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Convolutional Neural Network-Based Robot Control
for an Eye-in-hand Camera

Jia Guo, Huu-Thiet Nguyen, Chao Liu, Chien Chern Cheah

Abstract—In past decades, much progress has been obtained
in vision-based robot control theories with traditional image
processing methods. With the advances in deep learning based
methods, Convolutional Neural Network (CNN) has now replaced
the traditional image processing methods for object detection and
recognition. However, it is not clear how the CNN-based methods
can be integrated into robot control theories in a stable and
predictable manner for object detection and tracking, especially
when the aspect ratio of the object is unknown and also varies
during manipulation. In this paper, we develop a vision-based
control method for robots with an eye-in-hand configuration,
which can be directly integrated with existing CNN-based object
detectors. The task variables are generated based on parameters
of the bounding box from the output of any real-time CNN object
detector such as You Only Look Once (Yolo). To address the
chattering problem of bounding box, Long Short-Term Memory
(LSTM) is used to provide smoothed bounding box information.
A vision-based controller is then proposed following task-space
motion control design formulation in order to keep the object of
unknown aspect ratio in the center of field of view of the camera.
The stability of the overall closed-loop control system is analyzed
rigorously using Lyapunov-like approach. Experimental results
are presented to illustrate the performance of the proposed CNN-
based robot controller.

Index Terms—CNN, Vision-based control, Robot control.

I. INTRODUCTION

ISION system constitutes an important part of robotic
Vsystems as it provides useful information for decision
and control. With the help of visual information, the objects
to be tracked or manipulated can be identified, localized
and their geometric relationships with respect to the robotic
systems can also be obtained. Based on that, visual servoing
and vision-based robot control methods have been developed
for various applications. Robot control is known to be a
challenging control problem because of the non-linearity and
uncertainty of the kinematics and dynamics. Most of the robot
control theories with dynamic uncertainty (see [1]-[4] and the
references therein) were inspired by the pioneer work in [5]
where Lyapunov method was first introduced in robot control.

In general, robot motion control [6] can be mainly classified
into joint space control [2] and task space [5] or operational
space [7] control. Traditionally, robots have been mostly used
in factory automation where the environment is structured and
fixed. In such scenarios, the control tasks are less challenging
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in the sense that the target objects can usually be detected
with sufficient accuracy as uncertain factors can be greatly
suppressed and therefore joint space control methods can be
directly applied. With the recent advances in robotic and
sensing technologies, robots have found their way to many
new applications in many emerging industries/areas such as
constructions, logistics, transportation and healthcare. In these
applications, the control tasks face new challenges including
complex working environments, noisy and inaccurate sensor
measurements, calibration or kinematic errors etc.

To address the kinematic uncertainty issues in motion
control problems caused by these challenges, some earlier
works have been proposed [8]-[10]. Approximate Jacobian
controllers [8], [9] were first developed for setpoint control
of robot with uncertain kinematics and dynamics. The first
adaptive Jacobian controller for tracking control of robots with
uncertain kinematics and dynamics was developed in [10],
by using the concept of modular adaptive law to update the
kinematic and dynamic parameters separately. Motivated by
these works [8]-[10], considerable achievements have been
obtained in understanding the setpoint and trajectory tracking
control problems with kinematic uncertainty later on [11]-
[16]. A setpoint control problem with amplitude limited con-
trol inputs was considered in [11]. A prediction error based
adaptive Jacobian controller was developed in [12] for tracking
control tasks. In vision-based control tasks, the parameters
of depth information between the features and the camera
could not be adapted together with other kinematic parameters
due to the non-linearity property. To overcome this problem,
a depth-independent control method was developed in [13].
Later on, it was found in [14] that the parameters of the
depth information could be updated separately based on the
concept of modular adaptive law. To isolate the design and
analysis of the kinematic control system in task-space control,
a separation approach was developed in [15], [16]. Besides
the traditional setpoint control and trajectory tracking control,
the concept of region reaching control was proposed in [17]
where the desired control objective was specified as a region
instead of a desired point or trajectory. In these works [8]—
[17], the structure of the Jacobian is assumed to be known.
Recently, a deep neural-network based robot controller [18]
was developed for robot control with unknown Jacobian based
on fully connected neural networks. These methods [8]-[18]
were developed based on the assumption that external sensor
measurements, such as vision systems using traditional image
processing, are available with fidelity.

Traditional image processing techniques have enabled the
development of kinematics based visual servoing [19], [20]
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which does not consider the effects of robot dynamics in
the control process. This field has mainly been considered
as a standalone research field in robotics but some recent
efforts have been made to integrate the kinematic servoing
laws with dynamic control theories based on the separation
approach [15], [16]. Some research efforts have also been
devoted to solving visual servoing problems with visibility
constraints, which inherently arise owing to the limited field
of view of the camera. The authors in [21] presented a
prescribed performance visual servoing scheme with a prede-
fined visibility constraint. Similar to other pixel-based methods
based on image processing, this method would also fail if
the object features cannot be distinguished easily from the
background. Moreover, Miao et al. [22] considered a vision-
based formation control problem with field of view constraints.
But again, pixel-based method with a fixed constraint was
used. The vision-based control problems with limited field of
view [23] could also be solved by using the concept of region-
based control [17], [24], [25]. Although using a desired region
is more robust, it is also hard to pre-set the desired region for
unknown objects, as it shares a similar problem as using a
fixed constraint.

All aforementioned robot control methods [8]-[23] were
developed based on traditional image processing. However,
it is noted that current state-of-the-art techniques for object
detection are mainly based on deep neural networks [26]-[28].
As one of the most effective networks in the deep learning
field for image classifications, Convolutional Neural Network
(CNN) [29]-[32] have made impressive achievements in many
areas, thanks to their advantages of fast training, sharing
weights, and downsampling dimensionality reduction. Inspired
by CNN, Region Convolutional Neural Network (R-CNN) was
proposed in 2014, which means Regions with CNN features
[33]. Compared with traditional CNN which is mainly used for
object classifications, R-CNN can also achieve object detection
and tracking. Other types of object detection algorithms based
on CNN include Single-shot detector (SSD) [34] and You Only
Look Once (Yolo) [35], [36]. With these methods, bounding
boxes of the target objects and their class probabilities of
prediction can be generated from camera image synchronously
in real time. But these works have been carried out purely for
vision-based object detection purpose and no link to robot
control theory has been considered. Although CNN has made
significant impacts especially in signal processing domains
like image processing and voice recognition, little literature
has been reported about CNN based visual servoing for robots
[371-[39]. Most of the reported works focus on obtaining
the relationship between the image and the expected output
by training a CNN-based model. The authors in [37] found
that CNN based visual servo commands could be generated
for unmanned autonomous vehicle (UAV), by minimizing the
estimated relative camera pose based on the target and current
images. However, it was assumed that a desired image for the
target camera pose could be obtained in advance. In [38], a
deep neural network-based method which combines AlexNet
[40] and VGG16 [31] was proposed. The authors focused on
how to create a dataset automatically and efficiently for the
network training rather than robot control. A network [39]

called difference of encoded features driven interaction matrix
network (DEFINet) was proposed to estimate the relative pose
for an eye-to-hand camera. This method cannot be easily
expanded to the eye-in-hand system as it is difficult to obtain
the model due to changes in the field of view. In these methods
[37]-[39], a desired position/pose or target image must be
specified for the robot in order to define the control task.
However, in actual implementations, little information can be
obtained in advance for the target, such as desired or target
image, size, aspect ratio of target objects, etc. If the prior
information of the target object cannot be obtained, then the
control tasks cannot be accomplished by these methods.

Although existing CNNs play an important role in object
detection in the domain of computer vision, to the best of
our knowledge, there is no robot controller which incorporates
existing CNN-based object detector for object detection and
tracking purpose and meanwhile guarantees the control per-
formance under the Lyapunov analysis framework. Therefore,
the stable vision-based robot control method integrating CNN-
based object detector with rigorous theoretic support remains
an open problem. The main difficulty lies in that the bounding
box of an object generated by CNN-based object detector has
different aspect ratios in the field of view of camera due to
different viewing distance and orientation angle. Therefore,
for an uncertain object, it is impossible to pre-define the exact
bounding box aspect ratio before the control task.

The contributions and novelties of this paper are therefore
listed as follows:

(1) A novel CNN-based robot control method is proposed
to detect and track objects with unknown aspect ratio by
positioning the object within a desired region in the field
of view. To the best of our knowledge, it is the first study
to integrate CNN-based object detectors into the synthesis of
a stable vision-based robot controller with rigorous theoretic
support under the Lyapunov analysis framework.

(2) By setting a desired range instead of exact values for
the object bounding box, the proposed method can tolerate
uncertainty and changes in the object geometric shape within
the camera image and thus provides a flexible and controllable
strategy for the object detection and tracking.

As CNN-based detector output may contain random noises,
chattering in the detector output is inevitable. Long Short-Term
Memory (LSTM) is then used to provide a smoothed output
for the task variables and it is easy to implement together with
the CNN object detector. A series of experiments with different
objects have been conducted to verify the effectiveness of
the proposed CNN-based robot control method for object
detection with eye-in-hand configuration.

II. PROBLEM FORMULATION

In this paper, we consider a vision-based robot control
problem by using a CNN object detector. A robot manipulator
mounted with a camera is used to detect a target object
as illustrated in Fig.1 and a CNN based robot controller is
developed to move the camera. This configuration is known
as the eye-in-hand configuration [19], [20], [41], [42] in the
literature. The main objective in this paper is to control the
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Fig. 1. An overall block diagram of the robot control system with an eye-
in-hand configuration.

robot based on the CNN object detector so that the target
object is positioned within a desired area of the image field
of view without knowing the position and aspect ratio of the
object.

A. CNN based Objector Detector

As a classic representative deep neural network, CNN has
shown great success in image classification tasks. A typical
structure of CNN which consists of several convolutional
layers and fully connected layers is shown in Fig. 2(a). Given
an input image, the network generates an output value which
represents the probability that the image belongs to a certain
class. A higher probability is more meaningful for correct
detection. Besides classification problems, CNN can also be
extended to object detection tasks. In image classification, a
class label of each image is assigned based on the output
value; whereas in object detection, the location of the object
of interest in the image is detected by generating a bounding
box around the object, in addition to assigning a class label.
Inspired by the development of R-CNN [33], several CNN-
based methods such as faster-RCNN [43], SSD [34], Yolo [35],
[36] were developed to achieve object detection in real time.
These CNN-based object detectors possess different structures
and Fig.2(b) shows an illustration based on Yolov3 [36]. It is
also possible to convert any CNN into an object detector by
constructing an image pyramid [44].

B. Kinematic mapping and Jacobian Matrix between Image
Space and Robot Joint Space

To achieve vision-based robot control using CNN-based
objector detector, the relationship between camera image space
and robot joint space should first be introduced. In this section,
the kinematic mapping between image space and robot joint
space and the associated Jacobian matrix are described.

Let z; € R? represents the ith feature point’s position of the
object in the camera image space. &; represent its velocities
in image space, while 7+ denote velocity in robot base frame.
The relationship between velocities in image space and robot
base frame is given as [14], [16], [19], [45]:

b= — () M

zi(q)
where matrix ﬁq)ﬂ(%) represents the Jacobian matrix of
mapping from end-effector base to image space, z;(q) € R

(b)

Fig. 2. Object recognition based on CNN. (a) Object classification; (b) Object
detection.

Fig. 3. (a) An illustration of bounding box and its parameters. w and h are the
corresponding width and height of detected object. (u,v) denotes the pixel
coordinate of center point of the bounding box. (b)~(c) Illustration on change
of aspect ratio of bounding box. (d) Scenario of FOV fitting. w and A are the
width and height of current target bounding box. wy,inq and hy,inq are the
minimum desired width and height of target bounding box, while w,, 4.4 and
hmaxq are the maximum desired width and height of target bounding box.
z. is the pixel coordinates of the center of the target bounding box, while x;
is the top left pixel coordinates of the target bounding box. The dotted line
indicates a desired bounding box.

denotes as the depth of the feature point with respect to the
camera frame [45].

The relationship between velocity vector 7~ and joint velocity
g can be expressd as:

= Jr(9)d )

where J,.(q) is the Jacobian matrix of manipulator from the
joint space to Cartesian space.

C. Control objective

We consider an eye-in-hand configuration where the target
object is within the focal length and field of view (FOV) of
the camera as illustrated in Fig. 1. The control objective is
to move the camera so as to keep the object of unknown
aspect ratio in the center of FOV and simultaneously satisfy
a constraint of width or height to maximise the view (see
Fig.3(d)), which therefore achieves a better display of the
object under monitoring. Generally, better view of the object
leads to better detection result by the detector which comes
with higher output probability value of confidence level.
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The main difficulty in achieving the control objective is
that the geometric shape and position of the object in image
is usually unknown in advance and the aspect ratio of the
bounding box may vary depending on the position and pose of
the camera with respect to the object of interest. Fig.3(b)~(c)
show another example where the aspect ratio of the bounding
box changes because of the movement of the target.

III. CNN-BASED ROBOT CONTROL METHOD

To address the problem as described in previous section, a
CNN-based control scheme is proposed in this work resorting
to a novel reference joint velocity design which aims to
minimize a potential energy function and hence leads to
convergence of location and size of the target bounding box
to the desired region. The overall block diagram of the control
system is shown in Fig. 1.

A. Reference Joint Velocity Generation based on CNN-based
Task Space Feedback

The target object is detected by using any CNN-based
object detector which provides information of the bounding
box and class label of the object of interest. To achieve
smooth measurement of the object states, a LSTM network
is trained based on the ground truth and actual information of
the bounding box from the CNN-based object detector. The
task vector is defined as the output of LSTM (see Fig. 1) as
follows:

' = [u,v,w,h]" 3)

where u and v are the pixel coordinates of the center of the
target bounding box and w and h are the width and height of
the target bounding box.

Define the coordinates of the center point of the target
bounding box as x, = [u. v.]T, while the top-left pixel vertex
of the target bounding box is denoted as z; = [u; v;]T. The
image variable z is defined as the two feature points in this
work x; (i = 1,2), where 21 = . and x2 = ;. Then, from
eqn. (1), we obtain

i=2Z""q)T(r)i “4)

where
&= [i7,43)"

T(r) = [T (r1), T3 (r2)]"

17 0
-1 — | =)
i (q) - [ 0 22%(1)[ ]

Substituting eqn. (2) into eqn. (4), the relationship between
image feature point and joint can be expressed as:

i=2Z"Y)T(r)T(@)i = Z " () Alq)d (5)
where A(q) = J(r)J-(q).

According to the definition of task variable I', we obtain

1 0 0 0
1 0 0

['=Pzwhere P = | , , 5 | (6)
02 0 -2

where z = [#T, 2217, The task variable is therefore expressed
by the variable x and parameter matrix P.

Differentiating eqn. (6) with respect to time and using eqn.
(5) yields

I'=Pi=PZ ' (¢A(Q)q=J*q, (7

where J* = PZ~1(q).A(q). Next, let us define the objective
functions for the task as follows:

®)

where Wy,qe and h,,q. are the maximum desired values of
width and height of the target bounding box, respectively,
Woin 18 the minimum desired value for width and h,,;, is
the minimum desired value for height of the target bounding
box, e, and e, are the thresholds. uy and vy are defined
as the desired center value of the horizontal and vertical
coordinates for image. The functions f1, f> are used to define
the desired region of center, which is a rectangular area
with (ug4,vq) as the center and 2e, and 2e, as the width
and height, respectively. When e, = e, = 0, the desired
region reduces to a desired point (ug,vg). Similarly, the
desired range of w is defined by f3, f4, while the desired
range of h is defined by f5, fs. According to the above
definitions of f3, f4, when the variable w is in the range
[Wimin, Wmaz|, the values of the functions are non-positive.
Similarly, for f5, fs, the values of the functions are non-
positive when h is in the range [hmin, Amaz],- The parameters
Udy Vd, Winazs Wmins Pmazs Pmin are pre-defined thus known
and can be adjusted by users.

Next, a potential energy function P;(T") associated with each
objective function f; is introduced as

PIAT) = Chfmax(0, A(AD)Y, N >2  ©)

where k; > 0 and [ = 1,2, 3,4, 5, 6. Partial differentiation of
eqn. (9) with respect to AI', we obtain

0, fi(Al) <0

T
s an) (2580) L pan) > o
(10)

Hence, the (OP;(AT")/OAT) is continuous and eqn. (10) can
be expressed as

OP,(AT) df;(AT)

T
TOAT kg [max (0, fi(AL))]V 1 (M) (b

According to the definition of the potential energy function in
eqn. (9), when I' is within the desired region, alngFF) is zero.

Ideally, to achieve a better display, the target object should
be positioned within a desired area of the image field of view
so that both the width and height of the bounding box fill
up the entire image as much as possible. However, since

the shapes of the unknown objects may vary significantly

OP(AT) _
OAT
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according to different tasks and even for a fixed object, the
aspect ratio of the bounding box may also vary when the
robot moves, it is therefore difficult to define a desired area
in advance by using existing methods in the literature. For
example, while tracking a dog as illustrated in Fig. 3, the
desired width or height of the bounding box cannot be defined
in advance and the robot may need to adjust the camera’s
position to fill up either the width or height within the image
depending on the movements of the dog. In this paper, we
introduce a potential energy Pr to achieve a better display in
a flexible and feasible way. The potential energy Pr is defined
as

Pr =P + Py + (P3 + Py) x (P5 + Fs) (12)
It can be inferred that the value of total potential energy
function is 0, when the task variables wu,v,w,h meet the
following conditions:

—ey Tt ug S u < ey +ug —€y +Ug S u < ey +ug

—ey+vg<v<e,+vg or § —€ +vg<v<e,+ug

Winin < W < Winax hmin < h < hiae

From eqn. (12), it can be seen that the total potential energy
is consist of three part, in which (Ps + Py) * (P5 + Pg) is
treated as one item. When the task variables u, v and w meet
the condition on the left side of eqn. (13), (P; + Py) is equal
to 0. On the contrary, if the task variables u, v and h meet the
condition on the right side of eqn. (13), (Ps + Ps) is equal
to 0. In this way, the problem of obtaining a desired best fit
view for any aspect ratio can be resolved.

Substituting eqn. (11) into eqn. (12) and replacing Py, P
with u —ug, v — vy, respectively, the total potential energy Pr
is:

1 1 1
PT :ik’l(u — Ud)2 + 5](12(’1} — ’Ud)2 + N (k‘g[max(O,

F3(AT3)]Y + ka[max (0, f4(AT'3))]Y) « %(1€5 (14)
[max (0, f5(AT4))]Y + k¢[max(0, fG(AF4))]N)

The partial differentiation of total potential energy with respect
to AI'; can be calculated as follow:

=k1*x (u—ug)

OAT, 0Au
ik,
OPp(ATs)  9Pp(Aw)
OATs  OAw
T
— (kg[max(oyfs(AFS))]Nl * CW)
T
+ka[max (0, f4(AT3))]V " « (%) )

v (kalmax(0, f5(AT3))] + kofmax(0, fo(AT))])

OPr(ATy)  OPp(Ah)
AT,  0Ah

= % (kg[max(O, f3(AT3))]Y + ky[max(0, f4(AI‘3))]N)

" <I<;5[max(0,fS(AF‘l))]N_1 * (%)

af6<Ar4>>T>
OAT',

+ kg[max (0, fo (AT, )V « (

(15)

where I' = [u,v,w, h|T. We define the gradient of potential
function Pr(AT") as variable Ae, the expression is defined as
follows, which can be considered as region error.

A _ [0Pr(AT1) OPr(ATy) OPr(Al) (9PT(AF4)]T

0AT', 0AT, 0AT'; 0ATl'y
(16)
A reference joint velocity ¢, is proposed as follows.
Gr = —aJ*T Ae (17)

where « is a positive constant.

For the inner feedback control loop, the velocity tracking
error can be denoted as: Ag;, = ¢ — ¢,-. As the boundedness
of the velocity tracking error Ag;, is ensured by the inner
control loop, we can define a positive constant S so that it
satisfies the following condition [15], [16]:

/Ot AGE (T)Agin (T)dr < B, VE>0 (18)

By multiplying Ag;, with J*, we can obtain
J* NG = J ¢ — T4y (19)

Substituting eqn. (17) into eqn. (19), we have
T Ngin =J* G — J* G = TG+ aJ*TTAe  (20)

Therefore, from eqn. (7), I" can be derived as
I =J"Agin — aJ* T T Ae (1)

Theorem 1: Let the reference joint velocity be chosen as
in eqn. (15), eqn. (16) and eqn. (17) with the total potential
function Pr and the objective functions defined by eqn. (12),
the system described in eqn. (21) guarantees the convergence
of region error Ae — 0 as t — oco.

Proof: To prove the stability of the controller, a Lyapunov-
like function candidate V; is proposed as follows.

Vi = Pr(AT) + é [ﬂ - /0 t AGL (T)Adin(T)dr|  (22)
Differentiating eqn. (22) and substituting eqn. (16) and eqn.
(21) into it
Y Pp(AT)

JAT
—aAeT T T T Ae + AT T* Ay, — éAq’%Aqm

. |
Vi = ' — —AG¢L Adin,
@]

(23)
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Since AT J*Agi, < SATT* T Ae + 2 AGE Adyn, sub-
stituting this inequality into eqn. (23) yields
Vi< — AL Agin — SATT T TAC <0 (24)
2a 2

Since Vi > 0 and Vl < 0, V7 is bounded and hence
Pr(AT') is bounded. The boundedness of Pr(AT") ensures
the boundedness of the functions f;(AT';). Therefore, T is
also bounded. In addition, it can be concluded from eqn. (24)
that Ae € Ly(0,+00). Since J* consists of image Jacobian
and manipulator Jacobian, while .J,. is trigonometric functions
of ¢ and image Jacobian Z~!(q)J(r) is bounded based on
finite camera parameters, according to eqn. (17), ¢, is therefore
bounded. Since the boundedness of Ag;,, = ¢ — ¢, is ensured
by the inner controller, the boundedness of ¢, also ensures
the boundedness of ¢. Thus, & is bounded, which ensures
the boundedness of the time derivative of the region error
Aé. Therefore, it can be concluded that Ae is uniformly
continuous. Then it follows from [2] (Lemma C1 in its
Appendix C) that Ae — 0 as ¢t — oo.

Remark 1: The joint reference input described by eqn. (17)
can be applied to a robot with an inner control loop which
guarantees condition (18). In the above analysis, the effects of
tracking error in the inner loop is taken into consideration in
the analysis. In the literature of kinematic visual servoing, it
is commonly assumed that Ag;, = 0 for all ¢ and the joint
velocity vector is treated as the control input. In this case,
B in eqn. (19) equals to 0, and the Lyapunov-like function
candidate is simplified to

Vi = Pr(AT), (25)
The derivative of V; is therefore
. YPr(AT) . T T
S S *J* < 26
1% SAT r alAet J* T Ae <0 (26)

Remark 2: In this paper, we focus on the case where the
Jacobian matrix is known. However, it is important to note
that the problem of kinematic and Jacobian uncertainty has
been extensively studied in the literature of robot control [10],
[11], [14]-[16] and this result can also be similarly extended
to deal with kinematic uncertainty.

B. Joint Velocity Control based on Dynamic Robot Control
Method

The results in section III.A can be employed for robots with
closed control architecture such as industrial robots where only
joint reference commands are accessible by users. That is,
the convergence of the joint velocity is ensured by the inner
control loop.

In the case of robots with open control architecture, an inner
control loop can be designed to force the robot joint velocity ¢
to track the reference one ¢,.. In this work, an adaptive control
method taking into account dynamics uncertainty of the robot
arm is employed.

The dynamics of a manipulator with n degrees of freedom
can be expressed in joint space as [1], [2]:

M (q)G + EM(Q) +S(q, d)} ig+glg)=17 @27

where M(q) € R™™ is the inertia matrix of manipulator,
%M (¢) + S(q,4) € R™ denotes the centripetal and Coriolis
matrix where the vector of gravitational force and moments
denotes as g(q) € R™*". M(q) is symmetric and positive def-
inite and S(q, ) € R™*" is skew-symmetric. 7 € R™ stands
for the control input. The manipulator dynamic parameters can
be expressed as [3] :
%M(q) +5(g, (J)} i+ 9(q) = Wa(a, 4, 4r, Gr)0a,
(28)
where Wy(q, q, G, g-) is the dynamic regressor matrix and
0, is the vector of dynamic parameters. With the presence
of dynamics uncertainty, only an estimation of the dynamic
parameters is available and denoted as 64 such that

M(Q)f’H[

~ N 1= TN N C A
@)+ | 5310+ 300.0) |+ 3(0) = Wi )6
(29)
The adaptive joint velocity controller with the proposed
reference velocity ¢, in eqn. (17) is proposed as:

7= =K Adin + Walq, 4, 4r Gr)0a- (30)

The overall controller is different from a standard trajectory
tracking controller as the reference velocity is defined by
eqn. (17), (16) and (15). Note that here the reference motion
signals ¢, and §, are used in the dynamic regressor matrix
Wal(q, g, dr, Gr). The adaptive vector of dynamic parameters
is updated by the follow adaptation law:

Ba = —LaWa(q,d, dr, 4) Adin
where Ly is a diagonal positive definite matrix.
Substituting equations (28), (29) and (30) into eqn. (27), the
closed loop robot dynamics can be obtained as:

M(q)Adin + [301(0) + S(q.) + K| Adn
+Wd(Qa Cja (jm qr)Agd =0,

where A8y = 0, — 0.
Theorem 2: With the proposed reference joint velocity ¢, as
defined in eqn. (17), the designed joint motion controller 7
as in eqn. (30) and the dynamic parameter adaptation law
in eqn. (31) guarantee that the robot velocity ¢ converges
asymptotically ¢ — ¢, and also the region error Ae — 0
as t — oo.

Proof: To analyse the convergence of the robot joint ve-
locity ¢ to its reference signal ¢, a Lyapunov-like function
candidate V5 can be chosen as:

€1y

(32)

1 1
Vo = SAGM()Adin + 5005 Ly A0y (33)

Differentiating V5 with respect to time, it has

Vs = AGM(a) Adi + 5 AdT, N (@) Adin + AW] L3 AT
(34

Using the closed loop system equation (27) and the adaptation

law of dynamic parameter vector, the above equation (34) can

be simplified to:

V2 = 7Aqg;1KsA‘jin <0

(35)
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From equations (33) and (35), it can be seen that V5 is positive
definite in Ag;,, and Af; and Vs is negative definite in Ag;y,,
therefore it is easy to conclude that A¢;,, — 0 asymptotically,
i.e. ¢ — ¢, asymptotically.

An overall Lyapunov function candidate V' can be proposed
based on V; and V» as in following to analyse the overall
system performance:

V=V+V,=

Pr(ar)+ 1 o / G (7) Adin ()

1
+ 5840 M () Adin + §A9§L;1A9d

From eqn. (24) and (35), it has
V = —aAeT 7* T Ae + AT J* NGy, —
- AQ?;LKGAQM

1. . )
EAqﬁAqm

< —%AQ%AQW - %AETJ* TTAe — AT K Adin
= quiTn(%I + K)Adyp, — %Az—:TJ*J*TAs <0

) (36)
From eqn. (33), it is seen that V5 is lower bounded. From
the proof of Theorem 1, V7 is also lower bounded. Therefore,
the overall Lypunov function V' is lower bounded. From the
boundedness of V5, Ag;, and Af; must be bounded which
leads to the boundedness of Ag;, according to eqn. (32) so
that Ag;,, is uniformly continuous. From eqn. (36), it can be
seen that both A¢l € Ly(0,+00) and Ae € Ly(0,+00).
Noting that from the proof of Theorem 1 Ae is shown to be
uniformly continuous. Then similar as in proof of Theorem 1,
the asymptotic convergence of Ag;, and Ae as ¢ — oo can
be concluded which completes the proof.

Remark 3: Various motion control methods exist in lit-
erature to achieve desired joint position or velocity with or
without consideration of kinematic uncertainties [8]—[17]. Re-
cent research has also shown that external motion controllers
can be designed for commercial robots with closed built-in
motion controllers to accomplish joint space or task space
control tasks [46]. In this paper, a two-step design approach
like [15], [46] is used but since the proposed methodology
in this paper is general, other existing works can also be
integrated and developed according to specific application
requirements. However, the formulations in these works [8]—
[17], [46] are based on the traditional trajectory tracking
control problem where a desired trajectory is first defined, and
a controller is designed to track the trajectory. Comparatively,
the proposed method in this work focuses on developing a
controller which can integrate any existing real-time CNNs
object detector to achieve better detection and tracking of
object with unknown aspect ratio. The main contribution of
this paper is the development of the reference joint command
described by eqn. (15) ~ (16) and the construction of the
potential function described by eqn. (8) ~ (14) so that stability
of the CNN based robot control systems can be ensured
while analysing the closed-loop systems using Lyapunov-like
methods.

Remark 4: This paper considers a manipulator mounted
with one camera but it is important to note that CNN based
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Fig. 4. Tracking of multiple objects by using an overall bounding box.

object detectors are capable of detecting multiple targeted
objects simultaneously. As only one eye-in-hand camera is
used, the proposed method cannot be used to track multiple
objects independently. Nevertheless, since the aspect ratio of
the bounding box is not required to be known, the CNN-based
robot control can be extended to track all the objects together
by generating a super bounding box which encloses all the
objects. This can be achieved by taking the extreme ends or
corners of all the bounding boxes of the objects to form an
overall bounding box as illustrated in Fig. 4.

Remark 5: Recently, several works [18], [47]-[49] have
been devoted to the development of stable deep learning
techniques. The result in [47] was focusing on training the
convolutional networks for image classification tasks rather
than robot control. For control tasks, deep learning methods
were developed for control systems with unknown kinematics
[18] and unknown dynamics [48], [49], with or without the use
of visual feedback. However, these results were developed for
conventional tracking control rather than CNN-based control
with unknown aspect ratio of target object.

C. Effects of Disturbances

In the presence of a disturbance d, in the dynamic system,
the closed-loop dynamics is described according to eqn. (32)
as:

M(q)Ain + BM(Q) +5(q,q) + Ks} Adin

+Walq, 4, Gry Gr) A0 = di,

If an disturbance or fluctuation Jg also exists in the kine-
matic system, then the derivative of V' in eqn. (36) becomes

(37

. 1
vV =—-A¢" <2a1 + K) Adin — %AETJ*J*TAE
+Aq7j;LJ1 —+ Aé‘TJQ.

Integrating the equation yields

_ / "Ad(7) (11 + Ks) Adin (7)dr

—7/ AT (1) J* T Ae(r dT+/ AGE (1)dy (7)dr

/As 7)dy(7)dT.

Since fJAq'm 7)dy (T )d S
fot dN?(T 1(T)dr and fo AeT
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Ae(r)dr + 5 fo d¥ (7)d¥ (7)dr, then we can obtain

1 1
— [ A¢l Ko+ —IT—=1I
A i) (Kot 51 - 31)
—1 rt
Aq'm<f)dr—a7 / AT (r)T* T Ae(r)dr  (39)
0

+1 / J{(T)Jl(T)dH% / dy (7)da(7)dr.

2 Jo 0
Since V' is non-negative, the above inequality can be rewritten

¢ 1 1
/ AGT (1) (KS + 2—1 - 21) Adin (T)dT
0

—1

+ 0‘2 / AT )J*J*TAE( )dr

_1 1

5 T)dT + = 5 ds (T)do(T)dT + V(0).

’ (40)
Let

1, . 1 1 a-1

S KJ+—— - 22 41
5 2min Dl 50 - 5 55 20 @

where a > 1, Ao [Ks] > % and A.,q.[K] denotes the
maximum eigenvalue of K, then eqn. (40) can be rewritten
as:

t t
/ A (T) Adin (T)dT + / AT (1) T T Ae(T)dT
0 0

<% [ d@aemar+ T [ & @b+

Therefore, we can conclude that H, tuning [2] (see chapter
7) with the errors Ag;,,, Ac is established for the disturbances
if K, and « are chosen as in condition (41). To eliminate the
errors, a switching control terms [50] can be added but it may
result in chattering of the control inputs.

IV. EXPERIMENT

To verify the performance of proposed method, several
experiments were performed by implementing the controller
on a 6-degree-of-freedom (DoF) robotic manipulator-URSe
[51]. The CNN based object detector used in the experiments
was Yolov3 with a AP5q of 57.9 [36].YOLOV3 is used as it is a
representative CNN detector which is commonly used in many
real-time applications. The bounding box information for
generating task variables can be automatically obtained online.
This section is organised into three parts: first, the training of
the LSTM network is presented; second, the implementation
of proposed controller based on the LSTM output is presented;
third, two applications employing the proposed control method
for human tracking and crack detection are provided.

A. LSTM Output of bounding box

In order to achieve high-performance object detection, we
use a high frame-rate camera - Intel Realsense D435i, which
can capture images with more than 30 FPS. The image
resolution is 640*480. However, the high frame-rate and

together with missed detection in some situations may result
in chattering of the bounding box. Therefore, LSTM is first
used to obtain the state information of the bounding box.

As the current task variables are mainly related to its neigh-
boring past variables, the network input number of LSTM
is therefore set as 10. The network structure of LSTM used
in this work is a classical three-layer network: input layer,
hidden layer and output layer. Among them, there are 4 LSTM
neurons in hidden layer. The activation function is sigmoid
function. The model is trained for 10 epochs with 1 batch
size. The input data is collected by Realsense camera. RGB
image and depth information from Realsense are used in this
work. In order to better model the phenomenon of chattering
bounding box, training data based on both static and moving
target objects was collected. Note that the use of LSTM is
independent of the specific CNN detector used and hence can
also be used with any real-time CNN based object detector to
smoothen the output chattering.

The dataset consists of 500 frames in total, with the
training set and test set being divided into the approximate
proportion of 2:1. The input variables are the detection results
[tUyolos Vyolo, Wyolos Nyolo] - obtained from Yolov3. The ground
truths are obtained by manual labeling.

To show that the proposed method can be easily integrated
with existing CNN-based object detector, a pretrained Yolov3
model downloaded from https://github.com/pjreddie/darknet is
used. The target object in this experiment is a human. To better
illustrate the chattering problem of bounding box for Yolov3,
we chose 8 consecutive frames from the test set (See Fig. 5).

A comparison between actual bounding box variables and
output variables of LSTM is shown in Fig. 6. The bounding
box information obtained from Yolov3 were rather noisy, and it
was noted that the chattering mainly appeared when the object
moved. It can be seen from Fig. 6 that the LSTM output is
more stable than the result provided by Yolov3 and it is more
consistent with the ground truth.

B. CNN based Robot Control

To illustrate the performance of the proposed CNN-based
task-space control method, we performed a series of exper-
iments. The maximum desired region was specified as the
entire image field of view (640*480) and the minimum desired
width and height were specified as 384 and 288 respectively.
The gains ki, ko, k3, k4, ks and kg are set as le %, 1.5e4,
le %,1e7%,1e7% 179, and the value of « is set as 0.03. The
desired value for u and v is 320 and 240, which corresponds
to the horizontal and vertical coordinates of the center of an
image. In the experiment, a human is chosen as the target
where the height of the bounding box is much larger than the
width in general.

The plots of task variables versus time are shown in Fig.
7. It can be seen from Fig. 7(a) and Fig. 7(b) that the task
variables v and v gradually converge to pixel 320 and 240
respectively, which means that the target is positioned in the
center of the field of view. The task variable w is not in the
range [384, 640] since the shape of bounding box for a human
who is standing is a vertical rectangle. However, it can be seen
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frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 frame 7 frame 8
Fig. 5. 8 consecutive frames from test set.
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Fig. 6. Comparisons between ground truth of task variables, task variables from Yolov3 and task variables from LSTM.
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that the task variable & finally reaches the desired height range
[288, 480]. This illustrates the case that when the aspect ratio
of the object is relatively large, the larger one is controlled
to reach the desired range. Therefore, in this experiment, the
task variable u, v, h reach the desired range which proves the
effectiveness of the proposed method.

The trajectory of bounding box in pixels is shown in Fig. 8.
According to the aspect ratio (See Fig 8.(b)), the initial shape
of bounding box is a horizontal rectangle due to the initial
field of view but with the movement of the manipulator, the
final shape of bounding box becomes a vertical rectangle. In
spite of changes in aspect ratio the bounding box over time,
the target object can still be positioned at the center of the
image with the desired coverage of the the field of view. A
3D path of robot end-effector in Cartesian space and the joint
angles are shown in Fig 8.(c) and Fig 8.(d) respectively. The
region errors Ae are shown in Fig.9.

C. Applications

1) Human Detection and tracking: The model used in de-
tection and tracking of human was also the pre-trained Yolov3.
The results of the detection and tracking are shown in Fig. 10.
The blue dot represents the center of the image (640%480),
which is a fixed point with a pixel coordinate [320, 240], and
the red dot denotes the center of the bounding box for the
target object, which is generated by LSTM and YOLOV3. At
the beginning, the controller automatically tracked the human
as seen from Fig. 10(a) to Fig. 10(f). The robot moved so that
the target was positioned at the middle of the field of view
as seen in Fig. 10(f). Next, the human took a step back to

. An application to improve crack detection. The blue dot e represents the center of image, while the red dot e represents the center of target.
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introduce a sudden change in position as seen in Fig. 10(g).
Nevertheless, the target could still be tracked by the controller
as seen from Fig. 10(g) to Fig. 10(1). Lastly, a sudden change in
aspect ratio of the human was introduced by raising the hand
and the robot adjusted its position to ensure that the hand
remained visible within the field of view (Fig. 10(0)). The
target center represented by red dot in Fig. 10(o) coincides
with the image center represented by blue dot. The region
errors of detection and person tracking are shown in Fig. 11.
The increases in position errors indicated by the dashed boxes
in Fig. 11(a) and Fig. 11(b) were caused by the changes in
position and posture of the human but these errors reduced to
zero eventually. In addition, the camera could simultaneously
track the target automatically and stopped when the height of
the target had reached the desired region (Fig. 11(d)).

2) Crack Detection: Next, instead of using pre-trained
weights, we trained a Yolov3 model for detection of cracks.
The total number of training images was 905, which was
collected by using the Realsense camera directly.

The result of crack detection by using the proposed method
is shown in Fig. 12. As the cracks are tiny and hence not
easy to be detected, a better view or display of the cracks
can usually lead to a better detection result. Fig. 12 shows
that a deletion result with a very low confidence level of 34.5
percent at the beginning stage due to a poor view of the cracks
(Fig. 12(a)). With the use of the proposed controller, the robot
eventually moved to a better position so that the crack was
detected with a higher confidence level of 99.97 percent (Fig.
12(0)). From Fig. 12, the center of target represented by red
dot gradually tends towards and eventually coincides with the
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center of image, which is represented by blue dot. In addition,
the camera also moved from the initial position with partial
view of the cracks (see Fig. 12(a)) indicated with a small
bounding box in the lower left corner of the field of view, to
a final position where the width of the bounding had reached
the desired region (see Fig. 12(0)) so that the crack was more
visible within the field of view. Fig. 13 shows the convergence
of the region errors.

V. CONCLUSION

In this paper, we have proposed a CNN-based robot con-
trol framework for eye-in-hand configuration. The proposed
methodology is general and can be integrated with existing
CNN-based object detector. The CNN-based robot controller
can be used to track objects with unknown aspect ratio by
positioning the object within a desired region in the FOV.
Experimental results have been presented to demonstrate the
feasibility and applications of the proposed method. In this
paper, the orientation of the object is not considered and
therefore the bounding box may not enclose the object closely
if it is rotated. Future work would include extending the
method to the case of oriented bounding box so as to enclose
the object more closely and thus render a more accurate object
detection. This paper focuses on single object tracking using
an eye-in-hand configuration and multiple objects are treated
as a group (see remark 4). Future work would also be carried
out to develop multi-robot coordination technique for tracking
of multiple objects independently.
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