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Abstract
Given a graph G on n vertices and two integers k and d, the Contraction(vc) problem asks
whether one can contract at most k edges to reduce the vertex cover number of G by at least d.
Recently, Lima et al. [JCSS 2021] proved that Contraction(vc) admits an XP algorithm running
in time f(d) · nO(d). They asked whether this problem is FPT under this parameterization. In
this article, we prove that: (i) Contraction(vc) is W[1]-hard parameterized by k + d. Moreover,
unless the ETH fails, the problem does not admit an algorithm running in time f(k + d) · no(k+d)

for any function f . This answers negatively the open question stated in Lima et al. [JCSS 2021].
(ii) Contraction(vc) is NP-hard even when k = d. (iii) Contraction(vc) can be solved in time
2O(d) · nk−d+O(1). This improves the algorithm of Lima et al. [JCSS 2021], and shows that when
k = d, Contraction(vc) is FPT parameterized by d (or by k).
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2 Reducing the Vertex Cover Number via Edge Contractions

1 Introduction

Graph modification problems have been extensively studied in theoretical computer science,
in particular for their vast expressive power and their applicability in a number of scenarios.
Such problems can be generically defined as follows. For a fixed graph class F and a fixed
set M of allowed graph modification operations, such as vertex deletion, edge deletion, edge
addition, edge editing or edge contraction, the F -M-Modification problem takes as input
a graph G and a positive integer k, and the goal is to decide whether at most k operations
from M can be applied to G so that the resulting graph belongs to the class F . For most
natural graph classes F and modification operations M, the F -M-Modification problem is
NP-hard [33,42, 43]. To cope up with this hardness, these problems have been examined via
the lens of parameterized complexity [8,13]. With an appropriate choice of F and the allowed
modification operations M, F-M-Modification can encapsulate well-studied problems
like Vertex Cover, Feedback Vertex Set (FVS), Odd Cycle Transversal (OCT),
Chordal Completion, or Cluster Editing, to name just a few.

The most natural and well-studied modification operations are, probably in this order,
vertex deletion, edge deletion, and edge addition. In recent years, the edge contraction
operation has begun to attract significant scientific attention. (When contracting an edge
uv in a graph G, we delete u and v from G, add a new vertex and make it adjacent to
vertices that were adjacent to u or v.) In parameterized complexity, F-Contraction
problems, i.e., F-M-Modification problems where the only modification operation in
M is edge contraction, are usually studied with the number of edges allowed to contract,
k, as the parameter. A series of recent papers studied the parameterized complexity of
F-Contraction for various graph classes F such as paths and trees [26], generalizations
and restrictions of trees [1,2], cactus graphs [32], bipartite graphs [24,27], planar graphs [23],
grids [40], cliques [9], split graphs [3], chordal graphs [35], bicliques [37], or degree-constrained
graph classes [6, 22,41].

For all the F-M-Modification problems mentioned above, a typical definition of the
problem contains a description of the target graph class F . For example, Vertex Cover,
FVS, and OCT are F-M-Modification problems where F is the collection of edgeless
graphs, forests, and bipartite graphs, respectively, and M contains only vertex deletion.
Recently, a different formulation of these graph modification problems, called blocker problems,
has been considered. In this formulation, the target graph class is defined in a parametric
way from the input graph. To make the statement of such problems precise, consider an
invariant π : G 7→ N, where G is the collection of all graphs. For a fixed invariant π, a
typical input of a blocker problem consists of a graph G, a budget k, and a threshold value
d, and the question is whether G can be converted into a graph G′ using at most k allowed
modifications such that π(G′) ≤ π(G) − d. This is the same as determining whether (G, k, d)
is a Yes-instance of Fπ

G,d-M-Modification where Fπ
G,d = {G′ ∈ G | π(G′) ≤ π(G) − d}.

Consider the following examples of this formulation. For the invariant π(G) = |E(G)|,
threshold d = |E(G)|, and vertex deletion as the modification operation in M, Fπ

G,d-M-
Modification is the same as Vertex Cover. Setting the threshold d to a fixed integer p
leads to Partial Vertex Cover. In a typical definition of this problem, the input is a
graph G and two integers k, p, and the objective is to decide whether there is a set of vertices
of size at most k that has at least p edges incident on it. Consider another example when
π(G) = vc(G), the size of a minimum vertex cover of G, the threshold value d = vc(G) − 1,
and the allowed modification operation is edge contraction. To reduce the size of a minimum
vertex cover from vc(G) to 1 by k edge contractions, we need to find a connected vertex
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cover of size k + 1. Hence, in this case Fπ
G,d-M-Modification is the same as Connected

Vertex Cover. In all these cases, we can think of the set of vertices or edges involved in
the modifications as ‘blocking’ the invariant π, that is, preventing π from being smaller.

Blocker problems have been investigated for numerous graph invariants, such as the
chromatic number, the independence number, the matching number, the diameter, the
domination number, the total domination number, and the clique number of a graph [4, 5, 7,
11,16,30,36,39,42] with ‘vertex deletion’ or ‘edge deletion’ as the allowed graph modification
operation. Blocker problems with the edge contraction operation have already been studied
with respect to the chromatic number, clique number, independence number [16, 39], the
domination number [19, 21], total domination number [20], and the semitotal domination
number [18].

This article is strongly motivated by the results in [34]. They proved, among other results,
that it is coNP-hard to test whether we can reduce the size of a minimum feedback vertex
set or of a minimum odd cycle transversal of a graph by one, i.e., d = 1, by performing one
edge contraction, i.e., k = 1. This is consistent with earlier results, as blocker problems are
generally very hard, and become polynomial-time solvable only when restricted to specific
graph classes. However, the notable exception is the case when the invariant in question is
the size of a minimum vertex cover of the input graph. We formally define the problem before
mentioning existing results and our contribution (where G/F denotes the graph obtained
from G by contracting the edges in F ).

Contraction(vc)
Input: An undirected graph G and two non-negative integers k and d.
Question: Does there exist a set F ⊆ E(G) such that |F | ≤ k and vc(G/F ) ≤ vc(G)−d?

Our results. A simple reduction, briefly mentioned in [34], shows that the above problem is
NP-hard for some k in {d, d+ 1, . . . , 2d}. In our first result, we enhance our understanding
of the classical complexity of the problem and prove that the problem is NP-hard even when
k = d. As any edge contraction can decrease vc(G) by at most one, if k < d then the input
instance is a trivial No-instance. To state our first result, we introduce the notation of
rank(G), which is the number of vertices of G minus its number of connected components
(or equivalently, the number of edges of a set of spanning trees of each of the connected
components of G). Note that it is sufficient to consider values of k that are at most rank(G),
as otherwise it is possible to transform G to an edgeless graph with at most k contractions,
and therefore in this case G is a yes-instance for Contraction(vc) if and only if vc(G) ≥ d.

▶ Theorem 1. To decide whether an instance (G, k, d) of Contraction(vc) is a Yes-
instance is

coNP-hard if k = rank(G),
coNP-hard if k < rank(G) and 2d ≤ k, and
NP-hard if k < rank(G) and k = d+ ℓ−1

ℓ+3 ·d for any integer ℓ ≥ 1 such that k is an integer.

As one needs to contract at least d edges to reduce the size of a minimum vertex cover by d,
the above theorem, for ℓ = 1, implies that the problem is para-NP-hard when parameterized
by the ‘excess over the lower bound’, i.e., by k − d. Since we can assume that d ≤ k,
d is a ‘stronger’ parameter than k. One of the main results of [34] is an XP algorithm for
Contraction(vc) with running time f(d) · nO(d). Here, and in the rest of the article, we
denote by n the number of vertices of the input graph. The authors explicitly asked whether
the problem admits an FPT algorithm parameterized by d. As our next result, we answer
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this question in the negative by proving that such an algorithm is highly unlikely, even when
parameterized by the larger parameter d+ k (or equivalently, just k, as discussed above).

▶ Theorem 2. Contraction(vc) is W[1]-hard parameterized by k + d. Moreover, unless
the ETH fails1, it does not admit an algorithm running in time f(k + d) · no(k+d) for any
computable function f : N 7→ N. The result holds even if we assume that the input (G, k, d) is
such that k < rank(G) and d ≤ k < 2d, and G is a bipartite graph with a bipartition ⟨X,Y ⟩
such that X is a minimum vertex cover of G.

For the XP algorithm in [34], the authors did not explicitly mention an upper bound
on the corresponding function f , but it is expected to be quite large since the algorithm
uses Courcelle’s theorem [12] as a subroutine. Our next result improves this algorithm by
providing a concrete upper bound on the running time, and by distinguishing in a precise
way the contribution of k and d.

▶ Theorem 3. There exists an algorithm that solves Contraction(vc) in time 2O(d) ·
nk−d+O(1). Moreover, for an input (G, k, d), the algorithm runs in time 2O(d) · nO(1) unless
k < rank(G) and d ≤ k < 2d.

Note that the above result implies, in particular, that the problem is FPT parameterized by
d when k − d is a constant.

Our methods. A central tool in both our negative and positive results is Lemma 13, which
allows us to reformulate the problem as follows. As discussed later, by applying appropriate
FPT reductions to the input graph G, it is possible to assume that we have at hand a
minimum vertex cover X of G. We say that a set of edges F is a solution of (G, k, d) if
|F | ≤ k and vc(G/F ) ≤ vc(G) − d. Lemma 13 implies that there exists such a solution
(i.e., an edge set) if and only if there exist vertex subsets Xs ⊆ X and Ys ⊆ V (G) \ X
such that the pair ⟨Xs, Ys⟩, which we call a solution pair, satisfies the technical conditions
mentioned in its statement (and which we prefer to omit here). This reformulation allows
us to convert the problem of finding a subset F of edges to the problem of modifying the
given minimum vertex cover X to obtain another vertex cover Xel = (X \ Xs) ∪ Ys such
that |Xel| ≤ |X| + (k − d) and rank(Xel) ≥ k. Here, we define rank(Xel) := rank(G[Xel]). See
Figure 2 for an illustration.

In our hardness reductions, another simple, yet critical, tool is Lemma 14, which states
that if there is a vertex which is adjacent to a pendant vertex, then there is a solution pair
that does not contain this vertex. We present overviews of the reductions in Section 3 and
Section 4 to demonstrate the usefulness of these two lemmas in the respective hardness
results. The reduction that we use to prove the third item in the statement of Theorem 1
(which is the most interesting case) is from a variant of Multicolored Independent Set,
while the one in the proof of Theorem 2 is from Edge Induced Forest, a problem that
we define and that we prove to be W[1]-hard in Theorem 19, by a parameter preserving
reduction from, again, Multicolored Independent Set. It is worth mentioning that the
W[1]-hardness in Theorem 19 holds even if we assume that the input graph G is a bipartite
graph with a bipartition ⟨X,Y ⟩ such that X is a minimum vertex cover of G, and such that
k < rank(G) and d ≤ k < 2d. This case is the crux of the difficulty of the problem. This
becomes clear in the XP algorithm of Theorem 3 that we proceed to discuss.

1 The Exponential Time Hypothesis (ETH) is a conjecture stating that, roughly speaking, N -variable
3-SAT cannot be solved in time 2o(N). We refer the reader to [14, Chapter 14] for the formal definition
and related literature.
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Instance (G, k, d)
of Contr.(vc)

Solve in O⋆(2O(d))
using Lemma 23

Solve in O⋆(2O(d))
using Lemma 24

Lemma 26
O⋆(2O(k))

(G, k, d) is a
Yes-instance

Min. vertex cover
X of G with
rank(X) < d

2O(d) instances
of Annotated

Contr.(vc)

G is bipartite
with bipartition
⟨X,Y ⟩ and X is

min. vertex cover

Instance
((G, k, d), ·)

of Constrained
MaxCut

Create 2O(d) ·nk−d

many instances
such that k = d

using Lemma 30

Simplify using
Lemma 31 to
get |X| = |Y |

Instance of
Constrained

Directed
MaxCut

Solve in O⋆(2O(k))
using Lemma 33

k = rank(G)

k < rank(G)

2d ≤ k

d ≤ k < 2d

Lemma 27

Lemma 28Lemma 29

k > d

k = d

k = d Lemma 32

Figure 1 Diagram of the algorithm for Contraction(vc) given by Theorem 3. Recall that
we can assume that d ≤ k ≤ rank(G), hence the case distinction considered in the beginning is
exhaustive. Note also that, in the case where d ≤ k < 2d, it holds that O⋆(2O(k)) = O⋆(2O(d)).

The algorithm for Contraction(vc), which is our main technical contribution, is
provided in Section 5. A diagram of this algorithm is shown in Figure 1. By a standard
Knapsack-type dynamic programming table, which is also mentioned in [34], we can assume
that the input graph G is connected. We distinguish three cases depending on the relation
between k, d, and rank(G). The first two cases are easy, and can be solved in time 2O(d) ·nO(1),
by essentially running an FPT algorithm to determine whether vc(G) < d; see Lemma 23
and Lemma 24. We now present an overview of the algorithm for the third case, namely
when its input (G, k, d) is with guarantees that k < rank(G) and d ≤ k < 2d (cf. Lemma 25).
Inspired by Lemma 13, we introduce an annotated version of the problem called Annotated
Contraction(vc). We first argue (cf. Lemma 26) that there is an algorithm that runs
in time 2O(k) · nO(1), and either correctly concludes that (G, k, d) is a Yes-instance of
Contraction(vc) or finds a minimum vertex cover X of G such that rank(X) < d. Using
this vertex cover, we can construct 2O(d) many instances of Annotated Contraction(vc)
such that (G, k, d) is a Yes-instance of Contraction(vc) if and only if at least one of these
newly created instances is a Yes-instance of Annotated Contraction(vc) (cf. Lemma 27).
Hence, it suffices to design an algorithm to solve Annotated Contraction(vc). We show
that we can apply a simple reduction rule (cf. Lemma 28) that allows us to assume that the
input graph G of Annotated Contraction(vc) is bipartite with bipartition ⟨X,Y ⟩ such
that X is a minimum vertex cover of G, as mentioned above.

A solution of an instance of Annotated Contraction(vc) is a solution pair ⟨Xs, Ys⟩
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as stated in Lemma 13. We find convenient to present an algorithm that finds a partition
⟨VL, VR⟩ of V (G) instead of a solution pair ⟨Xs, Ys⟩. To formalize this, we introduce the
problem called Constrained MaxCut and we show it to be equivalent to Annotated
Contraction(vc) (cf. Lemma 29). We partition the input instances of Constrained
MaxCut into the following two types: (1) k = d, and (2) k > d. For the instances of the
second type, we construct 2O(d) · nk−d many instances of the first type such that the input
instance is a Yes-instance if and only if at least one of these newly created instances is a
Yes-instance (cf. Lemma 30). We remark that this is the only step in the whole algorithm
where an nk−d-factor appears (note that this is unavoidable by Theorem 19).

Finally, to handle the instances of the first type (i.e., with k = d), we apply a simplification
based on the existence of a matching saturating X (cf. Lemma 31), we introduce a directed
variation of the problem called Constrained Directed MaxCut, and we prove it to
be equivalent to its undirected version (cf. Lemma 32). We then present a dynamic
programming algorithm, with running time 2O(k) · nO(1), that critically uses the fact that
k = d (cf. Lemma 33), in particular to “merge” appropriately some directed cycles in
order to obtain a directed acyclic graph, whose topological ordering gives a natural way to
process the vertices of the input graph in a dynamic programming fashion. At the end of
Subsubsection 5.3.4 we present an overview of this algorithm.

Organization. In Section 2 we present some notations, known results, preliminary results
about Contraction(vc), and Lemma 13 and Lemma 14. In Section 3 we present a reduction
from a special case of Multicolored Independent Set to Contraction(vc). This, along
with other preliminary results, proves Theorem 1. In Section 4 we present two parameter
preserving reductions, one from Multicolored Independent Set to Edge Induced
Forest, and another one from Edge Induced Forest to Contraction(vc). These
two reductions, along with known results about Multicolored Independent Set, prove
Theorem 2. Section 5 is the most technical part of the paper, and contains the description of
the algorithm to solve Contraction(vc) mentioned in Theorem 3. We conclude the article
in Section 6 with some open problems.

2 Preliminaries

For a positive integer q, we denote the set {1, 2, . . . , q} by [q]. We use N to denote the
collection of all non-negative integers.

2.1 Graph theory
We use standard graph-theoretic notation, and we refer the reader to [15] for any undefined
notation. For an undirected graph G, sets V (G) and E(G) denote its set of vertices and
edges, respectively. For a directed graph D, sets V (D) and A(D) denote its set of vertices
and arcs, respectively. We denote an edge with two endpoints u, v as uv. To avoid confusion
with edges, we denote an arc with tail u and head v as (u, v). Unless otherwise specified,
we use n to denote the number of vertices in the input (di)graph G of the problem under
consideration. Two vertices u, v in V (G) are adjacent if there is an edge uv in G. The open
neighborhood of a vertex v, denoted by NG(v), is the set of vertices adjacent to v. The closed
neighborhood of a vertex v, denoted by NG[v], is the set NG(v) ∪ {v}. We say that a vertex
u is a pendant vertex if |NG(v)| = 1. The in-neighbourhood of v in a digraph D is the set
of vertices u such that (u, v) is an arc in A(D). We say that (u, v) is an in-coming arc of v.
Similarly, the out-neighbourhood of v is the set of vertices u such that (v, u) is an arc in A(D).



P. T. Lima, V. F. dos Santos, I. Sau, U. S. Souza, and P. Tale 7

We say that (v, u) is an out-going arc of v. We denote the out-neighbors of v by Nout(v). We
omit the subscript in the notation for neighborhood if the graph under consideration is clear.

For a subset S of V (G), we define N [S] =
⋃
v∈S N [v] and N(S) = N [S] \ S. For a subset

F of edges, we denote by V (F ) the collection of endpoints of edges in F . For a subset S of
V (G) (resp. a subset F of E(G)), we denote the graph obtained by deleting S (resp. deleting
F ) from G by G−S (resp. by G−F ). We denote the subgraph of G induced on the set S by
G[S]. For two subsets S1, S2 of V (G), E(S1, S2) denotes the set of edges with one endpoint
in S1 and another one in S2. With a slight abuse of notation, we use E(S1) to denote the
set E(S1, S1). Similarly, we define these notations for digraphs. Namely, A(S1, S2) denotes
the set of arcs with tail in S1 and head in S2.

A graph is connected if there is a path between every pair of distinct vertices. A subset
S ⊆ V (G) is said to be a connected set if G[S] is connected. A spanning tree of a connected
graph is a connected acyclic subgraph that includes all the vertices of the graph. A spanning
forest of a graph is a collection of spanning trees of its connected components. The rank of
a graph G, denoted by rank(G), is the number of edges of a spanning forest of G with the
maximum number of edges. The rank of a set X ⊆ V (G) of vertices, denoted by rank(X), is
the rank of G[X]. The rank of a set F ⊆ V (G) of edges, denoted by rank(F ), is the rank of
V (F ). Note that an edge contraction decreases the rank of a graph G by exactly one.

A set of vertices Y is said to be an independent set if no two vertices in Y are adjacent.
We use the following observation.

▶ Observation 4. Consider two independent sets X,Y in a graph G such that there is no
isolated vertex in G[X ∪ Y ]. If rank(E(X,Y )) ≤ k, then |X|, |Y | ≤ k.

A graph is bipartite if its vertex set can be partitioned into two independent sets. For a
graph G, a set X ⊆ V (G) is said to be a vertex cover if V (G) \X is an independent set. A
set of vertices Y is said to be a clique if any two vertices in Y are adjacent. A set of edges
M is called a matching if no two edges in M share an endpoint. We say that a matching M
saturates a set X ⊆ V (G) if X ⊆ V (M).

A vertex cover X is a minimum vertex cover if for any other vertex cover Y of G, we have
|X| ≤ |Y |. We denote by vc(G) the size of a minimum vertex cover of a graph G. As a vertex
cover needs to contain at least one vertex from each edge in a matching, vc(G) is at least
the size of a maximum matching. Consider a minimum vertex cover X. For any X ′ ⊆ X, we
have |X ′| ≤ |N(X ′)| as otherwise Y = (X \X ′) ∪N(X ′) is another vertex cover of G and
|Y | < |X|, contradicting the fact that X is a minimum vertex cover. As |X ′| ≤ |N(X ′)| for
every X ′ ⊆ X, Hall’s theorem [25] in bipartite graphs implies that there exists a matching
saturating a minimum vertex cover X in G. Such a matching can be found in polynomial
time [28]. For a graph G, a set X ⊆ V (G) is said to be an odd cycle transversal if G−X

is a bipartite graph. An odd cycle transversal X is a minimum odd cycle transversal if for
any other odd cycle transversal Y of G, we have |X| ≤ |Y |. We denote by oct(G) the size of
a minimum odd cycle transversal of a graph G. We need the following algorithmic results
regarding vertex covers and odd cycle transversals.

▶ Proposition 5 ([10]). There is an algorithm that takes as input a graph G and an integer
ℓ, runs in time 1.2738ℓ · nO(1), and correctly determines whether vc(G) ≤ ℓ.

▶ Proposition 6 (Corollary 10 in [38]). There is an algorithm that takes as input a graph G
and an integer ℓ, runs in time 2.6181ℓ · nO(1) and determines whether oct(G) ≤ ℓ.

▶ Proposition 7 (Corollary 15 in [38]). There is an algorithm that takes as input a graph G,
runs in time 1.6181oct(G) · nO(1) and computes a minimum vertex cover of G.
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The algorithm in Proposition 5 can be easily modified to compute vc(G) if vc(G) ≤ ℓ.
For a graph G, we denote by bc(G) the minimum number of edges in G that need to be
contracted to make it a bipartite graph. Note that for a set F ⊆ E(G), if one can obtain
a bipartite graph by contracting all edges in F , then one can obtain a bipartite graph by
deleting one endpoint of every edge in F . Hence, we have the following observation.

▶ Observation 8. For a graph G, oct(G) ≤ bc(G).

Consider a (not necessarily proper) 2-coloring ψ : V (G) 7→ {1, 2}. Heggernes et al. [27]
defined a notion of cost of a 2-coloring ψ of a graph as

∑
X∈Mψ

(|X| − 1), where Mψ is the
set of monochromatic components of ψ. Let (V1, V2) be the partition of V (G) such that
every vertex in V1 and V2 has color 1 and 2, respectively. It is easy to see that cost of ψ is
equal to rank(V1) + rank(V2). We restate [27, Lemma 1] as the following observation.

▶ Observation 9. For a graph G, bc(G) ≤ ℓ if and only if there exists a partition (VL, VR)
of V (G) such that rank(VL) + rank(VR) ≤ ℓ.

2.2 Edge contraction
The contraction of an edge uv in a graph G deletes vertices u and v from G, and adds a new
vertex which is adjacent to all vertices that were adjacent to either u or v. This process does not
introduce self-loops or parallel edges. The resulting graph is denoted by G/e. For a graph G
and edge e = uv, we formally define G/e in the following way: V (G/e) = (V (G)∪{w})\{u, v}
and E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈ E(G)} ∪ {wx | x ∈ NG(u) ∪NG(v)}. Here, w
is a new vertex. An edge contraction reduces the number of vertices in a graph by exactly
one. Several edges might disappear because of one edge contraction. For a subset of edges F
in G, graph G/F denotes the graph obtained from G by contracting all the edges in F .

We now formally define a contraction of a graph G to another graph H.

▶ Definition 10 (Graph contraction). A graph G is said to be contractible to a graph H if
there is a function ψ : V (G) → V (H) such that the following properties hold.
1. For any vertex h in V (H), the set W (h) := {v ∈ V (G) | ψ(v) = h} is not empty and the

graph G[W (h)] is connected.
2. For any two vertices h, h′ in V (H), edge hh′ is present in H if and only if E(W (h),W (h′))

is not empty.
We say that graph G is contractible to H via function ψ. For a vertex h in H, the set W (h),
also denoted by ψ−1(h), is called a witness set associated with or corresponding to h. For
a fixed ψ, we define the H-witness structure of G, denoted by W, as the collection of all
witness sets. Formally, W = {W (h) | h ∈ V (H)}. Note that a witness structure W is a
partition of the vertices in G. If a witness set contains more than one vertex, then we call it
a big witness set, otherwise we call it a small witness set.

2.3 Contraction(vc)
In this subsection, we present a couple of observations regarding an instance (G, k, d) of the
Contraction(vc) problem. Later, we present a lemma that helps us to characterize the
problem as finding a vertex cover with special properties.

▶ Observation 11. Consider an instance (G, k, d) of Contraction(vc) such that k =
rank(G). Then, (G, k, d) is a Yes-instance if and only if d ≤ vc(G).
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Figure 2 We can reduce the size of a minimum vertex cover of G by two by contracting the three
edges in F = {x1y5, x2y5, x2y4}, i.e., vc(G/F ) ≤ vc(G) − d for d = 2. Lemma 13 implies that there
exists a solution pair ⟨Xs = {x3, x4}, Ys = {y3, y4, y5}⟩ such that rank((X \ Xs) ∪ Ys) = rank(Xel) ≥
3 = |F | and |Ys| − |Xs| ≤ 1 = |F | − d.

Proof. Suppose that (G, k, d) is a Yes-instance. Let F ⊆ E(G) be a collection of at most k
edges in G such that vc(G/F ) ≤ vc(G) − d. As vc(G/F ) ≥ 0, we have d ≤ vc(G).

Suppose now that d ≤ vc(G). Let F be the collection of edges in a spanning forest of G.
Note that the graph G/F does not contain any edge and hence vc(G/F ) = 0 ≤ vc(G) − d.
As k = rank(G), we have |F | = k. Hence, F is a solution of (G, k, d). ◀

▶ Observation 12. Consider an instance (G, k, d) of Contraction(vc) such that G is a
connected graph, k < rank(G), and 2d ≤ k. Then, (G, k, d) is a Yes-instance if and only if
d < vc(G).

Proof. Suppose that (G, k, d) is a Yes-instance. Let F ⊆ E(G) be a collection of at most k
edges in G such that vc(G/F ) ≤ vc(G) − d. As |F | ≤ k and k < rank(G), the graph G/F

contains at least one edge. Hence, vc(G/F ) ≥ 1. This implies 1 + d ≤ vc(G).
Suppose now that d < vc(G). Let X be a minimum vertex cover of G. Consider an

algorithm that contracts a path between two vertices in X that are distance at most two.
The existence of such vertices is guaranteed by the fact that G is a connected graph. Let G′

be the resulting graph. Note that vc(G′) = vc(G) − 1. It is easy to verify that if (G, k, d)
is a Yes-instance, then (G′, k − 2, d− 1) is a Yes-instance. As d < vc(G) and k ≥ 2d, the
subroutine can repeat the process d times to get an equivalent instance (G′, k′, d′) such that
k′ ≥ 0 and d′ = 0. As (G′, k′, d′) is a trivial Yes-instance, (G, k, d) is a Yes-instance. ◀

Suppose that (G, k, d) is a Yes-instance of Contraction(vc). We say that a set
F ⊆ E(G) is a solution of (G, k, d) if |F | ≤ k and vc(G/F ) ≤ vc(G) − d. Fix a minimum
vertex cover X of G. As X is a vertex cover, for every edge in F , at least one of its endpoints
is in X. We argue that one can construct an enlarged vertex cover Xel of G such that for
every edge in F , both of its endpoints are in Xel. Also, Xel is not much larger than X. In
order to construct Xel from X, one needs to remove and add some vertices to X. We denote
the removed and added vertices by Xs and Ys, respectively, and call ⟨Xs, Ys⟩ a solution pair.
See Figure 2 for an illustration. The following lemma relates a solution (a set of edges) to a
solution pair (a tuple of disjoint vertex sets).

▶ Lemma 13. Consider a connected graph G, a minimum vertex cover X of G, and two
non-negative integers k, d such that k < rank(G). For a proper subset F of edges of a
spanning forest of G of size k, vc(G/F ) ≤ vc(G) − d if and only if there exists subsets
Xs ⊆ X and Ys ⊆ V (G) \X such that (i) Xel := (X \Xs) ∪ Ys is a vertex cover of G, (ii)
rank((X \Xs) ∪ Ys) ≥ k, and (iii) |Ys| − |Xs| ≤ k − d, i.e., |Xel| ≤ |X| + k − d.
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Proof. (⇒) Consider the collection F of subsets of E(G) of size k such that for every F ∈ F ,
vc(G/F ) ≤ vc(G)−d. For F ∈ F , suppose G is contracted to G/F via function ψ. Let X ′ be
a minimum vertex cover of G/F and Y ′ = V (G/F ) \X ′. We say that ⟨X ′, Y ′⟩ is a partition
corresponding to F . We define a function cost : F 7→ N as follows. For F ∈ F , cost(F ) is the
minimum number of vertices in Y ′ that are associated with big witness sets over all partitions
⟨X ′, Y ′⟩ corresponding to F . Formally, cost(F ) := min⟨X′,Y ′⟩ |{y ∈ Y ′ | |ψ−1(y)| > 1}|,
where ⟨X ′, Y ′⟩ ranges over all partitions corresponding to F .

We assume, for the sake of contradiction, that there is no set in F whose cost is zero. Let
F ∈ F be a set of edges of minimum cost over all sets in F . By our assumption, cost(F ) > 0.
This implies that there is a partition ⟨X ′, Y ′⟩ of V (G/F ) and a vertex y′ ∈ Y ′ such that
|ψ−1(y′)| > 1. Recall that F is a proper subset of edges in a spanning forest of G. Hence,
|F | < rank(G) and there is at least one edge present in G/F . This implies that a minimum
vertex cover X ′ of G/F is not empty. As G is a connected graph, so is G/F . Hence, there is
a vertex x′ ∈ X ′ such that x′y′ ∈ E(G/F ).

Consider a G/F -witness structure W of G. Let W (x′),W (y′) be the witness sets corres-
ponding to x′ and y′, respectively. Recall that W (x′) and W (y′) are connected sets in G.
As x′y′ ∈ E(G/F ), there exists an edge e in E(G) with one of its endpoints in W (x′) and
the other in W (y′). Hence, W (x′) ∪W (y′) is a connected set in G. We claim that there is a
spanning tree of G[W (x′) ∪W (y′)] that has a leaf in W (y′).

Let Tx and Ty be spanning trees of G[W (x′)] and G[W (y′)], respectively. Without loss
of generality, we can assume that E(Tx) ∪ E(Ty) ⊆ F . As |W (y′)| > 1, Ty contains at
least one edge and hence at least two leaves. Consider the tree Txy such that E(Txy) =
E(Tx) ∪ {e} ∪ E(Ty), where e is the edge mentioned in the previous paragraph. Note that
Txy is a spanning tree of G[W (x′) ∪W (y′)]. This spanning tree has a leaf, say y1, in W (y′),
as e is incident on at most one leaf of Ty.

Consider the partition W1 obtained from W by removing W (x′),W (y′) and adding
Wx◦ ,Wy◦ . Here Wx◦ = (W (x′) ∪ W (y′)) \ {y1} and Wy◦ = {y1}. Formally, W1 = (W ∪
{Wx◦ ,Wy◦}) \ {W (x′),W (y′)}. Let F1 = (F ∪E(Txy)) \ (E(Tx) ∪E(Ty)). It is easy to verify
that W1 is a G/F1-witness structure of G. As F1 is obtained from F by removing an edge
incident on y1 and adding edge e (which was not in F ), we have |F1| = |F |. Also, note that
cost(F1) < cost(F ) as the witness set corresponding to y′ no longer contributes to the cost.

We argue that F1 is in F . Let x◦ and y◦ be the two vertices corresponding to witness
sets Wx◦ and Wy◦ , respectively. Note that the graph obtained from G/F by deleting vertices
x and y is the same as the graph obtained from G/F1 by deleting vertices x◦ and y◦. As
W (x) ⊆ Wx◦ , x◦ covers all the edges in G/F that were covered by x. Also, as y was not in a
vertex cover, it did not cover any edge in G/F . This implies vc(G/F ) = vc(G/F1). Thus,
vc(G/F1) ≤ vc(G) − d, and F1 is in F . But this contradicts the fact that F is a set of edges
with minimum cost. Hence, our assumption was wrong and there exists a set of edges in F

whose cost is zero.
Consider a set F ∈ F such that cost(F ) = 0. Let ⟨X ′, Y ′⟩ be the partition of V (G/F ′)

such that X ′ is a vertex cover of G and for every y′ ∈ Y ′, |ψ−1({y′})| = 1. Let Xel =⋃
x′∈X′ ψ−1({x′}). Alternately, Xel is the subset of vertices in V (G) such that ψ(Xel) = X ′.

Define Xs := X \ Xel and Ys := Xel ∩ Y . We argue that ⟨Xs, Ys⟩ is a solution pair. As
|ψ−1({y′})| = 1 for every y′ ∈ Y ′, Xel = (X \Xs) ∪Ys is a vertex cover of G. Recall that F is
a subset of edges in a spanning forest of G. As V (F ) ⊆ Xel, the rank of Xel = (X \Xs) ∪ Ys
is at least |F | = k. Note that the set X ′ can be obtained from Xel by contracting the edges in
F . As F is a subset of edges of a forest, we get |Xel| ≤ |X ′|+ |F | ≤ |X|−d+ |F | = |X|+k−d.
Hence, ⟨Xs, Ys⟩ satisfies all three properties.
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(⇐) Suppose that there is a solution pair ⟨Xs, Ys⟩ such that Xs ⊆ X and Ys ⊆ Y with the
following properties: (i) Xel := (X \Xs)∪Ys is a vertex cover of G, (ii) rank((X \Xs)∪Ys) =
rank(Xel) ≥ k, and (iii) |Ys| − |Xs| ≤ k − d, i.e., |Xel| ≤ |X| + k − d. Let F be the
edge set of a spanning forest of G[Xel] of size k. Such a set of edges exists as the second
property ensures that rank(Xel) ≥ k. As Xel is a vertex cover of G, the set V (G[Xel]/F )
is a vertex cover of G/F . Since F is the edge set of a spanning forest of G[Xel], we have
vc(G/F ) ≤ |V (G[Xel]/F )| = |Xel|− |F | ≤ |X|+(|F |−d)−|F |. The last inequality is implied
by the third property and the fact that |F | = k. This implies vc(G/F ) ≤ |X| − d and as X
is a minimum vertex cover of G, we have vc(G/F ) ≤ vc(G) − d. ◀

In the following lemma, we argue that there exists a solution pair ⟨Xs, Ys⟩ such that Xs

does not contain any vertex in X which is adjacent to a pendant vertex. For example, in
Figure 2, there exists a solution pair ⟨Xs, Ys⟩ such that x1 ̸∈ Xs.

▶ Lemma 14. Consider a connected graph G, a minimum vertex cover X of G, and two
integers ℓ and d. Suppose that there exists a vertex x◦ in X which is adjacent to a pendant
vertex. Suppose that there are subsets Xs ⊆ X and Ys ⊆ V (G)\X such that (i) (X \Xs)∪Ys
is a vertex cover of G, (ii) rank((X \Xs) ∪Ys) ≥ ℓ, and (iii) |Ys| − |Xs| ≤ ℓ− d. Then, there
are subsets X ′

s ⊆ X and Y ′
s ⊆ V (G) \X that satisfy these three conditions and x◦ ̸∈ X ′

s.

Proof. If x◦ ̸∈ Xs then the lemma is vacuously true. Consider the case where x◦ ∈ Xs. Let
y◦ be a pendant vertex in G which is adjacent to x◦. As (X \Xs) ∪ Ys is a vertex cover of
G, y◦ is in it. More specifically, y◦ ∈ Ys. Define X ′

s := Xs \ {x◦} and Y ′
s := Ys \ {y◦}.

As (X \ Xs) ∪ Ys is a vertex cover of G, and y◦ is a pendant vertex, it follows that
(X \ (Xs ∪ {x◦}) ∪ (Ys \ {y◦}) is also a vertex cover of G. As y◦ is not adjacent to any vertex
in (X \Xs) ∪ Ys, we have rank((X \Xs) ∪ (Ys \ {y◦})) = rank((X \Xs) ∪ Ys) ≥ ℓ. Removing
a vertex from XS , which is the same as adding a vertex in (X \Xs) ∪ (Ys \ {y◦})), cannot
decrease its rank. This implies rank((X \ X ′

s) ∪ Y ′
s )) ≥ ℓ. Note that |X ′

s| = |Xs| − 1 and
|Y ′
s | = |Ys| − 1. Hence, |Y ′

s | − |X ′
s| ≤ ℓ− d. As ⟨X ′

s, Y
′
s ⟩ satisfies all the three properties, and

x◦ ̸∈ X ′
s, we get a solution pair with the desired properties. ◀

2.4 Parameterized complexity
An instance of a parameterized problem Π consists of an input I, which is an input of the
non-parameterized version of the problem, and an integer k, which is called the parameter. A
problem Π is said to be fixed-parameter tractable, or FPT, if given an instance (I, k) of Π, we
can decide whether (I, k) is a Yes-instance of Π in time f(k)·|I|O(1). Here, f : N 7→ N is some
computable function depending only on k. Parameterized complexity theory provides tools
to rule out the existence of FPT algorithms under plausible complexity-theoretic assumptions.
For this, a hierarchy of parameterized complexity classes FPT ⊆ W[1] ⊆ W[2] · · · ⊆ XP was
introduced, and it was conjectured that the inclusions are proper. The most common way to
show that it is unlikely that a parameterized problem admits an FPT algorithm is to show
that it is W[1] or W[2]-hard. It is possible to use reductions analogous to the polynomial-time
reductions employed in classical complexity. Here, the concept of W[1]-hardness replaces the
one of NP-hardness, and we need not only to construct an equivalent instance FPT time, but
also to ensure that the size of the parameter in the new instance depends only on the size
of the parameter in the original instance. These types of reductions are called parameter
preserving reductions. For a detailed introduction to parameterized complexity and related
terminologies, we refer the reader to the recent books by Cygan et al. [14] and Fomin et
al. [17].
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Figure 3 Reduction from (3 × q)-Multicolored Clique to Contraction(vc) for ℓ = 1. Every
vertex below the horizontal line (accompanied by X, Y ) on right is in X which is a minimum vertex
cover of G′. Dashed edges shows edges in G.

In the Multicolored Independent Set problem, the input is a graph G, an integer q,
and a partition ⟨V1, V2, . . . , Vq⟩ of V (G). The objective is to determine whether there exists
a multicolored independent set in G. We say that an independent set in G is multicolored if
it contains one vertex from Vi for every i ∈ [q]. Note that it is safe to assume that each Vi is
a clique in G. We will need the following result.

▶ Proposition 15 (cf. Theorem 14.21 in [14]). Multicolored Independent Set paramet-
erized by the size of the solution q is W[1]-hard. Moreover, unless the ETH fails, it does not
admit an algorithm running in time f(q) · no(q) for any computable function f : N 7→ N.

A reduction rule is a polynomial-time algorithm that takes as input an instance of a
problem and outputs another, usually reduced, instance. A reduction rule said to be applicable
on an instance if the output instance and input instance are different. A reduction rule is safe
if the input instance is a Yes-instance if and only if the output instance is a Yes-instance.

3 NP-hardness results

In this section we prove Theorem 1. The first and the second item in the statement of
Theorem 1 follow directly from Observation 11 and Observation 12, respectively. Hence, we
focus on the third case in this section. Recall that in the Multicolored Independent Set
problem, the input is a graph G, an integer q, and a partition ⟨V1, V2, . . . , Vq⟩ of V (G). We
consider a special case of this problem and call it (3 × q)-Multicolored Independent Set.
In this problem, the input is the same as that of Multicolored Independent Set, but it
comes with a guarantee that every color class has exactly three vertices. The NP-hardness of
this problem follows from the standard reduction from 3-SAT to Independent Set (see,
for example, [31, Theorem 8.8]). This reduction ensures that each color class is a clique of
size two or three. For every color class Vi that contains two vertices, we add a new vertex to
Vi and make it adjacent to every vertex in the graph.

The reduction: The reduction takes as input an instance (G, q, ⟨V1, V2, . . . , Vq⟩) of (3 × q)-
Multicolored Independent Set, a positive integer ℓ, and returns an instance (G′, k, d)
of Contraction(vc) such that k = d + ℓ−1

ℓ+3 · d. For notational convenience, rename the
three vertices in the ith color class of G as V [i,⊥, 1], V [i,⊥, 2], and V [i,⊥, 3] for every i ∈ [q].
We use a similar notation to refer to new vertices added to G in order to construct G′. We
use i and j as the running variables in the set [q] and [ℓ], respectively. See Figure 3 for an
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illustration for the case when ℓ = 1. The reduction adds the following vertices to a copy of G
to construct G′:

W [i, j,⊥] and P [i, j,⊥] for every i ∈ [q] and every j ∈ [ℓ],
U [i, j, 1], U [i, j, 2], and U [i, j, 3], for every i ∈ [q] and every j ∈ [ℓ], and
two vertices denoted by V [⊥,⊥,⊥] and P [⊥,⊥,⊥].

It adds the following edges:

For every i ∈ [q] and j ∈ [ℓ], it adds the four edges incident on W [i, j,⊥] whose other
endpoints are P [i, j,⊥], U [i, j, 1], U [i, j, 2], and U [i, j, 3].
For every i ∈ [q] and j ∈ [ℓ], it adds three matching edges whose endpoints are {V [i,⊥
, 1], U [i, j, 1]}, {V [i,⊥, 2], U [i, j, 2]}, and {V [i,⊥, 3], U [i, j, 3]}.
For every i ∈ [q] and j ∈ [ℓ], it adds three edges incident on V [⊥,⊥,⊥] whose other
endpoints are V [i,⊥, 1], V [i,⊥, 2], and V [i,⊥, 3]. It adds three more edges incident on
V [⊥,⊥,⊥] whose other endpoints are U [i, j, 1], U [i, j, 2], and U [i, j, 3].
It adds an edge with endpoints V [⊥,⊥,⊥] and P [⊥,⊥,⊥].

This completes the construction of G′. The reduction sets d = (ℓ+3)·q and k = d+(ℓ−1)·q,
and returns (G′, k, d) as the instance of Contraction(vc).

We define sets V,U,W , and P in the natural way, i.e., V is the collection of all the
vertices that have representation V [i, j,⊥] for some i ∈ [q] and j ∈ [ℓ]. We define the other
sets similarly. Note that V [⊥,⊥,⊥] ̸∈ V and P [⊥,⊥,⊥] ̸∈ P . By the construction, every
vertex in {P [⊥,⊥,⊥]} ∪ P is a pendant vertex.

For the sake of simplicity, we start by presenting an overview of the correctness of the
reduction for the case where ℓ = 1, i.e., k = d. The formal proof is provided after the overview.
By Lemma 13, there is a solution F of (G′, k, d) if and only if there exists a solution pair
⟨Xs, Ys⟩ such that (i) Xel = (X \Xs) ∪ Ys is a vertex cover of G′, (ii) rank(Xel) ≥ |F | = k,
and (iii) |Xel| ≤ |X| + |F | − d ≤ |X| + k − d = |X|. The reduction ensures that the size of
X is k + 1. With this, the second and the third conditions force Xel to be a connected set of
the same size as that of X. For the example in Figure 3, Lemma 14 implies that V [⊥,⊥,⊥],
W [i, 1,⊥] and W [i1, 1,⊥] are in Xel. Hence, to provide connectivity between V [⊥,⊥,⊥] and
W [i, 1,⊥], at least one of the vertices in {U [i, 1, 1], U [i, 1, 2], U [i, 1, 3]} needs to be in Xel.
However, as |Xel| = |X|, at least one vertex in {V [i,⊥, 1], V [i,⊥, 2], V [i,⊥, 3]} needs to be
out of Xel, i.e., in Xs. As this is true for every color class, Xs includes at least one vertex
from it. The first condition enforces Xs to be an independent set. This implies that Xs can
include at most one vertex from each color class. Moreover, if Xs includes V [i,⊥, 2] then
it cannot include V [i1,⊥, 2] or V [i1,⊥, 3]. These are precisely the conditions we want for
encoding an instance of Multicolored Independent Set. This concludes the overview
of the reduction.

We formalize the above ideas in Lemma 17 and Lemma 18. Before that, in the next
lemma we argue about the size of a minimum vertex cover of G′.

▶ Lemma 16. The set X := V ∪W ∪ {V [⊥,⊥,⊥]} is a minimum vertex cover of G′.

Proof. By the construction of G′, it is easy to verify that X is a vertex cover of G′. To
prove that it is a minimum vertex cover, we show that there is a matching M of size |X| in
G′. Initialize M = ∅. For every vertex in {V [⊥,⊥,⊥]} ∪W , include the edge in M incident
on its pendant neighbor. For every i ∈ [q], include the three edges whose endpoints are
{V [i,⊥, 1], U [i, j, 1]}, {V [i,⊥, 2], U [i, j, 2]}, and {V [i,⊥, 3], U [i, j, 3]}. It is easy to verify that
M is a matching of size |X|. This implies that X is a minimum vertex cover of G′. ◀
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▶ Lemma 17. If (G, q, ⟨V1, V2, . . . , Vq⟩) is a Yes-instance of (3 × q)-Multicolored Inde-
pendent Set, then (G′, k, d) is a Yes-instance of Contraction(vc).

Proof. Suppose that Q is a multicolored independent set in G. Let {V [i,⊥, zi]} = Q ∩ Vi
for zi ∈ {1, 2, 3}. By Lemma 16, X := V ∪W ∪ {V [⊥,⊥,⊥]} is a minimum vertex cover of
G′. Define

Xs := {V [i,⊥, zi] | i ∈ [q]}, Ys := {U [i, j, zi] | i ∈ [q] ∧ j ∈ [ℓ]} and Xs := X \Xel.

It is easy to verify that Xel is a vertex cover of G′. As G[Xel] is a connected graph,
rank(Xel) = |Xel| − 1 = |X| + (ℓ − 1) · q − 1. As |X| = (ℓ + 3) · q + 1 = d + 1, we get
rank(Xel) = d + 1 + (ℓ − 1) · q − 1 = k. Also, |Ys| − |Xs| = (ℓ − 1) · q = k − d. This
implies that the pair ⟨Xs, Ys⟩ satisfies all the three conditions mentioned in the statement
of Lemma 13. As k < rank(G), Lemma 13 implies that there exists a set of edges F of size
at most k in G′ such that vc(G′/F ) ≤ vc(G) − d. Hence, (G′, k, d) is a Yes-instance of
Contraction(vc). ◀

▶ Lemma 18. If (G′, k, d) is a Yes-instance of Contraction(vc) then (G, q, ⟨V1, V2, . . . , Vq⟩)
is a Yes-instance of (3 × q)-Multicolored Independent Set.

Proof. Suppose that F ′ is a solution of (G′, k, d), i.e., vc(G′/F ) ≤ vc(G) − d and |F ′| ≤ k.
As k < rank(G), we can assume, without loss of generality, that |F ′| = k. Lemma 13 implies
that there exists a solution pair ⟨Xs, Ys⟩ that satisfies the three conditions mentioned in its
statement. Recall that every vertex in {V [⊥,⊥,⊥]} ∪W is adjacent to some pendant vertex
in G′. Lemma 14 implies that there exits a solution pair ⟨Xs, Ys⟩ with the additional property
that Xs ∩ ({V [⊥,⊥,⊥]} ∪W ) = ∅. This implies ({V [⊥,⊥,⊥]} ∪W ) ⊆ Xel := (X \Xs) ∪ Ys.

We first argue that q ≤ |Xs|. By the second condition in Lemma 13, rank(Xel) ≥ k. By the
third condition in Lemma 13, |Xel| ≤ |X|+k−d. As |X| = d+1, it follows that |Xel| ≤ k+1.
Hence, the number of vertices in G′[Xel] is at most k + 1, whereas the number of edges in a
spanning forest of G′[Xel] is at least k. This implies that G′[Xel] is connected. Fix integers
i ∈ [q] and j ∈ [ℓ]. By the construction of G′, every path between V [⊥,⊥,⊥] to W [i, j,⊥]
contains at least one vertex in {U [i, j, 1], U [i, j, 2], U [i, j, 3]}. As ({V [⊥,⊥,⊥]} ∪W ) ⊆ Xel,
and G[Xel] is connected, Ys contains at least one vertex in the set. As this is true for every
i ∈ [q] and j ∈ [ℓ], we have |Ys| ≥ q · ℓ. By the third condition mentioned in Lemma 13,
|Ys| − |Xs| ≤ k − d. Substituting k − d = (ℓ− 1) · q, we get q ≤ |Xs|.

As Xs ∩ ({V [⊥,⊥,⊥]} ∪W ) = ∅ and X := V ∪W ∪ {V [⊥,⊥,⊥]}, we have Xs ⊆ V . By
the first condition mentioned in Lemma 13, (X \Xs) ∪ Ys is a vertex cover of G′. As each
Vi is a clique in G′, we have that |Xs ∩ Vi| ≤ 1 for every i ∈ [q]. This, along with the fact
that q ≤ |Xs| imply that |Xs ∩ Vi| = 1 for every i ∈ [q]. Recall that G′[V ] is isomorphic to
G. As G′[Xs] is an independent set in G′, it follows that Xs is also an independent set in
G. It is also evident that it is multicolored. This implies that (G, q, ⟨V1, V2, . . . , Vq⟩) is a
Yes-instance of (3 × q)-Multicolored Independent Set. ◀

As mentioned before, the first and the second point in the statement of the theorem follow
directly from Observation 11 and Observation 12, respectively. Lemma 17 and Lemma 18
imply that the reduction is correct. By the description of the reduction, it outputs the
constructed instance in polynomial time. Hence, the third point in the statement of Theorem 1
is correct, which concludes its proof.
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4 W[1]-hardness results

In this section we prove Theorem 2. That is, we show that Contraction(vc) is W[1]-hard
when parameterized by the solution size k plus the measure d. Moreover, unless the ETH fails,
it does not admit an algorithm running in time f(k+d) ·no(k+d) for any computable function
f : N 7→ N. To obtain these results, we introduce the Edge Induced Forest problem.
We define this problem formally in Subsection 4.1, and present a parameter preserving
reduction from Multicolored Independent Set to it. This reduction, along with known
results about Multicolored Independent Set, imply the corresponding result for Edge
Induced Forest. The proof is presented in Theorem 19. In Subsection 4.2, we present a
parameter preserving reduction from Edge Induced Forest to Contraction(vc). This
reduction, along with Theorem 19, imply the correctness of Theorem 2.

4.1 Edge Induced Forest is W[1]-hard
We define the following problem.

Edge Induced Forest
Input: A graph G and an integer ℓ.
Question: Does there exist a set F of at least ℓ edges in G such that G[V (F )] is a
forest?

We note that a similar problem called Induced Forest has already been studied. In
this problem, the input is the same but the objective is to find a subset X of vertices of G of
size at least ℓ such that G[X] is a forest. The general result of Khot and Raman [29] implies
that Induced Forest is W[1]-hard when parameterized by the size of the solution ℓ. As
expected, we can prove a similar result for Edge Induced Forest.

▶ Theorem 19. Edge Induced Forest, parameterized by the size of the solution ℓ, is
W[1]-hard. Moreover, unless the ETH fails, it does not admit an algorithm running in time
f(ℓ) · no(ℓ) for any computable function f : N 7→ N.

Proof. We present a simple parameter preserving reduction from Multicolored Independ-
ent Set. The reduction takes as input an instance (G, q, ⟨V1, V2, . . . , Vq⟩) of Multicolored
Independent Set, and constructs another graph G′ from G by adding a universal vertex
α to G. Formally, it adds a vertex α to V (G), and adds edge uα to E(G) for every vertex
u in V (G) \ {α} to obtain G′. It adds q + 1 pendant vertices adjacent to α. Formally, for
every i ∈ [q + 1], it adds a vertex xi to V (G′), and an edge xiα to E(G′). Let P be the
collection of all the pendant vertices added in this step. It sets ℓ = 2 · q + 1, and returns the
instance (G′, ℓ) of Edge Induced Forest as the constructed instance. This completes the
description of the reduction.

We now argue that the reduction is safe. In the forward direction, suppose that Q is a
multicolored independent set in G. Define F := {xiα | ∀ xi ∈ P}∪{uiα | ui ∈ Q∩Vi ∀ i ∈ [q]}.
It is easy to verify that F is a solution of (G′, ℓ).

In the reverse direction, suppose that F is a solution of (G′, ℓ), i.e., G′[V (F )] is a forest
and |F | ≥ ℓ. We first argue that α ∈ V (F ). Assume, for the sake of contradiction, that α is
not in V (F ). This implies that F contains 2 · q + 1 many edges in G′ − {α}. Note that every
vertex in P is an isolated vertex in G′ − {α}. Hence, V (F ) ⊆

⋃
i∈[q] Vi. As |F | ≤ V (F ), it

follows that there exists i ∈ [q] such that |V (F ) ∩ Vi| ≥ 3. However, as Vi is a clique in G′,
this contradicts the fact that G′[V (F )] is a forest. Hence, α ∈ V (F ).

As α ∈ V (F ), it is safe to assume that F contains all the edges in FP := EG′({α}, P ).
Since |P | = q + 1, F contains at least q many edges whose endpoints are in V (G′) \ P .



16 Reducing the Vertex Cover Number via Edge Contractions

The following two statements are direct consequences of the facts that α is an universal
vertex, Vi is a clique in G′ for any i ∈ [q], and G′[F ] is a forest: (i) For any i ∈ [q],
we have |V (F ) ∩ Vi| ≤ 1, and in particular |F ∩ EG′(Vi)| = 0. (ii) For any i ̸= j ∈ [q],
|F ∩EG′(Vi, Vj)| = 0. This implies that every edge in F \ FP has α as one of its endpoints.
As there are at least q edges F \ FP , |V (F ) ∩ Vi| = 1 for every i ̸= j ∈ [q].

We define a subset Q of V (G) as Q := {u ∈ V (G) | uα ∈ F and u ∈ Vi for some i ∈ [q]}.
As for every i ∈ [q], we have |V (F ) ∩ Vi| = 1, this implies |Q ∩ Vi| = 1. We argue that Q is a
multicolored independent set in G. Consider any two indices i ̸= j ∈ [q], and let ui, uj be
the unique vertices in Q ∩ Vi and Q ∩ Vj , respectively. If uiuj ∈ E(G) then uiuj ∈ E(G′) as
E(G) ⊆ E(G′). However, as uiα, ujα ∈ F , this contradicts the fact that G′[F ] is a forest.
Hence, vertices ui and uj are not adjacent in G. Since i, j are arbitrary indices in [q], this is
true for any i ̸= j ∈ [q], and therefore Q is a multicolored independent set in G.

This implies that (G, q, ⟨V1, V2, . . . , Vq⟩) is a Yes-instance of Multicolored Independ-
ent Set if and only if (G′, ℓ) is a Yes-instance of Edge Induced Forest. By the
description of the reduction, it outputs the constructed instance in polynomial time. The
W[1]-hardness of the problem follows from Proposition 15. It is also easy to see that if Edge
Induced Forest admits an algorithm with running time f(ℓ) · no(ℓ) for some computable
function f : N 7→ N, then Multicolored Independent Set also admits an algorithm with
running time f(q) · no(q), which contradicts Proposition 15. ◀

4.2 Contraction(vc) is W[1]-hard
In this subsection we present a parameter preserving reduction from Edge Induced Forest
to Contraction(vc).

The reduction: The reduction takes as input an instance (G, ℓ) of Edge Induced Forest
and returns an instance (G′, k, d) of Contraction(vc). It constructs a graph G′ from G as
follows.

It initializes V (G′) = E(G′) = ∅.
For every vertex u in V (G), it adds two vertices zu, pu to V (G′) and the edge zupu to
E(G′).
For every edge uv in E(G), it adds the vertex set {yauv, ybuv, ycuv, w1

uv, w2
uv, p1

uv, p2
uv} to

V (G′). It adds edge {zuycuv, zvycuv} to E(G′). These edges encode adjacency relations
in G. It also adds edges {yauvybuv, yauvycuv, ybuvw1

uv, ybuvw2
uv, w1

uvp
1
uv, w2

uvp
2
uv} to E(G′).

These edges are part of a gadget which is private to edge uv.
This completes the construction of G′. The reduction sets k = 4 · ℓ, d = 3 · ℓ, and returns
(G′, k, d) as the constructed instance. This completes the description of the reduction. Note
that, indeed, k < rank(G′) and d ≤ k < 2d (more precisely, k − d = d

3 ). See Figure 4 for an
illustration.

Before proving the correctness of the reduction, we first note some properties of the graph
G′. We define the following sets:

Z := {zu ∈ V (G′) | u ∈ V (G)},
Y abc := Y a∪Y b∪Y c where Y a := {yauv ∈ V (G′) | uv ∈ E(G)}, Y b := {ybuv ∈ V (G′) | uv ∈
E(G)}, and Y c := {ycuv ∈ V (G′) | uv ∈ E(G)},
W := {w1

uv, w
2
uv ∈ V (G′) | uv ∈ E(G)}, and

P := {pu ∈ V (G′) | u ∈ V (G)} ∪ {p1
uv, p

2
uv | uv ∈ E(G)}.

Note that ⟨Z, Y abc,W, P ⟩ is a partition of V (G′), each vertex in P is a pendant vertex, and
each vertex in Z ∪W is adjacent to a pendant vertex in P . Moreover, rank(G′) > k. Note
that X := Z ∪ W ∪ Y a is an independent set in G′. In the next lemma, we argue that it
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Figure 4 The top-left figure illustrates an encoding of edge uv in G while reducing from an
instance of Edge Induced Forest to an instance of Contraction(vc). The remaining five figures
correspond to the partition of Ys mentioned in the proof of Lemma 22.

is also a minimum vertex cover of G′, which implies that, as claimed in the statement of
Theorem 2, G′ is a bipartite graph with a bipartition ⟨X,Y ⟩ such that X is a minimum
vertex cover of G′.

▶ Lemma 20. The set X = Z ∪W ∪ Y a is a minimum vertex cover of G′.

Proof. By the construction of G′, it follows that X is a vertex cover of G′. To prove
that it is a minimum vertex cover, we show that there is a matching of size |X| in G.
Consider the following set of edges M := {zupu | u ∈ V (G)} ∪ {w1

uvp
1
uv, w

2
uvp

2
uv | uv ∈

E(G)} ∪ {yauvycuv | uv ∈ E(G)}. It is easy to verify that M is a matching in G′ of size |X|.
Hence, any vertex cover has size at least |X|. This implies that X is a minimum vertex cover
of G′. ◀

▶ Lemma 21. If (G, ℓ) is a Yes-instance of Edge Induced Forest, then (G′, k, d) is a
Yes-instance of Contraction(vc).

Proof. Let F be a solution of (G, ℓ) i.e., G[V (F )] is a forest and |F | ≥ ℓ. We assume, without
loss of generality, that |F | = ℓ. By Lemma 20, the set X := Z ∪W ∪Y a is a minimum vertex
cover of G′. Note that X is also an independent set in G′. We denote the independent set
V (G′) \X by Y .

We construct a solution pair ⟨Xs, Ys⟩ using F . Define Xs := {yauv ∈ Y a | uv ∈ F},
and Ys := Y b

s ∪ Y c
s where Y b

s := {ybuv ∈ Y b | uv ∈ F}, and Y c
s := {ycuv ∈ Y c | uv ∈ F}.

It is easy to verify that the set Xel obtained from X by removing the vertices in Xs and
adding the vertices in Ys, is another vertex cover. Formally, Xel = (X \Xs) ∪ Ys. Note that
X \Xs = (Z ∪W ∪Y a) \Xs = Z ∪W ∪ (Y a \Xs), as by definition Xs ⊆ Y a. As every vertex
yauv ∈ Y a is adjacent to only ycuv and ybuv in Y , (X \Xs)∪Ys = Z∪W ∪ (Y a \Xs)∪Y b

s ∪Y c
s is

a vertex cover of G′ and its size is |X| − ℓ+ 2 · ℓ = |X| +k−d. By the construction of G′, one
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can obtain graph G′[Z ∪Y c
s ] by subdividing every edge in G[F ]. Hence, G′[Z ∪Y c

s ] is a forest
with 2 · ℓ edges and some isolated vertices. Also, G′[Y b

s ∪W ] is a forest with at least 2 · ℓ edges
(two edges corresponding to each vertex in Y b

s ). As the vertices in Z ∪Y c and Y b∪W are not
adjacent, G′[Z ∪ Y c

s ∪ Y b
s ∪W ] is a forest with 4ℓ edges. This implies that rank(Xel) = 4 · ℓ.

Hence, ⟨Xs, Ys⟩ satisfies the three conditions mentioned in Lemma 13. As k < rank(G),
Lemma 13 implies that there is a subset F ′ of E(G′) such that vc(G′/F ′) ≤ vc(G) − d.
Hence, (G′, k, d) is a Yes-instance of Contraction(vc). ◀

We first present a brief overview of the proof of the correctness in the backward direction.
By Lemma 13, there is a solution F of (G′, k, d) if and only if there exists a solution pair
⟨Xs, Ys⟩ such that (i) Xel = (X\Xs)∪Ys is a vertex cover of G′, (ii) rank(Xel) ≥ |F | = k = 4·ℓ,
and (iii) |Ys| − |Xs| ≤ k − d = ℓ. Note that as X and Y = V (G) \X are independent sets
in G′, every edge in E(Xel) is incident on exactly one vertex in Ys. We can interpret the
second condition as a value function and the third condition as a cost function. In other
words, our objective is to find sets Xs, Ys such that their cost, i.e., |Ys| − |Xs|, is at most
ℓ whereas their value, i.e., the rank of edges in E(Xel) that are incident on Ys, is at least
4 · ℓ. Lemma 14 implies that the vertices of the form zu, w

1
uv, and w2

uv are in Xel. The first
condition implies that only the five configurations shown in Figure 4 are possible (the top-left
is not a configuration). Starting from top-middle and moving row-wise, the individual value
and cost of these configurations are (4, 1), (3, 1), (3, 1), (6, 2), and (1, 1), respectively. To
meet both the value and budget constraints, every vertex in Xs, Ys needs to be the of first
type. This implies there are ℓ vertices in Xs that are of the form yauv, and Ys contains the
corresponding vertices of the form ybuv and ycuv. We argue that the edges corresponding to
vertices in Y c

uv form a solution of (G, ℓ) and formalize these ideas in the next lemma.

▶ Lemma 22. If (G′, k, d) is a Yes-instance of Contraction(vc), then (G, ℓ) is a Yes-
instance of Edge Induced Forest.

Proof. Suppose that F ′ is a solution of (G′, k, d), i.e., vc(G′/F ′) ≤ vc(G′) − d and |F ′| ≤ k.
As k < rank(G), we can assume, without loss of generality, that |F ′| = k. Lemma 13 implies
that there exists a solution pair ⟨Xs, Ys⟩ that satisfies the three conditions mentioned in
its statement. Recall that every vertex in Z ∪W is adjacent to some pendant vertex in G′.
Lemma 14 implies that there exists a solution pair ⟨Xs, Ys⟩ with the additional property
that Xs ∩ (Z ∪W ) = ∅. As Xs ⊆ X = Z ∪W ∪ Y a, this implies that Xs ⊆ Y a.

We argue that |Xs| = ℓ. We partition the vertices in Ys into the following five sets.
Y [1, 1, 1] := {ybuv, ycuv ∈ Ys | (yauv ∈ Xs) ∧ (ybuv ∈ Ys) ∧ (ycuv ∈ Ys)}.
Y [0, 1, 0] := {ybuv ∈ Ys | (yauv ̸∈ Xs) ∧ (ybuv ∈ Ys) ∧ (ycuv ̸∈ Ys)}.
Y [0, 0, 1] := {ycuv ∈ Ys | (yauv ̸∈ Xs) ∧ (ybuv ̸∈ Ys) ∧ (ycuv ∈ Ys)}.
Y [0, 1, 1] := {ybuv, ycuv ∈ Ys | (yauv ̸∈ Xs) ∧ (ybuv ∈ Ys) ∧ (ycuv ∈ Ys)}.
Y [0, 0, 0] := Ys ∩ P .

We can define the sets Y [1, 0, 0], Y [1, 0, 1], and Y [1, 1, 0] in a similar way. Note that
yauv ∈ Xs implies that ybuv, ycuv ∈ Ys. Hence, we do not need to consider the sets Y [1, 0, 0],
Y [1, 0, 1], and Y [1, 1, 0]. This also implies 2 · |Xs| = |Y [1, 1, 1]|. Hence, to argue that |Xs| = ℓ,
it is sufficient to prove that |Y [1, 1, 1]| = 2 · ℓ. As the solution pair ⟨Xs, Ys⟩ satisfies the third
condition, i.e., |Ys| − |Xs| ≤ k − d, we have

|Y [1, 1, 1]| + |Y [0, 1, 0]| + |Y [0, 0, 1]| + |Y [0, 1, 1]| + |Y [0, 0, 0]| − |XS | ≤ ℓ.

Substituting |Y [1, 1, 1, ]| = 2 · |Xs|, and multiplying by two, we get the following relation.

|Y [1, 1, 1]| + 2 · |Y [0, 1, 0]| + 2 · |Y [0, 0, 1]| + 2 · |Y [0, 1, 1]| + 2 · |Y [0, 0, 0]| ≤ 2 · ℓ. (1)
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Define Xel := (X \ Xs) ∪ Ys. By the definition, |E(Xel)| ≥ rank(Xel). As the solution
pair ⟨Xs, Ys⟩ satisfies the second condition, i.e., rank((X \ Xs) ∪ Ys) ≥ 4 · ℓ, we have
|E(Xel)| ≥ rank(Xel) ≥ 4 · ℓ. As X,Y both are independent sets in G′, every edge in E(Xel)
has one of its endpoints in X \Xs and the other one in Ys. It is easy to verify (see Figure 4)
that the number of edges incident on each vertex in Y [1, 1, 1], Y [0, 1, 0], Y [0, 0, 1], Y [0, 1, 1],
Y [0, 0, 0] is 2, 3, 3, 3, and 1, respectively. Substituting these values we get

2 · |Y [1, 1, 1]| + 3 · |Y [0, 1, 0]| + 3 · |Y [0, 0, 1]| + 3 · |Y [0, 1, 1]| + |Y [0, 0, 0]| ≥ 4 · ℓ.

Dividing the inequality by two yields the following relation.

|Y [1, 1, 1]| + 3
2 · |Y [0, 1, 0]| + 3

2 · |Y [0, 0, 1]| + 3
2 · |Y [0, 1, 1]| + 1

2 · |Y [0, 0, 0]| ≥ 2 · ℓ. (2)

Equation (1) and (2) imply that the only feasible case is when |Y [1, 1, 1]| = 2 · ℓ and all other
sets have cardinality zero. This implies |Xs| = ℓ. Also, |E(Xel)| = 2 · |Y [1, 1, 1]| = 4 · ℓ. As
rank(Xel) ≥ 4 · ℓ, it follows that G′[Xel] is a forest with 4 · ℓ edges. It is easy to verify that
the graph induced on Z ∩N [Ys ∩ Y c] is a forest with 2 · ℓ edges.

We now construct a solution of (G, ℓ) using the set Xs, more precisely Ys ∩ Y c. Define
F := {uv ∈ E(G) | ycuv ∈ Ys}. As |Xs| = ℓ, we have |F | = ℓ. It remains to argue that
G[V (F )] is a forest. By the construction of G′, one can obtain G′[Z ∩ N [Y ∩ Y c]] by
subdividing every edge in G[V (F )]. As the former graph is a forest, we can conclude that
G[V (F )] is also a forest. Hence, F is a solution of (G, ℓ). This implies that if (G′, k, d)
is a Yes-instance of Contraction(vc) then (G, ℓ) is a Yes-instance of Edge Induced
Forest. ◀

We are ready to present the proof of Theorem 2.

Proof of Theorem 2. Consider the reduction presented in this subsection. Lemma 21 and
Lemma 22 imply that the reduction is safe. By the description of the reduction, it outputs the
constructed instance in polynomial time. The W[1]-hardness of Contraction(vc) follows
from Theorem 19. As k = 4 · ℓ and d = 3 · ℓ, if Contraction(vc) admits an algorithm with
running time f(k+ d) · no(k+d), then Edge Induced Forest also admits an algorithm with
running time f(ℓ) · no(ℓ), which contradicts Theorem 19. ◀

5 Algorithm for Contraction(vc)

In this section we prove Theorem 3. We present an algorithm that takes as input an instance
(G, k, d) of Contraction(vc), and returns either Yes or No, whose high-level description
is as follows (cf. Figure 1):

If k = rank(G), then it uses the algorithm mentioned in Lemma 23.
If k < rank(G) and 2d ≤ k, then it uses the algorithm mentioned in Lemma 24.
If k < rank(G) and d ≤ k < 2d, then it uses the algorithm mentioned in Lemma 25.

Note that, since we can safely assume that d ≤ k ≤ rank(G), the above three cases are
exhaustive. We handle each of these cases in the next three subsections (note that the first
two are much easier than the last one). Subsection 5.4 contains the correctness proof of
Theorem 3. Throughout this section, we assume that G is a connected graph. We justify
this assumption in Subsection 5.4.
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5.1 First case: k = rank(G)
It is sufficient to prove the following lemma to handle this case.

▶ Lemma 23. There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with a guarantee that k = rank(G), runs in time 1.2738d · nO(1), and
correctly determines whether it is a Yes-instance.

Proof. Consider an algorithm that for input (G, k, d), runs the algorithm mentioned in
Proposition 5 as a subroutine with G and d− 1 as its input. If the subroutine concludes that
vc(G) ≤ d− 1, then the algorithm returns No, otherwise it returns Yes. This concludes the
description of the algorithm. Its correctness and running time follow from Observation 9 and
Proposition 5, respectively. ◀

5.2 Second case: k < rank(G) and 2d ≤ k

As in the previous subsection, it is sufficient to prove the following lemma.

▶ Lemma 24. There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with guarantees that k < rank(G) and 2d ≤ k, runs in time 1.2738d ·nO(1),
and correctly determines whether it is a Yes-instance.

Proof. Consider an algorithm that for input (G, k, d), runs the algorithm mentioned in
Proposition 5 as a subroutine with G and d as its input. It considers the following three
cases depending on the value of vc(G). Case (i) (vc(G) < d): It concludes that (G, k, d)
is a No-instance. Case (ii) (vc(G) = d): It concludes that (G, k, d) is a No-instance.
Case (iii) (vc(G) > d): It concludes that (G, k, d) is a Yes-instance. This completes the
description of the algorithm.

We now argue the correctness of the algorithm. As the vertex cover number of any
graph is a non-negative integer, if vc(G) < d then the input is a No-instance. Note that to
eliminate all edges in a connected graph by contracting edges, one needs to contract all the
edges in a spanning tree. Hence, if vc(G) = d then the only feasible solution of (G, k, d) is a
spanning tree of G. However, as k < rank(G), the algorithm correctly concludes that it is a
No-instance. For the third case, consider a subroutine that finds two vertices in a minimum
vertex cover that are at distance at most two and contracts a shortest path between these
two vertices. The existence of such vertices is guaranteed by the fact that G is a connected
graph. Note that this path is of length one or two. In each iteration of the process, k drops
by at most two and vc(G) drops by one. As 2d ≤ k, if vc(G) > d then the subroutine can
repeat the process d times. Hence, the algorithm correctly concludes that the input instance
is a Yes-instance in the third step.

The running time of the algorithm follows from its description and Proposition 5. ◀

5.3 Third case: k < rank(G) and d ≤ k < 2d
The objective of this subsection is to prove the following lemma.

▶ Lemma 25. There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with guarantees that k < rank(G) and d ≤ k < 2d, runs in time
2O(d) · nk−d+O(1), and correctly determines whether it is a Yes-instance.

We refer readers to Section 1, in particular Figure 1, for an overview of the algorithm
presented in this subsection.
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5.3.1 Simplifying an instance of Contraction(vc)
We prove the following lemma, which will allow us to assume henceforth that we are equipped
with a minimum vertex cover of the input graph with small rank.

▶ Lemma 26. There exists an algorithm that, given as input an instance (G, k, d) of
Contraction(vc) with guarantees that k < rank(G) and d ≤ k < 2d, runs in time
2.6181k · nO(1), and either correctly concludes that (G, k, d) is a Yes-instance, or computes a
minimum vertex cover X of G such that rank(X) < d.

Proof. Consider an algorithm that, given (G, k, d) as input, runs the algorithm mentioned
in Proposition 6 as a subroutine with G and k as its input. If oct(G) > k, then it concludes
that (G, k, d) is a Yes-instance. If oct(G) ≤ k, then it uses the algorithm mentioned in
Proposition 7 to compute a minimum vertex cover X of G. If rank(X) ≥ d, then it concludes
that (G, k, d) is a Yes-instance. Otherwise, it returns X as the desired vertex cover. This
completes the description of the algorithm.

We argue the correctness of the algorithm. Consider the case where oct(G) > k. Recall
that we denote by bc(G) the minimum number of edges in G that need to be contracted to
make it a bipartite graph. By Observation 8, oct(G) > k implies that bc(G) > k. Hence,
by Observation 9, for any partition (VL, VR) of V (G), we have rank(VL) + rank(VR) > k.
Consider a partition (VL, VR) of V (G) such that VL is a minimum vertex cover of G. As VR
is an independent set, rank(VR) = 0. This implies rank(VL) > k. Hence, we can reduce vc(G)
by d by contracting d (which is at most k) edges whose both endpoints are in VL. Consider
the case when the algorithm finds a minimum vertex cover X of G such that rank(X) ≥ d.
Once again, we can reduce vc(G) by d by contracting d edges of a spanning forest of G[X].
Hence, in both these cases, the algorithm correctly concludes that the input is a Yes-instance.
Otherwise, the algorithm returns a minimum vertex cover X of G such that rank(X) < d.

The running time of the algorithm follows from its description and Proposition 6. ◀

5.3.2 Reducing to Annotated Contraction(vc)
An input of the Annotated Contraction(vc) problem consists of an instance (G, k, d) of
Contraction(vc), a minimum vertex cover X of G, and two disjoint subsets XL, XR of X.
We are interested in a vertex cover Xel of G whose size is not much larger than that of X but
has rank at least k. To construct Xel from X, we need to find a solution pair ⟨Xs, Ys⟩ such
that vertices in Xs are ‘moved out’ of X, and vertices in Ys are ‘moved in’. Given ⟨XL, XR⟩,
we add a restriction on a possible solution pair ⟨Xs, Ys⟩. Namely, we are interested in Xs that
contains XR and is disjoint from XL. The following is the formal definition of the problem.

Annotated Contraction(vc)
Input: An instance (G, k, d) of Contraction(vc), a minimum vertex cover X of G,
and a tuple ⟨XL, XR⟩ such that XL, XR are disjoint subsets of X.
Question: Do there exist sets Xs ⊆ X and Ys ⊆ Y (= V (G) \ X) such that (i)
(X \Xs) ∪Ys is a vertex cover of G, (ii) rank((X \Xs) ∪Ys) ≥ k, (iii) |Ys| − |Xs| ≤ k−d,
and (iv) XL ∩Xs = ∅ and XR ⊆ Xs?

The first three conditions correspond to the three conditions mentioned in Lemma 13.
Given an instance (G, k, d) of Contraction(vc), using Lemma 13 we construct ‘FPT-
many’ instances of Annotated Contraction(vc) such that the original instance is a
Yes-instance if and only if at least one of the newly created instances is a Yes-instance. We
remark that there is a small technical caveat while using Lemma 13. Consider an instance
(G, k, d) of Contraction(vc), and let F be a solution. Lemma 13 implies that there are
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subsets Xs ⊆ X and Ys ⊆ V (G) \ X such that (i) (X \ Xs) ∪ Ys is a vertex cover of G,
(ii) rank((X \ Xs) ∪ Ys) ≥ |F |, and (iii) |Ys| − |Xs| ≤ |F | − d. However, the statement of
Annotated Contraction(vc) specifies the integer k and not the actual size of a minimum
solution F . For example, if there exists a solution F of size, say, k/2, then Lemma 13 ensures
that rank((X \ Xs) ∪ Ys) ≥ k/2, however rank((X \ Xs) ∪ Ys) can be smaller than k. To
overcome this, we assume that (G, k − 1, d) is a No-instance of Contraction(vc). This
implies that if there is a subset F of E(G) of size at most k such that vc(G/F ) ≤ vc(G) − d,
then F is of size exactly k. We summarize below all the assumptions on the input instance.

▶ Guarantee 5.1. Consider an instance (G, k, d) of Contraction(vc) that satisfies the
following conditions.

G is a connected graph, k < rank(G), and d ≤ k.
A minimum vertex cover X of G is provided as an additional part of the input.
rank(X) < d.
(G, k − 1, d) is a No-instance of Contraction(vc).

Unless stated otherwise, we denote the independent set V (G) \X by Y .
Consider an instance (G, k, d) of Contraction(vc) with Guarantee 5.1. We construct

2O(d) many instances of Annotated Contraction(vc) such that (G, k, d) is a Yes-instance
if and only if at least one of these newly created instances is a Yes-instance. Informally, let
F be the set of edges in a spanning forest of G[X]. As rank(X) < d, we have |F | < d. We
iterate over all ‘valid’ partitions ⟨XL, XR⟩ of V (F ). We construct an instance of Annotated
Contraction(vc) for each such a partition. We formalize this intuition and prove its
correctness in the following lemma.

▶ Lemma 27. Suppose that there is an algorithm that solves Annotated Contraction(vc)
in time f(n, k, d). Then, there exists an algorithm that given as input an instance (G, k, d)
of Contraction(vc) with Guarantee 5.1, runs in time 3d · nO(1) · f(n, k, d), and correctly
determines whether it is a Yes-instance.

Proof. Let A be an algorithm that, given an instance ((G, k, d), X, ⟨XL, XR⟩) of Annotated
Contraction(vc), runs in time f(n, k, d), and correctly determines whether it is a Yes-
instance. We describe an algorithm that solves Contraction(vc) using A as a subroutine.

The algorithm takes as input an instance (G, k, d) of Contraction(vc) and returns
either Yes or No. By Guarantee 5.1, the input also consists of a minimum vertex cover X
of rank less than d. Let Fx be the edge set of a spanning forest of G[X]. For every subset
F ′
x of Fx, the algorithm constructs multiple instances of Annotated Contraction(vc) as

specified in the next paragraph. The algorithm uses Algorithm A to check if at least one of
these newly created instances is a Yes-instance. If it is the case, then the algorithm returns
Yes, otherwise it returns No.

Consider a subset F ′
x of Fx. Let P be the collection of partitions ⟨XL,F ′

x
, XR,F ′

x
⟩ of

V (Fx \ F ′
x) such that for every edge e in Fx \ F ′

x, exactly one of its endpoints is in XL,F ′
x

and the other one is in XR,F ′
x
. For every partition ⟨XL,F ′ , XR,F ′⟩ in P, the algorithm

does as follows: If XR,F ′
x

is not an independent set in G, then the algorithm constructs a
trivial No-instance. Otherwise, it adds (G, k, d,X, ⟨XL, XR⟩) to the collection of instances
of Annotated Contraction(vc). Here, XL = XL,F ′ ∪ V (F \ F ′) and XR = XR,F ′ . This
completes the description of the algorithm.

We now argue the correctness of the algorithm. Suppose that (G, k, d) is a Yes-instance.
Recall that, by Guarantee 5.1, (G, k − 1, d) is a No-instance. Hence, there exists a subset
F ⊆ E(G) of size exactly k such that vc(G/F ) ≤ vc(G) − d. By Lemma 13, there are
subsets Xs ⊆ X and Ys ⊆ V (G) \X such that (i) (X \Xs) ∪ Ys is a vertex cover of G, (ii)
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rank((X \Xs) ∪Ys) ≥ |F |, and (iii) |Ys| − |Xs| ≤ |F | − d. As |F | = k, there is a solution pair
⟨Xs, Ys⟩ that satisfies the first three conditions. To see that the solution pair also satisfies
the last condition mentioned in the problem statement, let F ′

x be the subset of Fx such that
V (F \ F ′

x) ∩ (X \Xs) = ∅. As Xs is an independent set in G, for every edge e in Fx \ F ′
x,

exactly one of its endpoints is in Xs. As the algorithm constructs a new instance for every
such a partition, at least one of the newly created instances is a Yes-instance.

The algorithm returns Yes only when Algorithm A returns Yes on one of the newly
created instances. By the correctness of Algorithm A, at least one of the newly created
instances is a Yes-instance. Hence, there exists sets Xs ⊆ X and Ys ⊆ Y such that (i)
(X \Xs) ∪Ys is a vertex cover of G, (ii) rank((X \Xs) ∪Ys) ≥ k, and (iii) |Ys|− |Xs| ≤ k−d.
By Lemma 13, there exists a subset F ⊆ E(G) of size k such that vc(G/F ) ≤ vc(G) − d.
Hence, (G, k, d) is a Yes-instance. This concludes the proof of correctness of the algorithm.

For every i ∈ {0, 1, 2, . . . , d}, the algorithm iterates over all subsets of edges of size i. It
can construct the partition by guessing the right endpoint of the remaining d− i edges. For
every partition, it creates an instance and executes Algorithm A. Hence, the total running
time of the algorithm is O(

∑d
i=0

(
d
i

)
· 2d−i · (f(n, d, k) +n2)) = O(3d · (f(n, k, d) +n2)). This

concludes the proof of the lemma. ◀

As mentioned in the overview of the introduction, to solve an instance of Annotated
Contraction(vc), we reduce it to an equivalent instance of the Constrained Max-
Cut problem. To present such a reduction, it is convenient to work with an instance
((G, k, d), X, ⟨XL, XR⟩) of Annotated Contraction(vc) where X is an independent set.
We present a reduction rule that eliminates edges with both endpoints in X. The reduction
rule states that it is safe to contract edges with both endpoints in XL, and that it is safe
to delete edges with one endpoint in XL and another endpoint in XR. Recall that if there
is an edge with both endpoints in XR, then the input is a trivial No-instance. Note that
⟨XL, XR⟩ is not a partition of X. However, as we only need the following reduction rule
for the instances obtained by the algorithm mentioned in Lemma 27, we can assume that
X \ (XL ∪XR) is an independent set in G.

▶ Reduction Rule 5.1. Consider an instance ((G, k, d), X, ⟨XL, XR⟩) of Annotated Con-
traction(vc). Let F1 = E(XL, XR) and F2 be the set of all edges in a spanning forest of
G[XL].

Delete the edges in F1.
Contract the edges in F2 and reduce both k and d by |F2|.

Return the instance ((G′, k′, d′), X ′, ⟨X ′
L, XR⟩) where G′ = (G − F1)/F2, k′ = k − |F2|,

d′ = d− |F2|, X ′ = V (G[X]/F2), and X ′
L = V (G[XL]/F2).

▶ Lemma 28. Reduction Rule 5.1 is safe. Therefore, it is safe to assume that we are given
an instance ((G, k, d), X, ⟨XL, XR⟩) of Annotated Contraction(vc) such that X is an
independent set and a minimum vertex cover of G.

Proof. As V (F2) ⊆ XL, for any two subsets Xs, Ys such that XL ∩Xs = XL ∩ Ys = ∅, we
have rank((X \Xs)∪Ys) ≥ k if and only if rank((X ′ \Xs)∪Ys) ≥ k′. Here, X ′ = V (G[X]/F2).
Also, by the construction, k − d = k′ − d′.

(⇒) Suppose that ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance. Then, there exists a solution
pair ⟨Xs, Ys⟩ that satisfies the four conditions mentioned in the definition of the problem.
We argue that ⟨Xs, Ys⟩ is also a solution of (G′, k′, d′, X ′, ⟨X ′

L, XR⟩). As (X \Xs) ∪ Ys is a
vertex cover of G, it is also a vertex cover of G − F1. As (X ′ \ Xs) ∪ Ys is obtained from
(X \Xs) ∪ Ys by contracting the edges in F2, whose both endpoints are in X \Xs, the set
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(X ′ \Xs) ∪Ys is a vertex cover of (G−F1)/F2. As V (F2) ⊆ XL and XL ∩Xs = XL ∩Ys = ∅,
rank((X \ Xs) ∪ Ys) ≥ k implies that rank((X ′ \ Xs) ∪ Ys) ≥ k − |F2| = k′. Also, by the
construction, k−d = k′ −d′. Hence, |Ys|−|Xs| ≤ k′ −d′. It is easy to verify that X ′

L∩Xs = ∅
and XR ⊆ Xs. Hence, ⟨Xs, Ys⟩ satisfies all the four conditions with respect to instance
((G′, k′, d′), X ′, ⟨X ′

L, XR⟩). This implies that ((G′, k′, d′), X ′, ⟨X ′
L, XR⟩) is a Yes-instance.

(⇐) Suppose that ((G′, k′, d′), X ′, ⟨X ′
L, XR⟩) is a Yes-instance. Then, there exists a

solution pair ⟨X ′
s, Y

′
s ⟩ that satisfies the four conditions mentioned in the definition of the

problem. Any edge in G− F1 which is not present in G′ is incident on some vertex in V (F2).
By the first condition, the set (X ′ \X ′

s) ∪ Y ′
s is a vertex cover of G′. As (X ′ \Xs) ∪ Ys is

obtained from (X \ Xs) ∪ Ys by contracting the edges in F2 whose both endpoints are in
X \Xs, (X \X ′

s)∪Y ′
s is a vertex cover of G−F1. This implies that if rank((X ′ \X ′

s)∪Y ′
s ) ≥ k′,

then rank((X \ X ′
s) ∪ Y ′

s ) ≥ k′ + |F2| = k. For every edge in F1, one of its endpoints is
incident on XL ⊆ X. Hence, (X \ X ′

s) ∪ Y ′
s is a vertex cover of G and its rank is at least

k. As k − d = k′ − d′, we have |Y ′
s | − |X ′

s| ≤ k − d. It is easy to verify that XL ∩ X ′
s and

XR ⊆ X ′
s. Hence, ⟨X ′

s, Y
′
s ⟩ satisfies all the four conditions with respect to the instance

((G, k, d), X, ⟨XL, XR⟩). This implies that ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance. ◀

5.3.3 Reducing to Constrained MaxCut
We find the following reformulation of Annotated Contraction(vc) convenient to present
an algorithm to solve it.

Constrained MaxCut
Input: An instance (G, k, d) of Contraction(vc), a minimum vertex cover X of G,
and a tuple ⟨XL, XR⟩ such that XL, XR are disjoint subsets of X.
Question: Does there exist a partition ⟨VL, VR⟩ of V (G) such that (i) E(VL∩Y, VR∩X) =
∅, (ii) rank(E(VL ∩X,VR ∩Y )) ≥ k, (iii) |VR ∩Y | − |VR ∩X| ≤ k− d, and (iv) XL ⊆ VL
and XR ⊆ VR?

Note that in Annotated Contraction(vc) we are seeking for a pair of subsets, whereas
in Constrained MaxCut we are looking for a partition of V (G). Such a formulation
allows us to handle vertices that we have decided to keep out of a solution pair. Note that
the input instances for both of these problems are the same. Hence, due to Lemma 28, it is
safe to assume that X is a minimum vertex cover and an independent set in G. In the next
lemma we show that both problems are in fact equivalent.

▶ Lemma 29. An instance ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance of Annotated Con-
traction(vc) if and only if it is a Yes-instance of Constrained MaxCut.

Proof. (⇒) Let ⟨Xs, Ys⟩ be a solution pair of ((G, k, d), X, ⟨XL, XR⟩) for the Annotated
Contraction(vc) problem. Define VR = Xs ∪ Ys and VL = V (G) \ VR. It is easy to
verify that ⟨VL, VR⟩ satisfies all the four conditions mentioned in the problem statement of
Constrained MaxCut. This implies that ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance of
Constrained MaxCut.

(⇐) Let ⟨VL, VR⟩ be a desired partition of V (G). Define Xs = VR ∩X and Ys = VR ∩ Y .
Once again, it is easy to verify that the solution pair ⟨Xs, Ys⟩ satisfies all the four conditions
mentioned in problem statement of Annotated Contraction(vc). This implies that
((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance of Annotated Contraction(vc). ◀

Consider an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut. We consider
the following two cases: (1) k = d, and (2) d < k < 2d. (Recall that we are in the case
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where k < 2d.) The first case, as we will see, allows us to impose additional restrictions
on the vertices that are in VR. It also helps us to set up some conditions such that, if
they are satisfied while running the algorithm, then it can terminate and safely conclude
that the input is a Yes-instance. In the second case, even for k = d + 1, we do not have
these privileges. We deal with each of the two cases separately. Lemma 30 states that if an
input instance is of the second type, then we can construct a collection of 2O(d) · nk−d many
instances of the first type such that the input instance is a Yes-instance if and only if at
least one of these newly created instances is a Yes-instance. We remark that this is the only
place, in the whole algorithm, where an nk−d-factor appears in the running time. Recall
that Theorem 2 implies that this factor is unavoidable. In the next subsection, we present
an algorithm to solve the instances that are of the first type.

▶ Lemma 30. Suppose that there is an algorithm that, given an instance ((G, k, d), X, ⟨XL, XR⟩)
of Constrained MaxCut with a guarantee that k = d, runs in time f(n, k, d) and cor-
rectly determines whether it is a Yes-instance. Then, there is an algorithm that solves
Constrained MaxCut in time f(n, k, d) · 2O(d) · nk−d+1.

Proof. Let A be an algorithm that, given an instance ((G, k, d), X, ⟨XL, XR⟩) of Con-
strained MaxCut with the guarantee that k = d, runs in time f(n, k, d), and correctly
determines whether it is a Yes-instance. We describe an algorithm that solves any instance
of Constrained MaxCut using A as a subroutine.

The algorithm takes as input an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained
MaxCut and either returns Yes or No. For every input instance, it constructs a collection
I = {(Gi, ki, di), Xi, ⟨Xi

L, X
i
R⟩)} of 2O(d) · nk−d many instances, as described below, such

that ki = di for every i ∈ [|I|]. It uses Algorithm A to check if at least one of these instances
is a Yes-instance. If it is the case then it returns Yes, otherwise it returns No.

The algorithm constructs the new instances as follows. First it guesses an integer q in
{0, 1, . . . , k − d} such that if ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance then q is the smallest
integer for which ((G, d+ q, d), X, ⟨XL, XR⟩) is a Yes-instance. Note that the solution size,
i.e., the number of edges allowed to be contracted in the second instance, is d + q. Let
Yq = {Y i ⊆ Y | |Y i| = q}. For every set Y i in the collection, the algorithm constructs at
most 2O(k) many new instances. If rank(E(Y i, N(Y i))) ≥ k, then the algorithm constructs
a trivial Yes-instance. It constructs a graph Gi as follows: For every vertex y ∈ Y i, it
adds a vertex x and makes it adjacent to y. Alternately, every vertex y in Y i is adjacent
to a pendant vertex in Gi. Let Xi

p be the collection of all the pendant vertices added while
constructing Gi from G. For every partition ⟨Xi

ℓ, X
i
r⟩ of N(Y i), the algorithm constructs

a new instance ((Gi, ki, di), Xi, ⟨Xi
L, X

i
R⟩) where Gi is as described above, ki := d + q,

di := d+ q, Xi = X ∪Xi
p, Xi

L := XL ∪Xi
ℓ, and Xi

R := XR ∪Xi
r ∪Xi

p. This concludes the
description of the algorithm.

We now argue the correctness of the algorithm. Suppose that ((G, k, d), X, ⟨XL, XR⟩)
is a Yes-instance. Hence, there exists an integer q in {0, 1, . . . , k − d} such that ((G, d +
q, d), X, ⟨XL, XR⟩) is a Yes-instance. We assume, without loss of generality, that q is the
smallest such an integer. Consider the case when there exists a subset Y ′ of Y such that
|Y ′| = q and rank(E(Y ′, N(Y ′))) ≥ k. In this case, the algorithm constructs a trivial Yes-
instance, and thus correctly concludes that the input is a Yes-instance. Now consider the
case when for every subset Y ′ of Y of size q, rank(E(Y ′, N(Y ′))) < k. Suppose that ⟨VL, VR⟩
is a partition of V (G) that satisfies all the conditions mentioned in the statement of the
problem. By the third condition, |VR ∩ Y | − |VR ∩ X| = q. Fix a subset Y i of VR ∩ Y of
size q. The third condition ensures that such a set exists. Consider a partition ⟨Xi

ℓ, X
i
r⟩

of N(Y i) where Xi
ℓ = N(Y i) ∩ VL and Xi

r = N(Y i) ∩ VR. As the algorithm constructs an
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instance for every subset Y ′ of Y of size q, and for every partition of N(Y ′), it constructs
an instance, say ((Gi, ki, di), Xi, ⟨Xi

L, X
i
R⟩), corresponding to Y i and a partition ⟨Xi

ℓ, X
i
r⟩ of

N(Y i). We argue that this is a Yes-instance.
Let Xi

p be the set of pendant vertices added to G to construct Gi. Note that |Xi
p| = q.

Hence, V (Gi) = V (G) ∪ Xi
p. Consider a partition ⟨V i

L, V
i
R⟩ of V (Gi) where V i

L = VL and
V i
R = VR∪Xi

p. It is easy to verify that this partition satisfies all the four conditions mentioned
in the problem statement. This implies that ((Gi, ki, di), Xi, ⟨Xi

L, X
i
R⟩) is a Yes-instance.

By the correctness of Algorithm A, it correctly concludes that it is a Yes-instance. Hence, in
this case the algorithm returns Yes on at least one of the newly created instances. Hence, if
the input is a Yes-instance, then the algorithm correctly concludes that it is a Yes-instance.

We now argue that if the algorithm returns Yes, then the input instance is indeed a
Yes-instance. Consider an input instance ((G, k, d), X, ⟨XL, XR⟩). By the description of the
algorithm, it returns Yes if and only if one of the newly created instances is a Yes-instance.
Suppose that one of these instances is a trivial Yes-instance. The algorithm constructs
such an instance only if it finds a subset Y ′ of Y which is of size at most k − d, and
rank(N(Y ′), Y ′) ≥ k. In this case, ⟨VL = V (G) \ Y ′, VR = Y ′⟩ satisfies all the conditions
mentioned in the problem statement. Hence, the input instance is a Yes-instance. Otherwise,
suppose that the algorithm concludes that a non-trivial instance ((Gi, ki, di), Xi, ⟨Xi

L, X
i
R⟩)

is a Yes-instance using Algorithm A. Suppose that ⟨V i
L, V

i
R⟩ is a partition of V (Gi) that

satisfies all the four conditions in the problem statement. Let Xi
p be the collection of pendant

vertices added while constructing Gi from G. Recall that Xi
p ⊆ Xi

r and |Xi
p| ≤ k − d. It is

easy to verify that ⟨VL = V i
L, VR = V i

R \Xi
p⟩ is the desired partition of V (G) that satisfies

all the four conditions mentioned in the problem statement. This implies that the input is a
Yes-instance. This concludes the proof of correctness of the algorithm.

It remains to argue about the running time of the algorithm. For the input instance
((G, k, d), X, ⟨XL, XR⟩), there are at most (k − d) + 1 choices for q. For each q, the size
of Yq, the collection of subsets of Y of size exactly q, is at most nq. If for a set Y ′

in Yq, rank(Y ′, N(Y ′)) ≥ k, then the algorithm creates only one instance. Otherwise,
rank(Y ′, N(Y ′)) < k. By Observation 4, the number of vertices in N(Y ′) is bounded by k.
In this case, the algorithm constructs 2O(k) many instances. The overall running time of the
algorithm follows from the running time of Algorithm A and the fact that k ≤ 2d. ◀

5.3.4 Simplifying an instance of Constrained MaxCut when k = d

As mentioned before, in this subsection we present an algorithm to solve an instance
((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut with a guarantee that k = d. We
first present a reduction rule to simplify these instances under the presence of a matching
saturating X, and prove its correctness using the fact that k = d.

▶ Reduction Rule 5.2. Consider an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained
MaxCut such that k = d and X is an independent set in G. Let M be a matching in G

saturating X.
If there exists x ∈ X \XL such that N(x) \ V (M) ̸= ∅, then add x to XL.
If there exists x ∈ XL such that N(x)\V (M) ̸= ∅, then delete all vertices in N(x)\V (M).

Return instance ((G′, k, d), X, ⟨X ′
L, XR⟩) where G′ = G−(N(x)\V (M)) and X ′

L = XL∪{x}.

▶ Lemma 31. Reduction Rule 5.2 is safe.

Proof. Suppose that ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance, and let ⟨VL, VR⟩ be the
desired partition of V (G) that satisfies all the conditions in the problem statement. By the
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Figure 5 An example to illustration a reduction from Constrained MaxCut to Contrained
Directed MaxCut. We do not show all the edges in G for the sake of clarity.

first condition, N(X ∩ VR) ⊆ Y ∩ VR. Let M ′ be the subset of edges of M that saturates
all vertices in X ∩ VR. As V (M ′) ∩ Y ⊆ N(X ∩ VR), we have (V (M ′) ∩ Y ) ⊆ (Y ∩ VR). As
M is a matching, |X ∩ VR| = |M ′| = |V (M ′) ∩ Y |. However, as k = d, the third condition
implies |Y ∩ VR| − |X ∩ VR| = 0. Hence, (Y ∩ VR) \ (V (M ′) ∩ Y ) is an empty set.

Consider the first case. If x ∈ VR then, by the first condition, N(x) \ M is in Y ∩ VR.
However, this contradicts the fact that (Y ∩ VR) \ (V (M ′) ∩ Y ) is an empty set. This
implies that if ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance, then ((G′, k, d), X, ⟨X ′

L, XR⟩) is
also a Yes-instance. The reverse direction is vacuously true.

Consider the second case. If N(x) \ V (M) is in VR, this contradicts the fact that
(Y ∩ VR) \ (V (M ′) ∩ Y ) is an empty set. Hence, for any partition ⟨VL, VR⟩, N(x) \ V (M) is
in VL. It is easy to see that ⟨VL, VR⟩ is a solution of ((G, k, d), X, ⟨XL, XR⟩) if and only if
⟨VL \ (N(x) \M), VR⟩ is a solution of ((G′, k, d), X, ⟨X ′

L, XR⟩). ◀

We now present an informal description of the algorithm to solve Constrained MaxCut
with a guarantee that k = d. Consider an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained
MaxCut on which Reduction Rule 5.2 is not applicable. See Figure 5 for an illustration.
Let M = {xiyi | i ∈ [9]} be a matching saturating the vertices in X. Note that, in this case,
|X| = |Y | = |M |. Consider a subset U of V (G) which can be ‘well-partitioned’ into ⟨V ′

L, V
′
R⟩.

Informally, this means that ⟨V ′
L, V

′
R⟩ can be extended to obtain a partition ⟨VL, VR⟩ of V (G)

such that it is a solution of ((G, k, d), X, ⟨XL, XR⟩). We can think of the vertices in U as
‘processed vertices’. For example, consider U = {x1, y1, x2, y2, x8, y8, x9, y9} in Figure 5, and
let ⟨V ′

L, V
′
R⟩ be a ‘well-partition’ of U where V ′

L = {x1, y1, x2, y2} and V ′
R = {x8, y8, x9, y9}.

Our objective is to extend V ′
L, V

′
R to obtain VL, VR by processing more vertices, i.e., by

adding them to either V ′
L or V ′

R.
As G is connected and X,Y are independent sets in G, at least one of the following four

sets is non-empty: (1) E(Y \U, V ′
R ∩X), (2) E(X \U, V ′

L ∩Y ), (3) E(X \U, V ′
R ∩Y ), and (4)

E(Y \U, V ′
L∩X). As we are aiming for a partition ⟨VL, VR⟩ for which E(VL∩Y, VR∩X) = ∅,

in the first case it is safe to move the endpoints of the edges in E(Y \ U, VR ∩X) that are in
Y \U to VR. For example, it is safe to move y7 to V ′

R. Similarly, in the second case, it is safe
to move the endpoints of edges in E(X \U, VL ∩ Y ) that are in X \U to VL. For example, it
is safe to move x3 to V ′

L. As ⟨VL, VR⟩ also needs to satisfy |Y ∩ VR| = |X ∩ VR|, such a move
also forces other vertices that are adjacent to these vertices via edges in M to move. For
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example, x7 and y3 are forced to move to V ′
R and V ′

L, respectively.
In the third case, if rank(E(X \U, VR ∩Y )) ≥ k then ⟨V ′

L ∪ (V (G) \U), V ′
R⟩ is the desired

partition. Otherwise, rank(E(X \ U, VR ∩ Y )) < k. It is easy to see that in this case, the
number of vertices in X \ U that are incident on edges in E(X \ U, VR ∩ Y ) is at most
k. We can guess how the desired partition ⟨VL, VR⟩ intersects with these endpoints and
extend the set of processed vertices in 2O(k) many ways. Similarly, in the fourth case, if
rank(E(Y \ U, VL ∩X)) ≥ k, then ⟨V ′

L, V
′
R ∪ (V (G) \ U)⟩ is a partition that satisfies all the

desired conditions. Otherwise, we can extend to a set of processed vertices in 2O(k) many
ways.

To implement the idea mentioned in the above paragraph, we need some bound on the
total number of sets of ‘processed vertices’ we need to consider. In order to do that, we
exploit the properties of the desired partition. Consider the set {x4, y4, x5, y5, x6, y6} in
Figure 5. Because of the arguments used in the first and the second cases, either this set is
entirely contained in VL or in VR. To find such cycles, we introduce a directed version of the
problem called Constrained Digraph MaxCut. The input of the problem contains a
digraph and the objective is to find a partition of the vertex set such that all the arcs across
this partition are in the same direction, and the rank of these arcs is at least k. For our
case, consider the digraph D obtained from G by directing every edge from X to Y and then
‘merging’ all edges in the matching M . Recall that M is a matching saturating X. Here,
we do not delete parallel or anti-parallel edges while merging an arc in a directed graph.
See Figure 5 for an example. In D, sets like these correspond to a directed cycle. And as
mentioned before, vertices in these directed cycles move together. Hence, we can obtain a
directed acyclic graph by merging these cycles into a vertex. The topological ordering of this
resulting graph gives a natural order to process the vertices in G. We formalize these ideas
in the next subsection.

5.3.5 Reducing to Constrained Digraph MaxCut
In this section, we consider directed graphs that can have parallel arcs. For a digraph D,
we define its underlying undirected graph G as the graph obtained from D by forgetting
the directions of the arcs. Formally, V (G) = V (D) and E(G) = {uv | (u, v) ∈ A(D)}.
We define the rank of a digraph, and the rank of a subset of its vertices or arcs using
its underlying undirected graph. Formally, rank(D) = rank(G), for a subset S ⊆ V (D),
rank(S) = rank(G[S]), and for a subset B ⊆ A(D), rank(B) = rank(G[V (B)]).

Constrained Digraph MaxCut
Input: A digraph D, a tuple ⟨XL, XR⟩ of disjoint subsets of X, and an integer k.
Question: Does there exist a partition (VL, VR) of V (G) such that (i) A(VR, VL) = ∅,
(ii) rank(A(VL, VR)) ≥ k, and (iii) XL ⊆ VL and XR ⊆ VR?

We say that a partition ⟨VL, VR⟩ is a solution of (D, ⟨XL, XR⟩, k) if it satisfies all the three
conditions in the statement of the problem. We present a reduction that, given an instance
((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut, returns an instance (D, ⟨XL, XR⟩, k) of
Constrained Directed MaxCut.

The reduction: The reduction takes as input an instance ((G, k, d), X, ⟨XL, XR⟩) of Con-
strained MaxCut on which Reduction Rule 5.2 is not applicable. It starts with a copy
of the graph G and constructs a digraph D. The reduction finds (in polynomial time) a
matching M in G that saturates all vertices in X. For every xy ∈ E(G), where x ∈ X and
y ∈ Y , it deletes edge xy and adds arc (x, y) (i.e., it directs edges from X to Y ). For every
arc (x, y) in M , it does as follows: For every in-neighbour x1 of y, it adds arc (x1, x). It
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then deletes vertex y. This completes the construction of digraph D. The reduction returns
(D, ⟨XL, XR⟩, k) as the instance of Constrained Digraph MaxCut. This completes the
description of the reduction.

▶ Lemma 32. ((G, k, d), X, ⟨XL, XR⟩) is a Yes-instance of Constrained MaxCut if and
only if (D, ⟨XL, XR⟩, k) is a Yes-instance of Constrained Digraph MaxCut.

Proof. Note that the edges in E(VL ∩ Y, VR ∩X) correspond to arcs in A(VR ∩X,VL ∩X)
and the edges in E(VL ∩ X,VR ∩ Y ) correspond to A(VL ∩ X,VR ∩ X). Moreover, by
the construction of D, two edges in E(VL ∩ X,VR ∩ Y ) share an endpoint if and only if
the corresponding two arcs in A(VL ∩ X,VR ∩ X) share an endpoint. This implies that
rank(E(VL ∩X,VR ∩ Y )) = rank(A(VL ∩X,VR ∩X)).

Consider a solution ⟨VL, VR⟩ of ((G, k, d), X, ⟨XL, XR⟩). It is easy to see that ⟨VL ∩
X,VR ∩X⟩ is a solution of (D, ⟨XL, XR⟩, k).

Similarly, consider a solution ⟨V ′
L, V

′
R⟩ of (D, ⟨XL, XR⟩, k). As V (D) = X, ⟨V ′

L, V
′
R⟩ is a

partition of X. Let VL be the collection of vertices in V ′
L as well as vertices in Y that are

adjacent to vertices in V ′
L via edges in M . It is easy to verify that ⟨VL, VR = V (G) \ VL⟩ is a

solution of ((G, k, d), X, ⟨XL, XR⟩). ◀

Consider a digraph D◦ obtained from D by merging a directed cycle C into a single
vertex in D. Formally, this operation adds a vertex xC to V (D), and for every arc (x, x1)
in A(V (C), V (D) \ V (C)), it adds arc (xC , x1) and for every arc (x1, x) in A(V (D) \ V (C)),
it adds arc (x1, xC). Note that, unlike with the edge contraction operation, this operation
does not delete parallel or anti-parallel arcs. Consider a map ψ : V (D) 7→ V (D◦) where
ψ(x) = x or it is the vertex added to V (D◦) while merging a directed cycle containing x. It
is easy to verify that ψ defines a surjective function. Consider a directed acyclic graph D′

obtained from D by repeatedly merging directed cycles. Let D = D1, D2, . . . , Dq = D′ be
the sequence of the digraphs such that Di+1 is obtained by merging a cycle Ci in Di, and
let ψi : V (Di) 7→ V (Di+1) be the function as defined above. We define ψ : V (D) 7→ V (D′)
inductively, i.e., ψ(x) = ψq(ψq−1(· · · (ψ1(x)))). Once again, it is easy to verify that ψ defines
a surjective function. For any x′ ∈ V (D′), we define ψ−1(x′) := {x ∈ V (D) | ψ(x) = x′}, and
for any subset U ⊆ V (D′), ψ−1(U) :=

⋃
x′∈U ψ

−1(x′). A topological ordering of a directed
acyclic graph D′ is a linear ordering σ : V (D′) 7→ [|V (D′)|] such that for every arc (x, x1),
σ(x) < σ(x1).

We are now in position to present an algorithm for Constrained Directed MaxCut.

▶ Lemma 33. There is an algorithm that, given an instance (G, ⟨XL, XR⟩, k) of Con-
strained Directed MaxCut, runs in time 2O(k) · nO(1) and correctly determines whether
it is a Yes-instance.

Proof. The algorithm takes as input an instance (D, ⟨XL, XR⟩, k) of Constrained Direc-
ted MaxCut, and returns either Yes or No. It starts by constructing a directed acyclic
graph D′ from D by merging directed cycles in D as described above. Suppose that D′ is
the resulting directed acyclic graph obtained after this procedure. The algorithm applies the
following two reduction rules exhaustively.

If there is an arc (x1, x) such that x ∈ XL, then delete arc (x1, x), and add x1 to XL.
If there is an arc (x, x1) such that x ∈ XR, then delete arc (x, x1), and add x1 to XR.

The correctness of these reduction rules follows from the fact that, for any solution ⟨VL, VR⟩
of (G, ⟨XL, XR⟩, k), XL ⊆ VL, XR ⊆ VR, and A(VR, VL) = ∅.

For notational convenience, we denote the resulting instance obtained after exhaustive
application of these reduction rules by (D′, ⟨XL, XR⟩, k). Note that every vertex in XL has
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in-degree zero and every vertex in XR has out-degree zero. Let n′ be the number of vertices
in V (D′) and σ = {x1, x2, . . . , xn′} be a topological ordering of V (D′).

We assume, without loss of generality, that the first |XL| vertices are in XL, and that
the last |XR| vertices are in XR. For every i ∈ [n′], define U i := {ui, ui+1, . . . , un′}, and
W i ⊆ ψ−1(U i) as the collection of endpoints of arcs in A(ψ−1(V (D) \ U i), ψ−1(U i)) that
are in ψ−1(U i).

If there is an integer i ∈ [n′], such that XL ⊆ ψ−1(V (D) \ U i), XR ⊆ ψ−1(U i), and
the rank of the arcs across the partition ⟨ψ−1(V (D) \ U i), ψ−1(U i)⟩ is at least k, then the
algorithm returns Yes. Otherwise, the algorithm constructs a dynamic programming table
such that T [i, ⟨W i

L,W
i
R⟩, k◦] is a ‘valid partition’ ⟨V i

L, V
i
R⟩ of U i which is ‘consistent’ with

⟨W i
L,W

i
R⟩, and has rank at least k◦, i.e., rank(A(V i

L, V
i
R)) ≥ k◦, if such a partition exists,

otherwise it is ⟨∅, ∅⟩. Here, i ∈ [n′], ⟨W i
L,W

i
R⟩ is a partition of W i, and k◦ ∈ {0} ∪ [k]. The

details follow.

▶ Definition 34. We say that a partition ⟨V i
L, V

i
R⟩ of U i is a valid partition if (i) A(V i

R, V
i
L) =

∅, and (ii) (XL ∩ U i) ⊆ V i
L and (XR ∩ U i) ⊆ V i

R. We say that a valid partition ⟨V i
L, V

i
R⟩ of

U i is consistent with ⟨W i
L,W

i
R⟩ if W i

L ⊆ V i
L and W i

R ⊆ V i
R.

The algorithm initializes T [i, ⟨W i
L,W

i
R⟩, k◦] to ⟨∅, ∅⟩ for every i ∈ [n′], for every partition

⟨W i
L,W

i
R⟩ of W i, and for every k◦ ∈ {0} ∪ [k]. It sets the following values:

T [n′, ⟨Wn
L = {un′},Wn

R = ∅⟩, k◦ = 0] to ⟨V n
L = {un′}, V n

R = ∅⟩, and
T [n′, ⟨Wn

L = ∅,Wn
R = {un′}⟩, k◦ = 0] to ⟨V n

L = ∅, V n
R = {un′}⟩.

To compute T [i, ⟨W i
L,W

i
R⟩, k◦], the algorithm considers the following three cases: (1)

ui ∈ W i
L, (2) ui ∈ W i

R, and (3) ui ̸∈ W i
L ∪W i

R.

1. In the first case, if there exists a table entry (i+1, ⟨W i+1
L ,W i+1

R ⟩, k′) for some k′ ∈ {0}∪[k]
such that
W i
L \ {ui} ⊆ W i+1

L and W i
R ⊆ W i+1

R , and
rank(A(V i+1

L ∪ {ui}, V i+1
R )) ≥ k◦,

where ⟨V i+1
L , V i+1

R ⟩ = T [i + 1, ⟨W i+1
L ,W i+1

R ⟩, k′], then the algorithm sets
T [i, ⟨W i

L,W
i
R⟩, k◦] = ⟨V i+1

L ∪ {ui}, V i+1
R ⟩.

2. In the second case, if there exists a table entry (i + 1, ⟨W i+1
L ,W i+1

R ⟩, k′) for some k′ ∈
{0} ∪ [k] such that
W i
L ⊆ W i+1

L and W i
R \ {ui} ⊆ W i+1

R ,
Nout(ui) ∩W i+1

L = ∅, and
rank(A(V i+1

L , V i+1
R ∪ {ui})) ≥ k◦,

where ⟨V i+1
L , V i+1

R ⟩ = T [i + 1, ⟨W i+1
L ,W i+1

R ⟩, k′], then the algorithm sets
T [i, ⟨W i

L,W
i
R⟩, k◦] = ⟨V i+1

L , V i+1
R ∪ {ui}⟩.

3. In the third case, if there exists a table entry (i+1, ⟨W i+1
L ,W i+1

R ⟩, k′) for some k′ ∈ {0}∪[k]
such that
W i
L ⊆ W i+1

L and W i
R ⊆ W i+1

R , and
rank(A(V i+1

L ∪ {ui}, V i+1
R )) ≥ k◦,

where ⟨V i+1
L , V i+1

R ⟩ = T [i + 1, ⟨W i+1
L ,W i+1

R ⟩, k′], then the algorithm sets
T [i, ⟨W i

L,W
i
R⟩, k◦] = ⟨V i+1

L ∪ {ui}, V i+1
R ⟩.
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If T [1, ⟨W 1
L,W

1
R⟩, k] is not ⟨∅, ∅⟩ for some partition ⟨W 1

L,W
1
R⟩ of W 1, then the algorithm

returns Yes, otherwise it returns No. This concludes the description of the algorithm.
We now argue that if the algorithm computes the above dynamic programming table,

then all the entries are correct. It is easy to verify that all the entries corresponding to
indices where i = n′ are correct. Suppose this is true for every integer in [n′] which is greater
than i. Consider an index (i, ⟨W i

L,W
i
R⟩, k◦) and suppose that there exists a valid partition

⟨V i
L, V

i
R⟩ of U i which is consistent with ⟨W i

L,W
i
R⟩. By the definition, W i

L \ {ui} ⊆ W i+1
L and

W i
R \ {ui} ⊆ W i+1

R . We consider the following three exhaustive cases.

If ui ∈ W i
L (which implies ui ∈ V i

L) , then ⟨V i
L\{ui}, V i

R⟩ is a valid partition of U i+1 which
is consistent with some partition ⟨W i+1

L ,W i+1
R ⟩ of W i+1, such that W i

L \ {ui} ⊆ W i+1
L

and W i
R ⊆ W i+1

R .

If ui ∈ W i
R (which implies ui ∈ V i

R), then ⟨V i
L, V

i
R \{ui}⟩ is a valid partition of U i+1 which

is consistent with some partition ⟨W i+1
L ,W i+1

R ⟩ of W i+1, such that W i
L ⊆ W i+1

L and
W i
R \ {ui} ⊆ W i+1

R . Note that, as Nout(ui) ⊆ W i+1
L ∪W i+1

R , we have Nout(ui) ∩W i+1
L = ∅.

If ui ̸∈ W i
L∪W i

R, then there is no arc whose endpoint is ui. In this case, ⟨V i
L \{ui}, V i

R⟩ is
a valid partition of U i+1 which is consistent with some partition ⟨W i+1

L ,W i+1
R ⟩ of W i+1,

such that W i
L ⊆ W i+1

L and W i
R \ {ui} ⊆ W i+1

R .

As the algorithm correctly computes these values for every integer greater than i, it
correctly computes the value of T [i, ⟨W i

L,W
i
R⟩, k◦].

We now argue about the correctness of the algorithm. Suppose that the input instance
(D, ⟨XL, XR⟩, k) is a Yes-instance. If there exists a partition ⟨VL, VR⟩ of V (D) which is
a solution, such that VR = ψ−1(Ui) for some i ∈ [n′], then the rank of the arcs across
the partition ⟨ψ−1(V (D) \ U i), ψ−1(U i)⟩ is at least k. In this case, the algorithm correctly
concludes that the input is a Yes-instance. Otherwise, it computes the table as described
above. By the description of the algorithm, U1 = V (D′), and the fact that all the entries
in the table are correct, in this case the algorithm correctly concludes that the input is a
Yes-instance.

Suppose that the algorithm returns Yes on the input instance (D, ⟨XL, XR⟩, k). Consider
the case when the algorithm returns Yes without constructing the table. Note that every
arc across the partition ⟨V (D′) \U i, U i⟩ has its startpoint in V (D′) \U i and endpoint in U i.
Alternately, A(U i, V (D′)\U i) = ∅. By the construction of D′, A(ψ−1(U i), V (D)\ψ−1(U i)) =
∅ for every i ∈ [n′]. As there exists i ∈ [n′] such that XL ⊆ ψ−1(V (D) \U i), XR ⊆ ψ−1(U i),
and the rank of the arcs across the partition ⟨ψ−1(V (D) \ U i), ψ−1(U i)⟩ is at least k,
⟨V (D) \ U i), ψ−1(U i)⟩ is a solution of (G, ⟨XL, XR⟩, k). In the other case, when the table is
constructed, as every entry in the table is correct, the algorithm correctly concludes that the
input is a Yes-instance. This completes the proof of correctness of the algorithm.

To argue about the running time of the algorithm, notice that all the other steps, apart
from computing the table, can be performed in polynomial time. The algorithm computes
the table if and only if for every integer i ∈ [n′], the rank of arcs across the partition
⟨ψ−1(V (D) \ U i), ψ−1(U i)⟩ is less than k. By arguments similar to those of Observation 4,
it is easy to see that |W i| < k for all i ∈ [n′]. Hence, the number of entries in the table
is 2O(k) · nO(1). The algorithm takes 2O(k) · nO(1) time to compute each table entry. This
implies that the algorithm terminates in the desired time, and the proof of the lemma is
complete. ◀
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5.3.6 Proof of Lemma 25
Lemma 33 implies that there is an algorithm, say A, that given an instance (G, ⟨XL, XR⟩, k)
of Constrained Directed MaxCut, runs in time 2O(k) · nO(1), and correctly determines
whether it is a Yes-instance.

Consider an algorithm, say B, that takes as input an instance ((G, k, d), X, ⟨XL, XR⟩)
of Constrained MaxCut with the extra guarantee that k = d, and returns Yes or
No. It starts by exhaustively applying Reduction Rule 5.2. It then uses the reduction
mentioned in Subsubsection 5.3.5 to obtain an instance (D, ⟨XL, XR⟩, k) of Constrained
Directed MaxCut. Using Algorithm A, it determines whether the constructed instance is
a Yes-instance. If it is indeed the case, then it returns Yes, otherwise it returns No. This
concludes the description of Algorithm B.

The correctness of Algorithm B follows from Lemma 31, Lemma 32, and the correctness
of Algorithm A. Its running time follows from the running time of Algorithm A. Hence,
Algorithm B takes as input an instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut
with a guarantee that k = d, runs in time 2O(d) · nO(1), and correctly determines whether it
is a Yes-instance.

Algorithm B and Lemma 30 imply that there is an algorithm, say C, that given an
instance ((G, k, d), X, ⟨XL, XR⟩) of Constrained MaxCut (without any guarantee), runs
in time 2O(d) · nk−d+O(1), and correctly determines whether it is a Yes-instance. Recall that
since we are in the case d ≤ k < 2d, it holds that 2O(k) = 2O(d).

Consider an algorithm, say D, that takes as input an instance ((G, k, d), X, ⟨XL, XR⟩) of
Annotated Contraction(vc), and returns Yes or No. It exhaustively applies Reduction
Rule 5.1. It then uses Algorithm C to determine whether the resulting instance is a Yes-
instance of Constrained MaxCut. If it is indeed the case, it returns Yes, otherwise it
returns No. This concludes the description of Algorithm D.

The correctness of Algorithm D follows from Lemma 28, Lemma 29, and the correctness
of Algorithm C. Its running time follows from the running time of Algorithm C. Hence,
Algorithm D takes as input an instance ((G, k, d), X, ⟨XL, XR⟩) of Annotated Contrac-
tion(vc), runs in time 2O(d) · nk−d+O(1) and correctly decides whether it is a Yes-instance.

Algorithm D and Lemma 27 imply that there is an algorithm, say E , that given an
instance (G, k, d) of Contraction(vc) with Guarantee 5.1, runs in time 2O(d) ·nO(k−d) and
correctly decides whether it is a Yes-instance.

Consider an algorithm, say F , that takes as input an instance (G, k, d) of Contrac-
tion(vc) with the guarantees that k < rank(G) and d ≤ k < 2d, and returns Yes or No.
It first applies the algorithm mentioned in Lemma 26 as a subroutine. If the subroutine
concludes that (G, k, d) is a Yes-instance, then it returns Yes. Otherwise, let X be the
minimum vertex cover of G returned by the subroutine. Recall that rank(X) < d. The
algorithm constructs instances (G, k◦, d) for every value of k◦ ∈ [k]. In the increasing order
of k◦, it determines whether (G, k◦, d) is a Yes-instance using Algorithm E . If for any value
of k◦, Algorithm E concludes that (G, k◦, d) is a Yes-instance, then the algorithm returns
Yes, otherwise it returns No. This concludes the description of Algorithm F .

Note that for k◦ = 1, instance (G, k◦, d) satisfies every condition mentioned in Guar-
antee 5.1. The algorithm uses Algorithm E with (G, k◦, d) as input only if Algorithm E
concludes that (G, k◦ − 1, d) is a No-instance. The correctness and the running time of
Algorithm F follow from those of Algorithm E . This implies that Algorithm F receives an
instance (G, k, d) of Contraction(vc) with guarantees that k < rank(G) and d ≤ k < 2d,
runs in time 2O(d) · nk−d+O(1), and correctly determines whether it is a Yes-instance. This
concludes the proof of Lemma 25.
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5.4 Proof of Theorem 3

Consider an instance (G, k, d) of Contraction(vc). If G is a connected graph, we can
use the algorithm mentioned at the start of Section 5 to conclude whether (G, k, d) is a
Yes-instance. Otherwise, for each each connected component Ci of G, integers ki ∈ [k],
and di ∈ [d], we use the algorithm to determine whether (G[Ci], ki, di) is a Yes-instance of
Contraction(vc). With this information, one can construct a standard Knapsack-type
dynamic programming table, which is also mentioned in [34], to determine whether (G, k, d)
is a Yes-instance.

The correctness and the running time of this procedure follows from those of Lemma 23,
Lemma 24, and Lemma 25. Hence, there is an algorithm that takes as input an instance
(G, k, d) of Contraction(vc), runs in time 2O(d) · nk−d+O(1) and correctly determines
whether it is a Yes-instance.

6 Conclusion

In this article we considered the problem of reducing the size of a minimum vertex cover of a
graph G by at least d using at most k edge contractions. Note that the problem is trivial
when k < d. A few simple observations prove that when d ≤ 2k, the problem is coNP-hard
and FPT when parameterized by k + d. Almost all of our technical work is to handle the
case when d ≤ k < 2d. We proved that the problem is NP-hard when k = d+ ℓ−1

ℓ+3 · d for any
integer ℓ ≥ 1 such that k is an integer (in particular, ℓ = 1). This implies that the problem
is hard for various values of k − d in the set {0, 1, . . . , d− 1}. We were able to prove that if
(k − d) is a constant then the problem is FPT when parameterized by k + d. However, if no
such a condition is imposed, then the problem is W[1]-hard. More precisely, we presented an
algorithm with running time 2d · nk−d+O(1) and proved that the problem is W[1]-hard when
parameterized by k + d in the case where k − d = d

3 (see the proof of Theorem 2).
We believe that it should be possible to prove that the problem is NP-hard for every

value of k − d in the set {0, 1, . . . , d − 1}. Such a reduction has the potential to sharpen
the distinction between FPT and W[1]-hard cases as k − d varies in this range. It might
also simplify the analysis of our XP algorithm or lead to a simpler algorithm. It would be
interesting to analyze the parameterized complexity of the problem with respect to structural
parameters like the vertex cover number or the treewidth of the input graph. Note that the
problem is trivially FPT when parameterized by the vertex cover number. Finally, it is worth
mentioning that we did not focus on optimizing the degree of the polynomial term nO(1) in
our XP algorithm, although it is reasonably small.
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