
HAL Id: lirmm-04164381
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04164381v1

Submitted on 18 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ricochet Robots with Infinite Horizontal Board is
Turing-complete

Samuel Masseport, Tom Davot, Rodolphe Giroudeau

To cite this version:
Samuel Masseport, Tom Davot, Rodolphe Giroudeau. Ricochet Robots with Infinite Horizontal Board
is Turing-complete. Journal of Information Processing, 2023, 31, pp.413-420. �10.2197/ipsjjip.31.413�.
�lirmm-04164381�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04164381v1
https://hal.archives-ouvertes.fr

Ricochet Robots with infinite horizontal board is
Turing-complete?

Samuel Masseport, Tom Davot, and Rodolphe Giroudeau

1 LIRMM, Univ Montpellier, CNRS, Montpellier, France surname.name@lirmm.fr
2 Université de Technologie de Compiègne, CNRS, Heudiasyc, France

tom.davot@hds.utc.fr

Abstract. This paper investigates the Ricochet Robots game problem
from a complexity standpoint. The problem consists of moving robots
in a rectangular square-tiled board, from initial tiles to reach specific
target tiles. A robot can only move vertically or horizontally and when it
starts to move in a given direction, the robot follows this direction, until
being blocked by a wall or another robot. This paper proves that the
corresponding decision problem to Ricochet Robots is Turing-complete
for endless board game and an infinite number of robots. A reduction
from a universal Turing machine to Ricochet Robots is exhibited.

1 Introduction

“Ricochet Robots” [1,4,5,6] is a puzzle board game designed by A. Randolph, in
which a player moves pieces (robots) in a rectangular square-tiled board from
an initial position to a given set of selected locations, with the fewest possible
moves. The game-board is a rectangular square-tiled board that contains walls
placed on the edges of some tiles. Robots can move horizontally or vertically on
the board. A robot moves in a direction until being blocked by a wall or another
robot. Each step consists of selecting both a robot and a direction that the robot
will follow. To solve the puzzle, the player must reach a configuration where all
target tiles are covered by robots of corresponding colors. It is often necessary
to move a robots that serves as guide to stop the movement of another to an
appropriate tile (see Figure 1 for an example). Several robots cannot move at
the same time. In the original game, the board is a square (16× 16 tiles) which
contains four different colored robots and one colored target tile. The color of
the target tile corresponds to the color of one of the robots. The player can move
all robots and must reach the target tile with the robot of the same color.

Ricochet Robots game can be categorized as a sliding game like the PushPush
game studied by Demaine et al. [2] or the Atomix game studied by Holzer and
Schwoon [8] and Huffner et al. [10]. Icking et al. [11,12] considered the explo-
ration problem of a grid polygon with or without obstacles inside it. Engels and
? Preprint version. The editor version is available at
https://doi.org/https://doi.org/10.2197/ipsjjip.31.413

https://doi.org/https://doi.org/10.2197/ipsjjip.31.413

r1

r2
t1 t2

In this grid, r1 cannot be placed on
the target tile t1 without the help of
r2. If the robot r2 reaches the target
tile t2 with the two movements ↑
then ← and creases to move, then
r1 will never reach t1.
A possible solution for this instance
is to execute the following moves: r2:
← ; r1: ↑,←, ↓,→ ; r2: ↑,→, ↓ .

Fig. 1. Example of an instance of Ricochet Robots. To solve it, r1 must be placed on
the target tile t1 while r2 must be on t2 at the same time.

Kamphans [4] studied the solvability of Ricochet Robots with n uncolored robots
and one target tile, and proved that this problem is NP-complete. Hesterberg
and Kopinsky [7] studied the parameterized complexity of Ricochet Robots and
Atomix. Gebser et al. [5,6] used Ricochet Robots game as a benchmark for answer
set programming while Butko et al. [1] proposed to study how humans try to
solve Ricochet Robots. The same authors reused the result of Holzer and Schwoon
on Atomix to show that Ricochet Robots is also PSPACE-complete [3]. Another
proof of the PSPACE-completeness of Ricochet Robots was given independently
by Masseport et al. [13].

The contribution of this article is the construction presented in Section 4: any
Turing machine can be simulated by a Ricochet Robots game with an endless
board and an infinite number of robots. We can construct an instance of Ricochet
Robots whose solvability depends on whether the Turing machine halts or not.
This construction establishes the following theorem:

Theorem 1. Ricochet Robots is Turing-complete.

Section 2 provides background information on this work and several gadgets
with specifics properties are presented in Section 3. These gadgets are used in
Section 4 to prove that Ricochet Robots with an endless board and an infinite
number of robots is Turing-complete.

2 Preliminaries

2.1 Ricochet Robots

The original game implies four different colored robots and one colored target
tile. The decision problem of Generalized Reachability (GR) is defined as
a generalization of Reachability Problem introduced by Engels and Kam-
phans [4].

A board game is a rectangular square-tiled board (all the tiles are the same
size and are vertically and horizontally aligned) that contains horizontal and

vertical walls between some tiles. In the following, we define a board B as a set
of walls.Some tiles of the board game, called target tiles are colored. A robot is a
colored token on a tile. A tile cannot contain more than one robot at the same
time. An instance of Ricochet Robots I = (G,R, T) is constituted by a board
game B, a set of robots R and a set of target tiles T . A configuration is winning
if each colored target tile is covered by a robot of the same color. To reach a
winning configuration, at each step, the player can move a robot vertically or
horizontally on the game board. When a robot starts to move, it follows this
direction, until it hits an obstacle (i.e. another robot or a wall). Target tiles do
not stop movement. The Generalized Reachability (GR) problem is defined
as follows:

Generalized Reachability (GR)
Input: An instance of Ricochet Robots I = (B,R, T)
Question: Is there a reachable winning configuration?

The result of Turing-completeness presented in Section 4 uses a single color for
target tiles and robots. For simplicity, the color is not specified. The construction
depicted in the following creates an instance of Ricochet Robots of infinite size
in the horizontal dimension. In order to show that the reduction is a many-
one reduction, the instance resulting from it must be expressed in a finite way,
otherwise the reduction would not consist in a computable function because
the production of the instance would not terminate. Hence, in the following an
infinite-size board is represented in a finite way by using something close to
regular expressions to repeat some patterns indefinitely. Let I1 = (B1, R1, T1)
and I2 = (B2, R2, T2) two instances of GR such that the horizontal size of B1 is
equal to x1. The instance I1 ◦ I2 is created by juxtaposing I2 after I1. That is,
I1 ◦I2 = (B1∪B′2, R1∪R′2, T1∪T ′2) where (B′2, R′2, T ′2) is obtained by a horizontal
translation of value x1 applied to I2 (i.e. the walls of the board, robots and target
titles have been shifted to the right). The instance I∗ corresponds to an infinite
number of juxtapositions of the instance I, in other words: I∗ = I ◦ I ◦

2.2 Turing machine

A Turing machine defines an abstract machine which manipulates symbols on a
tape. This tape is divided into “cells” and the machine has a “head” positioned over
a cell. This head reads and writes symbols on the tape. The cell on which the head
is positioned is denoted as the current cell. A Turing machine has many definitions.
Hopcroft [9] describes a Turing machine M as a 7-tuple (Q,Σ, Γ, δ, q0,Y0, F)
where:

– Q is a finite, non-empty set of states,
– Σ is a finite set of input symbols,
– Γ is the complete set of tape symbols, Σ is always a subset of Γ ,
– δ(q,X)→ (p, Y,D) is a transition function which given a state q and a tape

symbol X returns a triple containing, a next state p, a symbol Y written in

the cell being scanned and a direction D, either L (“left”) or R (“right”), in
which the head moves.

– q0 ∈ Q is the initial state of M ,
– Y0 ∈ Γ \Σ is a blank symbol, and
– F ⊆ Q is a set of final or accepting states.

At each step, a Turing machine has a current state q. The head starts by reading
the symbol X on the current cell. Then, according to the value returned by the
transition function δ with input (q,X), the current state changes to p ∈ Q, the
head writes a new symbol Y ∈ Γ in the current cell and moves to the left or the
right cell on the tape.

A universal Turing machine is a Turing machine that can simulate any
arbitrary Turing machine on arbitrary input. The universal machine essentially
achieves this by reading both the description of the machine to be simulated and
the input to that machine from its own tape.

3 Description of constructions

3.1 Wires Representation

To simplify both our scheme and reader understanding’s, gadgets are represented
by rectangles that are connected by “wires”. A wire corresponds to a line (possibly
bent) of free spaces surrounded by walls on both sides. Two wires can cross each
other to preserve planarity of the grid (see Table 1). Note that a robot passing
through an intersection cannot change its way. In other words, a robot that gets
in vertically cannot reach a horizontal output and vice versa. Wires, bent wires
and crossed wires guarantee the planarity of the construction.

A helping robot wire is a particular connection of wires: if a robot is on the
tile tagged by r (see Table 1), then it can “help” another robot coming from the
left to go down. Notice the robot on the tile r cannot go down. In this paper,
considering r1 a helping robot and r2 a robot needing help, “r1 intercepts r2 to
reach the correct output (i.e. to go down)” means that r1 goes to the position to
help r2 reach the correct output (i.e. the down output). Likewise, considering
two gadgets G1 and G2 and a wire w, “G1 intersects w to G2” means that an
output of G1 and an input of G2 are connected to w in such a way that a robot
coming from G1 can help a robot coming from w to reach G2 by stopping it.

3.2 Basic Gadgets

This section presents some basic gadgets and their properties. These gadgets
are used in the next section for construction of more sophisticated gadgets. A
k-router gadget (Figure 2) is a gadget with k′ inputs and k outputs (k′ and k > 0)
that has the following property:

Table 1. Wires representations.

Representation Corresponding grid

wire

bent wire

crossed wires

helping robot wire r

Property 1 (Router Property) When a robot reaches a router gadget (from
an input or an output), it can reach any output.

A k-synchronizer gadget is a gadget with k inputs and k outputs (with k > 0).
A 2-synchronizer gadget (resp. a 3-synchronizer gadget) is depicted in Figure 2
(resp. Figure 3). A synchronizer gadget has the following property:

Property 2 (Synchronize Property) Let S be a k-synchronizer gadget and
suppose that k′ robots enter S. If k′ < k, then no robot can reach an output. If
k′ = k, then each robot can reach a distinct output (i.e. two robots cannot reach
the same output).

The case where the number of robots in a k-synchronizer gadget is strictly
greater than k is not analyzed because it can not happen in the proposed
construction. The next property is defined in order to clarify the construction:

Property 3 (k-No-Return Property) If there are at most k > 0 robots in a
gadget that has a k-No-Return Property and at least one of them has reached an
output, then none of them can go back to any input.

Obviously, a k-No-Return Property implies a (k − 1)-No-Return Property. Note
that all gadgets defined in this paper have a 1-No-Return Property. A k-
synchronizer gadget has a k-No-Return Property.

4 Turing-completeness

This section is devoted to proving the Turing-completeness of Ricochet Robots
game. In order to show this, a many-one reduction from a universal Turing
machine to Ricochet Robots is exhibited. Let M = (Q,Σ, Γ, δ, q0, Y0, F) be an
arbitrary Turing machine with m states (Q = {q0, . . . , qm−1}) and n symbols
(Γ = {Y0, . . . , Yn−1}). The following construction is divided in two main gadgets:

In1 In2

. . .

. . .

. . .Out1 Out2 Outk−1Outk

In1

In2

Out2

Out1

Fig. 2. Left: a k-router gadget with two inputs. In this gadget, a robot can reach any
output (while traveling through counterclockwise). Right: A 2-synchronizer gadget.
Let r1 (resp. r2) be a robot that reaches the input In1 (resp. In2). In order to get r1
and r2 out of the gadget, one of them needs to reach the output Out1 and the other
the output Out2 (they cannot reach the same one). Possible moves to cross this gadget
after r1 and r2 have reached the input: r2: ↓ ; r1: ↓,→, ↓ ; r2: →, ↓ ; r1: ↑.

2-synchronizer

2-synchronizer

2-synchronizerIn1
In2

In3

Out1
Out2

Out3

Fig. 3. A 3-synchronizer gadget. See Section 3.1 for details on the representation system.

– Tape gadget used to encode the symbols written on the tape of M .
– Controller gadget used to encode the current state of M .

The next subsection describes how the tape gadget and the controller gadget
communicate. The Section 4.2 presents the tape gadget and how the read and
write operations are simulated. Further, the execution of the transition function
by the controller gadget is defined in Section 4.3. Finally, Section 4.4 shows that
Ricochet Robots game is Turing-complete.

4.1 Communication system

A communication pipe is an endless corridor (i.e. a line of free spaces surrounded
by walls on both sides) with some helping robots connections. The communica-
tion system between tape gadget and controller gadget is composed of several
communication pipes. We distinguish between two types of pipes: the “TCP”

TCP h

CCPn−1

TCP0

..
.

..
.

..
.

CCPn−1

CCP0

CCPR

CCPL

..
.

..
.

..
.

Controller Cell i−1
Cell i

(Head)
Cell i+1

Tape

.

Fig. 4. The communication system. The arrows indicate the direction of communication
of the lines and the value corresponds to the message. For example, the communication
pipe TCP0 is used to send the message “Y0” from the tape to the controller. Note that
a pipe cannot be used to communicate in both directions.

communication pipes are used by the tape gadget to send robots to the controller
gadget while the “CCP” communication pipes are used by the controller gadget
to send robots to the tape gadget.

Construction 1 (Communication gadget) Create three communication pipes
TCPh, CCPL and CCPR and ∀Yi ∈ Γ create two communication pipes TCPi
and CCPi.

The TCPi communication pipes are used by the tape gadget to transmit the
symbol contained on the current cell whereas the CCPi communication pipes are
used by the controller gadget to transmit the new value of the cell (i.e. a pipe
cannot be used to communicate in both directions). Precisely, the tape gadget
(resp. controller gadget) sends a robot through TCPi (resp. CCPi) if the value
(resp. the new value) on the current cell is Yi. The controller indicates if the head
has to move to the left or to the right by sending a robot through CCPL or
CCPR, respectively. The communication pipe TCPh is used to indicate the end
of the reading action to the controller. See Figure 4 for the description of the
communication system.

4.2 Head and Tape

This subsection introduces the gadget used to simulate both the head and the
tape. The tape gadget consists of several cell gadgets defined below.

Construction 2 (Tape gadget) Given a communication gadget produced by
Construction 1, construct a tape gadget as follows. Let ci be the ith cell of the
tape. For each cell ci, construct a cell gadget Cell i (see Figure 5) as follows:

– construct one n-router gadget TRi,
– construct one 2(n+ 1)-router gadget TR′i,
– construct two 2-synchronizer gadgets Left i and Right i, and
– for each Yj ∈ Γ , construct two 2-synchronizer gadgets, Y ij and Write(Y ij).

Inner gadgets of Cell i are connected in the following way:

– intersect CCPL with TR′i to Left i,
– intersect CCPR with TR′i to Right i,
– for each Yj ∈ Γ , connect an output of Write(Y ij) and an output of TRi with
the inputs of Y ij and connect the outputs of Y ij with the communication pipes
TCPj and TCPh, and

– for each Yj ∈ Γ intersect the communication pipe CCPj with TR′i to
Write(Y ij), connect an output of TR′i with an input of Write(Y ij) and connect
the last output of Write(Y ij) with inputs of Left i and Right i.

Finally, connect Cell i with Cell i−1 and Cell i+1:

– connect the outputs of Left i with the inputs of TRi−1 and TR′i−1, and
– connect the outputs of Right i with the inputs of TRi+1 and TR′i+1.

In a Turing machine, the head must be able to carry out three actions (if the
transition function allows it):

– read the symbol of the current cell,
– write a symbol in the current cell,
– move on the tape to the cell on the right or left.

In each cell gadget Cell i, a robot ri is used to encode the symbol written in the
corresponding cell ci. The robot ri is located in the 2-synchronizer gadget Y ij
if and only if the ith cell of the tape contains the symbol Yj . If the robot ri is
in the gadget Y ij , Cell i is said to contain Yj . Two robots h1 and h2 are used to
simulate the head of M . The robot h2 is located in the cell gadget Cell i if and
only if the head is over the ith cell. In that case, Cell i is the current cell gadget.

Lemma 1. Let Cell i be a gadget produced by Construction 2.

1. If robots ri and h1 are located in gadgets Y ij and TRi, then ri and h1 reach
the communication pipes TCPj and TCPh.

2. If robots ri and h1 are coming respectively from communication pipe CCPj
and CCPL (resp. CCPR) and h2 is located in TR′i, then ri reaches Y ij , h1
reaches TRi−1 (resp. TRi+1) and h2 reaches TR′i−1 (resp. TR′i+1).

Proof. 1. If robot h1 enters any gadget Y ik such that k 6= j, then by Property 2,
h1 is stuck in the gadget Y ik and ri in Y ij . Thus, suppose that h1 enters in
Y ij . By Property 2, robots ri and h1 reach the communication pipes TCPj
and TCPh, respectively.

2. By Property 1, h2 can intercept successively both ri and h1 to Write(Y ij) and
Left i (resp. Right i) respectively. If h2 enters any gadget Write(Y ik) such that

k 6= j, then by Property 2, ri, h1 and h2 are stuck in their respective gadget.
Thus, suppose that h2 enters in Write(Y ij). By Property 2, ri and h2 reach
Y ij and Left i (resp. Right i), respectively. Then, by Property 2, robots h1 and
h2 reach gadgets TRi−1 and TR′i−1 (resp. TRi+1 and TR′i+1) respectively.

When the head reaches the ith cell, (i.e. h1 and h2 enter in TRi and TR′i,
respectively) three operations are simulated in the following way.

– Reading operation. This operation is executed by sending ri with the help
of h1 to the controller gadget via TCPj (Lemma 1(1)). Note that after this
operation, h1 is sent to the controller via TCPh (this action indicates the end
of the reading operation and is required to execute the transition function).
Red paths in Figure 5 depict an example of a reading operation.

– Writing operation. The controller gadget indicates the new value Yk to
Cell i by sending back ri via CCPk. Thus, writing operation is simulated by
intercepting ri with h2 in CCPk and sending it to Y ik by crossing Write(Y ik)
(Lemma 1(2)). Blue paths in Figure 5 depict an example of such operation.

– Moving operation. The controller gadget indicates the direction in which
the head has to move by sending back h1 via CCPL or CCPR . Thus, a
moving operation is simulated by intercepting h1 with h2 to Left i or Right i.
After the writing operation, h2 can join h1 in its gadget and they are sent to
TRi−1 and TR′i−1, if left, or TRi+1 and TR′i+1, if right (Lemma 1(2)) Green
and blue paths in Figure 5 depict an example of such operation.

4.3 Controller gadget

This subsection introduces the gadget used to simulate the transition function.

Construction 3 (Controller gadget) Given a communication gadget produced
by Construction 1, the controller gadget (see Figure 6) is constructed as follows.
First, create a target tile t. Then, for each state qi ∈ Q, construct a state gadget
Statei as follows:

– construct a (2n+ 1)-router gadget CRi and an n-router gadget CR′i,
– for each symbol Yj ∈ Γ , construct a 3-synchronizer gadget ∆i

j.

For each state qi ∈ Q and for each symbol Yj ∈ Γ , let (qp, Y`, D) be the values
returned by δ(qi, Yj) (with D ∈ {L,R}). State gadgets are connected as follows:

– connect an output of CR′i with an input of ∆i
j,

– connect an output of CRi with an input of ∆i
j,

– intersect TCPh with CRi to CR′i,
– intersect TCPj with CRi to ∆i

j,
– connect the outputs of ∆i

j with the inputs of CRp, C ′Y` and C ′D respectively,
– if δ(qi, Yj) is a halting case for M , connect an output of ∆i

j to the target tile
t and close the two other outputs with a wall.

TCP h

TCPn−1

TCP0

..
.

..
.

Y i
0

Write(Y i
0)

ri

Y i
n−1

Write(Y i
n−1)

. . .

. . .

T
R
i
(r

ou
te

r)

..
.

h1

Right i
TRi+1

TR′i+1
Left i+1Left i

TRi−1

TR′i−1
Right i−1

CCPn−1

CCP0

CCPR

CCPL

ri

h1

..
.

..
.

TR′i (router)

h2

Fig. 5. The cell gadget Cell i representing the ith cell of the tape of M . See Section 3.1
for details on the representation system. The output TRi−1 (resp. TR′i−1) is connected
to the input TRi−1 (resp. TR′i−1) of the cell on the left. The output TRi+1 (resp.
TR′i+1) is connected to the input TRi+1 (resp. TR′i+1) of the cell on the right.The
gadgets Right i−1 of the cell gadget Cell i−1 and Left i+1 of the cell gadget Cell i+1 are
also depicted. Suppose that there is a robot ri in the gadget Y i

0 and a robot h1 in TRi.
The two robots execute the reading operation by following red paths. In this example
robots read the symbol Y0. Now, suppose that there is a robot h2 in the gadget TR′i and
two robots ri and h1 that come from the communication pipes CCPn−1 and CCPR,
respectively. The three robots execute the writing operation by following blue paths
and the moving operation by following green and blue paths. In this example, robots
write the symbol Yn−1 in the cell ci and move the head to the right (i.e. to the cell
ci+1). These paths are detailed in Lemma 1.

The role of this gadget is twofold:

– it changes the state of the machine, and
– it transmits to the current gadget cell the symbol to write and the direction

in which the head has to move.

A robot s is used to encode the current state of M . That is, s is located in CRi
if and only if the current state of M is qi. In that case, the controller gadget is
said to be in the state qi.

Lemma 2. Consider a controller gadget produced by Construction 3. Suppose
that s is in CRi. Suppose that two robots rj and h1 are coming from TCPk and
TCPh respectively. Let (qp, Y`, D) (with D ∈ {L,R}) be the values returned by
δ(qi, Yk). Then, s, rj and h1 reach CRp, CCP` and CCPD respectively.

Proof. By Property 1, s can intercept successively rj and h1 in order to help
them to reach ∆i

k and R′qi , respectively. By Construction 3, the robot rj cannot
reach another gadget than ∆i

k. Later, by Property 1, h1 and s can reach any
∆i
t gadget (∀ Yt∈ Γ). If at least one of h1 and rs reaches a gadget ∆i

t such that
t 6= k, then by Property 2, s, rcj and h1 are stuck in their gadget. Thus, suppose
that both s and h1 enter in ∆i

k. By Property 2 and according to Construction 3,
s, rj and h1 reach CRp, CCP` and CCPD respectively.

When the controller gadget receives the robots h1 and rj from the tape gadget,
it performs a transiting operation defined as below.

– Transiting operation. Suppose that there is a robot s in the router gadget
CRi and two robots rj and h1 coming from TCP` and TCPh respectively.
According to Lemma 2, rj and h1 are sent to the tape gadget through CCP`
and CCPD (with D ∈ {L,R}) according to the transition function. Red
paths in Figure 6 depict an example of transiting operation.

4.4 Full construction

An instance of Ricochet Robots that simulates a Turing machine M is presented
in this subsection.

Construction 4 Let M be a Turing machine with input σ. Let G be the board
produced by Construction 1, Construction 2 and Construction 3. An instance of
Generalized Reachability (GR) I = (B,R, T) is created as follows. Robots
composing R have the following starting positions:

– the robot s is placed in CR0 (in State0, itself in the controller gadget),
– let cell ci be the initial current cell, place two robots h1 and h2 in gadgets
TRi and TR′i respectively (in the cell gadget Cell i, itself in the tape gadget),

– for all cell ci of the tape of M , let Yj be the initial symbol of ci in the input
T , a robot ri starts in the gadget Y ij (in Cell i, itself in the tape gadget).

h1

ri

TCP h

TCPn−1

TCP0

..
.

..
.

..
.

. . .

. . .

State0

CR0 (router)

q0

s

C
R
′ 0

(r
ou

te
r)

. . .

∆0
0

∆0
n−1

qm−1

p

Yn−1 R Y D Statem−1

CRm−1 (router)

qm−1

C
R
′ m
−
1

(r
ou

te
r)

. . .

∆m−1
0

∆m−1
n−1

p

p

Y D Y D

CCPn−1

CCP0

CCPR

CCPL

..
.

..
.

..
.

×t

Fig. 6. The controller gadget that contains the unique target tile t. The connection
on the dotted rectangles and the output p depend of the transition function δ. For
example, if δ(q0, Y0) → (qm−1, Yn−1, R) then the ∆0

0 gadget is connected as follows:
its output p is connected to the input qm−1 of the CRm−1 gadget, its output Y is
connected to the communication pipe CCPn−1 and its output D to the pipe CCPR.
Suppose that there is a robot h2 in the gadget CR0 and two robots ri and h1 coming
from the communication pipes TCP0 and TCPh, respectively. The three robots execute
the transition function by following red paths (see Lemma 2 for more details).

The unique target tile t is located in the controller gadget (see Construction 3),
hence T = t. A step in the instance produced by Construction 4 is composed of the
following sequence of operations: (1) reading operation, (2) transitioning operation,
(3) writing operation, and (4) moving operation. Lemma 1 and Lemma 2 ensure
that the sequence order is respected and that no other operation is performed.

As said before, even if the instance produced by Construction 4 has an
infinite horizontal dimension, it can be encoded in finite way as follows. For all
` ∈ Γ , C` denotes a cell gadget Cell i with a robot in TR′i and another one in
Y i` . Thus, given an input σ ∈ Σ∗ = `1`2 . . . `|σ| to M , the tape can be encoded

by the string “(CY0)∗ ◦ C`1 ◦ . . . ◦ C`|σ| ◦ (CY0)∗′′ (Recall that Y0 is the blank
symbol). The controller gadget is then positioned above the first cell gadget that
does not contain a blank character. Hence, the construction depicted here is
a computational function taking a Turing machine as input and returning an
instance of Ricochet Robots.

Theorem 2. Considering an arbitrary Turing machine M and the corresponding
instance I of GR obtained by Construction 4, for any k, at the kth step in I and
the kth transition in M , the following conditions are respected:

(a) the controller gadget is in the state qi if and only if M is in state qi,
(b) the current cell gadget is Cell j if and only if the head of M is over the cell

cj of the tape, and
(c) for all cell cj, the cell gadgets Cell j contains Y` if and only if the cell cj of

the tape of M contains the symbol Y`.

Proof. Clearly (a), (b) and (c) are true if k = 0. Suppose that k > 0 steps
and transitions have been completed in I and M and that (a), (b) and (c) are
verified. Let qi be the current state, cj be the current cell of the tape and Y`
be the symbol contained in cj . Let (p, Yt , D) (with D ∈ {L,R}) be the values
returned by δ(qi, Y`). The following shows that (a), (b) and (c) are still verified
for the step k + 1 in I and for the transition k + 1 in M . First, by Lemma 1(1),
a reading operation is performed in the current cell gadget, rj and h1 are sent
to the controller gadget through TCP` and TCPh, respectively. By Lemma 2,
a transiting operation is then performed in the controller gadget. The robot s
(that represents the current state) enters the state gadget Statep in the gadget
CRp while rj and h1 are sent to the tape gadget through CCPt and CCPD,
respectively. Further by Lemma 1, a writing operation and a moving operation
are done in the tape gadget, that is, rj reaches Y

j
t and h1 and h2 enter in gadgets

TRj−1 and TR′j−1 (in the gadget Cell j−1) if D = L, or in TRj+1 and TR′j+1

(in Cell j+1) if D = R. Now, M is in state qp and its head is over the cell cj−1 or
cj+1 (depending on if D = L or D = R). Hence, (a) and (b) are verified for k+1.
Moreover, the cell cj contains Yt in M and the robot is in the Y jt (in the gadget
Cell j). Since only the cell cj and the cell gadget Cell j have been modified by the
previous transition and step, (c) is verified for k + 1.

Theorem 3. The instance I = (B,R, T) of Generalized Reachability
(GR) problem obtained by Construction 4 admits a winning configuration if and
only if M reaches a halting state.

Proof. Suppose that I admits a winning configuration (i.e. a robot reaches the
target tile). Thus, robots reach a gadget ∆i

j such that δ(qi, Yj) is a halting case
for M . Hence, according to Theorem 2, robots have executed a sequence of
transitioning operations such that the corresponding sequence of transitions for
M is a transition from the initial configuration to a halting case.

Suppose that M reaches a halting case δ(qi, Yj). Thus, there is a sequence of
transitions from the initial configuration to a halting case in M . According to

Theorem 2, the corresponding sequence of transitioning operations allows robots
of I to reach the gadget ∆i

j . Thus, one robot can reach the target tile t, then I
admits a winning configuration.

By Theorem 3, the Generalized Reachability (GR) problem can simulate
any Turing machine, then it can simulate a universal Turing machine, and then
we prove the Theorem 1.

Acknowledgment

We would like to thank Tathagata Basu for his thorough re-reading of this article.
The work of the author from Université de technologie de Compiègne was carried
out in the framework of the Labex MS2T funded by the French Government
through the program “Investments for the future” managed by the National
Agency for Research.

References

1. Butko, N., Lehmann, K.A., Ramenzoni, V.: Ricochet robots—a case study for
human complex problem solving. Proceedings of the Annual Santa Fe Institute
Summer School on Complex Systems (CSSS’05) (2005)

2. Demaine, E.D., Hoffmann, M., Holzer, M.: Pushpush-k is pspace-complete. In:
Proceedings of the 3rd International Conference on FUN with Algorithms. pp.
159–170. Citeseer (2004)

3. Engels, B., Kamphans, T.: Complexity of randolph’s robot game technical. Tech.
rep., Rheinische Friedrich-Wilhelms-Universität Bonn (2006)

4. Engels, B., Kamphans, T.: Randolphs robot game is NP-hard! Electronic Notes in
Discrete Mathematics 25, 49–53 (2006)

5. Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.,
Schneider, M.: Ricochet robots: A transverse asp benchmark. In: International
Conference on Logic Programming and Nonmonotonic Reasoning. pp. 348–360.
Springer (2013)

6. Gebser, M., Kaminski, R., Obermeier, P., Schaub, T.: Ricochet robots reloaded: A
case-study in multi-shot asp solving. In: Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation, pp. 17–32. Springer (2015)

7. Hesterberg, A., Kopinsky, J.: The parameterized complexity of ricochet robots.
Journal of Information Processing 25, 716–723 (2017)

8. Holzer, M., Schwoon, S.: Assembling molecules in atomix is hard. Theoretical
computer science 313(3), 447–462 (2004)

9. Hopcroft, J.E.: Introduction to automata theory, languages, and computation.
Pearson Education India (2008)

10. Hüffner, F., Edelkamp, S., Fernau, H., Niedermeier, R.: Finding optimal solutions
to atomix. In: Annual Conference on Artificial Intelligence. pp. 229–243. Springer
(2001)

11. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: Exploring an unknown cellular
environment. In: European Workshop on Computational Geometry. pp. 140–143
(2000)

12. Icking, C., Kamphans, T., Klein, R., Langetepe, E.: Exploring simple grid polygons.
In: International Computing and Combinatorics Conference. pp. 524–533. Springer
(2005)

13. Masseport, S., Darties, B., Giroudeau, R., Lartigau, J.: Ricochet robots game:
complexity analysis. Tech. rep., LIRMM, Université de Montpellier (2019)

	Ricochet Robots with infinite horizontal board is Turing-complete

