) ⟲ (Zk
p)

∗, S)
be a Schreier graph with S a random subset of d elements of GLk(Zp) and
their inverses. Hence, we obtain a 2d regular graph whose size is n = pk − 1.
By mapping every element of (Zk

p)
∗ to an element of [[1, pk − 1]] (e.g. with

f : (x1, . . . , xk) 7→
∑k−1

i=0 xip
i), we can associate every pair of vertices with a

coordinate of a matrix. This way, we can define M , the normalised adjacency
matrix of G. Let

1 = |µ1| ≥ |µ2| ≥ ... ≥ |µn|
be its eigenvalues (which are real since the matrix is symmetric).

Consider a random walk of 2m steps starting at vertex i. Then the (i, i)
coordinate of M2m corresponds to the number of closed walks starting at vertex
i of size 2m divided by (2d)2m, since (2d)2m is the number of paths of size 2m
starting at i. Therefore, this is the probability (denoted Pii) of returning to the
vertex i after 2m steps of the random walk. Since Trace(M2m) is equal to the
sum of all of these quantities and since the expected (i, i) coordinate of M2m is
the same for every i we get

E(Trace(M2m)) = nE(P11).

On the other hand, we have
n∑

i=1

µ2m
i = Trace(M2m).

2See e.g. math.stackexchange.com/questions/491948.
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Thus, since µ2m
i ≥ 0 and µ1 = 1, we get |µ2| ≤ (Trace(M2m) − 1)1/2m, which

implies by Jensen’s inequality

E(|µ2|) ≤ (nE(P11)− 1)1/2m (3)

Given the starting vertex (say v1 = f−1(1)), the random walk can be seen
as the product of 2m elements of S chosen uniformly and independently at
random. We denote this product ω = w2m.w2m−1 . . . w2.w1 and each of its
matrices represents the choice of a particular neighbour for all vertices. Hence,
if the first vertex on the path is v1, the second will be v2 = si1 .v1 (where si1 is
the value of w1), the third v3 = si2 .v2 (where si2 is the value of w2) and so on;
the last vertex of the path is then ω.v1.

We reuse here the main conceptual idea of the proof in [4]. The value
of ω.v1 depends on two types of random choices: on the random choice of
the word ω = w2m.w2m−1 . . . w2.w1 where each letter is chosen at random in
{s1, s−1

1 , . . . , sd, s
−1
d }, and the random choice of a matrix in GLk(Fp) for each

si. These two choices are independent. We may sample at first the words
ω and only then choose the matrices sj . We prefer not to sample the entire
value of each sj in “one shot” but reveal the values of these matrices (better
to say, the values of the linear operators corresponding to these matrices) little
by little, as it is needed. Thus, starting at vertex v1, instead of choosing at
random in GLk(Fp) the entire matrix w1 = si1 , we only determine the result
of the product v2 = si1 .v1. This choice does not determine completely the
matrix si but imposes a linear constraint on the matrix elements of si1 . The
same letter w1 may appear in the word ω several times. Each time the same
letter w1 appears in the word ω and, therefore, the matrix si1 is encountered
on the path, we must define the action of this matrix on some new vector x.
We choose the result of si1 .x by extending the partial definition of si1 , which
means an extension of the linear constraints on si fixed earlier. In a similar way,
we define step by step the other matrices sj that are involved in ω. We need
to understand the distribution of the vector v2m = ω.v1 that we obtain at the
end of this procedure (and the probability of the event v2m = v1). In the next
paragraphs we analyse this distribution.

Consider a matrix s ∈ S that has been already encountered on the path
refined by ω, and we have already defined the action of s on t different vertices.
Assume that we encounter the same matrix s once again, and we must define
the product s.x for some one more vector x ∈ (Fk

p)
∗). In the permutation model,

as stated in [4] this would be a uniform distribution over the n− t vertices that
have not been earlier assigned to the partially defined permutation s. However,
in our construction, even if x is totally new to s, the result of s.x may not be
necessarily undetermined. Indeed, if x is linearly dependent from the vectors
that we have already met, we would have

x =

t∑
i=1

αixi,

which is a sum of vectors whose result, when multiplied by s, is already known.
Thus,

s.x =

t∑
i=1

αis.xi
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would be completely determined by our previous random choices, and would
not give any new information about s. Intuitively, we would say that the step
that leads from x to s.x is not free. In order characterise formally what it means
for a step to be free, we need to introduce the following set: let s be a matrix
of S, ω = w2m . . . w1, v1 the starting vertex and vj+1 = wjvj . Then we define

Σs(i) = span({vj : j < i, wj = s} ∪ {vj+1 : j < i, wj = s−1}).

This is the set of vector on which the action of s is determined at step i. The
image set is thus

s.Σs(i) = span({vj+1 : j < i, wj = s} ∪ {vj : j < i, wj = s−1}).

This leads to the analogous definition that is presented in [4].

Definition 3.1 (free and forced step). We consider the i-th step in the path.
Let s = wi. We say that step i is forced when vi ∈ Σs(i). In the opposite case,
we say that the step i is free.

Alternatively, instead of saying that a step i is free, we will say that the
vector obtained after this step is free (namely the i + 1-th vector, wi.vi). The
following lemma justifies this terminology, and will be used systematically in
the rest of the paper.

Lemma 3.1.1. Let s = wi for a step i and t be the dimension of Σs(i). Then,
if vi /∈ Σs, vi+1 = s.vi can be chosen uniformly at random among the pk − pt

vectors that do not belong to s.Σs(i).

Proof. The choice of a non degenerate matrix s of size k × k is the same as the
choice of an bijective linear operator from Fk

p to Fk
p. To specify a linear operator,

we only need to define it on vectors of any basis in Fk
p. Let x1, . . . , xt be a basis

of Σs(i). By the assumption of the lemma, vector vi is linearly independent with
x1, . . . , xt. Therefore, we can let xt+1 = vi and then extend x1, . . . , xt, xt+1 to
a basis in the space Fk

p with some xt+2, . . . , xk.
To define s, we should specify one by one linearly independent vectors

y1 = s.x1, y2 = s.x2, . . . , yk = s.xk. We have pk − 1 possibilities to choose
y1 (any non zero vector), pk − p possibilities to choose y2 (any vector linearly
independent with the fixed y1), p

k − p2 possibilities to choose y3 (any vector
linearly independent with y1 and y2), and so on. In particular, if we have fixed
the values yi = s.xi for i = 1, . . . , t, then it remains pk − pt available options to
choose yt+1 (which is the same as vi+1 in our notation).

Remark. This implies a sort of transitivity of the group action which is
stronger than the simple transitivity, but weaker than the k-transitivity: for
all t ≤ k, if (x1, . . . , xt) and (y1, . . . , yt) are two families of linearly independent
elements of Fk

p then, there exists an element s of GLk(Fp) such that for all i ≤ t,
s.xi = yi.

As a direct consequence of this lemma, we can formulate the following corol-
lary:

Corollary 2. If a matrix s appears only once in ω at step i, s.vi = vi+1 is
chosen uniformly at random among every vertex of the graph.
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Proof. Indeed, when this happens, we can rewrite ω as AsB with A and B
some invertible matrices. Then we can expose the coefficients of A and B.
The key point is that those matrices are independent from s, which means
that we still have no information about s. This way, since vi = B.v1, we have
P(ω.v1 = v1) = P(s.vi = A−1v1) =

1
n .

The probability we have just found is conditioned by the structure of ω,
hence it needs to be multiplied by the probability of the condition. This is only
dependent on the properties of ω which can be seen as an element of a free
group generated by the set {s1, . . . sd}. Let us remind that ω can be seen as a
words whose letters are taken from {s1, s−1

1 , . . . sd, s
−1
d }. In order to estimate

the total probability of having a closed walk, we subdivide the space of such
words in a few events whose probabilities will be determined. Those events are
chosen so the conditional probability is more convenient to estimate. This will
be done later. Let us define our events:

• X1 : “at least one letter appears exactly once”

• X2 : X1 ∧ “at least one letter appears exactly twice with same sign”

• X3 : “no letter appears once or twice, at least one letter appears exactly
three times”

• X4 : “no letter appears once, twice, nor three times”

• X ′
2 : X1 ∧X3 ∧X4∧ “all letters that appear exactly twice have different

sign”

These events form a partition of the set of all possible words, whose size
is (2d)2m. In order to finish the proof of Theorem 3, let us leave aside all the
events but X1 and consider its complementary. We bound their probability
using an argument similar to that of [2]. We observe that a word that belongs
to X1 has at most m different letters in it, hence we have at most

(
d
m

)
ways of

choosing those letters in the alphabet. When choosing each letter at random,
the probability that all of them are in the right set is (md )

2m. Hence

P(X1) ≤
(
d

m

)(
m

d

)2m

≤
(
e
d

m

)m(
m

d

)2m

=

(
e
m

d

)m

.

The probability we are looking for is then

P(ω.v1 = v1) = P(ω.v1 = v1|X1)P(X1) +P(ω.v1 = v1|X1)P(X1)

≤ P(ω.v1 = v1|X1) +P(X1) ≤
1

n
+

(
e
m

d

)m

.

We set m = lnn to minimise the bound. Substituting the above quantity back
into equation 3 completes the proof of Theorem 3.

In order to find a tighter bound, we use a more careful analysis. We consider
again all of our events. We are going to represent the probability P (ω.v1 = v1)
as the sum

P (ω.v1 = v1 | ω ∈ X1) · P (X1) + . . .+ P (ω.v1 = v1 | ω ∈ X4) · P (X4)

+ P (ω.v1 = v1 | ω ∈ X ′
2) · P (X ′

2).
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For i = 1, 2, 3 and 4 we estimate separately P (Xi) and P (ω.v1 = v1 | ω ∈ Xi),
and we estimate the value of the product P (ω.v1 = v1 | ω ∈ X ′

2) · P (X ′
2) as a

whole. The sum of these bounds result in the proof of Theorem 1.
The events X ′

2 and X4 together involve one particular event that implies
a closed walk with probability 1. This event is the “collapse” of the whole
word to the identity matrix. It happens when iterating the reduction operation
(Ass−1B 7→ AB for all invertible matrices A, s and B) ends up with the identity
matrix. The probability of this event denoted C is analysed in [4] (lemma 2):

P(C) =

(
2m+ 1

m

)
(2d)m

2m+ 1

(
1

2d

)2m

≤
(
2

d

)m

.

This is proven by counting the number of well parenthesized words of size 2m
(Catalan number) with d different type of parenthesis. We wish to bound the
probability of having a closed walk when ω’s structure is such that this event
cannot happen.

We express the size of these sets using a more general recursive formula. Let
Xq(c, l, d) be the size of the set of all words of length l, on the alphabet that
consists of d letters and its negations, such that at least c letters appear (with
the positive or negative sign) in this word q times, and the other letters that
appear in it have more occurrences. Then

Xq(c, l, d) =

⌊ l
q ⌋∑

i=c

(
d

i

) i−1∏
j=0

2q
(
l − qj

q

)
Xq+1(0, l − qi, d− i)

Indeed, 2q
(
ℓ
q

)
is the number of ways to place q times the same letters in a word

of size ℓ (each letter can have positive or negative sign). Thus,
∏i−1

j=0 2
q
(
l−qj
q

)
is

the number of ways of repeating i times this operation while removing at every
step q free places. It simplifies as follows

i−1∏
j=0

2q
(
l − qj

q

)
=

(
2q

q!

)i i−1∏
j=0

(l − qj)!

(l − qj − q)!
=

(
2q

q!

)i
l!

(l − qi)!

Note that Xq(0, 0, d) = 1 because we only have one way of placing no letters
in a word of size 0. Moreover, if q > l then Xq(c,m, d) = 0, since the q letters
cannot fit in the word. Using these observations, we have a complete recursive
definition of Xq(c, l, d),

Xq(c, l, d) =


1 if c = 0 and l = 0
0 if q > l∑⌊ l

q ⌋
i=c

(
d
i

)(
2q

q!

)i
l!

(l−qi)!Xq+1(0, l − qi, d− i) otherwise.

Then we get
|X1| = X1(1, 2m, d),

|X3| = X3(1, 2m, d)

and
|X4| = X4(0, 2m, d).
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One can notice that |X3 ⊔X4| = |X3|+ |X4| = X3(0, 2m, d).
Since there are 4i−2i possibilities for choosing the sign of i pairs so that the

letters of at least one of them have same sign, the number of ways of placing

these pairs in the word is
(
d
i

)
(4i−2i)

∏i−1
j=0

(
2m−2j

2

)
=

(
d
i

)
(2i−1) (2m)!

(2m−2i)! . Hence

|X2| =
m∑
i=1

(
d

i

)
(2i − 1)

(2m)!

(2m− 2i)!
X3(0, 2m− 2i, d− i).

Similarly, there are 2i ways of choosing the sign of i pairs of letter so that all
pairs are of different sign. Thus we get

|X ′
2| =

m∑
i=1

(
d

i

)
(2m)!

(2m− 2i)!
X3(0, 2m− 2i, d− i).

This can be summarized with the relation X2(1, 2m, d) = |X2|+ |X ′
2|.

We have already explained that P(ω.v1 = v1|X1) =
1
n . It remains to bound

this probability conditioned to the other events. In what is next, we will set
p = 2. Taking a bigger field might weaken the bounds and complicate the
analysis. We start with X2.

Lemma 3.1.2.

P(ω.v1 = v1|X2) ≤
2

n
.

Proof. Let s be the matrix that appears twice with same sign. The word is
then of the form AsBsC.v1 = v1 with A,B and C some invertible matrices of
known coefficients. We can rewrite this equation as sBs.x = y with x and y
two determined vectors (x = C.v1 and y = A−1.v1). It is useful to name the
different vectors of the product:

s

x′︷ ︸︸ ︷
B s.x︸︷︷︸

y′︸ ︷︷ ︸
y′′

= y.

Since we are in the field of size two there is no non-trivial pairs of parallel
vectors. Hence the step that leads to y′′ is free only if x′ ̸= x. In a larger field
(p > 2), for y′′ to be free, it is necessary that x ̸= αx′ for all non zero α ∈ Fp.
By taking p = 2, a lot of case-by-case analysis is avoided.

Because y′ is necessarily free and since x and x′ = B.y′ are independent,
P(x′ = x) = 1

n . Then, if x′ = x, we have y′′ = y′. This is the probability
that y′′ is forced. If this is not the case, namely if x′ ̸= x (which happens with
probability n−1

n ), then the probability for y′′ to be equal to y is at most 1
n−1

(y′′ cannot be equal to y′ since both steps are free). Therefore,

P(ω.v1 = v1|X2) ≤
1

n
+

n− 1

n

1

n− 1
=

2

n
.

Now we bound the probability P(ωv1 = v1|X3). We proceed the same way
as above, by distinguishing the cases where the final step is free or not. We
prove the following claim:
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Lemma 3.1.3.

P(ω.v1 = v1|“at least a letter appears exactly three times”) ≤ 5

n
.

In particular, we have

P(ω.v1 = v1|X3) ≤
5

n
.

Proof. Under the X3 condition, the word can take four forms that will be anal-
ysed separately:

• sBsCs.x = y

• s−1BsCs.x = y

• sBs−1Cs.x = y

• sBsCs−1.x = y

Any other form can be turned into one of the above by switching s with s−1,
which does not change the argument. The different possibilities can be summa-
rized by writing s1Bs2Cs3.x = y; at most one of s1, s2, s3 is s−1 and the others
are s. We will use the notation below to treat all four cases:

s1

x′′︷ ︸︸ ︷
B s2

x′︷ ︸︸ ︷
C s3.x︸︷︷︸

y′︸ ︷︷ ︸
y′′︸ ︷︷ ︸

y′′′

= y.

We start with the case in which there is no s−1 in ω. Here, the step that
leads to y′′′ is free only if x′′ ̸= x, x′′ ̸= x′ and x′′ ̸= x′ + x′′ (that is, x′′ is not a
linear combination of x′ and x). Since x′ and x are independent, P(x′ = x) = 1

n .
Hence, with probability n−1

n we get that y′′ is free, which means that x′′ = B.y′′

is uniformly distributed among the n − 1 vectors different from B.y′. There
are three values for x′′ that make the final step forced and they are equally
likely, thus P(y′′′ is forced |x′ ̸= x) ≤ 3

n−1 . The opposite case happens with

probability n−4
n−1 . Then P(y′′′ = y) ≤ 1

n−3 . To illustrate the reasoning, we can
represent those probabilities by a tree:

17



x′ = x x′ ̸= x

x′′ = x x′′ ̸= x

x′′ = x′ x′′ ̸= x′

x′′ = x+ x′ x′′ ̸= x+ x′

1
n

n−1
n

1
n−1

n−2
n−1

1
n−2

n−3
n−2

1
n−3

n−4
n−3

The rightmost leaf corresponds to y′′′ being free which gives a probability 1
n−3

of having a closed walk. Therefore,

P(sBsCs.x = y) ≤ 1

n
+

n− 1

n

(
3

n− 1
+

n− 4

n− 1

1

n− 3

)
≤ 5

n
.

Now, consider s3 = s−1. Then y′′ is forced if x′ = y′, but those two vectors
are correlated, so we cannot bound the probability of this event. We will consider
both cases and take the probability of the most likely event as a bound. If
y′ = x′, then y′′ is forced, which implies that y′′ = x. In this case, if x′′ = y′ we
have y′′′ = x. However, x′′ = B.x, which is independent from y′ (which is from
a free step). Hence, the probability for them to be equal is 1

n . In the opposite
case, y′′′ is free, which gives a total probability of this branch of 2

n . We now
suppose that y′′ is free. Then, with probability 3

n−1 , y
′′′ is forced. In the other

case, y′′′ is equal to y with probability at most 1
n−3 . Here is the probability

tree:

x′ = y′

x′′ ̸= y′x′′ = y′

x′ ̸= y′

x′′ = x′ x′′ ̸= x′

x′′ = y′ x′′ ̸= y′

x′′ = y′ + x′ x′′ ̸= y′ + x′

n−1
n

1
n

1
n−1

n−2
n−1

1
n−2

n−3
n−2

1
n−3

n−4
n−3

The branches whose probabilities are close to 1 corresponds to the cases when
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y′′′ is free. Thus we have

P(sBsCs−1.x = y) ≤ max

(
2

n
,

3

n− 1
+

n− 4

n− 1

1

n− 3

)
≤ 4

n− 1
.

When s2 = s−1 the choice of y′′ is forced if x′ = y′, which implies x′′ = B.x.
Then s is defined only on x. If B.x = x then, since y′ is free, P(y′′′ = y) =
P(y′ = y) = 1

n . Otherwise, y′′′ is free, and therefore P(y′′′ = y) = 1
n−1 . On the

other hand, if y′′ is free, then s is defined on x and y′′. Since y′′ is free, x′′ and
x are independent, thus P(x′′ = x) = 1

n−1 . Moreover, if x′′ = y′′, P(y′′′ = y) =

P(x′ = y) = 1
n . If x′′ = y′′ + x, we have y′′′ = x′ + y′ = (C + Idk)y

′ which is
independent from y. Hence, P(y′′′ = y) = 1

n . Otherwise, since three vectors are
excluded, y′′′ is free with probability at most n−3

n . If so, P(y′′ = y) = 1
n−3 . As

before, the case study can be illustrated with a tree:

x′ = y′

x′′ ̸= xx′′ = x

x′ ̸= y′

x′′ = x x′′ ̸= x

x′′ = y′′ x′′ ̸= y′′

x′′ = y′′ + x x′′ ̸= y′′ + x

1
n−1

n−2
n−1

1
n−2

n−3
n−2

Thus, we get

P(sBs−1Cs.x = y) ≤ max

(
2

n− 1
,

3

n− 1
+

n− 2

n− 1

(
n− 3

n− 2

1

n− 3

))
=

4

n− 1
.

Lastly, we consider the case s1 = s−1. Here, y′′ is forced when x′ = x.
Those are not correlated, so this event happens with the probability 1

n . In the
other case, s−1 is defined on y′′ and y′, which are random. If x′′ = y′′, we have
y′′′ = x′ which is equal to y with probability less than 1

n−1 . Since y′′ is free,

y′ and y′′ are independent, hence P(x′′ = y′) = P(x′′ = y′ + y′′) = 1
n−1 . If y′′′

is free, it can take any value with probability 1
n−3 . The last probability tree is

then

19



x′ = x x′ ̸= x

x′′ = y′′ x′′ ̸= y′′

x′′ = y′ x′′ ̸= y′

x′′ = y′ + y′′ x′′ ̸= y′ + y′′

1
n

n−1
n

1
n−2

n−3
n−2

1
n−3

n−4
n−3

Hence we have

P(s−1BsCs.x = 1) ≤ 1

n
+

n− 1

n
max

(
1

n− 2
,

1

n− 2
+

n− 4

n− 2

1

n− 3

)
≤ 5

n
.

By taking the maximum of all these bounds, we conclude the proof.

It remains to bound P(ω.v1 = v1|X ′
2)P(X ′

2). To simplify the notations we
set x3(i) = X3(1, 2m− 2i, d− i) and x4(i) = X4(0, 2m− 2i, d− i). We need to
prove the following statement.

Lemma 3.1.4.

P(ω.v1 = v1|X ′
2)P(X ′

2) ≤(
1

2d

)2m m∑
i=1

(
d

i

)
(2m)!

(2m− 2i)!

[
x3(i) + x4(i)

n
+

2i

(i+ 1)!

(
5

n
x3(i) + x4(i)

)]
. (4)

Proof. Before we proceed with the proof of this lemma we stress again that in
this statement we do not bound separately P(X ′

2) and P(ω.v1 = v1|X ′
2), we

estimate directly the product of these two probabilities, which equals to the
probability of the event

P(ω.v1 = v1 and ω ∈ X ′
2).

The probability is taken, as usual, over the random choice of a word ω of
2m letters and the random choice of invertible matrices assigned to the letters
of this alphabet.

We start the proof with two claims.

Claim 1: Assume that the word ω contains letters t and s exactly twice, and
each of these letters appears once with the positive and once with the negative
sign, and these letters interleave:

ω = . . . t . . . s . . . t−1 . . . s−1 . . . (5)

Then the probability to get a closed walk corresponding to the path ω (probability
taken over the choice of matrices for each letter in the alphabet) is equal to 1/n.
The claim remains true if we swap the positions of the pair of letters s and s−1

and/or of the pair of letters t and t−1.

20



Proof of the claim. Words from X ′
2 are all of the form AsBs−1C with A, B and

C some invertible matrices. Hence, we wish to estimate the probability of the
event sBs−1.x = y, with x = C.v1, and y = A−1.v1. We use the notation

s

x′︷ ︸︸ ︷
B s−1.x︸ ︷︷ ︸

y′︸ ︷︷ ︸
y′′

= y.

Here, the matrix t is a factor of B (hence B = . . . t . . . ). We first suppose that
x = y. Then, if x′ = y′ we have y′′ = x = y. Since t appears in B, x′ is
independent of y′, and thus P(y′ = x′) = 1

n (because this is the first time t is
used in the path). In the opposite case, we have y′′ ̸= y, and the path cannot
be closed.

Now we suppose x ̸= y. Then if y′ = x′ we have y′′ = x ̸= y. If y′ ̸= x′

(which happens with probability n−1
n , y′′ is free, and its value is uniformly

distributed among the n − 1 remaining vectors. Therefore, when we have this
configuration of random matrices in ω, the probability of having a closed walk
is 1

n .

It can be noticed that here, the fact that t appears with different sign is not
used.

Claim 2: Let us take the set of 2i literals

{s1, s−1
1 , . . . , si, s

−1
i }

and consider the set of all words of length (2i) composed of these literals (each
one should be used exactly once). We claim that the fraction of words that
represent a well formed structure of i pairs of parentheses, where each pairs is

associated with some pair of literals (sj , s
−1
j ) or (s−1

j , sj), is equal to 2i

(i+1)! .

Proof of claim. In general, we have (2i)! different ways to distribute (2i) literals
among (2i) positions. Let us count the fraction of permutations where the liter-
als form a structure of i pairs of parentheses. The number of well parenthesized
words (with one type of parentheses) of size 2i is the Catalan number

(
2i+1

i

)
1

2i+1 .
We have i! ways to assign each pair of parentheses with one of i types of literals,
and 2i to chose the signs in each pairs (. . . sj . . . s

−1
j . . . or . . . s−1

j . . . sj . . . for
each of i pairs). Hence, the proportion of the well parenthesized words is(

2i+1
i

)
1

2i+1 i!2
i

(2i)!
=

(2i+ 1)!i!2i

(2i+ 1)!i!(i+ 1)!
=

2i

(i+ 1)!
.

It is easy to see that the absence of pattern 5 is equivalent to having such
well formed structure of parenthesis.

Let us proceed with the proof of the lemma. By definition, in each word
ω ∈ X ′

2 all letters that appear exactly twice must have different signs. In what
follows we denote i that number of letters that appear in ω exactly twice. For
a fixed i, to specify a word ω where i letters appear twice (with opposite signs)
and the other letters appear at least three times, we should
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• choose i letters among d (those who appear exactly twice), which gives(
d
i

)
combinations;

• choose 2i positions in the word ω of length 2m where we place the letters
that appear twice, which gives

(
2m
2i

)
combination;

• fix a permutations of the (2i) literals on the chosen (2i) positions, which
gives (2i)! combinations;

• fill the remaining (2m − 2i) positions of ω with other letters, using each
letter at least three times; we subdivide these combinations into two sub-
cases:

– there is at least one letter that is used exactly three times; we have
x3(i) = X3(1, 2m− 2i, d− i) possibilities to do it;

– there is no letter that is used exactly three times, i.e., each letter
(besides the i letters that were used twice) must be used at least four
times; we have x4(i) = X4(0, 2m− 2i, d− i) possibilities to fill in this
way the remaining (2m− 2i) positions.

The i pairs of letters in ω contain the pattern (5) may contain or not contain

the pattern (5). By Claim 2, the latter is the case for the fraction 2i

(i+1)! of all ω

(with i pairs) and, respectively, the former is the case for the fraction 1− 2i

(i+1)!

of these words.
If the i pairs of letters in ω contain the pattern (5), then by Claim 1 the

probability that ω provides a closed path is at most 1
n (probability taken over

the choice of matrices for each letter in the alphabet). Since we have in total
(2d)2m words ω, this case contributes to the resulting probability P(ω.v1 =
v1 and ω ∈ X ′

2) at most(
1

2d

)2m(
d

i

)(
2m

2i

)
(2i)!

(
1− 2i

(i+ 1)!

)
(x3(i) + x4(i)) ·

1

n

(in what follows we bound 1− 2i

(i+1)! by 1).

If the i pairs of letters in ω do not contain the pattern (5) but one of other
letters appear in ω exactly thee times, then the probability to have a closed path
is at most 5

n , as shown in Lemma 3.1.3. This case contributes to the resulting
probability at most(

1

2d

)2m(
d

i

)(
2m

2i

)
(2i)! · 2i

(i+ 1)!
· x3(i) ·

5

n

At last, if ω does not contain the pattern (5) and all other letters appearing in
ω are used more than three times, then we trivially bound the probability to
have a closed path by 1. This contributes to the resulting probability(

1

2d

)2m(
d

i

)(
2m

2i

)
(2i)! · 2i

(i+ 1)!
· x4(i).

Summing these quantities for all possible values of i and observing that
(
2m
2i

)
(2i)! =

(2m)!
(2m−2i)! , we obtain the statement of the lemma.
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We proceed with similar bounds for the other sets of words:

P(ω.v1 = v1|X1)P(X1) ≤
1

n

(
1

2d

)2m

|X1|,

P(ω.v1 = v1|X2)P(X2) ≤
2

n

(
1

2d

)2m

|X2|,

P(ω.v1 = v1|X3)P(X3) ≤
5

n

(
1

2d

)2m

|X2|,

and

P(ω.v1 = v1|X4)P(X4) ≤
(

1

2d

)2m

|X4|.

The sum of these expressions is larger than P11 defined at the beginning of this
section. By replacing it in equation 3, we complete the proof. It is easy to see
that the rough bounding used in the proof of Theorem 3 gives a larger bound
than that of Theorem 2.

3.2 Proof of Theorem 2

We now can adapt this proof to get a similar bound for d-regular bipartite
graphs. Let G = SchBP (Glk(Z2) ⟲ (Zk

2)
∗, D) and M be its normalised adja-

cency matrix. In order to associate its coordinate to vertices we can proceed as
in the preceding section by mapping surjectively [[1, 2(2k − 1)]] to (Zk

2)
∗, taking

care of distinguishing the vectors of the first and the second partition. Here,
we set 2n = 2(2k − 1), the number of vertices in the graph. Let us start by
adapting the trace method to the bipartite graphs. One can remark that the
adjacency matrix of G is of the form

M =

(
0 A
tA 0

)
where tA is the transposition of A. In a bipartite graph, it is known that
the spectrum |µ1| ≥ · · · ≥ |µ2n| is symmetric with respect to zero. Hence for
1 ≤ i ≤ n, we have |µ2i+1| = |µ2(i+1)|. This way we get

n−1∑
i=0

2µ2m
2i+1 = Trace(M2m).

In order to study the spectral gap, the relevant quantity to estimate is then
|µ3| = |µ4|. Since |µ1| = |µ2| = 1, we thus obtain

2µ2m
3 ≤

n−1∑
i=1

2µ2m
2i+1 = Trace(M2m)− 2.

As we have seen in section 3.1, the expected value of Trace(M2m) is the sum
of the probability of getting of closed path of size 2m, starting on each vertex.
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We note this probability Pii for the vertex i. It is the same for every vertex,
hence we get, by using Jensen’s inequality

E(|µ3|) ≤
(
1

2
(E(Trace(M2m))− 2)

) 1
2m

= (nP11 − 1)
1

2m . (6)

One can notice that here, n is the size of the partition, not the size of the graph.
Indeed, with an even number of steps, the path must end in the same partition
as it started, which eliminates half of the vertices.

We first explain why the construction for even degree regular bipartite graphs
gives the same bound as Theorem 1. Here, a random walk can be represented as
a sequence of matrices of D ∪D−1. This is because every vertex x is connected
to s.x and s−1.x. Each element of the sequence is chosen independently of the
others. It is then easy to see that the structure of the walk is exactly the same
as in the non bipartite case: a uniformly random sequence of 2m matrices from
D∪D−1. The same proof can then be applied to this sequence, the elements of
the sequence will then behave the same way as in the preceding section.

However, some work needs to be done for graphs of odd degree. In order to
apply here a similar reasoning as in the previous section, we need to understand
what a random walk in G looks like in terms of the matrices of D.

x

z

y

Si

S−1
j

Figure 4: The steps of the random walk work by pairs of matrices of D; the first
one brings us on a vertex of the right hand side, the other is for the way back.

In a bipartite regular graph obtained by our construction, a random walk
of size 2m is a sequence ω of elements of D chosen independently at random.
As usual, every edge in the graph corresponds to some invertible matrix. In
the case of a bipartite graph we assume that the multiplication by the matrices
transforms the vertices in the left part into the vertices of the right part. Thus,
in a random walk on such a graph, the matrices that appear in an odd position
in ω are taken with the positive sign, while the matrices that appear in an even
step are taken with the negative sign, see Fig. 4.

We wish to proceed as in the preceding section, by partitioning the set of
possible sequences (words) so that we can analyse the probability of having a
closed walk conditioned to the sets this partition. In order to reuse the results
above, we choose a similar partitioning. There is a minor difference: now the
signs of matrices appearing in ω are fixed (positive for odd position and negative
for the others). Hence, the number of possible words is d2m. We define the sets
before determining their size:

• Y1 : “at least one letter appears exactly once”
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• Y2 : Y1 ∧ ”at least one letter appears exactly twice”

• Y3 : “no letter appear once or twice, at least one letter appears exactly
three times”

• Y4 : “no letter appear once, twice, nor three times”

Up to this point, it is not hard to understand why the bound of Theorem 3
holds. Indeed, the sign of the matrices do not play any role in the proof, so
the probability of Y1 can be bounded by the same quantity as in the previous
section. In addition, the probability of having a closed walk conditioned to Y1

is also 1
n (n is the size of a partition). Therefore, Theorem 3 applies to bipartite

regular graphs.
We can define the analogous recursive relation used in the preceding part.

Since this formula represents a quantity that does not depend on the sign of the
letters (they are determined by the parity of the positions), we can just ignore
them:

Yq(c, l, d) =


1 if c = 0 and l = 0
0 if q > l∑⌊ l

q ⌋
i=c

(
d
i

)
(q!)−i l!

(l−qi)!Yq+1(0, l − qi, d− i) otherwise.

As before, Yq(c, l, d) is the number of words of size l on alphabet of size d that
have at least c different letters that appear q times and whose other present
letters have more occurrences. The only difference with Xq(c, l, d) is that we do
not deal with signs. For the same reason, we have

|Y1| = Y1(1, 2m, d),

|Y2| = Y2(1, 2m, d),

|Y3| = Y3(1, 2m, d)

and
|Y4| = Y4(0, 2m, d).

We have already shown that when one letter appears exactly once, the prob-
ability of having a closed walk is 1

n . Similarly, when a letter appears exactly
three times, the probability of getting a closed walk is less than 5

n . Indeed,
in the proof of Lemma 3.1.3, all possible configurations of signs for the let-
ter that appears three times are considered (e.g. ω = . . . s . . . s−1 . . . s . . . or
. . . s . . . s . . . s−1 . . . ). No assumption is done on their respective probabilities to
occur. These probabilities may or may not be different in the bipartite setting.
Since this bound ( 5n ) is the maximum over all the probabilities of getting a
closed walk with each configuration of signs, the resulting bound for the proba-
bility of getting a closed walk in the bipartite case remains the same. Hence we
get

P(ω.v1 = v1|Y1)P(Y1) ≤
(
1

d

)2m

Y1(1, 2m, d)
1

n

and

P(ω.v1 = v1|Y3)P(Y3) ≤
(
1

d

)2m

Y3(1, 2m, d)
5

n
.
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As before, we do not bound the probability of getting a closed walk under
condition Y4. Then

P(ω.v1 = v1|Y4)P(Y4) ≤
(
1

d

)2m

Y4(0, 2m, d).

We now estimate P(ω.v1 = v1|Y2)P(Y2). We set y3(i) = Y3(1, 2m−2i, d− i)
and y4(i) = Y4(0, 2m− 2i, d− i).

Lemma 3.2.1.

P(ω.v1 = v1|Y2)P(Y2) ≤

Y2(1, 2m, d)
2

n
+

m∑
i=1

(
d

i

)(
1

2

)i
(2m!)

(2m− 2i)!

2i

(i+ 1)!

(
y3(i)

5

n
+ y4(i)

)
(7)

Proof. We proceed in a similar way as in the proof of lemma 3.1.4. Consider we
have i pairs of matrices that appear exactly twice in ω. In the bipartite setting,
the signs are forced by the parity of the position of each letter. We thus choose
to ignore them. Then, the probability of having no pair (s, t) such that we have

the pattern ω = . . . s . . . t . . . s . . . t . . . is 2i

(i+1)! . The proof is the same as that of

claim 2 in Lemma 3.1.4, except that the numerator and the denominator of the
fraction are both divided by 2i (because we ignore the signs).

Using the proof of Lemma 3.1.2, we conclude that, if a letter appears twice
with the same sign, the probability of having a closed walk is less than 2

n . If
there is a pair (s, t), ω = . . . s . . . t . . . s−1 . . . t−1 . . . , then, by using the argument
from lemma 3.1.4 (claim 1), the probability of getting a closed walk is 1

n . If those
cases do not happen, we still can bound the probability of getting a closed walk
using lemma 3.1.3 when at least a letter appears three times. The conditional
probability of getting a closed walk is then less than 5

n .
Let us combine together all these bounds.

• The union of the event in which a letter appears exactly twice with
same sign, and the event where the letters that appear twice form a bad
parenthesized word (if we forget about the signs) has size smaller than
Y2(1, 2m, d). The probability of getting a closed walk in this case is not
greater than 2

n .

• The size of the event in which this bound does not apply, but we can apply
the bound from lemma 3.1.3 (which is 5

n ) can be computed as follows.

(2i)!
(
2m
2i

)
is the number of ways of placing i pairs of letters with different

sign in 2m positions. Since we ignore the sign, this quantity has to be

divided by 2i which gives ( 12 )
i (2m!)
(2m−2i)! . A fraction 2i

(i+1)! of them are well

formed. y3(i) is the numbers of ways of filling the remaining gaps so that
no letter appear once nor twice, and at least letter appears three times.
Choosing the i pairs among the d possible ones and summing over all
i ≤ 2m, we get

m∑
i=1

(
d

i

)(
1

2

)i
(2m!)

(2m− 2i)!

2i

(i+ 1)!
y3(i).
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• Similarly, the number of remaining words that correspond to walks whose
probability of being closed is not estimated is

m∑
i=1

(
d

i

)(
1

2

)i
(2m!)

(2m− 2i)!

2i

(i+ 1)!
y4(i).

Summing all theses quantities, multiplying them by their respective probabilities
of getting a closed walk and dividing the whole expression by the number of
possible words (that is d2m), we can conclude.

Summing all the above probabilities and substituting this in 6 finishes the
proof of Theorem 2.

3.3 Proof of Corollary 1

We now turn to bound the second largest eigenvalue for biregular graphs. Let

G = SchBP (GLk(Zp) ⟲ (Zk
p)

∗, D, γ).

We note n1 = pk−1, the size of the first partition, n2 = n1

γ the size of the second

one, and γ = d2

d1
, thus d1 and d2 are the respective degrees of each partition of

the graph. Let

P =

(
0 M

tM 0

)
be its adjacency matrix. Hence M has dimension n1 × n2. Let

Q =

(
0 A
tA 0

)
the adjacency matrix of

G′ = SchBP (GLk(Zp) ⟲ (Zk
p)

∗, D),

which is the bipartite regular graph before merging the vertices of the right
partition. We set J such that M.tM = A.J.tA, thus J = In2

⊗ Jγ , where Jγ is
the γ × γ matrix whose entries are only ones and ⊗ is the Kronecker product.
An example of resulting paths is shown in Fig. 5.

We set A = (aij)i,j∈[[1, n1]]. All A’s columns and rows sum up to d1 —so
does tA. We can show that for every x = (x1, . . . , xn1) orthogonal to e1 =
1√
n1

(1, . . . , 1), Ax is also orthogonal to e. Indeed, the coordinates of such an x

sum up to zero. We denote Ax = (y1, . . . , yn1
). Then

n1∑
i=1

yi =

n1∑
i=1

n1∑
j=1

aijxj =

n1∑
j=1

xj

n1∑
i=1

aij = d1

n1∑
j=1

xj = 0.

Therefore, Ax is orthogonal to e. The same is true for tAx.
On the other hand, it is easy to see that the spectrum of J is

(γ, ..., γ,︸ ︷︷ ︸
n2

0, ..., 0)︸ ︷︷ ︸
n1−n2

.
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tA J A

Figure 5: Traveling three steps starting from the left in this directed graph is
equivalent to doing two steps in the bipartite graph (starting from the left as
well) with merged vertices on the right. The merging operation is represented
by J which corresponds to the complete bipartite graphs in the middle. Here
n1 = 6, n2 = 2, d1 = 1, d2 = 3.

Let λ2(X) be the second largest eigenvalue of some square matrix X and let
x be the normalised eigenvector associated to λ2(M.tM). For every positive
number q, we have

|λ2(M.tM)q| = ||(A.J.tA)q.x|| = ||A(J.tA.A)q−1J.tA.x|| ≤ γd1||A(J.tA.A)q−1x′||

with x′ a normalised vector orthogonal to e (because of the preceding fact).
Hence

||(J.tA.A)q−1x′|| ≤ γq−1|λq−1
2 (tA.A)|.

We conclude that

|λ2(M.tM)q| ≤ d21γ
q|λ2(

tA.A)q−1| = d1d2(γ|λ2(
tA.A)|)q−1.

Since this is a positive quantity, its q-th root is defined:

λ2(M.tM) ≤
(
d1d2(γ|λ2(

tA.A)|)q−1

) 1
q

=

(
d1d2

(γ|λ2(
tA.A)|)q

|λ2(tA.A)|

) 1
q

which gives

λ2(M.tM) ≤
(

d1d2
|λ2(tA.A)|

) 1
q

γ|λ2(
tA.A)|

By taking the limits when q goes to infinity, we obtain

λ2(M.tM) ≤ γ|λ2(
tA.A)|

To finish the proof, we show the following:

Lemma 3.3.1. If λ is an eigenvalue of P then λ2 is an eigenvalue of M.tM .
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Proof. P 2, whose entries represents the paths of size two in the graph, is the
matrix of a disconnected d1d2-regular graph. Indeed, we can remark that

P 2 =

(
M.tM 0

0 tM.M

)
and M.tM is symmetric. Let

v = (v1, v2, . . . , vn1+n2
)

be an eigenvector of P with eigenvalue λ. Then

v′ = (−v1,−v2, . . . ,−vn1
, vn1+1, . . . , vn1+n2

)

is also an eigenvector with associated eigenvalue −λ. Thus, v − v′ is an eigen-
vector of P 2 of eigenvalue λ2 and this vector has n2 zeros on the right. Because
P 2 represents a disconected graph, if we reduce the dimension of this vector by
n2 (removing the zeros on the right corresponding to one connected component)
we get an eigenvector of M.tM of eigenvalue λ2. Therefore, M.tM has the same
eigenvalues —denoted µ1 ≥ µ2... ≥ µn1— as P , but squared.

The proof works the same with Q (taking n1 = n2). We note α the bound
for |µ3(Q)| proven in the preceding section. α might refer to the bound from
Theorem 1 if the graph is obtained from a bipartite regular graph of even degree
or to the bound from Theorem 2 if its degree is odd. In tA.A, the second largest
magnitude eigenvalue is thus |λ2(

tA.A)| = (d1|µ3(Q)|)2 ≤ d21α
2. Hence we have

|λ2(P )| =
√
|λ2(M.tM)| ≤

√
γ|λ2(A.tA)| ≤

√
d1d2α.

4 Final comments

In section 3.1, we have seen that the probability for the random walk to collapse
to the identity sequence is less than ( 2d )

m. If so, the probability of getting a
closed walk (conditioned by the collapsing event) is then 1. When the collapse
does not happen, we cannot hope for a smaller probability than 1

n to get a closed
path in the graph. This is the smallest probability of a closed walk one can get
in a random graph. The trace method gives then

E(|µ2|) ≤
(
n

(
1

n
+

(
2

d

)m)
− 1

) 1
2m

= n
1

2m

√
2

d
.

With m = Ω(lnn), we get E(|µ2|) = O(d−
1
2 ), which is bigger than the bound

from [9] only by a constant factor. This suggests that this technique can be
improved by a subtler subdivision of the probability space of ω, as well as a
more careful analysis of the probability of having a closed walk (specially with
the condition X ′

2 ∩X4 for X ′
2 and X4 defined on page 14).

Let us observe that the term n
1

2m is getting close to 1 only when m =
Ω(log n). This is why in [4] or [2], the length of the random walk (2m) is
logarithmic in the number of vertices. Our computations show that the optimal
size of the walk should be a bit smaller; this might be because it allows us to
assume that, with the overwhelming probability, at least one letter appears in
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ω exactly one time (the event X1 in the proof of Theorems 1 and 3). Clearly,

we cannot keep m small and at the same time make the factor n
1

2m close to 1.
This is an important limitation of our technique.

Our experimental results show that the second largest eigenvalue distribution
measured for these graphs is much closer to that we can observe in the permu-
tation model, at least in high dimension, and with a small field. A reasonable
conjecture might be the following:

Conjecture 1. Let Gk = Sch(GLk(Zp) ⟲ (Zk
p)

∗, S) with S a random subset
of GLk(Zp) and p a prime number. Let G′

k be a 2|S|-regular graph from the
permutation model of size pk−1. Then, as k grows, the second largest eigenvalue
distribution of G converges to that of G′.

We believe that similar statements are true for bipartite regular and biregular
graphs from our construction.

Conclusion. In this paper we study a pseudo-random construction of spec-
tral expanders represented as Schreier graphs. The experimental results suggest
that these graphs have nearly optimal value for the second largest eigenvalues
(not only when the size of the graph goes to infinity but also for graspable
sizes relevant for practical applications). Theoretical results proven above are
the first step to explain these experimental results. Instead of more traditional
asymptotic bounds, we focused on theoretical bound that can be calculated
(possibly with help of computer) for graphs of rather small size involved in
our numerical experiments. We observe the limitations of the method of mo-
ments used in our proof which often leads to dealing with too many cases.
A more precise theoretical explanation of the behaviour of random Schreier
graphs Sch(GLk(Zp) ⟲ (Zk

p)
∗, S) will require a subtler analysis. Another pos-

sible direction of the future research is a reduction of the number of random
bits used to produce each graph. It would be interesting to reduce the number
of these bits from O(d log2 n) to O(d log n), which would bridge the gap be-
tween (pseudo)random and deterministic constructions. We would also like to
draw attention to the theoretical bounds and estimates obtained with the help
of “hideous” formulas combined with computer calculations. We believe that
such an approach can be justified when studying properties of relatively small
graphs.
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