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In past decades, much progress has been obtained in vision-based robot control theories with traditional image processing methods. With the advances in deep learning based methods, Convolutional Neural Network (CNN) has now replaced the traditional image processing methods for object detection and recognition. However, it is not clear how the CNN-based methods can be integrated into robot control theories in a stable and predictable manner for object detection and tracking, especially when the aspect ratio of the object is unknown and also varies during manipulation. In this paper, we develop a vision-based control method for robots with an eye-in-hand configuration, which can be directly integrated with existing CNN-based object detectors. The task variables are generated based on parameters of the bounding box from the output of any real-time CNN object detector such as You Only Look Once (Yolo). To address the chattering problem of bounding box, Long Short-Term Memory (LSTM) is used to provide smoothed bounding box information. A vision-based controller is then proposed following task-space motion control design formulation in order to keep the object of unknown aspect ratio in the center of field of view of the camera. The stability of the overall closed-loop control system is analyzed rigorously using Lyapunov-like approach. Experimental results are presented to illustrate the performance of the proposed CNNbased robot controller.

I. INTRODUCTION

V ISION system constitutes an important part of robotic systems as it provides useful information for decision and control. With the help of visual information, the objects to be tracked or manipulated can be identified, localized and their geometric relationships with respect to the robotic systems can also be obtained. Based on that, visual servoing and vision-based robot control methods have been developed for various applications. Robot control is known to be a challenging control problem because of the non-linearity and uncertainty of the kinematics and dynamics. Most of the robot control theories with dynamic uncertainty (see [START_REF] Lewis | Control of robot manipulators[END_REF]- [START_REF] Ortega | Adaptive motion control of rigid robots: A tutorial[END_REF] and the references therein) were inspired by the pioneer work in [START_REF] Takegaki | A new feedback method for dynamic control of manipulators[END_REF] where Lyapunov method was first introduced in robot control.

In general, robot motion control [START_REF] Siciliano | Motion control[END_REF] can be mainly classified into joint space control [START_REF] Arimoto | Control theory of nonlinear mechanical systems:a passivity-based and circuit-theoretic approach[END_REF] and task space [START_REF] Takegaki | A new feedback method for dynamic control of manipulators[END_REF] or operational space [START_REF] Khatib | A unified approach for motion and force control of robot manipulators: The operational space formulation[END_REF] control. Traditionally, robots have been mostly used in factory automation where the environment is structured and fixed. In such scenarios, the control tasks are less challenging in the sense that the target objects can usually be detected with sufficient accuracy as uncertain factors can be greatly suppressed and therefore joint space control methods can be directly applied. With the recent advances in robotic and sensing technologies, robots have found their way to many new applications in many emerging industries/areas such as constructions, logistics, transportation and healthcare. In these applications, the control tasks face new challenges including complex working environments, noisy and inaccurate sensor measurements, calibration or kinematic errors etc.

To address the kinematic uncertainty issues in motion control problems caused by these challenges, some earlier works have been proposed [START_REF] Cheah | Feedback control for robotic manipulator with uncertain kinematics and dynamics[END_REF]- [START_REF] Cheah | Adaptive tracking control for robots with unknown kinematic and dynamic properties[END_REF]. Approximate Jacobian controllers [START_REF] Cheah | Feedback control for robotic manipulator with uncertain kinematics and dynamics[END_REF], [START_REF] Cheah | Approximate jacobian control for robots with uncertain kinematics and dynamics[END_REF] were first developed for setpoint control of robot with uncertain kinematics and dynamics. The first adaptive Jacobian controller for tracking control of robots with uncertain kinematics and dynamics was developed in [START_REF] Cheah | Adaptive tracking control for robots with unknown kinematic and dynamic properties[END_REF], by using the concept of modular adaptive law to update the kinematic and dynamic parameters separately. Motivated by these works [START_REF] Cheah | Feedback control for robotic manipulator with uncertain kinematics and dynamics[END_REF]- [START_REF] Cheah | Adaptive tracking control for robots with unknown kinematic and dynamic properties[END_REF], considerable achievements have been obtained in understanding the setpoint and trajectory tracking control problems with kinematic uncertainty later on [START_REF] Dixon | Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics[END_REF]- [START_REF] Li | Adaptive imagespace regulation for robotic systems[END_REF]. A setpoint control problem with amplitude limited control inputs was considered in [START_REF] Dixon | Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics[END_REF]. A prediction error based adaptive Jacobian controller was developed in [START_REF] Wang | Prediction error based adaptive jacobian tracking of robots with uncertain kinematics and dynamics[END_REF] for tracking control tasks. In vision-based control tasks, the parameters of depth information between the features and the camera could not be adapted together with other kinematic parameters due to the non-linearity property. To overcome this problem, a depth-independent control method was developed in [START_REF] Liu | Uncalibrated visual servoing of robots using a depth-independent interaction matrix[END_REF]. Later on, it was found in [START_REF] Cheah | Adaptive jacobian vision based control for robots with uncertain depth information[END_REF] that the parameters of the depth information could be updated separately based on the concept of modular adaptive law. To isolate the design and analysis of the kinematic control system in task-space control, a separation approach was developed in [START_REF] Wang | Adaptive control of robot manipulators with uncertain kinematics and dynamics[END_REF], [START_REF] Li | Adaptive imagespace regulation for robotic systems[END_REF]. Besides the traditional setpoint control and trajectory tracking control, the concept of region reaching control was proposed in [START_REF] Cheah | Region-reaching control of robots[END_REF] where the desired control objective was specified as a region instead of a desired point or trajectory. In these works [START_REF] Cheah | Feedback control for robotic manipulator with uncertain kinematics and dynamics[END_REF]- [START_REF] Cheah | Region-reaching control of robots[END_REF], the structure of the Jacobian is assumed to be known. Recently, a deep neural-network based robot controller [START_REF] Nguyen | Analytic deep neural network-based robot control[END_REF] was developed for robot control with unknown Jacobian based on fully connected neural networks. These methods [START_REF] Cheah | Feedback control for robotic manipulator with uncertain kinematics and dynamics[END_REF]- [START_REF] Nguyen | Analytic deep neural network-based robot control[END_REF] were developed based on the assumption that external sensor measurements, such as vision systems using traditional image processing, are available with fidelity.

Traditional image processing techniques have enabled the development of kinematics based visual servoing [START_REF] Hutchinson | A tutorial on visual servo control[END_REF], [START_REF] Chaumette | Visual servo control. i. basic approaches[END_REF] which does not consider the effects of robot dynamics in the control process. This field has mainly been considered as a standalone research field in robotics but some recent efforts have been made to integrate the kinematic servoing laws with dynamic control theories based on the separation approach [START_REF] Wang | Adaptive control of robot manipulators with uncertain kinematics and dynamics[END_REF], [START_REF] Li | Adaptive imagespace regulation for robotic systems[END_REF]. Some research efforts have also been devoted to solving visual servoing problems with visibility constraints, which inherently arise owing to the limited field of view of the camera. The authors in [START_REF] Bechlioulis | Robust image-based visual servoing with prescribed performance under field of view constraints[END_REF] presented a prescribed performance visual servoing scheme with a predefined visibility constraint. Similar to other pixel-based methods based on image processing, this method would also fail if the object features cannot be distinguished easily from the background. Moreover, Miao et al. [START_REF] Miao | Visionbased formation control of mobile robots with fov constraints and unknown feature depth[END_REF] considered a visionbased formation control problem with field of view constraints. But again, pixel-based method with a fixed constraint was used. The vision-based control problems with limited field of view [START_REF] Li | Robotic cell manipulation using optical tweezers with limited fov[END_REF] could also be solved by using the concept of regionbased control [START_REF] Cheah | Region-reaching control of robots[END_REF], [START_REF] Cheah | Region-based shape control for a swarm of robots[END_REF], [START_REF] Hou | Dynamic compound shape control of robot swarm[END_REF]. Although using a desired region is more robust, it is also hard to pre-set the desired region for unknown objects, as it shares a similar problem as using a fixed constraint.

All aforementioned robot control methods [START_REF] Cheah | Feedback control for robotic manipulator with uncertain kinematics and dynamics[END_REF]- [START_REF] Li | Robotic cell manipulation using optical tweezers with limited fov[END_REF] were developed based on traditional image processing. However, it is noted that current state-of-the-art techniques for object detection are mainly based on deep neural networks [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]- [START_REF] Schmidhuber | Deep learning in neural networks: An overview[END_REF]. As one of the most effective networks in the deep learning field for image classifications, Convolutional Neural Network (CNN) [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]- [START_REF] He | Deep residual learning for image recognition[END_REF] have made impressive achievements in many areas, thanks to their advantages of fast training, sharing weights, and downsampling dimensionality reduction. Inspired by CNN, Region Convolutional Neural Network (R-CNN) was proposed in 2014, which means Regions with CNN features [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. Compared with traditional CNN which is mainly used for object classifications, R-CNN can also achieve object detection and tracking. Other types of object detection algorithms based on CNN include Single-shot detector (SSD) [START_REF] Liu | Ssd: Single shot multibox detector[END_REF] and You Only Look Once (Yolo) [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF], [START_REF] Redmon | Yolov3: An incremental improvement[END_REF]. With these methods, bounding boxes of the target objects and their class probabilities of prediction can be generated from camera image synchronously in real time. But these works have been carried out purely for vision-based object detection purpose and no link to robot control theory has been considered. Although CNN has made significant impacts especially in signal processing domains like image processing and voice recognition, little literature has been reported about CNN based visual servoing for robots [START_REF] Saxena | Exploring convolutional networks for end-to-end visual servoing[END_REF]- [START_REF] Tokuda | Convolutional neural network-based visual servoing for eye-to-hand manipulator[END_REF]. Most of the reported works focus on obtaining the relationship between the image and the expected output by training a CNN-based model. The authors in [START_REF] Saxena | Exploring convolutional networks for end-to-end visual servoing[END_REF] found that CNN based visual servo commands could be generated for unmanned autonomous vehicle (UAV), by minimizing the estimated relative camera pose based on the target and current images. However, it was assumed that a desired image for the target camera pose could be obtained in advance. In [START_REF] Bateux | Training deep neural networks for visual servoing[END_REF], a deep neural network-based method which combines AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] was proposed. The authors focused on how to create a dataset automatically and efficiently for the network training rather than robot control. A network [START_REF] Tokuda | Convolutional neural network-based visual servoing for eye-to-hand manipulator[END_REF] called difference of encoded features driven interaction matrix network (DEFINet) was proposed to estimate the relative pose for an eye-to-hand camera. This method cannot be easily expanded to the eye-in-hand system as it is difficult to obtain the model due to changes in the field of view. In these methods [START_REF] Saxena | Exploring convolutional networks for end-to-end visual servoing[END_REF]- [START_REF] Tokuda | Convolutional neural network-based visual servoing for eye-to-hand manipulator[END_REF], a desired position/pose or target image must be specified for the robot in order to define the control task. However, in actual implementations, little information can be obtained in advance for the target, such as desired or target image, size, aspect ratio of target objects, etc. If the prior information of the target object cannot be obtained, then the control tasks cannot be accomplished by these methods.

Although existing CNNs play an important role in object detection in the domain of computer vision, to the best of our knowledge, there is no robot controller which incorporates existing CNN-based object detector for object detection and tracking purpose and meanwhile guarantees the control performance under the Lyapunov analysis framework. Therefore, the stable vision-based robot control method integrating CNNbased object detector with rigorous theoretic support remains an open problem. The main difficulty lies in that the bounding box of an object generated by CNN-based object detector has different aspect ratios in the field of view of camera due to different viewing distance and orientation angle. Therefore, for an uncertain object, it is impossible to pre-define the exact bounding box aspect ratio before the control task.

The contributions and novelties of this paper are therefore listed as follows:

(1) A novel CNN-based robot control method is proposed to detect and track objects with unknown aspect ratio by positioning the object within a desired region in the field of view. To the best of our knowledge, it is the first study to integrate CNN-based object detectors into the synthesis of a stable vision-based robot controller with rigorous theoretic support under the Lyapunov analysis framework.

(2) By setting a desired range instead of exact values for the object bounding box, the proposed method can tolerate uncertainty and changes in the object geometric shape within the camera image and thus provides a flexible and controllable strategy for the object detection and tracking.

As CNN-based detector output may contain random noises, chattering in the detector output is inevitable. Long Short-Term Memory (LSTM) is then used to provide a smoothed output for the task variables and it is easy to implement together with the CNN object detector. A series of experiments with different objects have been conducted to verify the effectiveness of the proposed CNN-based robot control method for object detection with eye-in-hand configuration.

II. PROBLEM FORMULATION

In this paper, we consider a vision-based robot control problem by using a CNN object detector. A robot manipulator mounted with a camera is used to detect a target object as illustrated in Fig. 1 and a CNN based robot controller is developed to move the camera. This configuration is known as the eye-in-hand configuration [START_REF] Hutchinson | A tutorial on visual servo control[END_REF], [START_REF] Chaumette | Visual servo control. i. basic approaches[END_REF], [START_REF] He | Eye-in-hand visual servoing control of robot manipulators based on an input mapping method[END_REF], [START_REF] Cui | Visual servoing of a flexible aerial refueling boom with an eye-in-hand camera[END_REF] in the literature. The main objective in this paper is to control the robot based on the CNN object detector so that the target object is positioned within a desired area of the image field of view without knowing the position and aspect ratio of the object.

A. CNN based Objector Detector

As a classic representative deep neural network, CNN has shown great success in image classification tasks. A typical structure of CNN which consists of several convolutional layers and fully connected layers is shown in Fig. 2(a). Given an input image, the network generates an output value which represents the probability that the image belongs to a certain class. A higher probability is more meaningful for correct detection. Besides classification problems, CNN can also be extended to object detection tasks. In image classification, a class label of each image is assigned based on the output value; whereas in object detection, the location of the object of interest in the image is detected by generating a bounding box around the object, in addition to assigning a class label. Inspired by the development of R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], several CNNbased methods such as faster-RCNN [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF], SSD [START_REF] Liu | Ssd: Single shot multibox detector[END_REF], Yolo [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF], [START_REF] Redmon | Yolov3: An incremental improvement[END_REF] were developed to achieve object detection in real time. These CNN-based object detectors possess different structures and Fig. 2(b) shows an illustration based on Yolov3 [START_REF] Redmon | Yolov3: An incremental improvement[END_REF]. It is also possible to convert any CNN into an object detector by constructing an image pyramid [START_REF] Lin | Feature pyramid networks for object detection[END_REF].

B. Kinematic mapping and Jacobian Matrix between Image Space and Robot Joint Space

To achieve vision-based robot control using CNN-based objector detector, the relationship between camera image space and robot joint space should first be introduced. In this section, the kinematic mapping between image space and robot joint space and the associated Jacobian matrix are described.

Let x i ∈ R 2 represents the ith feature point's position of the object in the camera image space. ẋi represent its velocities in image space, while ṙ denote velocity in robot base frame. The relationship between velocities in image space and robot base frame is given as [START_REF] Cheah | Adaptive jacobian vision based control for robots with uncertain depth information[END_REF], [START_REF] Li | Adaptive imagespace regulation for robotic systems[END_REF], [START_REF] Hutchinson | A tutorial on visual servo control[END_REF], [START_REF] Kelly | Stable visual servoing of camera-in-hand robotic systems[END_REF]:

ẋi = 1 z i (q) J i (r i ) ṙ (1) 
where matrix 1 zi(q) J i (x i ) represents the Jacobian matrix of mapping from end-effector base to image space, z i (q) ∈ R denotes as the depth of the feature point with respect to the camera frame [START_REF] Kelly | Stable visual servoing of camera-in-hand robotic systems[END_REF].

The relationship between velocity vector ṙ and joint velocity q can be expressd as:

ṙ = J r (q) q (2)
where J r (q) is the Jacobian matrix of manipulator from the joint space to Cartesian space.

C. Control objective

We consider an eye-in-hand configuration where the target object is within the focal length and field of view (FOV) of the camera as illustrated in Fig. 1. The control objective is to move the camera so as to keep the object of unknown aspect ratio in the center of FOV and simultaneously satisfy a constraint of width or height to maximise the view (see Fig. 3(d)), which therefore achieves a better display of the object under monitoring. Generally, better view of the object leads to better detection result by the detector which comes with higher output probability value of confidence level.

The main difficulty in achieving the control objective is that the geometric shape and position of the object in image is usually unknown in advance and the aspect ratio of the bounding box may vary depending on the position and pose of the camera with respect to the object of interest. Fig. 3(b)∼(c) show another example where the aspect ratio of the bounding box changes because of the movement of the target.

III. CNN-BASED ROBOT CONTROL METHOD

To address the problem as described in previous section, a CNN-based control scheme is proposed in this work resorting to a novel reference joint velocity design which aims to minimize a potential energy function and hence leads to convergence of location and size of the target bounding box to the desired region. The overall block diagram of the control system is shown in Fig. 1.

A. Reference Joint Velocity Generation based on CNN-based Task Space Feedback

The target object is detected by using any CNN-based object detector which provides information of the bounding box and class label of the object of interest. To achieve smooth measurement of the object states, a LSTM network is trained based on the ground truth and actual information of the bounding box from the CNN-based object detector. The task vector is defined as the output of LSTM (see Fig. 1) as follows:

Γ = [u, v, w, h] T (3) 
where u and v are the pixel coordinates of the center of the target bounding box and w and h are the width and height of the target bounding box. Define the coordinates of the center point of the target bounding box as x c = [u c v c ] T , while the top-left pixel vertex of the target bounding box is denoted as x l = [u l v l ] T . The image variable x is defined as the two feature points in this work x i (i = 1, 2), where x 1 = x c and x 2 = x l . Then, from eqn. (1), we obtain

ẋ = Z -1 (q)J (r) ṙ (4) 
where 4), the relationship between image feature point and joint can be expressed as: ẋ = Z -1 (q)J (r)J r (q) q = Z -1 (q)A(q) q (5)

ẋ = [ ẋT 1 , ẋT 2 ] T J (r) = [J T 1 (r 1 ), J T 2 (r 2 )] T Z -1 (q) = 1 z1(q) I 0 0 1 z2(q) I Substituting eqn. (2) into eqn. (
where A(q) = J (r)J r (q). According to the definition of task variable Γ, we obtain

Γ = Px, where P =     1 0 0 0 0 1 0 0 2 0 -2 0 0 2 0 -2     (6) where x = [x T 1 , x T 2 ]
T . The task variable is therefore expressed by the variable x and parameter matrix P.

Differentiating eqn. ( 6) with respect to time and using eqn. (5) yields

Γ = P ẋ = PZ -1 (q)A(q) q = J * q, (7) 
where J * = PZ -1 (q)A(q). Next, let us define the objective functions for the task as follows:

f 1 (∆Γ 1 ) = (u -u d ) 2 -e 2 u ≤ 0 f 2 (∆Γ 2 ) = (v -v d ) 2 -e 2 v ≤ 0 f 3 (∆Γ 3 ) = w -w max ≤ 0 f 4 (∆Γ 3 ) = w min -w ≤ 0 f 5 (∆Γ 4 ) = h -h max ≤ 0 f 6 (∆Γ 4 ) = h min -h ≤ 0 (8)
where w max and h max are the maximum desired values of width and height of the target bounding box, respectively, w min is the minimum desired value for width and h min is the minimum desired value for height of the target bounding box, e u and e v are the thresholds. u d and v d are defined as the desired center value of the horizontal and vertical coordinates for image. The functions f 1 , f 2 are used to define the desired region of center, which is a rectangular area with (u d , v d ) as the center and 2e u and 2e v as the width and height, respectively. When e u = e v = 0, the desired region reduces to a desired point (u d , v d ). Similarly, the desired range of w is defined by f 3 , f 4 , while the desired range of h is defined by f 5 , f 6 . According to the above definitions of f 3 , f 4 , when the variable w is in the range [w min , w max ], the values of the functions are non-positive. Similarly, for f 5 , f 6 , the values of the functions are nonpositive when h is in the range [h min , h max ],. The parameters u d , v d , w max , w min , h max , h min are pre-defined thus known and can be adjusted by users.

Next, a potential energy function P l (Γ) associated with each objective function f l is introduced as

P l (∆Γ) = 1 N k l [max(0, f l (∆Γ))] N , N > 2 (9) 
where k l > 0 and l = 1, 2, 3, 4, 5, 6. Partial differentiation of eqn. ( 9) with respect to ∆Γ, we obtain

∂P l (∆Γ) ∂∆Γ =      0, f l (∆Γ) ≤ 0 k l f N -1 l (∆Γ) ∂f l (∆Γ) ∂∆Γ T , f l (∆Γ) > 0, (10) 
Hence, the (∂P l (∆Γ)/∂∆Γ) is continuous and eqn. ( 10) can be expressed as

∂P l (∆Γ) ∂∆Γ = k l [max(0, f l (∆Γ))] N -1 ∂f l (∆Γ) ∂∆Γ T (11) 
According to the definition of the potential energy function in eqn. ( 9), when Γ is within the desired region, ∂P l (∆Γ) ∂∆Γ is zero. Ideally, to achieve a better display, the target object should be positioned within a desired area of the image field of view so that both the width and height of the bounding box fill up the entire image as much as possible. However, since the shapes of the unknown objects may vary significantly according to different tasks and even for a fixed object, the aspect ratio of the bounding box may also vary when the robot moves, it is therefore difficult to define a desired area in advance by using existing methods in the literature. For example, while tracking a dog as illustrated in Fig. 3, the desired width or height of the bounding box cannot be defined in advance and the robot may need to adjust the camera's position to fill up either the width or height within the image depending on the movements of the dog. In this paper, we introduce a potential energy P T to achieve a better display in a flexible and feasible way. The potential energy P T is defined as

P T =P 1 + P 2 + (P 3 + P 4 ) * (P 5 + P 6 ) (12) 
It can be inferred that the value of total potential energy function is 0, when the task variables u, v, w, h meet the following conditions:

     -e u + u d ≤ u ≤ e u + u d -e v + v d ≤ v ≤ e v + v d w min ≤ w ≤ w max or      -e u + u d ≤ u ≤ e u + u d -e v + v d ≤ v ≤ e v + v d h min ≤ h ≤ h max (13 
) From eqn. [START_REF] Wang | Prediction error based adaptive jacobian tracking of robots with uncertain kinematics and dynamics[END_REF], it can be seen that the total potential energy is consist of three part, in which (P 3 + P 4 ) * (P 5 + P 6 ) is treated as one item. When the task variables u, v and w meet the condition on the left side of eqn. ( 13), (P 3 + P 4 ) is equal to 0. On the contrary, if the task variables u, v and h meet the condition on the right side of eqn. ( 13), (P 5 + P 6 ) is equal to 0. In this way, the problem of obtaining a desired best fit view for any aspect ratio can be resolved.

Substituting eqn. [START_REF] Dixon | Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics[END_REF] into eqn. ( 12) and replacing P 1 , P 2 with u -u d , v -v d , respectively, the total potential energy P T is:

P T = 1 2 k 1 (u -u d ) 2 + 1 2 k 2 (v -v d ) 2 + 1 N (k 3 [max(0, f 3 (∆Γ 3 ))] N + k 4 [max(0, f 4 (∆Γ 3 ))] N * 1 N (k 5 [max(0, f 5 (∆Γ 4 ))] N + k 6 [max(0, f 6 (∆Γ 4 ))] N (14) 
The partial differentiation of total potential energy with respect to ∆Γ i can be calculated as follow:

∂P T (∆Γ 1 ) ∂∆Γ 1 = ∂P T (∆u) ∂∆u = k 1 * (u -u d ) ∂P T (∆Γ 2 ) ∂∆Γ 2 = ∂P T (∆v) ∂∆v = k 2 * (v -v d ) ∂P T (∆Γ 3 ) ∂∆Γ 3 = ∂P T (∆w) ∂∆w = k 3 [max(0, f 3 (∆Γ 3 ))] N -1 * ∂f 3 (∆Γ 3 ) ∂∆Γ 3 T +k 4 [max(0, f 4 (∆Γ 3 ))] N -1 * ∂f 4 (∆Γ 3 ) ∂∆Γ 3 T * 1 N k 5 [max(0, f 5 (∆Γ 4 ))] N + k 6 [max(0, f 6 (∆Γ 4 ))] N ∂P T (∆Γ 4 ) ∂∆Γ 4 = ∂P T (∆h) ∂∆h = 1 N k 3 [max(0, f 3 (∆Γ 3 ))] N + k 4 [max(0, f 4 (∆Γ 3 ))] N * k 5 [max(0, f 5 (∆Γ 4 ))] N -1 * ∂f 5 (∆Γ 4 ) ∂∆Γ 4 T + k 6 [max(0, f 6 (∆Γ 4 ))] N -1 * ∂f 6 (∆Γ 4 ) ∂∆Γ 4 T ( 15 
)
where Γ = [u, v, w, h] T . We define the gradient of potential function P T (∆Γ) as variable ∆ε, the expression is defined as follows, which can be considered as region error.

∆ε = ∂P T (∆Γ 1 ) ∂∆Γ 1 ∂P T (∆Γ 2 ) ∂∆Γ 2 ∂P T (∆Γ 3 ) ∂∆Γ 3 ∂P T (∆Γ 4 ) ∂∆Γ 4 
T .

(16) A reference joint velocity qr is proposed as follows.

qr = -αJ * T ∆ε ( 17 
)
where α is a positive constant.

For the inner feedback control loop, the velocity tracking error can be denoted as: ∆ qin = q -qr . As the boundedness of the velocity tracking error ∆ qin is ensured by the inner control loop, we can define a positive constant β so that it satisfies the following condition [START_REF] Wang | Adaptive control of robot manipulators with uncertain kinematics and dynamics[END_REF], [START_REF] Li | Adaptive imagespace regulation for robotic systems[END_REF]:

t 0 ∆ qT in (τ )∆ qin (τ )dτ ≤ β, ∀t ≥ 0 (18) 
By multiplying ∆ qin with J * , we can obtain

J * ∆ qin = J * q -J * qr (19) 
Substituting eqn. (17) into eqn. [START_REF] Hutchinson | A tutorial on visual servo control[END_REF], we have

J * ∆ qin =J * q -J * qr = J * q + αJ * J * T ∆ε (20) 
Therefore, from eqn. [START_REF] Khatib | A unified approach for motion and force control of robot manipulators: The operational space formulation[END_REF], Γ can be derived as

Γ =J * ∆ qin -αJ * J * T ∆ε (21) 
Theorem 1: Let the reference joint velocity be chosen as in eqn. [START_REF] Wang | Adaptive control of robot manipulators with uncertain kinematics and dynamics[END_REF], eqn. ( 16) and eqn. [START_REF] Cheah | Region-reaching control of robots[END_REF] with the total potential function P T and the objective functions defined by eqn. (12), the system described in eqn. [START_REF] Bechlioulis | Robust image-based visual servoing with prescribed performance under field of view constraints[END_REF] guarantees the convergence of region error ∆ε → 0 as t → ∞.

Proof: To prove the stability of the controller, a Lyapunovlike function candidate V 1 is proposed as follows.

V 1 = P T (∆Γ) + 1 α β - t 0 ∆ qT in (τ )∆ qin (τ )dτ (22) 
Differentiating eqn. ( 22) and substituting eqn. ( 16) and eqn.

(21) into it

V1 = ϑP T (∆Γ) ϑ∆Γ Γ - 1 α ∆ qT in ∆ qin = -α∆ε T J * J * T ∆ε + ∆ε T J * ∆ qin - 1 α ∆ qT in ∆ qin (23) 
Since ∆ε T J * ∆ qin ≤ α 2 ∆ε T J * J * T ∆ε + 1 2α ∆ qT in ∆ qin , substituting this inequality into eqn. ( 23) yields

V1 ≤ - 1 2α ∆ qT in ∆ qin - α 2 ∆ε T J * J * T ∆ε ≤ 0 (24) 
Since V 1 ≥ 0 and V1 ≤ 0, V 1 is bounded and hence P T (∆Γ) is bounded. The boundedness of P T (∆Γ) ensures the boundedness of the functions f i (∆Γ i ). Therefore, Γ is also bounded. In addition, it can be concluded from eqn. [START_REF] Cheah | Region-based shape control for a swarm of robots[END_REF] that ∆ε ∈ L 2 (0, +∞). Since J * consists of image Jacobian and manipulator Jacobian, while J r is trigonometric functions of q and image Jacobian Z -1 (q)J(r) is bounded based on finite camera parameters, according to eqn. [START_REF] Cheah | Region-reaching control of robots[END_REF], qr is therefore bounded. Since the boundedness of ∆ qin = q -qr is ensured by the inner controller, the boundedness of qr also ensures the boundedness of q. Thus, ẋ is bounded, which ensures the boundedness of the time derivative of the region error ∆ ε. Therefore, it can be concluded that ∆ε is uniformly continuous. Then it follows from [START_REF] Arimoto | Control theory of nonlinear mechanical systems:a passivity-based and circuit-theoretic approach[END_REF] (Lemma C1 in its Appendix C) that ∆ε → 0 as t → ∞.

Remark 1: The joint reference input described by eqn. ( 17) can be applied to a robot with an inner control loop which guarantees condition [START_REF] Nguyen | Analytic deep neural network-based robot control[END_REF]. In the above analysis, the effects of tracking error in the inner loop is taken into consideration in the analysis. In the literature of kinematic visual servoing, it is commonly assumed that ∆ qin = 0 for all t and the joint velocity vector is treated as the control input. In this case, β in eqn. ( 19) equals to 0, and the Lyapunov-like function candidate is simplified to

V 1 = P T (∆Γ), (25) 
The derivative of V 1 is therefore

V1 = ϑP T (∆Γ) ϑ∆Γ Γ = -α∆ε T J * J * T ∆ε ≤ 0 (26) 
Remark 2: In this paper, we focus on the case where the Jacobian matrix is known. However, it is important to note that the problem of kinematic and Jacobian uncertainty has been extensively studied in the literature of robot control [START_REF] Cheah | Adaptive tracking control for robots with unknown kinematic and dynamic properties[END_REF], [START_REF] Dixon | Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics[END_REF], [START_REF] Cheah | Adaptive jacobian vision based control for robots with uncertain depth information[END_REF]- [START_REF] Li | Adaptive imagespace regulation for robotic systems[END_REF] and this result can also be similarly extended to deal with kinematic uncertainty.

B. Joint Velocity Control based on Dynamic Robot Control Method

The results in section III.A can be employed for robots with closed control architecture such as industrial robots where only joint reference commands are accessible by users. That is, the convergence of the joint velocity is ensured by the inner control loop.

In the case of robots with open control architecture, an inner control loop can be designed to force the robot joint velocity q to track the reference one qr . In this work, an adaptive control method taking into account dynamics uncertainty of the robot arm is employed.

The dynamics of a manipulator with n degrees of freedom can be expressed in joint space as [START_REF] Lewis | Control of robot manipulators[END_REF], [START_REF] Arimoto | Control theory of nonlinear mechanical systems:a passivity-based and circuit-theoretic approach[END_REF]:

M (q)q + 1 2 Ṁ (q) + S(q, q) q + g(q) = τ ( 27 
)
where M (q) ∈ R n×n is the inertia matrix of manipulator, 1 2 Ṁ (q) + S(q, q) ∈ R n denotes the centripetal and Coriolis matrix where the vector of gravitational force and moments denotes as g(q) ∈ R n×n . M (q) is symmetric and positive definite and S(q, q) ∈ R n×n is skew-symmetric. τ ∈ R n stands for the control input. The manipulator dynamic parameters can be expressed as [START_REF] Slotine | On the adaptive control of robot manipulators[END_REF] :

M (q)q + 1 2 Ṁ (q) + S(q, q) q + g(q) = W d (q, q, qr , qr )θ d , (28) where W d (q, q, qr , qr ) is the dynamic regressor matrix and θ d is the vector of dynamic parameters. With the presence of dynamics uncertainty, only an estimation of the dynamic parameters is available and denoted as θd such that M (q)q + 1 2 Ṁ (q) + Ŝ(q, q) q + ĝ(q) = W d (q, q, qr , qr ) θd .

(29) The adaptive joint velocity controller with the proposed reference velocity qr in eqn. ( 17) is proposed as:

τ = -K s ∆ qin + W d (q, q, qr , qr ) θd . ( 30 
)
The overall controller is different from a standard trajectory tracking controller as the reference velocity is defined by eqn. ( 17), ( 16) and [START_REF] Wang | Adaptive control of robot manipulators with uncertain kinematics and dynamics[END_REF]. Note that here the reference motion signals qr and qr are used in the dynamic regressor matrix W d (q, q, qr , qr ). The adaptive vector of dynamic parameters is updated by the follow adaptation law: θd = -L d W d (q, q, qr , qr )∆ qin [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] where L d is a diagonal positive definite matrix. Substituting equations ( 28), ( 29) and (30) into eqn. [START_REF] Lecun | Deep learning[END_REF], the closed loop robot dynamics can be obtained as: M (q)∆q in + 1 2 Ṁ (q) + S(q, q) + K s ∆ qin +W d (q, q, qr , qr )∆θ d = 0, [START_REF] He | Deep residual learning for image recognition[END_REF] where ∆θ d = θ d -θd . Theorem 2: With the proposed reference joint velocity qr as defined in eqn. [START_REF] Cheah | Region-reaching control of robots[END_REF], the designed joint motion controller τ as in eqn. [START_REF] Lecun | Lenet-5, convolutional neural networks[END_REF] and the dynamic parameter adaptation law in eqn. [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] guarantee that the robot velocity q converges asymptotically q → qr and also the region error ∆ε → 0 as t → ∞. Proof: To analyse the convergence of the robot joint velocity q to its reference signal qr , a Lyapunov-like function candidate V 2 can be chosen as:

V 2 = 1 2 ∆ qT in M (q)∆ qin + 1 2 ∆θ T d L -1 d ∆θ d ( 33 
)
Differentiating V 2 with respect to time, it has

V2 = ∆ qT in M (q)∆q in + 1 2 ∆ qT in Ṁ (q)∆ qin + ∆ Ŵ T d L -1 d ∆ Ẇ d ( 34 
) Using the closed loop system equation ( 27) and the adaptation law of dynamic parameter vector, the above equation ( 34) can be simplified to:

V2 = -∆ qT in K s ∆ qin ≤ 0 ( 35 
)
From equations ( 33) and ( 35), it can be seen that V 2 is positive definite in ∆ qin and ∆θ d and V2 is negative definite in ∆ qin , therefore it is easy to conclude that ∆ qin → 0 asymptotically, i.e. q → qr asymptotically. An overall Lyapunov function candidate V can be proposed based on V 1 and V 2 as in following to analyse the overall system performance:

V = V 1 + V 2 = P T (∆Γ) + 1 α β - t 0 ∆ qT in (τ )∆ qin (τ )dτ + 1 2 ∆ qT in M (q)∆ qin + 1 2 ∆θ T d L -1 d ∆θ d
From eqn. ( 24) and ( 35), it has 33), it is seen that V 2 is lower bounded. From the proof of Theorem 1, V 1 is also lower bounded. Therefore, the overall Lypunov function V is lower bounded. From the boundedness of V 2 , ∆ qin and ∆θ d must be bounded which leads to the boundedness of ∆q in according to eqn. [START_REF] He | Deep residual learning for image recognition[END_REF] so that ∆ qin is uniformly continuous. From eqn. [START_REF] Redmon | Yolov3: An incremental improvement[END_REF], it can be seen that both ∆ qT in ∈ L 2 (0, +∞) and ∆ε ∈ L 2 (0, +∞). Noting that from the proof of Theorem 1 ∆ε is shown to be uniformly continuous. Then similar as in proof of Theorem 1, the asymptotic convergence of ∆ qin and ∆ε as t → ∞ can be concluded which completes the proof.

V = -α∆ε T J * J * T ∆ε + ∆ε T J * ∆ qin - 1 α ∆ qT in ∆ qin -∆ qT in K s ∆ qin ≤ - 1 2σ ∆ qT in ∆ qin - σ 2 ∆ε T J * J * T ∆ε -∆ qT in K s ∆ qin = -∆ qT in ( 1 2α I + K s )∆ qin - α 2 ∆ε T J * J * T ∆ε ≤ 0 (36) From eqn. (
Remark 3: Various motion control methods exist in literature to achieve desired joint position or velocity with or without consideration of kinematic uncertainties [START_REF] Cheah | Feedback control for robotic manipulator with uncertain kinematics and dynamics[END_REF]- [START_REF] Cheah | Region-reaching control of robots[END_REF]. Recent research has also shown that external motion controllers can be designed for commercial robots with closed built-in motion controllers to accomplish joint space or task space control tasks [START_REF] Wang | Dynamic modularity approach to adaptive control of robotic systems with closed architecture[END_REF]. In this paper, a two-step design approach like [START_REF] Wang | Adaptive control of robot manipulators with uncertain kinematics and dynamics[END_REF], [START_REF] Wang | Dynamic modularity approach to adaptive control of robotic systems with closed architecture[END_REF] is used but since the proposed methodology in this paper is general, other existing works can also be integrated and developed according to specific application requirements. However, the formulations in these works [START_REF] Cheah | Feedback control for robotic manipulator with uncertain kinematics and dynamics[END_REF]- [START_REF] Cheah | Region-reaching control of robots[END_REF], [START_REF] Wang | Dynamic modularity approach to adaptive control of robotic systems with closed architecture[END_REF] are based on the traditional trajectory tracking control problem where a desired trajectory is first defined, and a controller is designed to track the trajectory. Comparatively, the proposed method in this work focuses on developing a controller which can integrate any existing real-time CNNs object detector to achieve better detection and tracking of object with unknown aspect ratio. The main contribution of this paper is the development of the reference joint command described by eqn. ( 15) ∼ [START_REF] Li | Adaptive imagespace regulation for robotic systems[END_REF] and the construction of the potential function described by eqn. ( 8) ∼ (14) so that stability of the CNN based robot control systems can be ensured while analysing the closed-loop systems using Lyapunov-like methods.

Remark 4: This paper considers a manipulator mounted with one camera but it is important to note that CNN based object detectors are capable of detecting multiple targeted objects simultaneously. As only one eye-in-hand camera is used, the proposed method cannot be used to track multiple objects independently. Nevertheless, since the aspect ratio of the bounding box is not required to be known, the CNN-based robot control can be extended to track all the objects together by generating a super bounding box which encloses all the objects. This can be achieved by taking the extreme ends or corners of all the bounding boxes of the objects to form an overall bounding box as illustrated in Fig. 4.

Remark 5: Recently, several works [START_REF] Nguyen | Analytic deep neural network-based robot control[END_REF], [START_REF] Nguyen | A layer-wise theoretical framework for deep learning of convolutional neural networks[END_REF]- [START_REF] Patil | Lyapunovderived control and adaptive update laws for inner and outer layer weights of a deep neural network[END_REF] have been devoted to the development of stable deep learning techniques. The result in [START_REF] Nguyen | A layer-wise theoretical framework for deep learning of convolutional neural networks[END_REF] was focusing on training the convolutional networks for image classification tasks rather than robot control. For control tasks, deep learning methods were developed for control systems with unknown kinematics [START_REF] Nguyen | Analytic deep neural network-based robot control[END_REF] and unknown dynamics [START_REF] Le | Realtime modular deep neural network-based adaptive control of nonlinear systems[END_REF], [START_REF] Patil | Lyapunovderived control and adaptive update laws for inner and outer layer weights of a deep neural network[END_REF], with or without the use of visual feedback. However, these results were developed for conventional tracking control rather than CNN-based control with unknown aspect ratio of target object.

C. Effects of Disturbances

In the presence of a disturbance d1 in the dynamic system, the closed-loop dynamics is described according to eqn. [START_REF] He | Deep residual learning for image recognition[END_REF] as:

M (q)∆q in + 1 2 Ṁ (q) + S(q, q) + K s ∆ qin +W d (q, q, qr , qr )∆θ d = d1 , (37) 
If an disturbance or fluctuation d2 also exists in the kinematic system, then the derivative of V in eqn. [START_REF] Redmon | Yolov3: An incremental improvement[END_REF] becomes

V = -∆ qT in 1 2α I + K s ∆ qin - α 2 ∆ε T J * J * T ∆ε +∆ qT in d1 + ∆ε T d2 .
Integrating the equation yields

V -V (0) = - t 0 ∆ qT in (τ ) 1 2α I + K s ∆ qin (τ )dτ - α 2 t 0 ∆ε T (τ )J * J * T ∆ε(τ )dτ + t 0 ∆ qT in (τ ) d1 (τ )dτ + t 0 ∆ε T (τ ) d2 (τ )dτ. ( 38 
) Since t 0 ∆ qT in (τ ) d1 (τ )dτ ≤ 1 2 t 0 ∆ qT in (τ )∆ qin (τ )dτ + 1 2 t 0 dT 1 (τ ) d1 (τ )dτ and t 0 ∆ε T (τ ) d2 (τ )dτ ≤ 1 2 t 0 ∆ε T (τ ) ∆ε(τ )dτ + 1 2 t 0 dT 2 (τ ) dT 2 (τ )dτ , then we can obtain V -V (0) ≤ - t 0 ∆ qT in (τ ) K s + 1 2α I - 1 2 I ∆ qin (τ )dτ - α -1 2 t 0 ∆ε T (τ )J * J * T ∆ε(τ )dτ + 1 2 t 0 dT 1 (τ ) d1 (τ )dτ + 1 2 t 0 dT 2 (τ ) d2 (τ )dτ. (39) 
Since V is non-negative, the above inequality can be rewritten as:

t 0 ∆ qT in (τ ) K s + 1 2α I - 1 2 I ∆ qin (τ )dτ + α -1 2 t 0 ∆ε T (τ )J * J * T ∆ε(τ )dτ ≤ 1 2 t 0 dT 1 (τ ) d1 (τ )dτ + 1 2 t 0 dT 2 (τ ) d2 (τ )dτ + V (0). ( 40 
) Let 1 γ 2 min λ max [K s ] + 1 2α - 1 2 , α -1 2 > 0, (41) 
where α > 1, λ max [K s ] > 1 2 and λ max [K s ] denotes the maximum eigenvalue of K s , then eqn. ( 40) can be rewritten as:

t 0 ∆ qT in (τ )∆ qin (τ )dτ + t 0 ∆ε T (τ )J * J * T ∆ε(τ )dτ ≤ γ 2 2 t 0 dT 1 (τ ) d1 (τ )dτ + γ 2 2 t 0 dT 2 (τ ) d2 (τ )dτ + γ 2 V (0)
Therefore, we can conclude that H ∞ tuning [START_REF] Arimoto | Control theory of nonlinear mechanical systems:a passivity-based and circuit-theoretic approach[END_REF] (see chapter 7) with the errors ∆ qin , ∆ε is established for the disturbances if K s and α are chosen as in condition [START_REF] He | Eye-in-hand visual servoing control of robot manipulators based on an input mapping method[END_REF]. To eliminate the errors, a switching control terms [START_REF] Slotine | Applied nonlinear control[END_REF] can be added but it may result in chattering of the control inputs.

IV. EXPERIMENT

To verify the performance of proposed method, several experiments were performed by implementing the controller on a 6-degree-of-freedom (DoF) robotic manipulator-UR5e [START_REF] Kebria | Kinematic and dynamic modelling of ur5 manipulator[END_REF]. The CNN based object detector used in the experiments was Yolov3 with a AP 50 of 57.9 [START_REF] Redmon | Yolov3: An incremental improvement[END_REF].YOLOv3 is used as it is a representative CNN detector which is commonly used in many real-time applications. The bounding box information for generating task variables can be automatically obtained online. This section is organised into three parts: first, the training of the LSTM network is presented; second, the implementation of proposed controller based on the LSTM output is presented; third, two applications employing the proposed control method for human tracking and crack detection are provided.

A. LSTM Output of bounding box

In order to achieve high-performance object detection, we use a high frame-rate camera -Intel Realsense D435i, which can capture images with more than 30 FPS. The image resolution is 640*480. However, the high frame-rate and together with missed detection in some situations may result in chattering of the bounding box. Therefore, LSTM is first used to obtain the state information of the bounding box.

As the current task variables are mainly related to its neighboring past variables, the network input number of LSTM is therefore set as 10. The network structure of LSTM used in this work is a classical three-layer network: input layer, hidden layer and output layer. Among them, there are 4 LSTM neurons in hidden layer. The activation function is sigmoid function. The model is trained for 10 epochs with 1 batch size. The input data is collected by Realsense camera. RGB image and depth information from Realsense are used in this work. In order to better model the phenomenon of chattering bounding box, training data based on both static and moving target objects was collected. Note that the use of LSTM is independent of the specific CNN detector used and hence can also be used with any real-time CNN based object detector to smoothen the output chattering.

The dataset consists of 500 frames in total, with the training set and test set being divided into the approximate proportion of 2:1. The input variables are the detection results [u yolo , v yolo , w yolo , h yolo ] T obtained from Yolov3. The ground truths are obtained by manual labeling.

To show that the proposed method can be easily integrated with existing CNN-based object detector, a pretrained Yolov3 model downloaded from https://github.com/pjreddie/darknet is used. The target object in this experiment is a human. To better illustrate the chattering problem of bounding box for Yolov3, we chose 8 consecutive frames from the test set (See Fig. 5).

A comparison between actual bounding box variables and output variables of LSTM is shown in Fig. 6. The bounding box information obtained from Yolov3 were rather noisy, and it was noted that the chattering mainly appeared when the object moved. It can be seen from Fig. 6 that the LSTM output is more stable than the result provided by Yolov3 and it is more consistent with the ground truth.

B. CNN based Robot Control

To illustrate the performance of the proposed CNN-based task-space control method, we performed a series of experiments. The maximum desired region was specified as the entire image field of view (640*480) and the minimum desired width and height were specified as 384 and 288 respectively. The gains k 1 , k 2 , k 3 , k 4 , k 5 and k 6 are set as 1e -4 , 1.5e -4 , 1e -6 , 1e -6 , 1e -6 , 1e -6 , and the value of α is set as 0.03. The desired value for u and v is 320 and 240, which corresponds to the horizontal and vertical coordinates of the center of an image. In the experiment, a human is chosen as the target where the height of the bounding box is much larger than the width in general.

The plots of task variables versus time are shown in Fig. 7. It can be seen from Fig. 7(a) and Fig. 7(b) that the task variables u and v gradually converge to pixel 320 and 240 respectively, which means that the target is positioned in the center of the field of view. The task variable w is not in the range [384, 640] since the shape of bounding box for a human who is standing is a vertical rectangle. However, it can be seen that the task variable h finally reaches the desired height range [288,480]. This illustrates the case that when the aspect ratio of the object is relatively large, the larger one is controlled to reach the desired range. Therefore, in this experiment, the task variable u, v, h reach the desired range which proves the effectiveness of the proposed method.

The trajectory of bounding box in pixels is shown in 2) Crack Detection: Next, instead of using pre-trained weights, we trained a Yolov3 model for detection of cracks. The total number of training images was 905, which was collected by using the Realsense camera directly.

The result of crack detection by using the proposed method is shown in Fig. 12. As the cracks are tiny and hence not easy to be detected, a better view or display of the cracks can usually lead to a better detection result. Fig. 12 shows that a deletion result with a very low confidence level of 34.5 percent at the beginning stage due to a poor view of the cracks (Fig. 12(a)). With the use of the proposed controller, the robot eventually moved to a better position so that the crack was detected with a higher confidence level of 99.97 percent (Fig. 12(o)). From Fig. 12, the center of target represented by red dot gradually tends towards and eventually coincides with the center of image, which is represented by blue dot. In addition, the camera also moved from the initial position with partial view of the cracks (see Fig. 12(a)) indicated with a small bounding box in the lower left corner of the field of view, to a final position where the width of the bounding had reached the desired region (see Fig. 12(o)) so that the crack was more visible within the field of view. Fig. 13 shows the convergence of the region errors.

V. CONCLUSION

In this paper, we have proposed a CNN-based robot control framework for eye-in-hand configuration. The proposed methodology is general and can be integrated with existing CNN-based object detector. The CNN-based robot controller can be used to track objects with unknown aspect ratio by positioning the object within a desired region in the FOV. Experimental results have been presented to demonstrate the feasibility and applications of the proposed method. In this paper, the orientation of the object is not considered and therefore the bounding box may not enclose the object closely if it is rotated. Future work would include extending the method to the case of oriented bounding box so as to enclose the object more closely and thus render a more accurate object detection. This paper focuses on single object tracking using an eye-in-hand configuration and multiple objects are treated as a group (see remark 4). Future work would also be carried out to develop multi-robot coordination technique for tracking of multiple objects independently.
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 1 Fig. 1. An overall block diagram of the robot control system with an eyein-hand configuration.

Fig. 2 .

 2 Fig. 2. Object recognition based on CNN. (a) Object classification; (b) Object detection.

Fig. 3 .

 3 Fig. 3. (a) An illustration of bounding box and its parameters. w and h are the corresponding width and height of detected object. (u, v) denotes the pixel coordinate of center point of the bounding box. (b)∼(c) Illustration on change of aspect ratio of bounding box. (d) Scenario of FOV fitting. w and h are the width and height of current target bounding box. w mind and h mind are the minimum desired width and height of target bounding box, while w maxd and h maxd are the maximum desired width and height of target bounding box. xc is the pixel coordinates of the center of the target bounding box, while x l is the top left pixel coordinates of the target bounding box. The dotted line indicates a desired bounding box.
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 4 Fig. 4. Tracking of multiple objects using an overall bounding box.
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 567810 Fig. 5. 8 consecutive frames from test set.
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 11 Region errors of the human tracking application.
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 1213 Fig. 12. An application to improve crack detection. The blue dot • represents the center of image, while the red dot • represents the center of target.

Fig. 8 .

 8 According to the aspect ratio (See Fig 8.(b)), the initial shape of bounding box is a horizontal rectangle due to the initial field of view but with the movement of the manipulator, the final shape of bounding box becomes a vertical rectangle. In spite of changes in aspect ratio the bounding box over time, the target object can still be positioned at the center of the image with the desired coverage of the the field of view. A 3D path of robot end-effector in Cartesian space and the joint angles are shown in Fig 8.(c) and Fig 8.(d) respectively. The region errors ∆ε are shown in Fig.9.C. Applications 1) Human Detection and tracking:The model used in detection and tracking of human was also the pre-trained Yolov3. The results of the detection and tracking are shown in Fig.10. The blue dot represents the center of the image (640*480), which is a fixed point with a pixel coordinate [320, 240], and the red dot denotes the center of the bounding box for the target object, which is generated by LSTM and YOLOv3. At the beginning, the controller automatically tracked the human as seen from Fig.10(a) to Fig.10(f). The robot moved so that the target was positioned at the middle of the field of view as seen in Fig.10(f). Next, the human took a step back to introduce a sudden change in position as seen in Fig.10(g). Nevertheless, the target could still be tracked by the controller as seen from Fig.10(g) to Fig.10(l). Lastly, a sudden change in aspect ratio of the human was introduced by raising the hand and the robot adjusted its position to ensure that the hand remained visible within the field of view (Fig.10(o)). The target center represented by red dot in Fig.10(o) coincides with the image center represented by blue dot. The region errors of detection and person tracking are shown in Fig. 11. The increases in position errors indicated by the dashed boxes in Fig. 11(a) and Fig. 11(b) were caused by the changes in position and posture of the human but these errors reduced to zero eventually. In addition, the camera could simultaneously track the target automatically and stopped when the height of the target had reached the desired region (Fig. 11(d)).
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