
HAL Id: lirmm-04140763
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04140763

Submitted on 26 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Target set selection with maximum activation time
Lucas Keiler, Carlos Vinicius Gomes Costa Lima, Ana Karolinna Maia,

Rudini Sampaio, Ignasi Sau

To cite this version:
Lucas Keiler, Carlos Vinicius Gomes Costa Lima, Ana Karolinna Maia, Rudini Sampaio, Ignasi Sau.
Target set selection with maximum activation time. Discrete Applied Mathematics, 2023, 338, pp.199-
217. �10.1016/j.dam.2023.06.004�. �lirmm-04140763�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04140763
https://hal.archives-ouvertes.fr


Target set selection with maximum activation time
Lucas Keiler
Dept. Computação, Universidade Federal do Ceará, Fortaleza, Brazil
lucas.keiler@hotmail.com

Carlos Vinicius Gomes Costa Lima
Centro de Ciências e Tecnologia, Universidade Federal do Cariri, Juazeiro do Norte, Brazil
vinicius.lima@ufca.edu.br

Ana Karolinna Maia
Dept. Computação, Universidade Federal do Ceará, Fortaleza, Brazil
karolmaia@ufc.br

Rudini Sampaio
Dept. Computação, Universidade Federal do Ceará, Fortaleza, Brazil
rudini@ufc.br

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France
ignasi.sau@lirmm.fr

Abstract
A target set selection model is a graph G with a threshold function τ : V (G)→ N upper-bounded by
the vertex degree. For a given model, a set S0 ⊆ V (G) is a target set if V (G) can be partitioned into
non-empty subsets S0, S1, . . . , St such that, for all i ∈ {1, . . . , t}, Si contains exactly every vertex
v outside S0 ∪ · · · ∪ Si−1 having at least τ(v) neighbors in S0 ∪ · · · ∪ Si−1. We say that t is the
activation time tτ (S0) of the target set S0. The problem of, given such a model, finding a target
set of minimum size has been extensively studied in the literature. In this article, we investigate
its variant, which we call TSS-time, in which the goal is to find a target set S0 that maximizes
tτ (S0). That is, given a graph G, a threshold function τ in G, and an integer k, the objective
of the TSS-time problem is to decide whether G contains a target set S0 such that tτ (S0) ≥ k.
Let τ? = maxv∈V (G) τ(v). Our main result is the following dichotomy about the complexity of
TSS-time when G belongs to a minor-closed graph class C: if C has bounded local treewidth, the
problem is FPT parameterized by k and τ?; otherwise, it is NP-complete even for fixed k = 4 and
τ? = 2. We also prove that, with τ∗ = 2, the problem is NP-hard in bipartite graphs for fixed k = 5,
and from previous results we observe that TSS-time is NP-hard in planar graphs and W[1]-hard
parameterized by treewidth. Finally, we present a linear-time algorithm to find a target set S0 in a
given tree maximizing tτ (S0).
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2 Target set selection with maximum activation time

1 Introduction

In the target set selection model (TSS model for short), as formulated by Chen [20], one is
given an undirected connected graph G and a threshold function τ in G, which is a function
τ : V (G) → N satisfying 1 ≤ τ(v) ≤ d(v) for every vertex v, where d(v) is the degree of v.
We say that a set S0 ⊆ V (G) is a target set if the vertex set V (G) can be partitioned into
non-empty subsets S0, S1, . . . , St such that, for all i ∈ {1, . . . , t}, Si contains exactly every
vertex v outside S0 ∪ · · · ∪Si−1 having at least τ(v) neighbors in S0 ∪ · · · ∪Si−1. We say that
t is the activation time tτ (S0) of the target set S0, since this setting represents an activation
process starting with S0: initially all vertices in the target set S0 become active, the other
vertices are inactive, and active vertices remain active forever (that is, it is an irreversible
and monotone process). At any step of the process, each inactive vertex gets activated if the
number of its active neighbors is at least its threshold. The process is synchronous, that is,
all inactive vertices update their status at the same time in each step of the process.

The Influence Maximization problem, that consists in finding a subset of vertices of
size k that maximizes the expected number of vertices activated by the process described
above in a given graph, was first studied by Kempe et al. [45, 46] with thresholds randomly
chosen from a given range. The TSS model defined above (with deterministic thresholds)
was introduced in [20], where the considered problem was to find a target set S0 of minimum
size. Let us call this problem TSS-size. Since then, a number of articles investigated the
TSS-size problem [1,9, 10,21,22,25,35,53].

For a TSS model, there may exist different targets sets (of minimum size or not), yielding
different activation times. Motivated by a recent line of research arising from a question
of Bollobás on extremal properties of a closely related model discussed below (see the
introduction of [54] and [50] for a detailed discussion), we define the following parameter:
the maximum activation time tτ (G) of a TSS model (G, τ) is the maximum tτ (S0) among
all target sets S0 of G. We consider the complexity of the decision version of the problem of
determining tτ (G), defined as follows.

Target Set Selection-Time (TSS-time)
Instance: A graph G, a threshold function τ : V (G)→ N, and a positive integer k.
Question: Is tτ (G) ≥ k?

For an instance (G, τ, k) of the TSS-time problem, we let τ? := maxv∈V (G) τ(v). To the
best of our knowledge, the above problem had not been considered before (we discuss related
work in the next paragraph). Clearly, we may assume G is connected, since otherwise we
may solve the problem independently in each connected component. Intuition suggests that
the maximum time of activation processes might be obtained with minimum target sets, but
this is not true in general. For example, Figure 1 depicts a tree T formed by a root vertex v
together with k + 1 disjoint induced paths on t vertices, v being adjacent to an endvertex of
each path, for positive integers t and k > 1. The thresholds are in red and the target sets are
marked in gray. Figure 1a represents the (unique) minimum target set S of (T, τ) of size one
(containing the root v) with activation time t (achieved at the leaves of T ). Figure 1b shows
a target set S′ of size k given by any k leaves of T , with activation time 2t (achieved at the
leaf labeled ut,k+1). Thus, the difference between the cardinalities of a minimum target set
and of a target set achieving maximum activation time can be arbitrarily large.

There are several recent articles in the literature dealing with problems similar to TSS-
time, but considering different models or different activation processes. For example, the
r-neighbor bootstrap percolation model [2–6, 18, 43, 52, 55] is almost equivalent to the TSS
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(a) Minimum target set of T .
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(b) Target set satisfying tτ (T ) = 2t.

Figure 1 A tree T with (unique) minimum target set S of size one and tτ (S) = t, and such that
tτ (G) = 2t, for any positive integer t. The thresholds are in red, while the vertices of S and S′ are
marked in gray in Figure 1a and Figure 1b, respectively.

model with all thresholds being equal to r but it accepts thresholds greater than the degree
of a vertex. Motivated by this, we define a generalized threshold function in a graph G

as any function τ ′ : V (G) → N. Thus, a generalized threshold function τ is a threshold
function if 1 ≤ τ(v) ≤ d(v) for any vertex v of G. Let the generalized TSS model be the
analogous of TSS model with generalized threshold functions, instead of threshold functions.
Hence, for an integer r > 0, the r-neighbor bootstrap percolation model is equivalent to
the generalized TSS model with all thresholds equal to r. The r-Neighbor Bootstrap
Percolation-time and Generalized Target Set Seletion-time (GTSS-time for
short) problems are defined analogously to TSS-time for the corresponding models. Observe
that, for those problems, vertices whose threshold is greater than its degree must be in any
target set (activation time 0) and vertices with threshold 0 are always activated at time at
most 1.

Considering the 2-neighbor bootstrap percolation model and the parameter tP3(G) (the
parameter analogous to tτ (G) defined above for our problem, but for the corresponding
complexity, where P3 is the path on three vertices), Przykucki [54] determined the value of
the maximum percolation time on the hypercube as a function of its size, and Benevides and
Przykucki [13,14] obtained similar results for the square grid. It was also proved that deciding
whether tP3(G) ≥ k is polynomial-time solvable for fixed k ≤ 3 [50], and NP-complete for
fixed k ≥ 4 [11]. In bipartite graphs, it is polynomial-time solvable for fixed k ≤ 4 and
NP-complete for fixed k ≥ 5 [50]. Finally, it was proved in [51] that 2-Neighbor Bootstrap
Percolation-time is W[1]-hard parameterized by the treewidth of the input graph. Clearly,
all these hardness results extend to Generalized TSS-time. However, they cannot be
applied directly to TSS-time, since all these hardness reductions use vertices of degree 1,
which have an important role in them, and which are not allowed in our setting when all
thresholds are equal to 2.

In the Geodesic (resp. Monophonic) Convexity-time problem, threshold functions
are not taken into account, and at any step of the activation process, each inactive vertex
gets activated if it is in a shortest (resp. induced) path between two activated vertices. The
maximum activation time obtained in these processes has been studied [12,26,40]. For each
parameter, deciding if its value is greater or equal to k (for fixed k) is NP-complete when



4 Target set selection with maximum activation time

k ≥ 2 and k ≥ 1, respectively, and the input graph is bipartite [12,26]. Both problems are
polynomial-time solvable for distance-hereditary graphs [12].

With respect to the parameterized complexity of these problems, the published articles
mainly focus on the generalized version of the TSS-size problem, for which there are no
degree restrictions on the threshold function, denoted by Generalized TSS-size, and the
cases in which the maximum threshold is small or the threshold of every vertex is at least
half of its degree. Namely, Generalized TSS-size is FPT parameterized by the size of
a minimum vertex cover [7, 53], and W[1]-hard for each of the following parameterizations:
distance to cluster [22], neighborhood diversity [34], and distance to forest and pathwidth [53].
The case when all thresholds are exactly half of the degree for each vertex is also W[1]-
hard parameterized by pathwidth [22]. For constant thresholds, the problem becomes FPT
parameterized by distance to cluster [22], by neighborhood diversity [34], and by treewidth [10].
Ben-Zwi et al. [10] also proved that TSS-size cannot be solved in O(n

√
tw(G)) time (unless

all problems in the class SNP admit subexponential algorithms), where n and tw(G) denote
the number of vertices and the treewidth of the input graph G, respectively. Recently,
Hartmann [42] gave an FPT algorithm for TSS-size parameterized by clique-width and the
maximum value of the threshold function. Cicalese et al. [23,24] considered the problem in
which the number of rounds of the process is bounded. For graphs of bounded clique-width,
given two input integers a and b and a fixed integer `, they gave polynomial-time algorithms
to determine whether there exists a target set of size b, such that at least a vertices are
activated in at most ` time steps.

Finally, as an extra motivation for studying the TSS-time problem, we would like to
mention that one of the oldest and most influential papers in graph convexity, namely the
one of Harary and Nieminen [41], deals with a parameter called geodetic iteration number,
which is also a parameter defined as the maximum possible time where a process stabilises.
In this case, the goal is to maximize, over all vertex sets S of a graph G, the number of
rounds such that the iterative process starting at S, defined in [41], reaches the convex hull
of S.

Our results and techniques. In this paper we initiate an analysis of the computational
complexity of the TSS-time problem, in particular from the viewpoint of parameterized com-
plexity. We start by showing that reductions of [11] and [51] for the 2-Neighbor Bootstrap
Percolation-time problem can be easily adapted in order to prove that TSS-time is
NP-hard in planar graphs and graphs of bounded degree, and W[1]-hard when parameterized
by the treewidth of the input graph (Corollary 7). We then provide NP-completeness results
for fixed values of the activation time k and the value τ? = maxv∈V (G) τ(v). Namely, by
adapting another reduction in [11] from 3-Sat, we prove (Theorem 8) that TSS-time is
NP-complete in general graphs for any fixed k ≥ 4 and τ? = 2. This result is sharp in terms
of τ? since, as we observe in Lemma 6, the problem can be easily solved in polynomial time
when τ? = 1. By reducing from the Restricted Planar 3-Sat problem [29] instead of
3-Sat and modifying appropriately the planar embedding given by the incidence graph of the
formula, we prove (Theorem 9) that TSS-time remains NP-complete for any fixed k ≥ 4 and
τ? = 2 even if the input graph is an apex graph, that is, a graph in which there exists a vertex
whose removal yields a planar graph. Finally, by modifying the reduction of Theorem 8 by
using bipartite gadgets, we prove (Theorem 11) that TSS-time is NP-complete in bipartite
graphs for any fixed k ≥ 5 and τ? = 2.

Motivated by these NP-completeness results, we study the parameterized complexity
of the TSS-time problem considering k and τ? as parameters. We manage to provide a
dichotomy on the complexity of TSS-time when the input graph G belongs to a minor-closed
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graph class C. Namely, we prove (Theorem 16) that if C has bounded local treewidth
(cf. Section 2 for the definition), then TSS-time is FPT with parameters k and τ?; otherwise
it is NP-complete for any fixed k ≥ 4 and τ? = 2. Note that, as discussed above, TSS-time is
NP-hard in planar graphs (even with τ? = 2), which is a minor-closed graph class of bounded
local treewidth, and therefore in our complexity dichotomy, “FPT” cannot be replaced by
“solvable in polynomial time”. It is pertinent to mention here that the title of the article of
Ben-Zwi et al. [10] is “treewidth governs the complexity of target set selection”, referring
to the TSS-size problem. In this spirit, one of the the main conclusions of our article is
that “local treewidth governs the complexity of target set selection with maximum activation
time”. This strong link between convexity problems with maximum activation time and
bounded local treewidth had not been discovered before. Let us now discuss how we prove
Theorem 16.

In order to prove this dichotomy, on the positive side we provide (Theorem 15) an FPT
algorithm for the generalized version of the problem, namely GTSS-time, with parameters
k and τ? when the input graph G belongs to a graph class C of bounded local treewidth (not
necessarily minor-closed). In order to do this, we first observe (Lemma 12) that, for any
instance (G, τ, k) of GTSS-time, tτ (G) ≥ k if and only if there exists a target set activating
G at time exactly k. We then show (Lemma 13) that GTSS-time on an n-vertex graph G
can be reduced to solving n instances having as input the graph induced in G by the k-th
neighborhood of each vertex of G. The crucial observation is that, when G belongs to a class
of bounded local treewidth, these auxiliary graphs have treewidth bounded by a function
of k. With this at hand, we show (Lemma 14) that GTSS-time can be expressed by a
monadic second-order logic formula whose length depends only on k and τ , and applying
Courcelle’s Theorem [27] on the linearly many bounded-treewidth auxiliary graphs yields the
desired FPT algorithm. Note that, since we deal with the generalized version of the TSS-time
problem, our FPT algorithm also applies to the 2-Neighbor Bootstrap Percolation
problem. As particular cases of graph classes with bounded local treewidth, the existence of
an FPT algorithm for 2-Neighbor Bootstrap Percolation with parameter k in graphs
with bounded maximum degree was already known [49], but no FPT algorithm in planar
graphs (or, more generally, graphs of bounded genus) existed prior to our work. Note that
2-Neighbor Bootstrap Percolation has been proved to be NP-complete in planar
graphs by Benevides et al. [11]. In this NP-completeness proof, the authors say that “our
proof does not work when the time is fixed”; the FPT algorithm of Theorem 15 provides a
solid explanation for that.

As for the hardness part of our complexity dichotomy, we critically use a result of
Eppstein [36] stating that, for minor-closed graph classes, having bounded local treewidth
is equivalent to excluding some apex graph. Now, if C is a minor-closed graph class of
unbounded local treewidth, the previous result implies that C contains all apex graphs, in
particular those originated from our hardness result of Theorem 9 for apex input graphs, and
therefore the TSS-time problem is NP-complete in C for any fixed k ≥ 4 and τ? = 2. Again,
the same argument applies to 2-Neighbor Bootstrap Percolation-time (Corollary 10),
hence the dichotomy in minor-closed graph classes holds for this problem as well.

Finally, we provide (Theorem 19) an O(n)-time algorithm for the maximization version
of TSS-time in trees, that is, for finding the maximum activation time of a target selection
model (T, τ) where T is a tree. Note that the FPT algorithm of Theorem 15 implies that
deciding whether tτ (T ) ≥ k for a tree T (which has treewidth one) can be solved in time
f(k, τ?) · nO(1) for some function f , but we provide a stronger result by showing that also
the maximum activation time of a tree can be computed in polynomial (even linear) time.
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In order to achieve this, we prove (Lemma 18 and Theorem 19) that every path such that
any internal vertex v satisfies τ(v) < d(v) (we say that such a v is non-saturated) can be
activated one vertex per time step by some target set. With this, we prove that the maximum
activation time in a tree is equal to the size of a maximum path such that all internal vertices
are non-saturated. One interesting point here is that the threshold values are not important,
but only whether a vertex is saturated or not. We generalize this algorithm (Theorem 22) to
the maximization version of GTSS-time, namely, we provide an O(n2)-time algorithm for
finding the maximum activation time of a tree T and a generalized threshold function τ in T .
The main idea is that any target set must contain the set Vf of “forced” vertices containing
any vertex v with τ(v) > d(v). With this, we start the activation process from Vf , obtaining
the set H(Vf) containing the vertices that can be activated by Vf . We then look for certain
paths representing an activation sequence, whose first vertices are activated by Vf and whose
last vertices are non-saturated. In this case, the threshold values are important, since H(Vf)
depends on them.

Organization. In Section 2 we provide basic preliminaries about graphs, convexity, para-
meterized complexity, graph minors, (bounded local) treewidth, and monadic second-order
logic. In Section 3 we present our NP-completeness results, and in Section 4 we provide the
FPT algorithms for graphs of bounded local treewidth. Altogether, the results in Section 3
and Section 4 yield the complexity dichotomy for graph classes of bounded local treewidth.
Section 5 is devoted to the polynomial-time algorithms for trees. We conclude the paper in
Section 6 with some directions for further research.

2 Preliminaries

Graphs. We refer the reader to [30] for basic background on graph theory, and recall here
only some useful definitions. We consider only undirected graphs without loops nor multiple
edges. We will use n and m for denoting the number of vertices and edges, respectively,
of the input graph of the problem under consideration. We denote by uv an edge between
vertices u and v. For a graph G and a vertex set S ⊆ V (G), we use the shortcut G \ S to
denote G[V (G) \ S]. The distance between two vertices u and v in a graph G is the number
of edges of a shortest path between u and v. The diameter of G is the maximum distance
over all pairs of vertices of G. For a vertex v in G and a positive integer k, we denote by
Nk(v) the set of vertices of G within distance at most k from v (excluding v), and we let
Nk[v] = Nk(v) ∪ {v}. We abbreviate N1(v) and N1[v] as N(v) and N [v], respectively, and
we let d(v) = |N(v)| be the degree of v in G. A tree is a connected acyclic graph, and a leaf
in a tree is a vertex of degree one.

For two non-negative integers a and b, we denote by [a, b] the set containing every integer c
such that a ≤ c ≤ b and we let [a] = [1, a]. We denote by N the set of positive integers,
including 0. If a set S is partitioned into pairwise disjoint sets S1, . . . , Sk, we denote it by
S = S1 ] · · · ] Sk.

Convexity. Activation problems appear in the literature under a number of different names,
such as r-neighbor bootstrap percolation [2–6, 18, 43, 52, 55], dynamic monopolies [15, 19,
47,56,59], irreversible conversion [17,44,48,57], or graph convexities, and were studied by
researchers of various fields. As mentioned in the introduction, in the particular case in
which all thresholds are equal to 2, generalized TSS model is also called 2-neighbor bootstrap
percolation or P3-convexity, which is studied in the field of graph convexities.

A finite graph convexity [58] is a pair (G, C) consisting of a finite simple graph G = (V,E)
and a set C of subsets of V (called convex sets) satisfying that ∅, V ∈ C and that if C1, C2 ∈ C,
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then C1 ∩ C2 ∈ C. In words, ∅ and V are convex sets and the intersection of convex sets is a
convex set. The convex hull HC(S) of a set S is the minimum convex set containing S, that
is, HC(S) is the intersection of all convex sets containing S. When HC(S) = V then S is a
hull set of G. Some well-studied graph convexities are the so-called path convexities, such as
the P3-convexity [37], geodesic convexity [38], and monophonic convexity [33].

In the following, we show that instances of the generalized TSS model induce graph
convexities in most cases. Let (G, τ) be an instance of the generalized TSS model, where G =
(V,E) is a graph and τ : V → N is a generalized threshold function. For every set S ⊆ V ,
let the interval Iτ (S) ⊇ S be the union of the set S with the set of all vertices v outside
S which have τ(v) neighbors in S. From this, let Cτ be the family of subsets S of V such
that Iτ (S) = S (that is, no vertex v outside S has τ(v) neighbors in S).

I Lemma 1. Given an instance (G, τ) of the generalized TSS model, where G = (V,E) is
a graph and τ : V → N is a generalized threshold function in G, the pair (G, Cτ ) is a graph
convexity if and only if V = ∅ or all thresholds are strictly positive.

Proof. We have to prove that ∅, V ∈ Cτ and that if C1, C2 ∈ Cτ , then C1 ∩ C2 ∈ Cτ .
Clearly V ∈ Cτ by vacuity, since there is no vertex outside V . Thus, if V = ∅, (G, Cτ ) is a
graph convexity, since the only subset S of V is S = ∅ = V . So assume that V 6= ∅.

First consider that there is a vertex v with threshold τ(v) = 0. With this, we have
that S = ∅ is not convex, since v 6∈ S = ∅ and v has τ(v) = 0 neighbors in S = ∅. Then (G, Cτ )
is not a graph convexity.

Now assume that all thresholds are strictly positive. Therefore S = ∅ is convex, since
any vertex v does not have τ(v) neighbors in S = ∅. Finally, consider two sets S1, S2 ∈ Cτ
and let S = S1 ∩ S2. If S1 = V or S2 = V , then S = S2 or S = S1, respectively, and
hence S ∈ Cτ . So assume that S1 6= V and S2 6= V , and let v ∈ V \S. Then v 6∈ S1 or v 6∈ S2.
Consider v 6∈ S1. Since S1 ∈ Cτ , v does not have τ(v) neighbors in S1 and consequently does
not have τ(v) neighbors in S. The case v 6∈ S2 is analogous. Then S = S1 ∩ S2 ⊆ Cτ . J

In this context, we can also define the activation time tτ (S) of a vertex subset S (not
necessarily a target set) as the minimum t such that It+1

τ (S) = Itτ (S), where Ikτ (S) is the k-th
iterate of the interval function, defined recursively as I0

τ (S) = S and Ikτ (S) = Ik−1
τ (Iτ (S))

for k ≥ 1. We can also define Hτ (S) as Hτ (S) = I
tτ (S)
τ (S). This definition of Hτ (S) is

useful even when (G, Cτ ) is not a graph convexity (for example, when some thresholds are 0).
Recall that a vertex subset S is a target set if Hτ (S) = V . In this paper, we will use these
notations Iτ (S) and Hτ (S). When τ is clear in the context, the subscript will be removed
from the notations I(S) and H(S).

The study of complexity aspects related to the computation of graph convexity parameters
have been the main goal of various recent papers [8, 12, 16, 26, 31, 49]. From Lemma 1, all
known convexity parameters, such as the Carathéodory number, the Radon number, the
Helly number and the convexity number [31] are meaningful in the TSS model and can be
investigated in this context.

Parameterized complexity. We refer the reader to [28, 32] for basic background on
parameterized complexity, and we recall here only the definitions used in this article. A
parameterized problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, k is
called the parameter.

A parameterized problem L is fixed-parameter tractable (FPT) if there exists an al-
gorithmA, a computable function f , and a constant c such that given an instance I = (x, k),A
(called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.
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Within parameterized problems, the class W[1] may be seen as the parameterized equival-
ent to the class NP of classical decision problems. Without entering into details (see [28, 32]
for the formal definitions), a parameterized problem being W[1]-hard can be seen as a strong
evidence that this problem is not FPT.

Minors, treewidth, and bounded local treewidth. A graph H is a minor of a graph G
if H can be obtained from a subgraph of G by contracting edges. A graph class C is minor-
closed if whenever a graph G belongs to C, all its minors belong to C as well. A graph is
planar if it can be drawn in the plane so that its edges may intersect only in the extremities.
A graph G is an apex graph if it contains a vertex whose removal from G results in a planar
graph.

Let k ≥ 0 be an integer. A graph G is a k-tree if G can be built by an iterative process
that, starting from a clique of size k + 1, repeatedly adds a new vertex whose neighborhood
in the current graph is a clique of size k. The treewidth of a graph G, denoted by tw(G), is
the smallest integer k such that G is a subgraph of a k-tree.

A graph class C has bounded local treewidth if there exists a function f : N → N
such that, for every graph G ∈ C, every vertex v ∈ V (G), and every positive integer k,
tw(G[Nk[v]]) ≤ f(k). Examples of graph classes of bounded local treewidth are graphs of
bounded treewidth, graphs of bounded degree, planar graphs, or graphs of bounded genus;
see [39] for more on bounded local treewidth. The following theorem of Eppstein [36] states
that, for minor-closed graph classes, having bounded local treewidth is equivalent to excluding
some apex graph.

I Theorem 2 (Eppstein [36]). Let C be a minor-closed graph class. Then C has bounded local
treewidth if and only if C does not contain all apex graphs.

Monadic second-order logic of graphs. The syntax of monadic second-order logic (MSO)
of graphs includes the logical connectives ∨, ∧, ¬, variables for vertices, edges, sets of vertices
and sets of edges, the quantifiers ∀,∃ that can be applied to these variables, and the binary
relations expressing whether a vertex or an edge belong to a set, whether an edge is incident
to vertex, whether two vertices are adjacent, and whether two sets are equal. MSO1 is the
restriction of MSO where only quantification over sets of vertices (but not edges) is allowed.
The following result of Courcelle [27] is one of the most widely used results in the area of
parameterized complexity.

I Theorem 3 (Courcelle [27]). Checking whether an MSO formula φ holds on an n-vertex
graph of treewidth at most tw can be done in time g(φ, tw) · n, for a computable function g.

3 NP-completeness results for the TSS-time problem

In this section, we prove NP-completeness results for the TSS-time problem. Namely, we
prove NP-completeness for general graphs in Theorem 8, for apex graphs in Theorem 9, and
for bipartite graphs in Theorem 11. We begin by proving easily membership in NP.

Let tτ (v, S0) be the activation time of vertex v in the process initiated by S0 (set t(v, S0) =
∞ if S0 cannot activate v). We first prove that, for every set S0, it is possible to compute
tτ (v, S0) for every vertex v in time O(m + n). Also, let tτ (S0) = maxv∈V (G){tτ (v, S0)}.
Thus, a vertex set S0 is a target set if and only if tτ (S0) <∞.

I Lemma 4. Let G be a graph and τ be a generalized threshold function in G. Given a
set S0 ⊆ V (G), it is possible to compute tτ (v, S0) for all vertices v of G in time O(m+ n).
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Proof. Consider the following algorithm. Let Q be an empty queue and t an array such
that t[v] =∞ for any v ∈ V (G) \ S0. For each v ∈ S0, set t[v] = 0 and enqueue v in Q. For
each vertex v 6∈ S0 with threshold 0, set t[v] = 1 and enqueue v in Q.

Algorithm Activation-Times (set S0)
1 while Q 6= ∅ do
2 v ← Dequeue (Q)
3 for each neighbor u of v with t[u] =∞ do
5 τ(u) ← τ(u)− 1
6 if τ(u) = 0 then
7 t[u] ← t[v] + 1
9 Enqueue (Q, u)
10 return array t

The above algorithm simulates the activation process. Since every edge is analyzed at
most twice, Activation-Times(S0) runs in time O(m+ n). J

With this, we have membership in NP for GTSS-time.

I Corollary 5. The GTSS-time problem is in NP.

Proof. Given an instance (G, τ, k) of GTSS-time, a certificate (or proof) for it is a vertex
subset S0 ⊆ V (G). With the Algorithm Activation-Times, tτ (v, S0) can be computed for
all v ∈ V (G) in O(m+ n) time. With this, tτ (S0) can be computed and compared to k. J

Before moving to the hardness results, consider first the GTSS-time problem with all
thresholds being at most 1. Given a connected graph G, it is easy to see that one vertex is
sufficient to activate all vertices. If there are vertices with threshold 0, then ∅ is a target set
and then tτ (G) = tτ (∅), which can be computed in linear time by the algorithm Activation-
Times with S0 = ∅. Otherwise, every single vertex is a target set and then tτ (G) is the
diameter of G, which can be computed in time O(m · n). With this, we have the following:

I Lemma 6. Let G be a graph and τ be a generalized threshold function in G satisfying
τ? ≤ 1. Then tτ (G) can be computed in time O(m · n). Thus, GTSS-time is O(m · n)-time
solvable if τ? ≤ 1.

Now let us consider the case where all thresholds are equal to 2. As mentioned in the
introduction, the 2-neighbor bootstrap percolation model is equivalent to the generalized TSS
model with all thresholds equal to 2. With this, let us list again shortly the existing hardness
results for the 2-Neighbor Bootstrap Percolation-time problem: NP-hardness in planar
graphs [11], NP-hardness in general graphs for fixed k = 4 [11], NP-hardness in bipartite
graphs for fixed k = 5 [50], NP-hardness in bounded degree graphs for k = Θ(logn) [49], and
W[1]-hardness when parameterized by treewidth [51]. All these hardness results also apply
to GTSS-time with all thresholds equal to 2, but cannot be extended directly to TSS-time,
since they use many vertices of degree 1, which have activation time 0 and are important to
control the maximum activation time.

However, except in the case of bipartite graphs, it is possible to apply local changes to all
these reductions by replacing every vertex p of degree 1 by two adjacent vertices p1 and p2,
forming a triangle with the original neighbor q of p (this is the reason why this replacement
does not work in bipartite graphs). Consider any of the reductions mentioned above, and
let (G, k) be the original constructed instance of 2-Neighbor Bootstrap Percolation
time, where G is the graph and k is the desired activation time. Let (G′, k′) be the instance
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where G′ is the graph obtained from G with this modification and k′ = k + 1. Since all
thresholds are 2, we have that, for each vertex p of degree 1 in G, at least one of p1 or
p2 (say p1 w.l.g.) must be in any target set of G′ and will play in G′ the same role as p
in G. Thus any target set S of G induces a target set S′ of G′, which activates p2 in one
time step more than q. Now consider a target set S′ of G′. One important point in all
these reductions is that the neighbor q of any vertex p of degree 1 is always activated (with
the help of p) by a forced set of vertices which must belong to any target set (hull set in
their terminology) and this set remains forced when the above modification is applied in
the construction. That is, for any vertex p of degree 1 in G, S′′ = (S′ ∪ {p1}) \ {p2} is also
a target set of G′ with activation time greater or equal to the activation time of S′. With
this, we may assume that, for every vertex p of degree 1 in G, S′ contains p1 and does not
contain p2, and consequently it induces a target set S in G (just replacing p1 by p for any p
of degree 1 in G). Finally, in all these reductions, all vertices are activated at time at most
k − 1 for any target set, except a special vertex z which can be activated at time k if the
reduction is from a yes-instance. Moreover, z has exactly one neighbor p of degree 1 in G
(in all these reductions) and consequently the corresponding neighbor p2 of z in G′ can be
activated at time k′ = k + 1. These modifications can be safely applied to the NP-hardness
reductions for bounded degree graphs with k = Θ(logn) [49] and planar graphs [11], and in
the W[1]-hardness reduction when parameterized by treewidth [51]. The above discussion
yields the following corollary.

I Corollary 7. The TSS-time problem is NP-hard in planar graphs, NP-hard in graphs with
maximum degree ∆ for any fixed ∆ ≥ 4 and k = Θ(logn), and W[1]-hard when parameterized
by the treewidth of the input graph, even if all thresholds are equal to 2.

In the case of the reduction for fixed k = 4 in general graphs [11], which is from the
3-Sat problem, this global argument does not work, since there is a unique vertex z whose
activation time is 3 or 4, depending on whether the 3-Sat formula is satisfiable or not.
However, by replacing every vertex p of degree 1 by p1 and p2 as before, the activation time
of p2 is one more than the time of q (the neighbor of p) and then the reduction fails for fixed
k = 4 (but works for k = 5). With a small additional change, the reduction can be corrected
for k = 4. In the following, we present this modified reduction, where we also have to show
that no additional vertex (p1 or p2) can be activated at time 4. Moreover, although this
reduction is similar to the one of [11], we present it in detail since we need to modify it in
the proof of NP-hardness for apex graphs shown in Theorem 9.

I Theorem 8. The TSS-time problem is NP-complete even restricted to instances (G, τ, k)
such that τ(v) = 2 for every v ∈ V (G), and k ≥ 4 is fixed.

Proof. We present a reduction from the 3-Sat problem. Let ϕ = (X , C) be an instance of
3-SAT, where X = {x1, . . . , xn} is the set of variables and C = {C1, . . . , Cm} is the set of
clauses. We may assume that each clause contains exactly 3 literals. For i ∈ [n], we denote
the three literals of clause Ci by `i,1, `i,2, and `i,3. The constructed graph G is described
below.

For every clause Ci, add the gadget depicted in Figure 2. Let U , W , and B be the sets
containing all vertices ui,p, wi,p, and bi,p for p ∈ [3], respectively. Let Ui = {ui,1, ui,2, ui,3}.
For every pair of complementary literals `i,p, `j,q for i, j ∈ [n] and p, q ∈ [3], add a vertex
y(i,p),(j,q) adjacent to wi,p and wj,q. Let Y be the set of all vertices y(i,p),(j,q). Finally, add
six vertices z, z0, z1, z2, z3, z4 and the edges zz0, z0z1, z0z2, z0z3, z0z4, z1z2, and z3z4. Also
join z with an edge to every vertex of Y (see Figure 3). This completes the construction of
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the instance (G, τ, k) of TSS-time, where k = 4 and τ(v) = 2 for every v ∈ V (G). Notice
that G does not contain vertices of degree 1, as required.

ui,1 ui,2

ui,3

wi,1 wi,2

wi,3

ai,1 ai,2

ai,3

bi,1 bi,2

bi,3

0 3

3

1 2

20

3

2

0

3

0

Figure 2 Gadget for a clause Ci. All thresholds are 2. Notice that every target set must contain
at least one of ui,1, ui,2, ui,3 and at least one of ai,p, bi,p for p ∈ [3]. The blue numbers near the
vertices show the times of an example of activation process. Vertices with time 0 belong to the
target set.

Firstly notice that, for i ∈ [m] and p ∈ [3], ai,p and bi,p cannot be activated only by wi,p,
since their degrees are equal to their thresholds (equal to two) and they are adjacent. That
is, every target set must contain ai,p or bi,p, say ai,p w.l.g.. The same argument applies
to z1 and z2 (say z1 w.l.g.) and to z3 and z4 (say z3 w.l.g.). From this, we have that z0 is
activated at time 1 and z2 and z4 are activated at time 2. The important fact here is that z
has a neighbor z0 activated at time 1. Let L be the set containing vertices z1, z3 and all
vertices ai,p for i ∈ [m] and p ∈ [3].

We show that ϕ is satisfiable if and only if G contains a target set with activation time
at least 4. Suppose that ϕ has a truth assignment. For every clause Ci, let ki ∈ [3] be such
that `i,ki is set to true by the assignment. Let S′ = {ui,ki : i ∈ [m]} and S = S′ ∪ L. We
show that S is a target set which activates z at time 4. At time 1, S activates z0 and all
vertices wi,ki for i ∈ [m]. At time 2, S activates z2, z4, all vertices bi,ki for i ∈ [m], and
the remaining vertices of W . At time 3, S activates all the remaining vertices in U and B.
All vertices in Y are activated by S at time exactly 3, since S was obtained from a truth
assignment and then no vertex of Y has two neighbors activated at time 2. At time 4, S
activates only vertex z. Thus, G has activation time at least 4.

Now, suppose that tτ (G) ≥ 4 and let S be a target set S with activation time at least 4.
As said before, we may assume that S contains L. Moreover, for every clause Ci, Ui ∩ S 6= ∅
since |N(ui,p) \ Ui| ≤ 1, for any i ∈ [m] and p ∈ [3]. With this, we have that S activates W

z z0

z1 z2 z3 z4

0 2 0 2

1Y

2 or 3

3 or 4

Figure 3 Gadget of vertex z (the only which can have activation time 4). The blue numbers near
the vertices show the times of an example of activation process. Vertices with time 0 belong to the
target set.
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at time at most 2, B ∪ U ∪ Y at time at most 3, and vertex z at time 4. If S activates a
vertex of Y at time 2, then z is activated at time 3 (with the help of z0), a contradiction.
Thus no vertex of Y is activated at time 2 or less, which implies that no pair {ui,p, uj,q},
where `i,p is the negation of `j,q, is in S. This means that assigning true to each `i,p for
which ui,p ∈ S yields an assignment that satisfies ϕ.

For time values k > 4, it suffices to add to G a new path P with k − 5 edges and k − 4
new vertices s1, . . . , sk−4, and the edge zs1. Moreover, for every vertex si of P , add five new
vertices si,0, si,1, si,2, si,3, si,4 and seven edges sisi,0, si,1si,2, si,3si,4, and si,0si,p for p ∈ [4].
As before, the constructed graph G′ has no vertex of degree 1. From this, it is easy to see
that a target set S activates sk−4 at time k if and only if S activates z at time 4. J

The variable-clause incidence graph of a Sat formula ϕ = (X , C), where X and C are the
variables and the clauses of ϕ, respectively, is the bipartite graph Gϕ with vertex set X ∪ C
such that, for x ∈ X and c ∈ C, xc is an edge of Gϕ if and only if clause c contains variable
x (either positively or negatively).

The Restricted Planar 3-Sat problem is the variant of the Sat problem restricted
to formulas ϕ such that
• each clause has two or three literals,
• each variable appears exactly twice positively and once negatively, and
• the variable-clause incidence graph of ϕ is planar.

Building on the proof of Theorem 8 and exploiting the fact that Restricted Planar
3-Sat is NP-complete [29], we get the following result.

I Theorem 9. The TSS-time problem is NP-complete even restricted to instances (G, τ, k)
such that G is an apex graph, τ(v) = 2 for every v ∈ V (G), and k ≥ 4 is fixed.

Proof. We present a polynomial reduction from Restricted Planar 3-Sat, which is
NP-complete [29]. Given an instance ϕ = (X , C) of Restricted Planar 3-Sat, let (G, τ, k)
be the instance of TSS-time constructed in the proof of Theorem 8 for the formula ϕ.
If Ci ∈ C is a clause containing only two literals, we still use the same gadget depicted in
Figure 2, but removing the vertices ai,3, bi,3, ui,3, and wi,3. By the proof of Theorem 8, it
follows that tτ (G) ≥ k if and only if ϕ is satisfiable. It just remains to show that G is an
apex graph. More precisely, we claim that the graph obtained from G be removing vertex z
(see Figure 3) is planar. Clearly, it is enough to show that G \ {z, z0, z1, z2, z3, z4} is planar.

Let Gc be the graph obtained from G \ {z, z0, z1, z2, z3, z4} by doing the following opera-
tions. First, for every i ∈ [m], contract all the vertices in the clause gadget of Ci to a single
vertex. Then, for every j ∈ [n], identify all vertices in Y corresponding to a pair of occurrences
of xj and x̄j . Since every variable appears positively and negatively in ϕ, it can be easily
verified that Gc is isomorphic to the variable-clause incidence graph of ϕ. Therefore, Gc is a
planar graph. Consider an arbitrary planar embedding of Gc, and we proceed to argue that
it can be modified so to yield a planar embedding of G \ {z, z0, z1, z2, z3, z4}. Note first that,
for every i ∈ [m], replacing the vertex in Gc corresponding to clause Ci by its clause gadget
in G preserves planarity, since only the vertices wi,1, wi,2, wi,3 have neighbors outside the
gadget.

Now consider j ∈ [n], and let Cj1 , Cj2 , Cj3 be the three clauses of ϕ containing variable xj .
Equivalently, Cj1 , Cj2 , Cj3 are the three neighbors of vertex xj in the graph Gc. Since every
variable appears twice positively and once negatively in ϕ, we may assume w.l.g. that Cj1

and Cj2 contain xj positively, and that Cj3 contains xj negatively. For ` ∈ [3], let wj`,p`
be the vertex in the clause gadget of Cj` corresponding to xj (see Figure 2). Note that,
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since every variable appears exactly once negatively in ϕ, there are exactly two vertices
in Y ⊆ V (G) associated with each variable xj . We add back to the planar embedding
constructed so far the two vertices in Y corresponding to xj as shown in Figure 4. Since
no edge crossing is created by this construction, we have obtained a planar embedding
of G \ {z, z0, z1, z2, z3, z4}, and the theorem follows. J

xj

wj2,p2
wj1,p1

wj3,p3

Cj1

Cj2

Cj3

y(j1,p1),(j3,p3)

wj2,p2
wj1,p1

wj3,p3

y(j2,p2),(j3,p3)

Cj1

Cj2

Cj3

Figure 4 Illustration of the local modification to the planar embedding of Gc so to add back the
two vertices in Y ⊆ V (G) associated with variable xj , labeled y(j1,p1),(j3,p3) and y(j2,p2),(j3,p3) in
the figure.

The transformation described in the proof of Theorem 9 can also be applied to the original
NP-hardness proof of Benevides et al. [11] for the 2-Neighbor Bootstrap Percolation-
time problem, and therefore we get the following corollary.

I Corollary 10. The 2-Neighbor Bootstrap Percolation-time problem is NP-complete
even restricted to instances (G, k) such that G is an apex graph and k ≥ 4 is fixed.

In [50], it was proved that the 2-Neighbor Bootstrap Percolation-time problem
is NP-complete in bipartite graphs for every fixed k ≥ 5. As before, in the NP-hardness
reduction of [50], the constructed graph has many vertices of degree 1, which are not allowed
in the TSS model. In order to obtain a reduction to TSS-time with all thresholds equal to
2, we adapt appropriately the reduction of [50] in order to avoid vertices of degree 1. The
solution to remove degree 1 vertices in the reduction of Theorem 8 involves many triangles of
type ai,j , bi,j , wi,j , which cannot be used here, since the graph must be bipartite. Therefore,
we need to devise other gadgets.

I Theorem 11. The TSS-time problem is NP-complete even restricted to instances (G, τ, k)
such that G is a bipartite graph, τ(v) = 2 for every v ∈ V (G), and k ≥ 5 is fixed.

Proof. Let us prove that this restriction of the TSS-time problem is NP-complete by
presenting, as in Theorem 8, a polynomial reduction from the 3-Sat problem (each clause
contains exactly three literals).

In order to simplify the reduction, let us introduce some notation. A squared vertex h in
the reduction represents the gadget of Figure 5 with auxiliary vertices h1, h2, h11, . . . , h26
all whose edges are represented in the figure. We assume that all thresholds are equal to 2.
One important fact about squared vertices is that, for any target set, its activation time is
always at most 2. This is because any target set must contain at least a vertex of each one
of the following sets: {h11, h14}, {h12, h15}, {h13, h16}, {h21, h24}, {h22, h25}, and {h23, h26}
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(otherwise the set is never activated). If h is not activated at time 0 or 1, then by the
pigeonhole principle any target set contains at least two vertices in each one of {h14, h15, h16}
and {h24, h25, h26}. From this, h1 and h2 are activated at time 1 and consequently h is
activated at time 2.

h h h2

h23

h22

h21

h26

h25

h24

h1

h13

h12

h11

h16

h15

h14

Figure 5 Gadget of a squared vertex h, which is always activated at time at most 2.

A double squared vertex h in the reduction represents the gadget of Figure 6 with auxiliary
vertices h′, h0, h01, . . . , h06 all whose edges are represented in the figure (notice that h′ is
squared and also contains the edges in Figure 5).

One important fact about double squared vertices is that, for any target set, its activation
time is always at most 3. This is because, with identical arguments as before, if h is not
activated at time 0 and 1, h0 is activated at time 1 and then h is activated at time at most 3,
since h′ is squared and is activated at time at most 2. Another important fact is that, if a
neighbor of h outside the gadget of Figure 6 is activated at time 0 or 1, then h is activated
at time at most 2 (since h0 and this neighbor activate h).

h h h′h0

h03

h02

h01

h06

h05

h04

Figure 6 Gadget of double squared vertex h, which is always activated at time at most 3.
Moreover, if a neighbor of h outside this gadget is activated at time 0 or 1, h is activated at time at
most 2.

Let ϕ = (X , C) be an instance of 3-SAT, where X = {x1, . . . , xn} is the set of variables
and C = {C1, . . . , Cm} is the set of clauses. Let us denote the three literals of Ci by `i,1, `i,2
and `i,3. We proceed by constructing a graph G such that tτ (G) ≥ 5 if and only if the 3-Sat
instance is satisfiable.

For every clause Ci of C, add to G the gadget of Figure 7. LetW = {wi,p | i ∈ [m], p ∈ [3]}.
For every pair of complement literals `i,p, `j,q, add a vertex y(i,p),(j,q) adjacent to wi,p and
wj,q. Let Y be the set of all vertices y(i,p),(j,q). Finally, add a vertex z adjacent to all vertices
in Y and a squared vertex z′ adjacent to z.

Notice that G has no vertex of degree 1, as required in the definition of threshold
function. To prove that G is bipartite, consider the following partition (A,B) of the main
vertices of G. A contains all vertices uAi,j , ai,j , hi,j , y(i,p),(j,q), and z′. B contains all vertices
uBi,j , wi,j , bi,j , ci,j , and z. Moreover, the gadgets of Figure 5 and Figure 6 are clearly bipartite.

Suppose that ϕ has a truth assignment. For every clause Ci, let ki ∈ [3] such that `i,ki is
true. We obtain a target set S of G as follows: S contains uAi,ki , bi,1, bi,2, and bi,3 for every
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uBi,3

uAi,3

wi,3
hi,3

ai,3
bi,3

uBi,2uAi,2

wi,2

hi,2

ai,2

bi,2

uBi,1

uAi,1

wi,1

hi,1

ai,1

bi,1

3
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4
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3
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Figure 7 Bipartite gadget of clause Ci. The blue numbers near the vertices are the activation
times when uAi,2 is in the target set. The set Ui is inside the red square.

clause Ci. Moreover, S contains the vertices hj,4, hj,5, and hj,6 in Figure 5 and Figure 6 for
every squared or double squared vertex. It is not difficult to see in Figure 7 that all vertices
in the clause gadgets are activated by S at time at most 4. Also, for every clause Ci, we
have that S activates wi,ki at time 2 and activates wi,k′ at time 3 for k′ ∈ [3] \ {ki}. From
the truth assignment, all vertices of Y are activated at time exactly 4, since every vertex
y ∈ Y is adjacent to exactly one vertex in W activated at time 2 and to another vertex in W
activated at time 3. Thus, vertex z is activated at time 5 and consequently tτ (G) ≥ 5.

Now, suppose that tτ (G) ≥ 5 and let S be a target set with activation time at least 5.
Then S has at least one vertex of every set Ui, since any vertex in Ui has only one neighbor
outside Ui. Moreover, from the same argument, S contains ai,p or bi,p for every p ∈ [3]. It
is not difficult to see in Figure 7 and Figure 8 that all vertices in the clause gadgets are
activated by S at time at most 4 and all vertices of W are activated at time at most 3 (in
the figures, S is represented by the vertices with activation time 0). We may assume w.l.g.
that S contains bi,p instead of ai,p, for p ∈ [3], since ai,p activates wi,p at time at most 2.
Also, all vertices of Y are activated at time at most 4. Also recall that z′ is activated at time
at most 2. Therefore, z is the unique vertex activated by S at time 5 and consequently all
vertices of Y must be activated at time exactly 4.

With this, consider the following assignment. For every uxi,p in S, for p ∈ [3] and
x ∈ {A,B}, assign true to the literal `i,p. That is, if the literal `i,p is a positive literal,
assign true to its variable; otherwise, assign false to its variable. This is a valid truth
assignment, since all vertices of Y are activated at time 4 and consequently any two vertices
of U representing complementary literals cannot be both in S. Moreover, this assignment
satisfies all the clauses in C, since S has at least one vertex in each set Ui and consequently
the assignment satisfies at least one literal of every clause.

For time values k > 5, it suffices to include a new path P with k− 6 edges and k− 5 new
vertices s1, . . . , sk−5 and to add the edge zs1. Moreover create k − 5 new squared vertices s′i
and add the edge sis′i for i ∈ [k − 5]. As before, G has no vertex of degree 1. From this, it is
easy to see that a target set S activates sk−5 at time at least k if and only if S activates z at
time at least 5. J
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Figure 8 Bipartite gadget of clause Ci. The blue numbers near the vertices are the activation
times when uBi,2 is in the target set. The set Ui is inside the red square.

4 TSS-time is FPT in graphs of bounded local treewidth

In this section we provide an FPT algorithm to solve the GTSS-time problem (so the
TSS-time problem as well) in graphs of bounded local treewidth (Theorem 15). This result
together the NP-completeness result of Theorem 9 will yield the complexity dichotomy proved
in Theorem 16. We first need to introduce some notation and a slightly (more) generalized
version of the GTSS-time problem.

Let G be a graph and τ be a generalized threshold function in G. Recall that τ? =
maxv∈V (G) τ(v). Given a subset Vf ⊆ V (G) of forced vertices, we denote by tτ (G,Vf) the
maximum activation time tτ (S0) among all target sets S0 of G such that Vf ⊆ S0. Clearly,
tτ (G, ∅) = tτ (G), hence deciding whether tτ (G,Vf) ≥ k, for a positive integer k, is equivalent
to the GTSS-time problem if we consider the threshold of any vertex in Vf strictly greater
than its degree, while the threshold of any other vertex is maintained. However, we still need
this generalized version of the problem in this section, since we do not want the value of τ?
to increase when considering the auxiliary subproblems that we will define below.

Before this, we show in the next lemma that deciding whether there exists a target set
with activation time at least k is equivalent to the exact version.

I Lemma 12. For every graph G, every generalized threshold function τ in G, every set
Vf ⊆ V (G), and every positive integer k, tτ (G,Vf) ≥ k if and only if there is target set
S0 ⊆ V (G) with Vf ⊆ S0 and such that tτ (S0) = k. In particular, tτ (G) ≥ k if and only if
there is target set S0 ⊆ V (G) such that tτ (S0) = k.

Proof. If there is target set S0 ⊆ V (G) with Vf ⊆ S0 and such that tτ (S0) = k, then by
definition tτ (G,Vf) ≥ k, so let us focus on the forward direction. Let S0 be a target set of G
with Vf ⊆ S0 and such that tτ (S0) ≥ k, and let S0, S1, S2, . . . , St be the partition of V (G)
given by S0, where t ≥ k. If t = k, then we are done. Otherwise, let S′0 = S0∪S1∪ · · ·∪St−k.
It can be easily verified that S′0 is a target set of G with Vf ⊆ S′0 and such that tτ (S′0) = k. J

We now define auxiliary graphs that will be used in the FPT algorithm of Theorem 15.
The crucial property of these auxiliary graphs is that they have diameter O(k), which will
be exploited in order to bound their treewidth. Let G be a graph, let τ be a generalized
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threshold function in G, let v ∈ V (G), and let k be a positive integer. We define the pair
(Gvk, τvk ) such that Gvk is a graph and τvk is a generalized threshold function in Gvk, as follows.
Let Gvk = G[Nk[v]], that is, the subgraph of G induced by the vertices at distance at most
k from v in G (including v), and let τvk be the restriction of τ to Nk[v]. Note that τvk may
not be a threshold function in Gvk, even if τ is a threshold function in G, since the degree in
Gvk of the vertices at distance exactly k from v in G may have decreased, but τvk is still a
generalized threshold function in Gvk such that (τvk )? ≤ τ?. In the next lemma we show that
dealing with the auxiliary graphs Gvk is enough in order to solve the GTSS-time problem.

I Lemma 13. For every graph G, every generalized threshold function τ in G, and every
positive integer k, tτ (G) ≥ k if and only if there exists a vertex v ∈ V (G) such that
tτv
k

(Gvk, Vf) ≥ k, where Vf is the set of vertices at distance exactly k from v in G.

Proof. Suppose first that tτ (G) ≥ k. By Lemma 12, there is target set S0 ⊆ V (G) such
that tτ (S0) = k. Let V (G) = S0]S1]· · ·]Sk be the partition of V (G) into k+ 1 non-empty
sets given by the activation process starting at S0, let v be any vertex in Sk, and let Vf be
the set of vertices at distance exactly k from v in G. We claim that tτv

k
(Gvk, Vf) ≥ k. Let

Sv0 = (S0 ∩Nk−1(v))∪ Vf . Since Vf ⊆ Sv0 , we just have to verify that Sv0 is a target set of Gvk
with tτv

k
(Sv0 ) ≥ k. Since S0 activates vertex v at time exactly k in G, S0 ∪ {u} also activates

vertex v at time exactly k for any vertex u at distance exactly k from v in G. Iterating
this argument, it follows that S0 ∪ Vf activates vertex v at time exactly k in G. Thus, Sv0
activates vertex v at time exactly k in Gvk. As for the other vertices of Gvk, since S0 is a
target set of G and Vf ⊆ Sv0 , it follows that Sv0 is indeed a target set of Gvk containing Vf that
activates v at time exactly k, and therefore tτv

k
(Gvk, Vf) ≥ k.

Conversely, suppose that there exists v ∈ V (G) such that tτv
k

(Gvk, Vf) ≥ k, where Vf is the
set of vertices at distance exactly k from v in G. Let Sv0 be a target set of Gvk containing Vf
such that tτv

k
(Sv0 ) ≥ k. Let S0 = Sv0 ∪ (V (G) \ Nk[v]). That is, S0 contains Sv0 and all

vertices at distance at least k + 1 from v in G. Since Vf ⊆ Sv0 , S0 also contains all vertices at
distance exactly k from v in G. We claim that S0 is a target set of G with tτ (S0) ≥ k. The
fact that S0 is a target set of G follows from the hypothesis that Sv0 is a target set of Gvk
and the fact that S0 contains all vertices at distance at least k from v in G. On the other
hand, since tτv

k
(Sv0 ) ≥ k, Vf ⊆ Sv0 ⊆ S0, and no vertex in V (G) \Nk[v] has a neighbor in the

set Nk−1[v], it follows that tτ (S0) ≥ k, and therefore tτ (G) ≥ k. J

The last ingredient that we need before proving Theorem 15 is to show that deciding
whether tτ (G,Vf) ≥ k can be expressed by an MSO1 formula of appropriate length. Note
that, in particular, this applies to deciding whether tτ (G, ∅) = tτ (G) ≥ k, that is, to the
GTSS-time problem.

I Lemma 14. Given a graph G, a generalized threshold function τ in G, a subset Vf ⊆ V (G),
and a positive integer k, the problem of deciding whether tτ (G,Vf) ≥ k can be expressed by
an MSO1 formula φ whose length depends on k and τ?.

Proof. We may assume that G is given along with a partition of V (G) according to Vf and
the values of the generalized threshold function τ , namely V (G) = Vf ] V0 ] V1 ] · · · ∪ Vτ? ,
where τ? = maxv∈V (G) τ(v) and, for j ∈ [0, τ?], Vj = {v ∈ V (G) \ Vf | τ(v) = j}. Note that
Vf and the sets Vj may be empty. By Lemma 12, (G, τ, k) is a yes-instance of GTSS-time if
and only there exists a target set S0 ⊆ V (G) such that tτ (S0) = k. The existence of such a
set S0 can be equivalently expressed as the existence of a partition V (G) = S0 ]S1 ] · · · ]Sk
into k + 1 non-empty sets with Vf ⊆ S0 and such that
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(i) for every i ∈ [2, k] and every j ∈ [0, τ?], every vertex in Si ∩ Vj has strictly less than j
neighbors in the set

⋃i−2
h=0 Sh, and

(ii) for every i ∈ [1, k] and every j ∈ [0, τ?], every vertex in Si ∩ Vj has at least j neighbors
in the set

⋃i−1
h=0 Sh.

Let us argue that the above conditions can be indeed expressed by an MSO1 formula φ
whose length depends only on k and τ?. First, note that the existence of k + 1 pairwise
disjoint vertex sets that form a partition of V (G) with Vf ⊆ S0 can be easily expressed
in MSO1. On the other hand, in order to express condition (i) above, it suffices to quantify,
for every i ∈ [2, k], every j ∈ [0, τ?], and every vertex v ∈ Si ∩ Vj , the non-existence of j
neighbors of v in the set

⋃i−2
h=0 Sh. Finally, as for condition (ii), it suffices to quantify, for

every i ∈ [1, k], every j ∈ [0, τ?], and every vertex v ∈ Si ∩ Vj , the existence of j neighbors
of v in the set

⋃i−1
h=0 Sh. Clearly, the length of the obtained MSO1 formula φ is bounded by

a function of k and τ?, and the lemma follows. J

We finally have all the ingredients to prove our FPT algorithm to solve the GTSS-time
problem. For a graph class C, we denote by GTSS-time|C (resp. TSS-time|C) the restriction
of the GTSS-time (resp. TSS-time) problem to input graphs G belonging to C.

I Theorem 15. If C is a graph class of bounded local treewidth, then the GTSS-time|C
problem is FPT parameterized by k and τ?.

Proof. Let (G, τ, k) be an instance of GTSS-time where G ∈ C, τ is a generalized threshold
function in G, and k is a positive integer. Since C has bounded local treewidth, there exists
a function f : N → N such that, for every graph G ∈ C, every vertex v ∈ V (G) and every
positive integer r, tw(G[Nr[v]]) ≤ f(r).

By Lemma 13, tτ (G) ≥ k if and only if there exists a vertex v ∈ V (G) such
that tτv

k
(Gvk, Vf) ≥ k, where Vf is the set of vertices at distance exactly k from v in G.

Based on this, for every vertex v ∈ V (G), we generate in linear time the graph Gvk, and
it is enough to decide whether tτv

k
(Gvk, Vf) ≥ k. Since Gvk = G[Nk[v]] and G ∈ C, we

have that tw(Gvk) ≤ f(k). By Lemma 14, deciding whether tτv
k
(Gvk, Vf) ≥ k can be ex-

pressed by an MSO1 (in particular, MSO) formula φ whose length depends only on k

and (τvk )? ≤ τ?. Therefore, Theorem 3 implies that deciding whether tτv
k
(Gvk, Vf) ≥ k can

be solved in time g(k, τ?, tw(Gvk)) · n for some computable function g, where n = |V (G)|.
Since tw(Gvk) ≤ f(k), deciding whether tτ (G) ≥ k can be solved in time h(k, τ?) ·n2 for some
computable function h : N2 → N, and the theorem follows. J

As particular cases of Theorem 15, it follows that the GTSS-time|C problem is FPT
parameterized by k and τ? when C is the class of graphs of treewidth bounded by a constant,
the class of graphs of maximum degree bounded by a constant, the class of planar graphs or,
more generally, the class of graphs embeddable in a fixed surface (i.e., graphs of bounded
genus).

With Theorem 9 and Theorem 15 at hand, the following theorem can be easily proved.

I Theorem 16. Let C be a minor-closed graph class. Then TSS-time|C is
• FPT parameterized by k and τ?, if C has bounded local treewidth.
• NP-complete for every fixed k ≥ 4 and τ? = 2, otherwise.

Proof. Let C be a minor-closed graph class. If C has bounded local treewidth, the result
follows from Theorem 15. Otherwise, Theorem 2 implies that C contains all apex graphs, and
by Theorem 9 the TSS-time|C problem is NP-complete for every fixed k ≥ 4 and τ? = 2. J
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Note that, since both Theorem 9 and Theorem 15 apply to the GTSS-time problem, the
same dichotomy above applies to the generalized version as well. Also, since 2-Neighbor
Bootstrap Percolation-time is a particular case of GTSS-time, Corollary 10 implies
the same dichotomy for the former problem, with the constraint on τ? being irrelevant.

5 Maximum TSS-time is linear-time solvable in trees

In this section, we obtain an O(n)-time algorithm and an O(n2)-time algorithm for the
maximization versions of TSS-time and GTSS-time in trees, respectively. That is, for the
problems in which the objective is to compute the maximum activation time tτ (T ) of a given
tree T and a (generalized) threshold function τ in T .

Let us begin with TSS-time. Given a tree T and a threshold function τ in T , we say
that a vertex v is saturated if τ(v) = d(v); otherwise, it is non-saturated. Clearly, a saturated
vertex v is activated if and only if it is in the target set or all its neighbors are activated. In
other words, a saturated vertex outside the target set cannot help to activate other vertices.

Given a tree T and two adjacent vertices w and x, let T (w, x) be the subtree containing
x obtained from T by removing the edge wx. Also let T [w, x] be the subtree obtained from
T (w, x) by adding vertex w and edge wx.

I Lemma 17. Let T = (V,E) be a tree with at least two vertices, τ be a threshold function
in T , v be a leaf of T , and w be the only neighbor of v. There exists a proper subset S ( V

such that v, w 6∈ S and I(S) = S, and S ∪ {v} is a target set (that is H(S ∪ {v}) = V ) which
activates w at time 1.

Proof. We prove the lemma by induction on the number n of vertices of T . If n = 2, T
contains exactly the two vertices v and w and the edge vw. Moreover τ(v) = τ(w) = 1 (recall
that 1 ≤ τ(x) ≤ d(x) for every vertex x of T ). Taking S = ∅, we are done, since I(∅) = ∅
and I({v}) = {v, w} = V (T ).

Now, fix n > 2, suppose that the lemma is true for every tree T with less than n vertices,
and we will prove that the lemma is also true for trees on n vertices. Let v be any leaf
of T and let w be the only neighbor of v. Since n > 2, d(w) ≥ 2. Let x1, . . . , xd(w)−1 be
the neighbors of w distinct from v. In the following, notice that the sets [τ(w) − 1] and
[τ(w), d(w)− 1] may be empty.

We will construct a proper subset S of V (T ) satisfying the conditions of the lemma.
Firstly let S = ∅. If τ(w) ≥ 2, add to S all the vertices in T (w, xi) for every i ∈ [τ(w)− 1].
If τ(w) < d(w), fix k ∈ [τ(w), d(w) − 1]. By the induction hypothesis, since the subtree
T [w, xk] has less than n vertices and w is a leaf of T [w, xk], there exists a set Sk such that
w, xk 6∈ Sk, I(Sk) = Sk, and H(Sk ∪ {w}) ⊇ V (T [w, xk]). With this, add Sk to S for every
k ∈ [τ(w), d(w)− 1].

By construction, we have that v, w 6∈ S. We first prove that I(S) = S in T . Notice that
the only neighbors of w in S are in {xi | i ∈ [τ(w)− 1]}, which cannot activate w, since its
threshold is τ(w). Then, all the vertices in the subtrees T (w, xi) for all i ∈ [τ [w]−1] together
cannot activate w. Moreover,

⋃d(w)−1
k=τ(w) Sk (this set may be empty) cannot activate any vertex

in {xk | k ∈ [τ(w), d(w) − 1]}, since w, xk 6∈ Sk and I(Sk) = Sk for k ∈ [τ(w), d(w) − 1].
Consequently, S cannot activate w and I(S) = S.

Now we prove that H(S ∪ {v}) = V (T ), that is, that S ∪ {v} is a target set of T . Firstly
notice that v together with all xi’s with i ∈ [τ(w)−1] activate w at time 1, since its threshold
is τ(w). Moreover, recall that for k ∈ [τ(w), d(w)−1], H(Sk∪{w}) = V (T [w, xk]). Therefore,
all vertices in the subtrees T [w, xk] for k ∈ [τ(w), d(w)− 1] are activated in the process and
consequently H(S ∪ {v}) = V (T ). J
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Figure 9 shows an example of the configuration considered in Lemma 17: a set S such
that S ∪ {v} is a target set, but I(S) = S.

5

3 3 3 3

3 3 3 3

v w

x1 x2

x3 x4

x5

x6

Figure 9 An example of a tree T and vertices v and w as in the statement of Lemma 17. The
vertices of S are shown in gray. The relevant thresholds are in red. Notice that I(S) = S (i.e., S
does not activate any vertex), but S ∪ {v} is a target set (i.e., H(S ∪ {v}) = V (T )).

From Lemma 17, we obtain the following lemma for threshold functions in trees.

I Lemma 18. Let T = (V,E) be a tree with at least two vertices and τ be a threshold
function in T . For any path P = (v0, v1, . . . , vp) with p ≥ 1 in T with v0 being a leaf and all
internal vertices being non-saturated, there exists a target set SP of T which contains v0 and
activates vi at time i, for every i ∈ [p].

Proof. We prove the lemma by induction on the number p of edges in P . If p = 1, P has
only two vertices v0 and v1, where v0 is a leaf and v1 is the only neighbor of v0, and we are
done by Lemma 17.

Now fix p ≥ 2 and suppose that the lemma is true for every path with less than p

edges. Let P = (v0, v1, . . . , vp) be a path with p edges such that v0 is a leaf and all internal
vertices are non-saturated. Let us prove that the lemma is true for P . Let T ′ be the subtree
containing v0 obtained from T by removing the edge vp−1vp, that is, T ′ = T (xp, xp−1).
Since vp−1 is non-saturated, τ(vp−1) is strictly smaller than the degree of vp−1 in T , and
consequently it is smaller than or equal to the degree of vp−1 in T ′. With this, let τ ′ be the
threshold function in T ′ such that τ ′(u) = τ(u) for every vertex of T ′.

Since the path P ′ = (v0, v1, . . . , vp−1) in T ′ (with threshold function τ ′) has less than p
edges, we have by induction that there exists a target set S′ of T ′ which contains v0 and
activates vi at time i, for every i ∈ [p− 1].

Now let T ′′ = T [vp−1, vp] and let τ ′′ be the threshold function in T ′′ such that τ ′′(vp−1) = 1
and τ ′′(u) = τ(u) for every vertex u ∈ V (T ′′) \ {vp−1}. Since vp−1 is a leaf of T ′′ and vp
is the only neighbor of vp−1 in T ′′, we can apply Lemma 17 and obtain a vertex subset
S′′ in T ′′ such that vp−1, vp 6∈ S′′ and S′′ does not activate vertices in T ′′, and such that
S′′ ∪ {vp−1} is a target set of T ′′ which activates vp at time 1.

With this, let SP = S′ ∪ S′′. By construction, we have that SP contains v0 and activates
all vertices in T ′, since it contains S′, activating vi at time i for every i ∈ [p− 1]. Finally,
since SP contains S′′ and activates vp−1 at time p − 1, we have that SP also activates all
vertices in T ′′ (and consequently SP is a target set of T ) and activates vp at time p. J
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Given a tree T and a threshold function τ in T , let FT,τ be the forest obtained from T in
the following way: first remove all saturated vertices, and then, for every saturated vertex v
in T and every non-saturated neighbor w of v in T , create a new vertex vw and add the edge
vww to FT,τ .

I Theorem 19. For any tree T and threshold function τ in T , the maximum activation time
tτ (T ) is the maximum diameter among the trees in the forest FT,τ . Consequently, TSS-time
is linear-time solvable in trees.

Proof. Consider a target set S of a tree T which activates a vertex v at time t. Then
there exists a path P = (v0, v1, . . . , vt−1, vt = v) in T of vertices activated by S at times
0, 1, . . . , t− 1, t, respectively. Since a saturated vertex is activated if it is in the target set or
if all its neighbors are activated, all internal vertices in the path P are non-saturated.

Now consider a path P = (v0, v1, . . . , vt) such that all its internal vertices are non-
saturated. Let T ′ = T [v0, v1]. Since v0 is a leaf of T ′, by Lemma 18 there exists a target
set S′ of T ′ which contains v0 and activates vi at time i for every i ∈ [t]. Let S be the set
obtained from S′ by adding all vertices in V (T ) \ V (T ′). Therefore, S is a target set of T
which contains v0 and activates vi at time i for every i ∈ [t].

Thus, T has maximum activation time at least t if and only if there exists a path P with
t edges in T such that all its internal vertices are non-saturated. Then, by construction of
FT,τ , the maximum activation time tτ (T ) is equal to the maximum diameter among the trees
in the forest FT,τ . Since the diameter of a tree can be computed in linear time (by running
twice a breadth-first search algorithm), and the forest FT,τ can be clearly constructed in
linear time, we have that TSS-time is linear-time solvable in trees. J

Let us now focus on the GTSS-time problem. Given a graph G, a generalized threshold
function τ in G, a vertex subset S0 ⊆ V (G), and a vertex v of G, recall that tτ (v, S0) is the
minimum integer k such that v ∈ Ik(S0), or tτ (v, S0) = ∞ if v 6∈ H(S0). By applying the
algorithm Activation-Times with input set S0, we have that H(S0) and tτ (v, S0) for every
vertex v can be computed in time O(m+ n).

We first prove the auxiliary lemma below. Let in this section Vf be the set of forced
vertices by the threshold function, that is, the set of vertices u of T with τ(u) > d(u).

I Lemma 20. Let T be a tree and τ be a generalized threshold function in T . Let S0 ⊇ Vf .
For every vertex v ∈ H(S0), there exists a target set Sv ⊇ S0 such that tτ (v, Sv) = tτ (v, S0).

Proof. Initially let Sv = S0. If Sv is a target set, we are done. Otherwise, we iteratively
apply the following procedure:

(z) Let Tv be the maximal subtree of T containing v and all vertices in H(Sv). Let
u be any vertex of Tv with a neighbor w outside Tv. Let Tw be the maximal subtree of
T [u,w] containing u and w with no vertex in H(Sv) other than u. Also let τw be such that
τw(u) = 1, τw(w) = τ(w)−|N(w)∩H(Sv)|+ 1, and τw(x) = τ(x)−|N(x)∩H(Sv)| for every
vertex x of Tw, except u and w. Notice that τw is a threshold function of Tw and u is a leaf
of Tw. Then, applying Lemma 17, we have that there exists a set Sw in Tw that activates
no vertex in T and such that Sw ∪ {u} is a target set of Tw. Add Sw to Sv. Notice that
tτ (v, Sv) = tτ (v, S0).

Repeating (z) until H(Sv) = V (T ), we obtain a target set Sv such that tτ (v, Sv) =
tτ (v, S0), and the lemma follows. J

We now explain how to compute tτ (T ) in time O(n2) for a given pair (T, τ). For this, we
define, for every vertex v of T , tτ (v) as the maximum tτ (v, S0) among all target sets S0 of T .
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Start by computing H(Vf) and compute the time tτ (v) = tτ (v, Vf) for every v ∈ H(Vf). We
define the beginning time b(v) of every vertex v ∈ V (T ) \ Vf as the maximum tτ (w) among
all neighbors w of v in H(Vf), if there is one. Otherwise, let b(v) = 0.

As before, we say that a vertex v is saturated if τ(v) = d(v); otherwise it is non-saturated.
As before, a saturated vertex is activated if and only if it is in the target set or if all its
neighbors are activated. In other words, a saturated vertex outside the target set cannot
help to activate other vertices.

A non-saturated path in the tree T is a path such that all its vertices are non-saturated
(including the endpoints) and are outside H(Vf). Here we allow paths with only one vertex
(and no edge) from a vertex v to itself.

I Lemma 21. Let T be a tree, τ be a generalized threshold function in T , and v ∈
V (T ). Let Vf be the set of vertices u of T with τ(u) > d(u). If v ∈ H(Vf), then
tτ (v) = tτ (v, Vf). If v is non-saturated outside H(Vf), then tτ (v) = max{|P | + b(u) :
P is a non-saturated path with an endpoint in v, where u is the other endpoint}. If v is sat-
urated outside H(Vf), then tτ (v) = 1 + max{tτ (u)} among all non-saturated neighbors u of
v, if there is one; otherwise tτ (v) = 1.

Proof. Let v be a vertex of T . Suppose first that v ∈ H(Vf). From Lemma 20, there exists a
target set Sv such that tτ (v, Sv) = tτ (v, Vf). Therefore, tτ (v) ≥ tτ (v, Vf). Moreover, since the
vertices of Vf must be in the target set S′v with tτ (v, S′v) = tτ (v), then tτ (v) = tτ (v, S′v) ≤
tτ (v, Vf), and we are done.

Now suppose that v 6∈ H(Vf) and v is saturated. If all neighbors of v are saturated,
then tτ (v) = 1, since all its neighbors must be in the target set (otherwise v must be
in the target set) and V (T ) \ {v} is a target set activating v at time 1. Moreover, if v
is saturated and has at least one non-saturated neighbor, then tτ (v) = 1 + max{tτ (u) :
u is a non-saturated neighbor of v}, since v cannot be activated before its neighbors (unless
it is in the target set).

Finally, consider a non-saturated vertex v. Consider a target set S0 which activates
v at time t. We want to show that there exists a path P of non-saturated vertices such
that t = b(u) + |P |, where u and v are the endpoints of P . First notice that there exists
a path P ′ = (u0, u1, u2, . . . , ut−1, v) in the tree T whose vertices are activated by S0 at
times 0, 1, 2, . . . , t− 1, t, respectively. Since vertices with τ(v) ≥ d(v) cannot help to activate
other vertices at time greater than 1, all vertices in the path P ′, except u0, are non-
saturated. We may assume that there exists 0 ≤ k < t such that u1, . . . , uk ∈ H(Vf) and
uk+1, . . . , ut−1 6∈ H(Vf). This is because every vertex of H(Vf) with activation time k+ 1 was
activated by a vertex of H(Vf) with activation time k. Therefore b(uk+1) ≥ tτ (uk) = k. The
subpath P = (uk+1, . . . , ut−1, v) of P ′ is a non-saturated path and has size |P | = t−k. Then
the activation time of v in the process of the target set S0 is equal to t = k+(t−k) = b(u)+|P |,
where u = uk+1 is the endpoint of P distinct from v.

Now consider a non-saturated path P = (u1, . . . , u`−1, v) with size |P | = `. Recall that,
by definition, P has no vertex in H(Vf). We want to show that there exists a target set S0
which activates v at time b(u1) + `. Initially let S0 = Vf . Since u1 is non-saturated, we can
add to S0 τ(u1) − |N(u1) ∩H(S0)| neighbors of u1 outside H(S0) distinct from u2. With
this, S0 activates u1 at time b(u1) + 1. Again, since u2 is non-saturated, we can add to
S0 τ(u2)− |N(u2) ∩H(S0)| neighbors of u2 outside H(S0) distinct from u3. With this, S0
activates u2 at time b(u1) + 2. Following these arguments, we obtain a set S0 which activates
v at time b(u1) + `. From Lemma 20, there exists a target set Sv ⊃ S0 which activates u` at
time b(u1) + `, and we are done. J
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Figure 10 A tree G with maximum activation time 16. The thresholds are in red, Vf is in dark
gray, and H(Vf) \ S0 is in blue. A maximum path of non-saturated vertices is in green. The vertex
with maximum activation time 16 is in orange (notice that it is saturated). The numbers inside the
vertices are their activation times. The target set S0 with maximum activation time is in dark gray
and light gray (vertices with activation time 0).
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Figure 11 Another target set of the same tree of Figure 10 (with time 12). The thresholds are in
red, Vf is in dark gray, and H(Vf) \ S0 is in blue. A maximum path of non-saturated vertices is in
green. The vertex with time 12 is in orange (notice that it is saturated). The numbers inside the
vertices are their activation times. The target set S0 is in dark gray and light gray (vertices with
time 0).

Figure 10 and Figure 11 show an example for the same tree T . In both figures, the dark
gray vertices are the vertices of Vf (that is, vertices v with τ(v) > d(v)) and the blue vertices
are the vertices in H(Vf) \ Vf . Let u and v be the vertices with labels 8 and 15 in Figure 10,
respectively. Notice that all 8 vertices in the path between u and v (green in both figures)
are non-saturated. In both figures, The numbers inside the dark gray or blue vertices are the
values of tτ (w) of the vertices in H(Vf). In this example, we have that b(u) = 7 and b(v) = 3.
Moreover, tτ (u) = 3 + 8 = 11 and tτ (v) = 7 + 8 = 15. The maximum times 16 and 12 in
Figure 10 and Figure 11, respectively, are achieved at saturated vertices. The maximum
time tτ (T ) is 16, obtained by the target set of Figure 10. Figure 12 shows an example where
the maximum time is achieved at a vertex of H(Vf).

I Theorem 22. Let T be a tree and τ be a generalized threshold function in T . Then,
tτ (T ) = max{tτ (v) | v ∈ V (T )}. Consequently, GTSS-time is O(n2)-time solvable in trees.

Proof. Clearly tτ (T ) = max{tτ (v) | v ∈ V (T )}, since the maximum activation time must be
achieved at some vertex. In order to compute tτ (T ), we have to compute H(Vf) and b(v) for
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2 1 1 1 1 1 1 1 1 0
0 1 2 3 4 5 4 3 2 1

Figure 12 Example with maximum activation time t(G) = 5. All vertices belong to H(B0). The
target set is B0 (only the vertex in dark gray). The thresholds are in red. The numbers inside the
vertices are their activation times.

every vertex v of T , which can be done in O(n)-time by the algorithm Activation-Times.
With this, we have computed tτ (v) for every vertex v ∈ H(Vf). Let v be a non-saturated
vertex outside H(Vf). We can now compute a maximum non-saturated path P with an
endpoint in v in O(n)-time, by a breadth-first search over non-saturated vertices outside
H(Vf). Thus, we can compute tτ (v) for every non-saturated vertex outside H(Vf) in time
O(n2). For saturated vertices v, we can compute tτ (v) by searching locally within its
neighborhood. J

One interesting observation is that, in Theorem 19, the threshold values are not important,
but only whether a vertex is saturated or not. However, in Theorem 22, the threshold values
are important, since the beginning set H(Vf) depends on these values.

6 Further research

We introduced the Target Set Selection-Time (TSS-time) problem and studied its
computational complexity, as well as for its generalized version (GTSS-time), obtaining both
positive and negative results. A number of interesting questions remain open. In particular,
are the values of k in our NP-hardness results tight? Namely, k = 4 in Theorem 8 and
Theorem 9, and k = 5 in Theorem 11. For the 2-Neighbor Bootstrap Percolation-time
problem, non-trivial arguments were needed in order to establish such dichotomies [50], which
do not seem to be easily generalizable to our problem.

Our main result (Theorem 16) is a complexity dichotomy for the TSS-time problem
in minor-closed graph classes, as well as for its generalized version. Within minor-closed
graph classes of bounded local treewidth (for which know that the TSS-time problem is FPT
with parameters k and τ?), it would be very interesting to obtain an additional dichotomy
distinguishing between the polynomial-time solvable cases (such as trees, cf. Theorem 19)
and the NP-complete ones (such as planar graphs, cf. Corollary 7). Another natural research
direction is to obtain a complexity dichotomy including also graph classes that are not
minor-closed. In the proof of our dichotomy (Theorem 16), we crucially use Theorem 2,
which only applies to minor-closed graph classes.

As an ingredient in our complexity dichotomy, we proved in Theorem 15 that, if C is a
graph class of bounded local treewidth, then the GTSS-time problem restricted to input
graphs in C is FPT parameterized by k and τ?. Our algorithm uses Courcelle’s Theorem [27]
as a black box, and therefore we did not focus on optimizing the dependence on k and τ?
of our algorithm. Note that, by Corollary 7, the TSS-time problem is NP-hard in graphs
with maximum degree ∆ for any fixed ∆ ≥ 4 and k = Θ(logn), even if all thresholds are
equal to 2. Since graphs of bounded maximum degree have bounded local treewidth, this
implies that, even if τ? is bounded by a constant, the dependence on k of an FPT algorithm
cannot be of the form 2O(k) unless P = NP. Also, what about the hardness of the TSS-time
problem in graphs of bounded local treewidth if k is a constant, and τ? may depend on n?
This would be the “dual” scenario of the one discussed above for planar graphs and graphs
of bounded maximum degree, that is, τ? constant and k depending on n.
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We presented algorithms in time O(n) and O(n2) to find a target set with maximum
activation time in a tree for threshold functions and generalized threshold functions, respect-
ively. Obtaining a linear-time algorithm for the latter problem in trees remain open. Finally,
can we obtain polynomial-time algorithms in graph classes other than trees? In particular,
what about cactus graphs or cographs? Even cliques do not seem to be completely trivial.

Acknowledgement. We would like to thank an anonymous referee for helpful suggestions
that improved the presentation of the paper.
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